
Unified API Developer Manual

Unified API Developer Manual
CoreMedia Content Cloud - v13

Copyright CoreMedia GmbH © 2026

CoreMedia GmbH

Altes Klöpperhaus, 5. OG

Rödingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfältigt werden. Unberührt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

iiCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

1. Preface . 1
1.1. Audience . 2
1.2. Typographic Conventions . 3
1.3. CoreMedia Services . 5

1.3.1. Registration . 5
1.3.2. CoreMedia Releases . 6
1.3.3. Documentation . 7
1.3.4. CoreMedia Training . 10
1.3.5. CoreMedia Support . 10

1.4. Changelog . 12
2. Unified API Overview . 13

2.1. Features and Design Goals . 14
2.2. Use Cases . 15

3. An Introductory Example . 17
4. Common Concepts . 19

4.1. Connection . 20
4.1.1. Creating a Connection . 20
4.1.2. Lifecycle and Caching . 28
4.1.3. Connection Listener . 31
4.1.4. Server Control . 31

4.2. Repositories and Services . 32
4.3. Objects . 34
4.4. Values . 36

4.4.1. XML Texts . 36
4.4.2. Blobs . 37
4.4.3. Lists . 38
4.4.4. Structs . 38

4.5. Types . 41
4.6. Identifiers and Equality . 43
4.7. Listeners . 47
4.8. Exceptions . 49
4.9. Sessions . 50
4.10. Caching . 53
4.11. Serialization . 54
4.12. Further Reading . 55

5. The Content Repository . 56
5.1. Objects . 57
5.2. UUIDs . 62
5.3. Types . 64
5.4. Variants . 64
5.5. Access Control . 65
5.6. Publication Service . 67
5.7. Observed Property Service . 70
5.8. Query Service . 71
5.9. Search Service of the Unified API . 81
5.10. Workflow Content Service . 85
5.11. Property Service . 86
5.12. Listeners . 87
5.13. Further Reading . 88

iiiCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

6. The Workflow Repository . 89
6.1. Objects . 91
6.2. Workflow States . 94
6.3. Differences to the Classic Workflow API . 100
6.4. The Work List Service . 102
6.5. Workflow Variables and Views . 104
6.6. The Access Control Service . 107
6.7. Managing Process Definitions . 109
6.8. Events . 110
6.9. Timers . 112
6.10. Writing Own Plugins . 115

6.10.1. Programming Restrictions . 115
6.10.2. Serialization . 117
6.10.3. Actions . 117
6.10.4. Long Actions . 118
6.10.5. Final Actions . 120
6.10.6. Expressions . 121
6.10.7. Performer Policies . 122
6.10.8. Rights Policies . 123
6.10.9. Remote Client Actions (deprecated) 126
6.10.10. Managers . 127

6.11. Examples . 129
6.11.1. Example Clients . 129
6.11.2. Example Plugins . 130
6.11.3. Example Code of the Mail Action . 136

6.12. Guide to the API Documentation . 140
7. The User Repository . 141

7.1. Objects . 142
7.2. UUIDs . 144
7.3. Retrieving Objects . 145
7.4. Listeners . 146
7.5. Further Reading . 147

Glossary . 148
Index . 155

ivCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

List of Figures
4.1. Class Diagram: Repositories and Services . 33
4.2. Class Diagram: Blobs . 38
4.3. Class Diagram: Types . 42
4.4. Class Diagram: Repositories and Identified Objects . 46
4.5. Class Diagram: Listeners . 47
5.1. Class Diagram: Content and Versions . 57
5.2. Statechart: Checked In and Out . 59
5.3. Statechart: Place Approvals . 60
5.4. Statechart: Deleting . 60
5.5. Statechart: Version . 61
5.6. Statechart: Content Publication . 67
6.1. Workflow Class Diagram . 91
6.2. States of a process . 95
6.3. States of an automated task . 96
6.4. States of a Task . 97
6.5. Workflow Object and View Definitions . 104
6.6. Workflow views . 105
7.1. Class Diagram: Users and Groups . 143

vCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

List of Tables
1.1. Typographic conventions . 3
1.2. Pictographs . 4
1.3. CoreMedia manuals . 7
1.4. Changes . 12
4.1. Connection properties . 22
4.2. Parameters of connection's management bean . 29
4.3. ID formats for CapObject . 43
4.4. ID formats for CapType . 44
4.5. ID formats for other objects . 45
5.1. Rights for the Unified API . 65
5.2. Types in subexpressions . 76
6.1. WfAPI signal names and UAPI event classes . 100

viCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

List of Examples
3.1. Create a new folder . 17
4.1. Open a session . 50
4.2. Log in another session . 51
4.3. Using a session pool . 51
6.1. AbortAllProcesses . 129
6.2. Suspend My Processes . 129
6.3. Create Process Example . 130
6.4. The SendMail action . 137

viiCOREMEDIA CONTENT CLOUD

Unified API Developer Manual |

1. Preface

This book introduces and explains the Unified API, which is the recommended
API for most applications that use CoreMedia CMS.

The following chapters are organized as follows:

• An overview of the API and its uses is given in Chapter 2, Unified API Over-
view [13].

• Afterwards, Chapter 3, An Introductory Example [17] introduces you to the
Unified API by the way of a simple example.

• Concepts of the Unified API that are independent of the accessed repository
are explained in Chapter 4, Common Concepts [19].

• Afterwards, the individual repositories are dealt with, starting with the content
repository in Chapter 5, The Content Repository [56].

• The workflow repository is the topic of Chapter 6, The Workflow Reposit-
ory [89].

• In Chapter 7, The User Repository [141] the user repository is documented.

1COREMEDIA CONTENT CLOUD

Preface |

1.1 Audience

This manual is addressed to developers of CoreMedia projects who want to
develop content applications using the Unified API. They'll find a description of
ideas and concepts, building blocks, and detailed examples.

2COREMEDIA CONTENT CLOUD

Preface | Audience

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entryBold, linked with |Menu names and entries

Format|Normal

Enter in the field HeadingItalicField names

The CoreMedia ComponentCoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \\Code lines in code examples
which continue in the next line

-u user

Table 1.1. Typographic conventions

3COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

In addition, these symbols can mark single paragraphs:

DescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

4COREMEDIA CONTENT CLOUD

Preface | Typographic Conventions

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.3.1, “Registration” [5] for details on how to register.

NOTE
CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

• Section 1.3.1, “Registration” [5] describes how to register for the usage of the
services.

• Section 1.3.2, “CoreMedia Releases” [6] describes where to find the download
of the software.

• Section 1.3.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

• Section 1.3.4, “CoreMedia Training” [10] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

• Section 1.3.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.3.5, “CoreMedia Support” [10]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

5COREMEDIA CONTENT CLOUD

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE
If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

6COREMEDIA CONTENT CLOUD

Preface | CoreMedia Releases

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.3.5, “CoreMedia Support” [10]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and
as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

ContentAudienceManual

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-

Developers, ar-
chitects, ad-
ministrators

Blueprint Developer Manual

scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the

Developers,
administrators

Connector Manuals

deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will

Developers, ar-
chitects

Content Application De-
veloper Manual

learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the

Developers, ar-
chitects, ad-
ministrators

Content Server Manual

Content Server. You will learn about the content

7COREMEDIA CONTENT CLOUD

Preface | Documentation

https://documentation.coremedia.com

ContentAudienceManual

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is

Developers, ar-
chitects, ad-
ministrators

Deployment Manual

the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

Developers, ar-
chitects, ad-
ministrators

Elastic Social Manual

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about

Frontend De-
velopers

Frontend Developer Manual

the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-

Frontend De-
velopers, ad-
ministrators

Headless Server Developer
Manual

ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also

Developers,
Multi-Site Ad-

Multi-Site Manual

gives guidance to avoid common pitfalls during
your work with the multi-site feature.

ministrators,
Editors

This manual describes some overall concepts such
as the communication between the components,

Developers,
administrators

Operations Basics Manual

how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

Developers, ar-
chitects, ad-
ministrators

Search Manual

the two feeder applications: the Content Feeder
and the CAE Feeder.

8COREMEDIA CONTENT CLOUD

Preface | Documentation

ContentAudienceManual

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-

Developers, ar-
chitects

Studio Developer Manual

derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also

EditorsStudio User Manual

describes the usage of theNative Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.EditorsStudio Benutzerhandbuch

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

Developers, ar-
chitects, ad-
ministrators

Supported Environments

This manual describes the concepts and usage
of theCoreMedia Unified API, which is the recom-

Developers, ar-
chitects

Unified API Developer Manual

mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

Developers, ar-
chitects, ad-
ministrators

Utilized Open Source Soft-
ware & 3rd Party Licenses

This manual describes the Workflow Server. This
includes the administration of the server, the de-

Developers, ar-
chitects, ad-
ministrators

Workflow Manual

velopment of workflows using the XML language
and the development of extensions.

Table 1.3. CoreMedia manuals

If you have comments or questions about CoreMedia's manuals, contact the
Documentation department:

Email: documentation@coremedia.com

9COREMEDIA CONTENT CLOUD

Preface | Documentation

mailto:documentation@coremedia.com

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training

Contact the training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, vir-
tual machines, class libraries and customized code in many different combina-
tions. That's why CoreMedia needs detailed information about the environment
for a support case. In order to track down your problem, provide the following
information:

• Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

• Which database is in use (version, drivers)?
• Which operating system(s) is/are in use?
• Which Java environment is in use?

10COREMEDIA CONTENT CLOUD

Preface | CoreMedia Training

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

• Which customizations have been implemented?
• A full description of the problem (as detailed as possible)
• Can the error be reproduced? If yes, give a description please.
• How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log
of Java processes and CoreMedia components. They're often the only source
of information for error tracking and solving. All protocolling services should run
at the highest log level that is possible in the system context. For a fast break-
down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-
tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do I Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the --timestamps
flag.

docker logs --timestamps <container>

For the kubectl command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the --timestamps flag.

kubectl logs --timestamps <pod>

11COREMEDIA CONTENT CLOUD

Preface | CoreMedia Support

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

1.4 Changelog

In this chapter you will find a table with all major changes made in this manual.

DescriptionVersionSection

Table 1.4. Changes

12COREMEDIA CONTENT CLOUD

Preface | Changelog

2. Unified API Overview

In this chapter you will get a very high-level overview of the Unified API and a
sketch of its possible applications.

The Unified API is the preferred API for interfacing with theCoreMedia CMSwhen
writing custom tools and agents and when writing content delivery applications.
In particular, it is tightly integrated with theCoreMedia Content Application Engine
and it is available in the Workflow Server for modifying content and for imple-
menting plugin classes.

The Unified API allows you to access both the Content Server and the Workflow
Server from custom code. It presents the properties of contents, versions, folders,
users, groups, processes, and tasks in a uniform and object-oriented way.

While the Unified API is comprehensive, care has been taken to isolate various
aspects of the API, so that each individual aspect remains of moderate size. To
this end, a connection mediates between multiple repositories. In turn, each re-
pository is augmented by services and provides access to stateful objects.
Stateful objects share a common metamodel and are identified in a common
name space. This style is applied throughout the API and promotes uniformity.

Typical applications of the Unified API are:

• content delivery through a servlet engine;
• form-driven web applications for content modifications;
• administrative command line tools;
• background processes whose actions are triggered by events;
• periodically scheduled processes that carry out custom actions;
• workflow actions, expressions, performers policies, and rights policies.

13COREMEDIA CONTENT CLOUD

Unified API Overview |

2.1 Features and Design Goals

The Unified API supports programmers and makes the administrator's life simple.

• Programming is easy.
While the API is comprehensive, a simple application might still not use more
than half a dozen classes. This greatly reduces the initial learning effort for
using the API.
Creating a connection to Content Server and Workflow Server is as simple as
calling a single method. Afterwards, the connection provides quick access to
the entire system.
As different parts of the API share a common style and in fact a common
metamodel, it is comparatively easy to acquire knowledge about new parts
of the API.
The API explicitly specifies preconditions and postconditions and indicates
the possible events and exceptions, leaving little room for ambiguities.
Convenience methods simplify common tasks.

• Deployment is easy.
Deploying an application that uses the Unified API is straightforward. Adding
a few jars to the class path is all that is needed. The API does not demand
special configuration files.
Through a management interface it is possible to control Unified API applica-
tions at runtime.

• The API is memory-efficient.
Multiple sessions per connection are possible, sharing a common cache while
providing individual rights checks.
All stateful objects are thin wrappers that use little memory and fetch their
state through the common cache as needed.

• The API is robust.
The Unified API can survive server restarts, providing a continuous event
stream and maintaining cache consistency.
The cache size is configurable in bytes, virtually eliminating fluctuations of
memory usage by the API.

14COREMEDIA CONTENT CLOUD

Unified API Overview | Features and Design Goals

2.2 Use Cases

Here you will find typical use cases for the Unified API.

Content Delivery

Situation: You want to deliver content that is stored in the CoreMedia CMS, for
example, when generating a website.

Solution: TheUnified API is used inside theCoreMedia Content Application Engine
to access persistent data. The engine is used for efficient caching on higher
levels. FTLs render your content.

Form-driven Content Modification

Situation: You want to create a web application that allows certain recurring
modifications of the content, for example, changing a price information.

Solution: Again, you use the CoreMedia Content Application Engine, this time
augmented with the write functionality of the Unified API.

Command Line Tool

Situation: You want to create a command line tool that automates certain admin-
istrative tasks, for example, the creation of users with a predefined set of query
content items.

Solution: You program the tool using the Unified API, possibly starting with the
base client provided as a code example.

Automated Agents

Situation: You want to create background processes that perform automated
actions when certain events occur, for example, starting a workflow when a
content item is moved into a certain folder.

Solution: You create an appropriate repository listener using the Unified API and
add the required actions in Java code.

Workflow Actions

Situation: You want to perform very complicated actions during certain workflow
tasks.

15COREMEDIA CONTENT CLOUD

Unified API Overview | Use Cases

Solution: You program a workflow action using the Unified API, updating content
objects and workflow variables as needed. You might want to create a user-
specific session for modifications.

Performers Policies

Situation: You want to control the set of users to whom a certain task is offered.

Solution: You program a performer policy using the Unified API, evaluating the
state of workflow variables and referenced content while determining one or
more users who may execute the task. Possibly, you also create a right policy
to limit the permissible activities of the chosen users.

16COREMEDIA CONTENT CLOUD

Unified API Overview | Use Cases

3. An Introductory Example

The following example shows how to create a new folder with a fixed name. While
not interesting in itself, it contains all the steps needed to establish a connection
and to perform some work.

package com.coremedia.examples.capclient;

import com.coremedia.cap.Cap;
import com.coremedia.cap.common.CapConnection;
import com.coremedia.cap.content.*;

import java.util.Map;

public class HelloWorld {
public static void main(String[] args) {
Map<String, Object> parameters = Map.of(
Cap.CONTENT_SERVER_URL, "http://localhost:40180/ior",
Cap.USER, "admin",
Cap.PASSWORD, "admin);

CapConnection con = Cap.connect(parameters);
ContentRepository repository = con.getContentRepository();
try {
Content root = repository.getRoot();
ContentType folderType = repository.getFolderContentType();
folderType.create(root, "hello world");

} finally {
con.close();

}
}

}

Example 3.1. Create a new folder

Look at the example line by line.

Map<String, Object> parameters = Map.of(
Cap.CONTENT_SERVER_URL, "http://localhost:40180/ior",
Cap.USER, "admin",
Cap.PASSWORD, "admin);

The Content Server to use is indicated by its URL. If you are connecting to a
Content Server on a different host, you may want to change localhost to
the name of the configured host and 40180 to the configured port. Besides the
URL, only username and password are required to log on to the server. Here you
use the admin account, assuming that a test environment has been set up and
left basically unchanged.

17COREMEDIA CONTENT CLOUD

An Introductory Example |

CapConnection con = Cap.connect(parameters);

A connection object is returned from the connect call using the previously set
up connection parameter map.

ContentRepository repository = con.getContentRepository();

The connection object is a mediator that provides access to all parts of the
CoreMedia CMS. There are separate repositories for content access, user man-
agement, workflows and so on. Here you only deal with the content repository.

Content root = repository.getRoot();

The root folder of the content repository is retrieved and stored locally as a
content object. Both folders and content items are summarized under the
common concept of content. While there are some differences between folders
and content items, they share many common traits, which allows you to use a
common abstraction in the Unified API.

ContentType folderType = repository.getFolderContentType();

Every content is equipped with a content type. Types of content items may be
freely defined, but for folders there is a single well-known content type.

folderType.create(root, "hello world");

The content type is instructed to create a new instance of itself. You have to
provide two arguments: the folder in which the new content is created and the
new content's name.

try {
...

} finally {
con.close();

}

Ultimately, you want to close the connection in order to free licenses that were
allocated on the server and to release local resources that were obtained when
opening the connection. If you had forgotten to close the connection, the program
would not terminate, waiting for background threads started for the duration of
the connection.

It is generally a good idea to close the connection in a try/finally block,
so that it is closed in all cases. For example, run the example again and you should
receive an error due to a duplicated content name. Nevertheless, the program
exits cleanly.

You will notice debug output on the console. See Section 4.7, “Logging” in Oper-
ations Basics for more details about logging. If the log output bothers you, redirect
the standard error output stream to a file or the null device.

18COREMEDIA CONTENT CLOUD

An Introductory Example |

operation-basics-en.pdf#LoggingAdmin

4. Common Concepts

The Unified API applies to three functional areas:

• content,
• workflow,
• user management.

Each area is accessible through a repository. A repository provides access to
persistent objects and offers various services. Many tasks can be performed
while only accessing a single repository, but at times you need access to the
full functionality. For each repository, you will find in the following an entire
chapter containing a detailed discussion. This chapter, however, is limited to
topics that apply regardless of the repository at hand.

First, the connection object is discussed. It mediates between the individual re-
positories. Because the connection is the primary entry point when working with
the Unified API, it is explained in detail how a connection can be obtained and
configured.

Then, key concepts are described that apply equally to all three repositories.
The basic structure of all repositories is essentially the same and also the per-
sistent objects share many features. Moreover, one should be aware of certain
design principles that apply throughout the Unified API.

19COREMEDIA CONTENT CLOUD

Common Concepts |

4.1 Connection

In this section, details of the connection object are discussed. It is shown how
a connection can be created and which services it offers.

While the connection also provides access to the three repositories, repositories
are not viewed as integral parts of the connection. They will be discussed one
by one in the following chapters.

4.1.1 Creating a Connection

Before working with the Unified API, a connection to the server must be opened.
The connection object implements the interface com.coremedia.cap.com-
mon.CapConnection . There are a number of static methods in the class
com.coremedia.cap.Cap that allow you to specify various sets of paramet-
ers for logging on to Content Server and Workflow Server.

The CoreMedia system supports gRPC and CORBA for internal communication.
While servers always offer both protocols for clients to connect, clients can be
configured to use either gRPC or CORBA. The protocol can be chosen freely on
each start of a component. Currently, CORBA is the default protocol.

NOTE
With release 2512.0 of the CoreMedia system, the Workflow Server does not
yet offer gRPC services to its clients. Activating gRPC on Unified API clients
won't do any harm as long as these are of release 2512.0, too. Future clients,
though, will fail to connect to that Workflow Server if gRPC is active on them.

Keep this in mind when operating a mixed-release CoreMedia system setup. In
such scenarios (e.g., during upgrades), it is recommended to leave clients in
their default protocol mode which is CORBA.

Passing Parameters Directly (CORBA only)

A classic way of opening a CORBA connection is provided by a method of the
class com.coremedia.cap.Cap with four parameters:

• The IOR URL of the Content Server
• The name of the user who logs in
• The user's domain

20COREMEDIA CONTENT CLOUD

Common Concepts | Connection

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/Cap.html

• The user's password

All parameters are passed as string values. The IOR URL is explained in more
detail in theOperations Basics Manual. It is a means for bootstrapping the CORBA
protocol.

String url = "http://localhost:40180/ior";
CapConnection connection = Cap.connect(url,
"user", "domain", "secret");

The login call will fail with an exception if the Content Server is not reachable. A
connection to the Workflow Server is also opened, if the Workflow Server is
reachable, but its absence does not abort the login sequence.

Because the IOR URL is cumbersome to write, the Unified API uses some rules
for determining this parameter when it is omitted.

CapConnection connection = Cap.connect(null,
"user", "domain", "secret");

If the system property coremedia.content.server.url is set, its value
is used as the URL. Else, if the system property coremedia.configpath is
set, the system tries to determine the URL from the file capclient.proper
ties . Because the latter property is automatically set by the cm start script,
there is no need to configure the URL when the Unified API client is started by
means of a .jpif file.

When you use the built-in user repository of CoreMedia CMS and not an LDAP
server for managing your users, you can set the domain parameter to null or
omit it entirely.

CapConnection connection = Cap.connect(url, "user", "secret");

Passing Parameters as a Map (CORBA and gRPC)

This is the recommended way of configuring and opening a connection. It covers
both CORBA and gRPC connections and allows for specification of connection
parameters through environment variables which is the preferred approach in
Docker or Kubernetes environments.

You can pass a java.util.Map to the login method. The keys are typically
chosen from a number of constants defined in the class Cap . The values in the
map are normally strings. When working purely with environment variables, this
map can be left empty but it must not be null .

Map<String,?> params = new HashMap<>();
params.put(Cap.CONTENT_SERVER_URL, "http://localhost:40180/ior");
params.put(Cap.WORKFLOW_SERVER_URL, "http://localhost:40380/ior");
params.put(Cap.USER, "admin");
params.put(Cap.DOMAIN, "");

21COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

params.put(Cap.PASSWORD, "admin");
CapConnection connection = Cap.connect(params);

In the previous example for CORBA, you can see that the initial workflow server
URL is explicitly passed as a parameter. Normally this is not required, because
theContent Server acts as a naming service and provides the necessary inform-
ation for connecting to other servers. However, in complex setups with multiple
firewalls and connection redirection, it may be necessary that different clients
connect via different URLs.

An example for connecting via gRPC looks like this:

Map<String,?> params = new HashMap<>();
params.put("spring.grpc.client.channels.cap.address", "localhost:40165");
params.put(Cap.HTTP_BASE_URI, URI.create("http://localhost:40180"));
params.put(Cap.USER, "admin");
params.put(Cap.DOMAIN, "");
params.put(Cap.PASSWORD, "admin");
params.put(Cap.USE_WORKFLOW, "false");
CapConnection connection = Cap.connect(params);

Here, no connection to the Workflow Server is included. For details on using the
Workflow Server with gRPC connections, see below.

In the following, you will find summarized the available properties. All names
prefixed with Cap. refer to constants in class com.coremedia.cap.Cap .

NOTE
To enable gRPC on a Unified API client, either environment variable REPOSIT
ORY_USEGRPC=true must be specified or Java System Property reposit
ory.use-grpc=true be passed to the client application. This is to clearly
separate modes of operation.

DescriptionDefaultValueName

the IOR URL of the
Content Server. This

(determined heuristic-
ally)

URL stringCap.CON
TENT_SERVER_URL

property is only re-
quired if CORBA is to
be used. As theWork-
flow Server in release
2512.0 does not yet
offer gRPC services,
this property is also
required when con-
necting to a Workflow
Server in that release.

22COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

DescriptionDefaultValueName

You may also set it via
environment variable
REPOSITORY_URL
when starting your cli-
ent application and
leave it from the prop-
erty map.

the IOR URL of the
Workflow Server. This

(fetched from the
Content Server)

URL stringCap.WORK
FLOW_SERVER_URL

property is only re-
quired if CORBA is to
be used. You may also
set it via environment
variable REPOSIT
ORY_WORK
FLOW_URL when
starting your client
application and leave
it from the property
map.

the gRPC endpoint of
the Content Server.

localhost:9090gRPC endpoint stringspring.grpc.cli
ent.chan

This property is onlynels.cap.ad
dress required if gRPC is to

be used. There is no
constant in class Cap
for this property. You
may also set it via en-
vironment variable
SPRING_GRPC_CLI
ENT_CHAN
NELS_CAP_AD
DRESS when starting
your client application
and leave it from the
property map.

the HTTP base URI of
theContent Server for

(derived from IOR URL
of the Content Server

HTTP base URI or URI
string

Cap.HT
TP_BASE_URI

non-CORBA/gRPC

23COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

DescriptionDefaultValueName

services (e.g., Blob
Download) . This prop-

if given, empty other-
wise)

erty is only required if
gRPC is to be used.
You may also set it via
environment variable
REPOSITORY_HTTP
BASEURI when start-
ing your client applica-
tion and leave it from
the property map.

the gRPC endpoint of
the Workflow Server.

localhost:9090gRPC endpoint stringspring.grpc.cli
ent.chan
nels.wf.address This property is only

required if gRPC is to
be used. It is not ef-
fective in release
2512.0 as the Work-
flow Server does not
yet offer gRPC ser-
vices in that release.
There is no constant
in class Cap for this
property. You may
also set it via environ-
ment variable
SPRING_GRPC_CLI
ENT_CHAN
NELS_WF_ADDRESS
when starting your cli-
ent application and
leave it from the prop-
erty map.

the name of the user
to log in. You may also

N/AstringCap.USER

set it via environment
variable REPOSIT
ORY_USER when
starting your client
application and leave

24COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

DescriptionDefaultValueName

it from the property
map.

the domain of the user
to log in. You may also

""stringCap.DOMAIN

set it via environment
variable REPOSIT
ORY_DOMAIN when
starting your client
application and leave
it from the property
map.

the password of the
user to log in. You may

N/AstringCap.PASSWORD

also set it via environ-
ment variable REPOS
ITORY_PASSWORD
when starting your cli-
ent application and
leave it from the prop-
erty map.

whether theWorkflow
Serverr should be

"""true", "false", ""Cap.USE_WORK
FLOW

connected; if "true",
the connection is re-
quired; if "", the con-
nection is optional; if
"false", no connection
attempt is made. You
may also set it via en-
vironment variable
REPOSITORY_WORK
FLOW_CONNECT
when starting your cli-
ent application and
leave it from the prop-
erty map.

25COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

DescriptionDefaultValueName

the ORB for setting up
the CORBA connec-

(created automatic-
ally)

an
org.omg.CORBA.ORB
object

Cap.ORB

tion. This property is
only effective if
CORBA is to be used.

the name of a class
implementingthe inter-

(built-in factory)stringCap.CONNEC
TION_FACT
ORY_CLASS face CapConnec

tion.Connection
Factory . It must be
left unset if gRPC is to
be used.

if true , the session
token for connection

truestringCap.SEND_SES
SION_TOKEN_IN_URL

to Content Server ser-
vlets (for blob
up/download and CPU
usage) will be sent as
a URL query paramet-
er. Otherwise, it will be
sent as a request field.
While sending the
token as a query para-
meter is inherently in-
secure, it is the default
to keep backward
compatibility. Unless
connection to an older
server (prior to CMCC
13) is required, it is re-
commended to set
this property to
false .

Table 4.1. Connection properties

You can also create a connection without opening it immediately. Here you may
pass a number of parameters by means of a map, but you can set additional
parameters later before opening the connection. Example for CORBA:

26COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

Map<String, ?> params = new HashMap<>();
params.put(Cap.CONTENT_SERVER_URL, "http://localhost:40180/ior");
CapConnection connection = Cap.prepare(params);
connection.setUser("admin");
connection.setPassword("admin");
connection.open();

The methods that are available for setting the parameters of a connection are

• setUrl(..) ,
• setUser(...) ,
• setDomain(...) , and
• setPassword(...) .

Passing Parameters for CORBA Connection in Server URL

While flexible, the creation of a map takes some lines of code, so that CoreMedia
provides a simple method that works in many cases. The additional parameters
beside the Content Server URL are inlined as URL parameters in that URL. This
permits the compact configuration via a single string.

String url = "http://localhost:40180/ior"+
"?user=admin&password=admin&useworkflow=false";

CapConnection connection = Cap.connect(url);

Here the workflow component has been disabled entirely by the means of
useworkflow=false . This reduces the resource requirements when the
workflow connection is not needed at all.

Individual parameters are separated by ampersands (&), the entire set of para-
meters is separated from the IOR URL by a question mark (?). The constant
values in class com.coremedia.cap.Cap define the possible parameter
keys. Among those are, e.g.:

• workflowurl,
• user,
• domain,
• password,
• useworkflow.

Note that the well-known parameters are removed from the URL before it is re-
solved over the network. In particular, the password is not transmitted in clear
text.

27COREMEDIA CONTENT CLOUD

Common Concepts | Creating a Connection

Passing Parameters for CORBA or gRPC Connection in Properties

Additional parameters for a CORBA or a gRPC connection can be defined by
properties. See Section 3.12.1, “Unified API Spring Boot Client Properties” in De-
ployment Manual for a complete list.

4.1.2 Lifecycle and Caching

After being created using the Cap.connect(...) methods, a connection is
open immediately, that is, its methods can be invoked and all read and write
accesses to the associate repositories are possible, too. A connection that was
created through Cap.prepare(...) starts off closed. It has to be opened
by a call to open() .

An open connection will stay open until closed explicitly. In particular, an open
connection does not become eligible for garbage collection simply by discarding
references to it. There are a number of active threads inside a Unified API con-
nection that will keep the connection alive until explicitly closed.

After you have closed the connection, all stateful objects that were retrieved
from the connection become nonfunctional, in particular the repositories, services
and CapObjects. Immutable objects like strings or markup objects generally
remain intact, but blobs become unusable.

Operations on Closed Connections

The only operations that are possible on a closed or not yet opened connection
are calls to setters and getters for the connection parameters like user name or
password.

Reopening a Connection

You can reopen a closed connection using the method's connection.open().
This should only be done in special cases. Normally, a connection is expected
to stay open until the application terminates.

Care must be taken when reopening CORBA connections under an Oracle JDK,
whose ORB implementation does not properly release its memory and TCP
sockets when being closed. Since the Unified API connection must instantiate
an ORB for managing the CORBA connection to the servers, this ORB bug can
lead to resource problems after repeated sequences of open and close opera-
tions. In order to avoid this, you can inject a singleton ORB into the connection,

28COREMEDIA CONTENT CLOUD

Common Concepts | Lifecycle and Caching

deployment-en.pdf#unifiedAPIClientProperties
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

which will then be used continually without being shut down at the close of the
connection.

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(new String[0],
System.getProperties());

Map<String,?> params = new HashMap<String,?>();
params.put(Cap.ORB, orb);
params.put(Cap.USER, "admin");
params.put(Cap.PASSWORD, "admin");
CapConnection connection = Cap.connect(params);

Management of Open Connections

While a connection is open, you can also access the connection's management
bean as provided by the getMBean() method. These are the configurable
parameters:

DescriptionDefaultValueProperty

the number of bytes to use by
the main memory cache

20000000longheapCacheSize

the number of bytes to use by
the disk cache

10737418240longblobCacheSize

the location of the disk cache
in the file system; this property

N/AstringblobCachePath

maps directly to the system
property java.io.tmpdir

the maximum size of a blob that
can be cached. Note that the

In-
teger.MAX_VALUE

intmaxCachedBlob
Size

maximum size of a cached blob
is implicitly limited by blob
CacheSize

the threshold for blob sizes
above which blobs are

131072intblobStreamingSiz
eThreshold

streamed instead of being
completely downloaded first

the maximum number of
threads that is used for stream-
ing large blobs

2intblobStreaming
Threads

29COREMEDIA CONTENT CLOUD

Common Concepts | Lifecycle and Caching

DescriptionDefaultValueProperty

the maximum number of events
that is fetched at once from the

1000inteventChunkSize

Content Server when attaching
a listener with a historic time
stamp

the timeout used for establish-
ing a connection to the server
for blob uploads

60intblobUploadCon
nectTimeout
Seconds

the timeout used for blob up-
loads. When uploading a blob,

3600intblobUploadRe
questTimeout
Seconds the data of the response must

become available for reading
before the timeout is exceeded

Table 4.2. Parameters of connection's management bean

Reopening Connections

The Unified API also supports the reopening of closed connections. After a con-
nection has been reopened, the listeners have all been removed from the
listener sets and blobs may have been rendered unusable, but the repositories,
services and CapObjects have returned to their previous state, allowing reads
and writes.

The cache object that is associated with the connection does not remain stable.
Instead, a new cache object is created whenever the connection is opened.

This makes it possible to create a perpetually running client that releases its li-
censes when it is idle for an extended period. Of course, the reacquisition of
contested licenses may fail, so that this pattern is not suitable for system com-
ponents with strict availability requirements.

Automatic Reconnect after Server or Network Problems

TheUnified API supports reconnects to servers after network problems and even
after the servers are restarted. The connection remains open while a reconnect
is attempted, but read and write accesses may fail with an exception.

30COREMEDIA CONTENT CLOUD

Common Concepts | Lifecycle and Caching

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

In the case of the content and user repository, the event streams are reestab-
lished and no events are lost. In the case of the workflow repository, events may
be lost, but all caches are properly invalidated after the reconnect.

If the content types are changed in any way while the Content Server is down,
a reconnect may fail in unexpected ways. Always shut down all clients before
modifying the content type declarations.

4.1.3 Connection Listener

The Unified API supports one listener type that can be directly attached to the
connection: the CapConnectionListener . A connection listener is notified
about important events that affect the status of the connection.

In particular, the listener is notified whenever the connection detects a problem
in the communication with the server. In this case, the connectionUnavail
able method is called. As soon as the server or the network recovers, a con
nectionAvailable is sent.

When the run level of the server is changed, there may be a warning that the
connection has to be closed. This is done through the method connection
WillBeUnavailable . In the case that a run level switch is aborted, the
method connectionWillNotBeUnavailable is called to signal this con-
dition.

The method connectionDisrupted indicates the rare event that the connect
has become permanently unavailable, so that no reconnect is attempted. Possibly
the connection's user was deleted in the database or the connection was shut-
down by an explicit invocation of cm killsession .

4.1.4 Server Control

The CapConnection provides one service object: the ServerControl ,
which is reachable through the method getServerControl . It provides
means for inspecting and controlling the login process on the Content Server.

In particular, it provides methods for inspecting the license information, for in-
specting and tracking the set of currently opened sessions, for requesting trace
level logging, for killing individual sessions and for changing the run level of the
Content Server.

31COREMEDIA CONTENT CLOUD

Common Concepts | Connection Listener

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/events/CapConnectionListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/events/CapConnectionListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/ServerControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/ServerControl.html

4.2 Repositories and Services

Having obtained the connection object as described in Section 4.1.1, “Creating a
Connection” [20], you can access three repositories: content repository, workflow
repository and user repository. A repository encapsulates functionality that
pertains to one category of domain objects. All repositories implement the
common superinterface CapRepository .

A repository offers methods for the following tasks:

• Lookup existing objects.
• Modify existing objects.
• Create new objects.
• Inspect objects.
• Inspect types.
• Provide access to services.
• Add and remove listeners that are informed about all events in the repository.
• Get information about the connected server and about the local machine.
• Obtain a reference to the associated connection.

In the previous list, objects are identifiable persistent objects. The content re-
pository is concerned with content items and folders. The workflow repository
is concerned with processes and task. The user repository is concerned with
users and groups. Depending on the stateful objects that have to be processed,
you choose the appropriate repository.

The term services referred to objects that exist once per connection and that
can be obtained through the repositories. In some sense, services are small re-
positories whose functionality is very limited. They might perform any of the
tasks listed above by accessing objects and types or handling listeners, but their
methods concern only one specific aspect of the repository, for example, only
content publication or only the computation of rights to workflow objects.

In fact, the methods provided by such services might have just as well been
provided by their repository, but at the expense of clarity. By grouping methods
in service objects, you can get a quick overview of the system, while getting
closely accustomed to the relevant services, only.

A typical method that is reachable directly on the repository level is Conten
tRepository.getRoot() , which returns an object representing the root
folder. It is not appropriate for an individual object and it is not easily grouped
with other methods to form a service. A typical method on the service level is
PublicationService.approvePlace(Content) . It matches nicely
with other publisher-related methods and there is no need why it would abso-
lutely have to be placed in the object-level class Content . After all, many ap-

32COREMEDIA CONTENT CLOUD

Common Concepts | Repositories and Services

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html

plications do not care about publication at all, so that it is preferred to make it
a little less visible.

StructService

BlobService

TempFileService

CapConnectionManager

Cache

ServerControl

CapConnection

Cap

CapSessionThread currentSession

connectionSession

ContentRepository WorkflowRepositoryUserRepository

CapRepository

AccessControl

Publisher

QueryService

SearchService

ObservedPropertyService

PropertyService

AccessControl

Worklist

WorkflowContentService

creates

Figure 4.1. Class Diagram: Repositories and Services

In Figure 4.1, “Class Diagram: Repositories and Services” [33] you can see an UML
class diagram of the connection and all repositories and services that are
reachable through the session.

See Chapter 5, The Content Repository [56], Chapter 6, The Workflow Reposit-
ory [89], and Chapter 7, The User Repository [141] for detailed discussions of the
individual repositories. The services are also described in the chapter that is
devoted to their repository.

33COREMEDIA CONTENT CLOUD

Common Concepts | Repositories and Services

4.3 Objects

The Unified API provides a common superinterface for all persistent entities:
CapObject . A CapObject can be thought of as being contained by a repos-
itory. Within that repository, it is made unique by an identifier. The available object
classes have already been named in this text: folders and content items, users
and groups, processes and tasks.

Folders and content items are jointly presented through the interface Content .
Content items may exist in more than one Version . The Version and Con-
tent interfaces are subsumed under the ContentObject interface. Likewise,
User and Group objects share a common superinterface Member and the
interfaces Process , Task and WorkflowView are derived from the interface
WorkflowObject . All of these interfaces extend CapObject .

Two CapObjects refer to the same persistent entity if they are equal as per
Object.equals(Object) . In general, there may be more than one Java
object for the same persistent entity.

CAUTION
Never compare two objects of theUnified API using the == operator. This oper-
ator will typically return false even though two objects refer to the same
persistent entity. Always use object equality instead.

CapObjects are also providing access to properties of that object. To that
end, CapObject extends the interface CapStruct , which defines a generic
abstraction of an entity with named properties of various types.

You can obtain either a map with all properties or individual property values using
the getters of a CapStruct . When getting a map, an immutable snapshot of
the object's properties is returned. When getting one property value multiple
times, however, concurrent writes will be visible immediately.

All structs provide a struct type through the method getType() . The type is
immutable and constitutes a model of the possible property values for the struct.
Properties can themselves be of different types as will be described in Section
4.5, “Types” [41]. There are typed getter methods for returning the current values
of properties. If a typed getter is applied to a property with a different type, the
Unified API specifies an automatic conversion in many cases. Please see the
Javadoc of CapStruct for details. If there is no possible conversion algorithm,
an exception is thrown.

34COREMEDIA CONTENT CLOUD

Common Concepts | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html

When setting a property of a CapObject , make sure that you use a value that
is appropriate for the property type used, because no automatic conversion
takes place.

The values returned by a getter are always immutable. In the case of String
or Integer objects this is obvious, but it is even true for collection-valued
properties that return an instance of java.util.List . When you want to
modify a collection-valued property, you have to create a new collection and
set that entire collection as the new value. Modifying the returned value is not
possible.

Having set any property of a CapObject , that change is not immediately made
persistent on the server-side. Changes are collected until either an operation
occurs that cannot be delayed or the method CapConnection.flush() is
called on the current connection. See also Section 4.9, “Sessions” [50] for details
about the session handling.

35COREMEDIA CONTENT CLOUD

Common Concepts | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

4.4 Values

Objects of the Unified API can store property values of various types. Not all
property types are available for all repositories, however. Please see the docu-
mentation of the individual repositories for an overview of the supported property
types.

Most of the values are well-known in the Java language: String , Integer ,
Calendar , and the like. There are some special property values for which the
existing classes are not sufficient. These values are discussed in more detail
now. All values share the common feature that they are unmodifiable in the sense
that they will not change spontaneously and that they do not provide methods
to change their state.

4.4.1 XML Texts

For XML properties, a Markup object is provided as the property value. A
Markup represents an immutable XML document fragment. It consumes less
memory than a DOM representation and can generate SAX events faster than
a SAX parser. Conversion and interaction with the standard APIs SAX 2, DOM 2,
JAXP, and TRaX is possible.

Note that while the memory footprint of a Markup is comparatively small,
such objects are still kept entirely in main memory. If you handle many large XML
texts, it becomes important that you make them eligible for garbage collection
as soon as possible.

Markup instances are read-only and encourage a functional programming style
like in Markup m2 = m.transform(...) . SAX-based and XSLT-based
transformations are available. The class MarkupFactory allows the creation
of Markup objects from an InputStream , a Reader , an InputSource , a
JAXP Source , a DOM Node or a String .

Markup instances carry an optional grammar name as a hint regarding the
structure of the XML text.

Note that unlike other value objects, Markup s do not declare a special Ob
ject.equals(Object) method, so that they cannot be easily compared.
If required, you should design your own comparison algorithm that takes the
actual XML format into account.

Please refer to the Javadoc of the package com.coremedia.xml for details
about the Markup interface and the associated classes.

36COREMEDIA CONTENT CLOUD

Common Concepts | Values

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/MarkupFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/MarkupFactory.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html

4.4.2 Blobs

Blob properties take Blob objects as values. Like Markup objects, they are
API objects that are immutable. They provide access to metadata and to an input
stream that contains the actual binary content.

When a blob is read from the content repository, it is cached on disk and not in
main memory. It is even possible for the disk cache to be cleared while you still
hold a reference to the Blob object. Therefore, a content repository blob is a
comparatively cheap object.

The workflow repository supports blobs, too. Such blobs are always loaded into
main memory and they cannot be garbage collected as long as they are directly
or indirectly referenced from client code. Normally, this is not a problem, because
workflow repository blobs often serve very special needs, being used for the
compact storage of complex data structures. Workflow blobs are generally not
recommended for storing large images or audio stream.

When you want to set a blob property, it is possible to use a Blob object that
you obtained by a previous read operation. The class BlobService allows
the creation of Blob objects from either a file, a URL, an InputStream , or a
byte array. It returns a blob object that you can pass into the setter.

Normally, you obtain a blob by calling the method CapObject.get
Blob(String) . When you call CapObject.getBlobRef(String) in-
stead, you get a reference to the blob instead, encapsulated as a CapBlobRef
object. While ordinary blobs are immutable, blob references can change over
time, reflecting concurrent changes to the CapObject . Blob references are
cheaper than blobs, reducing resource requirements. They can also be useful
when you want to indicate the origin of a blob as compared to its content, for
example, when generating URLs that link to image properties.

37COREMEDIA CONTENT CLOUD

Common Concepts | Blobs

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/xml/Markup.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/BlobService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/BlobService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapBlobRef.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapBlobRef.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Figure 4.2. Class Diagram: Blobs

4.4.3 Lists

Some properties contain an entire list of values instead of a single value. For
content objects, only lists of Content are possible. For workflow objects, all
kinds of property types are also available as aggregation properties. Such
properties always use implementations of java.util.List for representing
values.

When retrieving an aggregation from the repository, the resulting object is dead
and unmodifiable: it will not change due to concurrent actions and it cannot be
changed by the client. When you want to change the value of a list-valued
property, you have to provide a new list with the correct state, possibly copying
the previous list into a new collection.

When reading a property with a typed getter, lists are automatically converted
to atomic values and vice versa. Lists of different types are automatically con-
verted by converting the individual entries. See the Javadoc of CapObject for
details.

4.4.4 Structs

In Section 4.3, “Objects” [34] the interface CapStruct was introduced as a
superinterface of CapObject for providing readable properties of an entity.

38COREMEDIA CONTENT CLOUD

Common Concepts | Lists

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

While CapObjects are mutable and thus not suitable as values, the interface
Struct also inherits from CapStruct and represents an unmodifiable
structured object.

Structs can be stored in markup properties of the content repository, if the
markup property uses the predefined grammar coremedia-struct-2008 .
The Unified API will transparently convert instances of Struct to and from
XML. The storage format is compatible with the struct abstraction that used to
be provided with CoreMedia Starter Kit.

Structs support only a limited range of primitive property types, namely
strings, integers, Boolean, links to Content and lists thereof. However, structs
may also contain arbitrarily nested structs and lists of structs as complex
property values. While structs themselves are immutable, they provide the
builder() method that returns a builder object that can be used to create
other similar structs.

CAUTION
StructBuilders are not structs. They cannot be used as property values.

A StructBuilder provides methods to set property values and to declare
new properties. The method set(String, Object) sets a single property,
whereas the method setAll(Map) sets multiple properties at once. The
methods declare... take varying arguments depending on the type of
property they define. For list properties, the methods set(String, int,
Object) , add(String, Object) and add(String, int, Object)
provide ways to replace a list element or to add a new list element. Likewise,
remove(String, int) removes a single element from a list.

When building nested structs, a struct builder always considers either the top-
level struct or one of the substructs as the current struct. Set and declare oper-
ations are always performed on the current struct. Using the methods
enter(String) a substruct of the current struct can be selected as the new
current struct. In the case of struct lists, use enter(String, int) . When
calling up() , the current struct can be set back one level towards the top-level
struct. Calling at(...) , you can navigate directly to a deeply nested substruct
ignoring the previous current struct. The method currentPath() returns the
current path, allowing you to return to a given substruct later on.

The method mode(...) requests one of three different behaviors that are
represented by the enumeration class StructBuilderMode . The mode de-
termines how the struct builder reacts when a declare or set operation conflicts
with the existing declaration of a property. By default, a new property can be
directly set without declaring it, as long as the value is not null or a list con-

39COREMEDIA CONTENT CLOUD

Common Concepts | Structs

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapStruct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/Struct.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilderMode.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilderMode.html

taining values of mixed types, because a suitable property descriptor can be
inferred. But that is not allowed in all modes.

• STRICT : Declare operations fail if the property already exists. Set operations
fail if no property descriptor exists and they fail if the existing property
descriptor does not allow the value. Property descriptors are never inferred.

• DEFAULT : Declare operations fail if the property already exists. Set operations
fail if the existing property descriptor does not allow the value or if a new
property descriptor cannot be inferred.

• LOOSE : Declare operations never fail. Set operations fail only if the desired
property descriptor cannot be inferred. If a new value does not match an ex-
isting property descriptor, the existing descriptor is replaced by another
descriptor that allows the value.

You can use the method remove(String) to remove a property declaration
from the current struct. In strict and default mode, this is necessary before a
property can be redeclared. Using removeAll() the current struct be reset
to an empty struct.

The method defaultTo(Struct) can be used to extend the current struct
with those property declarations of the argument struct that were not previously
present in the current struct. This is useful to set default values when initializing
a struct or when merging multiple levels of struct-based configurations. When
an existing struct property is defaulted to another struct property, the default
is applied recursively. When an existing struct list property is defaulted to a
struct property (not a struct list property), each list element is augmented with
default values individually.

Finally, when the struct is completely built, you can retrieve it from the builder
by means of the build() method. The builder remains usable to build addi-
tional similar structs. At any time, you can also retrieve the current struct using
currentStruct() .

CAUTION
StructBuilder instances are not thread-safe. Builders must not be accessed
concurrently by multiple threads.

40COREMEDIA CONTENT CLOUD

Common Concepts | Structs

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/struct/StructBuilder.html

4.5 Types

Every CapObject is an instance of a type. A type defines the properties that
are appropriate for that object. Types are represented as CapType objects.
Types are named and they may be put into a subtype hierarchy, which can be
queried through the CapType objects.

For each property, a type aggregates a CapPropertyDescriptor object.
There is one subclass of CapPropertyDescriptor for every kind of property
value: IntegerPropertyDescriptor , LinkPropertyDescriptor ,
and so on.

Property descriptors provide further information about the property. In particular,
the method isCollection() indicates whether the descriptor belongs to
a collection-valued property.

The type and descriptor objects allow you to inspect the structure of the type
system algorithmically. This is not required for many applications, but it allows
you to write reusable algorithms that are supposed to act on CapObjects re-
gardless of their actual internal structure.

Often, types act as factories. Using create methods, it is possible to build addi-
tional instances of a type. The methods for doing this are defined in the sub in-
terfaces, though. They require additional information that depends on the repos-
itory that is used.

For more details on the type system, see the Javadoc of the mentioned classes.

41COREMEDIA CONTENT CLOUD

Common Concepts | Types

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/descriptors/IntegerPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/descriptors/IntegerPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/descriptors/LinkPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/descriptors/LinkPropertyDescriptor.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

Figure 4.3. Class Diagram: Types

42COREMEDIA CONTENT CLOUD

Common Concepts | Types

4.6 Identifiers and Equality

Every CapObject and CapType is equipped with a stable string ID that can
be persistently stored and converted back into an object reference as needed.
To this end, CapObject has got a method getId() for retrieving the ID.
Methods for converting IDs into object references are typically provided by the
repository objects.

Every ContentObject and every Member on the Content Management
Server also has an additional UUID, a stable and universally unique identifier as
defined in RFC 4122. ContentObjects have the same UUID on Live Servers,
if they were created by publication or replication with release 2210.1 or newer.
ContentObjects that have been created with an older release do not have
UUIDs on Live Servers, but Content UUIDs can be added as described in Section
3.13.2.4, “Content UUID Migration and Transfer” in Content Server Manual.

UUIDs are not meant as replacement of simple string IDs, but make sense in
certain scenarios. For details on ContentObject UUIDs, have a look at Section
5.2, “UUIDs” [62]. For details on Member UUIDs, have a look at Section 7.2,
“UUIDs” [144].

It is recommended that you treat the string IDs as opaque strings, because the
exact format of the strings might change in future releases of CoreMedia CMS.
Still, CoreMedia provides detail information about the IDs for the purposes of
debugging and for interfacing the Unified API with legacy clients which might
insist on using numeric IDs.

The class com.coremedia.cap.common.IdHelper is provided for
formatting and parsing all sorts of ID strings. Note that all methods in that class
may be redefined arbitrarily in the next CoreMedia CMS release.

The following table summarizes the various ID formats for CapObjects.

DescriptionInterfaceID string

content item or folderContentcoremedia:///cap/content/<int>

version of content itemVersioncoremedia:///cap/ver-
sion/<int>/<int>

parameters: numeric content
ID/version number

processProcesscoremedia:///cap/process/<int>

taskTaskcore-
media:///cap/task/<int>/<int>

43COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#content-uuid-migration
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/IdHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/IdHelper.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

DescriptionInterfaceID string

parameters: numeric process
ID/numeric task ID

initial process viewWorkflowViewcoremedia:///cap/ini-
tialview/<int>

parameter: numeric process ID

ordinary process viewWorkflowViewcoremedia:///cap/process-
view/<int>

parameter: numeric process ID

task view parameters: numeric
process ID/numeric task ID

WorkflowViewcoremedia:///cap/task-
view/<int>/<int>

userUsercoremedia:///cap/user/<int>

groupGroupcoremedia:///cap/group/<int>

Table 4.3. ID formats for CapObject

The CapTypes are also identified by an ID.

DescriptionInterfaceID string

content typeContentTypecoremedia:///cap/content-
type/<string>

XML grammarXmlGrammarcoremedia:///cap/gram-
mar/<string>

process definition parameter: nu-
meric process definition ID

ProcessDefini-
tion

coremedia:///cap/processdefini-
tion/<int>

task definitionTaskDefinitioncoremedia:///cap/taskdefini-
tion/<int>/<int>

parameters: numeric process
definition ID/numeric task defini-
tion ID

initial process view definitionWork-
flowViewDefini-
tion

coremedia:///cap/ini-
tialviewdefinition/<int>

parameter: numeric process
definition ID

44COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html

DescriptionInterfaceID string

ordinary process view definition
parameter: numeric process
definition ID

Work-
flowViewDefini-
tion

coremedia:///cap/process-
viewdefinition/<int>

task view definition parameters:
numeric process definition ID/nu-
meric task definition ID

Work-
flowViewDefini-
tion

coremedia:///cap/taskviewdefin-
ition/<int>/<int>

Table 4.4. ID formats for CapType

There are some other objects that are also assigned an ID, but that do not imple-
ment CapObject or CapType . Such objects implement the method getId() ,
but they do not provide getters and setters for properties.

DescriptionInterfaceID string

a publication that has been en-
queued

Publicationcoremedia://cap/publica-
tion/<int>

a publication targetPublicationTar-
get

coremedia://cap/publicationtar-
get/<string>

a session that has been opened
on the Content Server

CapSession-
Info

coremedia://cap/session/<int>

a service of the Content Server
for which logins are possible

CapServiceInfocoremedia://cap/service/<int>

Table 4.5. ID formats for other objects

Unified API objects that define a string ID are equal in the sense of Ob
ject.equals(Object) , if and only if their string IDs are equal and if they
belong to the same Unified API connection.

45COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html

Figure 4.4. Class Diagram: Repositories and Identified Objects

It is recommended to use string IDs only when a string representation is needed.
The identified objects of the Unified API are lightweight, so that it makes no sense
to store IDs in main memory for a long time. IDs are more difficult to handle and
often larger than their object counterparts. IDs are useful for some administrative
command line tools and for generating debugging output.

If you need to reference content externally, like in a database or file, it's recom-
mended to store the UUID of the content instead of its ID. Simple string IDs will
not stay the same if content is exported and imported, for example when it is
transferred between different Content Servers. Content UUIDs can be used, if
stable references are needed.

46COREMEDIA CONTENT CLOUD

Common Concepts | Identifiers and Equality

4.7 Listeners

The Unified API allows you to attach listeners to the repositories and certain
services. The base interface of all listeners is CapListener . The base class of
all events is CapEvent .

In Figure 4.5, “Class Diagram: Listeners” [47] you see the type hierarchy of the
class CapListener . Normally, you will want to implement one of the repository
listeners, but there are occasions when you need the events of a service listener
or a connection listener.

CapConnectionListener LoginServiceListener PublicationServiceListener

CapListener

GroupListenerUserListenerProcessListenerTaskListener

WorkflowRepositoryListener UserRepositoryListener

PublicationContentListener ContentListener ObservedPropertyListener

ContentRepositoryListener

Figure 4.5. Class Diagram: Listeners

Most listener classes come with an abstract handler class whose name can be
derived by adding Base to the interface's name. You can inherit from these
classes when you want to handle only a small subset of the events provided. For
example, a ContentRepositoryListener might be based on the class
ContentRepositoryListenerBase .

Listeners are informed about changes asynchronously. No guarantees are made
about the possible delays. However, it is assured that a listener will receive exactly
those events that arise out of operations that are executed after the listener is
added and before the listener is removed. Furthermore, all changes of an opera-

47COREMEDIA CONTENT CLOUD

Common Concepts | Listeners

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html

tion are visible through the Unified API before a listener is notified about the
changes. In particular, the internal cache is invalidated as needed. It may be,
however, that subsequent operations have already overwritten the state that
was generated by the operation that caused the event. For example, a renamed
content item may have already been re-renamed before the event of the first
rename operation is processed.

Listeners are called in a single thread. Events are processed in order and each
event is delivered to all interested listeners before the next event is handled.
This means that a slow listener can create a backlog of unprocessed events,
even for other listeners. It also implies that listeners must not wait for events to
arrive at other listeners.

You can set a listener priority to define the order of notification when adding a
listener. A listener with a higher priority will be notified about a single event before
all listeners with a lower priority. The default priority is CapListener.DE
FAULT_PRIORITY .

Listeners may access theUnified API for processing events. They may even make
write calls that cause additional events. However, a listener must not add or re-
move listeners. It may not even remove itself from the set of listeners. Spawn a
separate thread if you have to do this.

When a CapConnection is closed, all listeners that are attached to the con-
nection or its repositories are automatically removed. No more events are de-
livered, even when the connection is reopened. If desired, new listeners have to
be attached.

48COREMEDIA CONTENT CLOUD

Common Concepts | Listeners

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html

4.8 Exceptions

All exceptions that are thrown by the Unified API are derived from the single
class CapException , which is a runtime exception.

Because runtime exceptions are used, you do not have to catch the exceptions
explicitly. The exceptions are documented in the Javadoc, however, so that you
can easily catch those exceptions that you expect and can handle reasonably.
You will find the list or error codes linked on the Online Documentation site.

Exceptions are equipped with error codes that simplify the analysis of the actual
problem. However, these error codes are not supposed to be used algorithmically.
The codes may change at any point of time in the future. They are solely intended
for debugging purposes.

Instead, for the most important problems and groups of problems, own exception
classes were created. These exceptions can be treated specially in order to re-
cover from errors. They will not change, although new exceptions may enter the
hierarchy.

Individual exception classes can provide further hints about the problem at hand.
For example, a ContentException references the content that was involved
into the failed operation.

As it is possible for a write buffer flush to occur almost everywhere, it is possible
that the associated FlushFailedException is thrown at almost every point
in the code. If an application cannot be made robust with respect to such excep-
tions, care must be taken to flush all writes as soon as possible after the setters
were called.

Some method calls involve bulk operations, that is they operate many resources
at one time. When such an operation fails, a BulkOperationFailedExcep-
tion is thrown. From that exception you can retrieve the BulkOperation-
Result that provides more details on the failed operation. Bulk operations only
return normally when they succeed completely. This ensures that a problem is
detected reliably as soon as possible.

49COREMEDIA CONTENT CLOUD

Common Concepts | Exceptions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/FlushFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/FlushFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/BulkOperationFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/results/BulkOperationResult.html

4.9 Sessions

Having opened a CapConnection , all actions are executed on behalf of the
single user whose credentials where provided when logging in. In some contexts,
it is desirable to use different users for different tasks while maintaining a shared
cache. To this end, the Unified API allows you to use multiple sessions per con-
nection.

Every session is represented by an instance of CapSession . The session that
is created while the connection is opened is also known as the connection ses-
sion. Additional sessions can be opened by the connection's login methods.
Having obtained a session, this session can replace the default connection session
by calling the method setSession(CapSession) on the connection. Altern-
atively, you can call activate() on the session. Afterwards, all accesses in
the same thread are performed on behalf of the new session.

CapSession session = connection.login(user, password);
try {
session.activate();
...

} finally {
session.close();

}

Example 4.1. Open a session

The previous code fragment shows how a second session is created from an
existing connection. Notice that the call to activate was necessary, because
the login call does not automatically set the session. Only between activate
and close you can see the newly created user as the user of the current ses-
sion. In fact, in other threads the original session still applies. After closing the
session, the connection session is again active.

The call to activate() returns the previously set session. The above code
assumes that the previous session is not worth remembering. After closing a
session, the thread's session automatically returns to the connection session.
Another example at the end of these sections shows how the old session can
be reestablished.

In other cases you might want to save the original session and reestablish it after
the work of the second session is complete, without closing the second session.
That way you can save the time that is required for opening the session. Of
course, a session that is held open consumes a concurrent license all the time.

All accesses to the repositories are subject to the limitations of the requested
session. During reads and writes, the rights check is based on the identity of the

50COREMEDIA CONTENT CLOUD

Common Concepts | Sessions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapSession.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapSession.html

session's user. Write rights may happen to be reduced, but it is also possible
that additional rights are gained by switching to another user. However, the read
rights available to any session are at most the read rights of the connection
session. This is required in order to ensure efficient caching and to avoid acci-
dental information leaks. Due to this restriction, it is recommended that the
connection session's user should be allowed to read all repositories in their en-
tirety, if additional sessions are expected to be created.

When attaching a listener using the Unified API, the current session is recorded.
Before events are delivered to the listener, that session is reestablished as the
current session. This way, listeners inherit the privileges of the code that attaches
them.

Note that it is always possible to reset the current session to the connection
session. Therefore, setting the current session is not sufficient for enforcing ac-
cess restrictions when a CapConnection object is passed to untrusted code.
Multiple sessions show their greatest potential in trusted applications which
receive help in restricting user views while maintaining a shared cache.

Certain privileged connections have the ability to create new sessions for arbit-
rary users without providing a password. In particular this is true for the workflow
service. In this case, logging in another session might be as simple as:

User user = ...;
CapSession session = connection.login(user);
...

Example 4.2. Log in another session

Note that it is not possible for ordinary user code to create a privileged connec-
tion. Instead, a privileged connection is returned by framework methods like
WfServer.getConnection() . The default connection in the Studio Server
is also privileged.

In the case of a privileged connection, you may also use a com.core
media.cap.common.pool.CapSessionPool to obtain sessions tempor-
arily. This class keeps a pool of sessions, which can greatly speed up your applic-
ation if you change sessions often. Note that you still have to activate a session
after it has been retrieved from the pool.

CapSessionPool pool = new CapSessionPoolImpl();
pool.setConnection(connection);
...
CapSession session = pool.acquireSession(user);
CapSession oldSession = session.activate();
try {
...

} finally {
pool.releaseSession(session);

51COREMEDIA CONTENT CLOUD

Common Concepts | Sessions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html

oldSession.activate();
}

Example 4.3. Using a session pool

See CapSessionPool for further configuration options.

Write Buffering

When writing properties of a CapObject , these writes are initially buffered per
thread and not sent to a server. Afterwards, the accumulated changes are sent
to the server during a flush() call on the CapConnection object.

Buffering the changes per thread and not per session simplifies concurrent
programming using the Unified API and reduces lock contention when a session
is reused across threads.

The write buffers are also flushed when a call is made that cannot be handled
locally by the Unified API. Currently, all calls except setters and getters will flush
the write buffers, but this may change in future versions.

It is a good practice to flush the write buffers before any user interaction is re-
sumed, before long delays are expected, and before returning from public
methods that may be called from arbitrary code.

52COREMEDIA CONTENT CLOUD

Common Concepts | Sessions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/pool/CapSessionPool.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/pool/CapSessionPool.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html

4.10 Caching

As long as a connection is open, it maintains an internal cache to avoid unneces-
sary refetches of persistent data from the servers. You can configure the size
of the data that is cached in behalf of the connection by means of the connec-
tion's management bean.

You are free to use the cache for your own purposes, in particular for maintaining
aggregate views on persistent data. Typically, this is done using the framework
of the CoreMedia Content Application Engine as described in the Content Ap-
plications Developer Manual. The Content Application Engine includes code
generators for the rapid implementation of custom cacheable beans. You can
also access the cache directly by means of the getCache() method of the
connection object. Please refer to the Javadoc of the class com.core-
media.cache.Cache for details about this class.

Almost every read call is cache-aware, meaning that the cache will timely inval-
idate cache entries that performed some operations by means of the Unified
API.

There are, however, some exceptions to this rule. Results of queries or search
requests will never be cacheable. Such computations are invalidated right away
after being completed. Therefore, these operations tend to be relatively expens-
ive. When accessing user data that is stored in an LDAP repository, invalidations
are time-based. That is, computed values will eventually be removed from the
cache, but they may be present for a while in order to improve performance.
Other than that, caching and automated invalidation is fully available.

Please note that each time the connection is closed and reopened, a new instance
of the cache is build. The cache cannot be used after the connection is closed,
not even for tasks unrelated to the Unified API.

53COREMEDIA CONTENT CLOUD

Common Concepts | Caching

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cache/Cache.html

4.11 Serialization

Most objects returned by the Unified API support object serialization as per
java.io.Serializable for persistent storage. While you should normally
keep all persistent CMS data in the content and workflow repositories, serialization
might be appropriate for short term storage, for example when maintaining
conversational state in a web application.

Serialization itself requires no additional setup. Mutable objects will write their
identity to the ObjectOutputStream , while values write their value. One
piece of information is lost, however: the connection is not written to the stream.
This is because a connection maintains a complex dynamic state and because
it keeps security credentials that should not be externally accessible.

Therefore, you have to provide a connection when deserializing a Unified API
object. This is done by registering a connection at the class DefaultConnec-
tion . You can register a connection for the entire JVM. However, CoreMedia
recommends that you register a connection specifically for the thread that
deserializes the objects. For an example, see the following code fragment:

CapConnection old = DefaultConnection.setLocal(myConnection);
try {
object = objectInputStream.readObject();

} finally {
DefaultConnection.set(old);

}

Here a specific connection myConnection is set before accessing the stream.
By resetting the connection after deserializing, you avoid unexpected side effects
to calling code.

Besides the connection, also its sessions, its repositories, and its services cannot
be serialized. Moreover, Blob objects do not support serialization. While blobs
provide a value semantics, storing them in the object stream would be undesir-
able due to their size, so that a write of a blob normally indicates an error. If you
want to serialize blobs, you can do it manually by converting the blob to a byte
array during a writeObject method.

CAUTION
Serialization is not recommended for long term storage. Future CMS releases
might make incompatible changes to the stream format.

54COREMEDIA CONTENT CLOUD

Common Concepts | Serialization

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/DefaultConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html

4.12 Further Reading

If you want to read more about setting up and configuring the various servers
with which the Unified API interacts, CoreMedia recommends the Content
Server Manual as further reading. In that manual, you will also find information
on how to create users and grant the users access to the repositories.

The Javadoc provides much more detailed information about the interfaces and
methods that make up the Unified API. It is suggested that you use the Javadoc
as a reference while programming, but it is also useful for getting a more detailed
overview.

Look at the class com.coremedia.cap.Cap in more detail to find out about
the methods for establishing a connection. Now inspect com.core-
media.cap.common.CapConnection , but upon first reading view it solely
as a means to get access to various repositories and to close() the connection
after you are done.

Afterwards, you should have a look at the other classes in com.core-
media.cap.common . In particular, make yourself comfortable with CapOb-
ject , CapType, CapEvent, CapListener, CapException , and the
type hierarchy of Blob . The package com.coremedia.xml is also recom-
mended for dealing with XML properties.

The subsequent chapters will deal with the individual repositories and their
functionality in more detail.

55COREMEDIA CONTENT CLOUD

Common Concepts | Further Reading

contentserver-en.pdf#ContentServerManual
contentserver-en.pdf#ContentServerManual
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/Cap.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapConnection.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/Common.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/Blob.html

5. The Content Repository

The content repository stores versioned content items that are organized in a
folder tree. It allows the user to create, retrieve, read and update stored content
items and folders while checking access rights. It also ensures that content can
be published from the Content Management Server to the Master Live Server.

The content repository is augmented by the following services:

• AccessControl for determine rights
• PublicationService for controlling the publication process
• ObservedPropertyService for accessing contents which have a given

value in an observed property
• QueryService for performing structured queries
• SearchService for performing full text searches
• PropertyService for accessing persistent properties of the Content

Server
• WorkflowContentService for finding workflows that access a given

content

The PublisherService , the WorkflowContentService , and all modi-
fying methods are only available on the Content Management Server.

56COREMEDIA CONTENT CLOUD

The Content Repository |

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html

5.1 Objects

The content repository is concerned with the handling of folders and content
items. The Unified API presents folders and content items jointly through the
interface Content , which is a sub interface of CapObject . In releases prior
to CoreMedia CMS 2005, the term resource was used to refer jointly to folders
and content items. But that term was meant to indicate a very much reduced
signature that allowed only for those methods that are common to folders and
content items. The interface Content , however, provides all methods that are
applicable to either content items or folders. Besides Content , there is the
Version interface, which represents a historic version of a Content.

Figure 5.1. Class Diagram: Content and Versions

In the class diagram from Figure 5.1, “Class Diagram: Content and Versions” [57],
you can see the above mentioned classes and their associations. The Content-
Type interface will be discussed later in Section 5.3, “Types” [64].

A content item may have an arbitrary number of versions, which are linked in a
predecessor/successor chain. You can get the versions of a content item by
means of getVersions() .

Besides these regular versions, checked-out content items have got a working
version that represents their current state. The working version differs signific-
antly from other versions. Most notably, its properties may change over time as
the checked-out content is changed. Normally, you should not need to access
the working version, as the associated content itself provides a richer and con-
ceptually cleaner interface. For migrating legacy code, however, it might be
natural to use the working version, so that a uniform interface is available.

57COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html

Folders do not have any versions and they do not define any properties. Instead,
they provide access to their children, which may be either content items or
folders. You can retrieve all children or a child with a specific name by using the
appropriate methods defined in Content .

There are quite a few methods that allow you to inspect the state of a content.
You can query whether a content item is deleted, whether it is checked out, who
created it, and the like. This information is available as regular properties of the
CapObject . You have to call the individual getter methods for obtaining this
information.

A content supports many updating operations. In particular, it inherits the
methods for setting properties from CapObject . Before changing the proper-
ties, a content item must be checked out. After changing the properties, it may
be checked in or, more rarely, be reverted to the original state. Keep in mind
that, as noted in Section 4.9, “Sessions” [50], property changes are buffered and
sent to the server only when the CapConnection is flushed explicitly.

Additionally, there a several other methods that deal with moving, renaming,
copying, and deleting content. Currently, these operations are executed imme-
diately. They are not buffered.

A Content object may enter various states during its lifetime. The full state
space is quite large with over 50 different states. However, there are a number
of orthogonal views that can be more compactly presented and that define the
possible transitions completely.

58COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html

Figure 5.2. Statechart: Checked In and Out

Only content items may be checked in and out as described in Figure 5.2,
“Statechart: Checked In and Out” [59]. Folders are always checked in.

The next figures apply to the publication process, which is handled by the
PublicationService as described in Section 5.6, “Publication Service” [67].
Please refer to that section for details about the mentioned methods.

59COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

Figure 5.3. Statechart: Place Approvals

The place approval states of a content are quite simple, but they are shown in
Figure 5.3, “Statechart: Place Approvals” [60] to indicate that a place disapproval
can happen implicitly during a number of operations.

Figure 5.4. Statechart: Deleting

60COREMEDIA CONTENT CLOUD

The Content Repository | Objects

As shown in Figure 5.4, “Statechart: Deleting” [60], a content becomes deleted,
when a deletion is published or when the content is deleted explicitly. It can be
moved out from the Deleted state, reaching the Undeleted state, which it
keeps until being deleted again or published.

One last state chart refers to the state of Version objects.

Figure 5.5. Statechart: Version

A version of a content item is created when the content item is created or
checked out. In Figure 5.5, “Statechart: Version” [61] you can see the lifecycle
of a version. Typically, the content is checked in, so that the version is promoted
to a regular version and is no longer a working version. The version is then ap-
proved and published, so that it appears on the live system.

When the diagram references the destroy operation, this applies either to an
explicit destroy() call of the version or the content, to an action of the doc-
ument collector or version collector, or to a cleanup during publication when the
publisher is configured to destroy intermediate unpublished versions.

61COREMEDIA CONTENT CLOUD

The Content Repository | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html

5.2 UUIDs

In addition to the simple string identifiers described in Section 4.6, “Identifiers
and Equality” [43], every ContentObject on theContent Management Server
has a UUID since version 2004.1. UUIDs are also available for ContentObjects
on theMaster Live Server and Replication Live Servers, if they have been created
by publication or replication with release 2210.1 or newer. Contents that have
initially been created on a Live Server with release before 2210.1 only have UUIDs
on that Live Server, if UUIDs have been synchronized as described in Section
3.13.2.4, “Content UUID Migration and Transfer” in Content Server Manual.

UUIDs are stable and universally unique identifiers as defined in RFC 4122 and
are represented as java.lang.UUID . UUIDs are a good choice for referencing
content in an external system or store, like in a database or file. They are not
meant as replacement of simple string IDs, and should not be used where a
simple ID is sufficient. UUIDs make sense in certain scenarios where uniqueness
across multiple repositories is important, or when content objects may be
transferred to another repository and should keep their identity. For details see:
Section 3.13.2.16, “Serverimport/Serverexport” in Content Server Manual.

Similar to string IDs, the API provides a getUuid() method in class ContentO
bject to retrieve a UUID, and methods to look up a Content or Version
for a given UUID. A Content with a given UUID can be retrieved from the
ContentRepository with method getContent(UUID) . A Version
with a given UUID can be retrieved from its containing Content with method
getVersion(UUID) . It is important to note, that a UUID does not encode in-
formation about the location of the ContentObject . By itself, it cannot be
used to identify the repository or even the containing Content of a Version .

UUIDs are generated by the Content Management Server and automatically as-
signed to newly created content items. If needed, method uuid(UUID) of the
ContentBuilder interface can be used to create content with a predefined
UUID. This API can be used in custom code, for example to copy content from
one server to another and preserve UUIDs. Note however, that it is not possible
to change the UUID of existing content.

62COREMEDIA CONTENT CLOUD

The Content Repository | UUIDs

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentObject.html
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#content-uuid-migration
contentserver-en.pdf#CMServerimportExport
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/create/ContentBuilder.html

5.3 Types

The types of both Content and Version objects are defined by Content-
Type objects. ContentType inherits from CapType , but not all kinds of
properties are supported. Only integer, string, date, blob, XML, struct, and link
list properties are provided.

Content items and versions are using the types that are configured at theContent
Server. For folders there is a special pseudo-type without property descriptors.
Two other abstract pseudo-types are provided: one for content items of any
type and one for content in general, including folders and content items.

You can obtain a reference to a type by calling ContentRepository.get
ContentType(String) with the name of the type. The pseudo-types are
provided by the methods getFolderContentType() , getDocumentCon
tentType() , and getContentContentType() . The pseudo-types are
properly integrated into the type hierarchy.

Types also allow you the creation of new content objects. To this end, you have
to call one of the create methods and pass parameters that will allow the server
to determine at least a name and a folder for the content.

63COREMEDIA CONTENT CLOUD

The Content Repository | Types

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html

5.4 Variants

Content items can be marked as variants during creation. It is not possible to
change the variant flag later on. Variants are used for A/B testing or user seg-
mentation. Content items that are not variants are called baselines. There are
several methods that filter output to return only baseline content items. This
allows an efficient traversal of the content repository in the presence of variants,
especially for complex content item hierarchies.

The Unified API itself does not prescribe how variants are associated to their
baselines or how they are chosen when presenting a content to a viewer. This
is done by the ContentVariantModel and the ContentVariantSer-
vice . Basically, variants link to their baselines and define conditions through
content properties.

64COREMEDIA CONTENT CLOUD

The Content Repository | Variants

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/variant/ContentVariantModel.java
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/variant/ContentVariantModel.java
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/variant/ContentVariantService.java
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/variant/ContentVariantService.java
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/variant/ContentVariantService.java
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/variant/ContentVariantService.java

5.5 Access Control

The AccessControl service of the content repository is responsible for
maintaining the set of rights rules and for evaluating the rules to determine
whether a user is allowed to perform a certain operation on content objects or
not.

Overview Of Rights

The following rights are defined for the Unified API:

Affected OperationsRight

read contentREAD

write contentWRITE

move content to or from the recycle bin; destroy content; mark or
unmark content for deletion or withdrawal

DELETE

approve places and versionsAPPROVE

publish contentPUBLISH

assign rights rules to contentSUPERVISE

Table 5.1. Rights for the Unified API

Instances of the class com.coremedia.cap.content.authoriza-
tion.Right represent the rights defined here. Right objects are readily
provided as constants, but also be created from shorthand characters. The rights
SET_TO_BE_WITHDRAWN and SET_TO_BE_DELETED are aliases for the
DELETE right.

Please have a look at the Content Server Manual for a more detailed discussion
of rights and for a specification of how rights are derived from rules. That
manual refers to the so-called folder right, which is represented in the Unified
API as a combination of the write right and the delete right in rules that apply to
the folder content type.

65COREMEDIA CONTENT CLOUD

The Content Repository | Access Control

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html

Checking Rights

The rights checks are performed by the methods mayRead(Content) ,
mayApprove(Content) , and the like. While most checks depend only on
the given content object, the mayCreate(...) method must also be informed
about the content type to be created.

Some of the methods also take the content's current state into account when
computing the rights. For example, mayCheckIn(Content) will only return
true when the content in question is actually checked-out and it takes into ac-
count that the user who checked out the content has special rights when it
comes to checking it in.

There are convenience methods for checking an entire collection of content
objects with one call. Such methods only grant a right if it would be granted on
each individual content. There are generic mayPerform(...) methods, which
are passed a Right object that denotes the actual operation to check.

Normally, the rights are checked for the user of the current session, but it is
possible to specify a set of groups and compute the rights assuming the user
is a member of exactly these groups.

Setting Rights Rules

Rights checks are based on rules. The AccessControl service offers methods
for retrieving all rules or a subset thereof as a collection of Rule objects. Rule
objects are a compact representation of all parameters that make up a rule: a
content, a type, a group, and a rights mask. They do not provide modifying oper-
ations themselves. Instead, the AccessControl service provides methods
for creating, modifying, and deleting rules.

Using the AccessControl service, it is also possible to check whether a rule
already exists. Furthermore, you can retrieve all rules that apply to a certain
content or group, respectively.

66COREMEDIA CONTENT CLOUD

The Content Repository | Access Control

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Rule.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/Rule.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html

5.6 Publication Service

The PublicationService allows you to control the publication process
and to inspect the state of the publication queue.

When a content is created, it exists on the Content Management Server only.
The process of transferring the content to the Master Live Server is referred to
as publishing the content. Before a content can be published, it has to be ap-
proved. In general, the approval of a content refers to its location in the folder
tree. It is approved that the content appear on the Master Live Server at a given
place, hence the name place approval for this type of approval which can be
performed by the method approvePlace(Content) . When a content item
is published, a version must be created on the Master Live Server, too. To this
end, the version itself must be approved using the method approve(Ver
sion) . Only an approved version can be published. Even if a content is pub-
lished, subsequent movements, renames, and property changes happen on the
Content Management Server only. New places or new versions must be published
explicitly.

When a content is supposed to leave the Master Live Server, it must be marked
for withdrawal or deletion using the methods toBeWithdrawn(Content)
and toBeDeleted(Content) . After that operation is place approved, the
content can be included in a publication set. During the subsequent publication,
the content is removed from the Master Live Server instead of being updated.
In the case of a mark for deletion, it is also moved into the archive on theContent
Management Server.

Figure 5.6. Statechart: Content Publication

67COREMEDIA CONTENT CLOUD

The Content Repository | Publication Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

A rather complex state chart is shown in Figure 5.6, “Statechart: Content Public-
ation” [67]. It depicts the various states with respect to publication. Being pub-
lished, a content gains access to a number of attributes that are only available
in this state. Its state space is fragmented into four sub spaces:

• it might be moved
• it might be renamed
• it might be marked for being withdrawn
• it might be marked for being deleted

A publication is initiated by the publish(...) methods. You can also request
a publication preview by means of the preview(...) methods. A preview
does not actually copy information to the Master Live Server, but makes all
checks to determine whether a publication would be successful. Possible argu-
ments to the publish and preview calls are a single content, a collection of con-
tents, or a PublicationSet .

When contents are given as argument, the actual publication set is determined
heuristically. To this end, the publication service selects versions to be published
with the content, if that is appropriate given the current marks and approvals.
You can also create a publication set by providing collections of contents and
versions explicitly, taking care that no versions are included whose content is
marked for withdrawal or deletion.

After a publication has completed successfully, a PublicationResult is
returned. The publication result informs about all contents that were involved
in the publication and about the actions that were performed. If the publication
is unsuccessful, a PublicationFailedException is thrown, which wraps
a publication result that details the cause of the error.

As an example, let us look at an excerpt from the class PublicationSer
viceExample that is available as a source code example:

PublicationService publisher = repository.getPublicationService();
publisher.approvePlace(folder);
publisher.publish(folder);
publisher.toBeDeleted(folder);
publisher.approvePlace(folder);
publisher.publish(folder);

A folder that has been created before is approved, published, marked for deletion,
approved again, and deleted by publishing. This example summarizes the entire
lifecycle of content publication in a few lines. Obviously, real applications will
not use all of these methods in one place.

The publication service also provides a means to inspect the current state of
the publication queue. You can get a list of all pending publications and access
a summary of each publication's characteristics. A PublicationServiceL-
istener informs about changes to the publication queue.

68COREMEDIA CONTENT CLOUD

The Content Repository | Publication Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationSet.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationSet.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/results/PublicationResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/results/PublicationResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationFailedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html

If you have enabled Multi-Master Management for your CoreMedia CMS, there
may be more than one publication target. Each publication target represents
oneMaster Live Server and includes any number of base folders. You can retrieve
all PublicationTarget objects from the publication service. The Content
Server Manual provides more information on how to set up publication targets.

69COREMEDIA CONTENT CLOUD

The Content Repository | Publication Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationTarget.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationTarget.html

5.7 Observed Property Service

The ObservedPropertyService allows you to access contents which have
a given value in an observed property. A content property is observed when the
property in the content type definition is annotated with extensions:ob
serve . See Section 4.3.9.3, “Changing the Observe Attribute of a StringProperty”
inContent Server Manual for the configuration of an observed property. Currently
only a string property with a maximum length of 256 is supported. For such an
observed property and a given non-empty value the Content Server maintains
the set of contents whose observed property has the value. The Observed
PropertyService offers methods to retrieve the contents in a cached and
dependency-tracked way.

Example: Given is a content type ExternalProduct with an observed string
property externalId . Now, the set of external product contents whose ex-
ternal ID is "acme sportswear 123" can be retrieved by observedPropertySer
vice.getBaselineContentsWithValue("acme sportswear 123",
externalIdDescriptor) whereas externalIdDescriptor is the
content property descriptor of the externalId property. As opposed to
getContentsWithValue , the method getBaselineContentsWith
Value makes sure to ignore content variants, which are typically not relevant
in this context.

The same could be achieved using the query service. But the result retrieved by
the ObservedPropertyService is cached and dependency-tracked, which
is more efficient. Additionally, for every change of the set of contents with the
observed value the content repository sends a corresponding event.

The ObservedPropertyEvent is thrown when a set of observed contents
has changed. See the Javadoc for details.

CAUTION
Beware that the ObservedPropertyEvent reveals the value of the observed
property to the listener. For example, the external IDs of the External-
Product contents maintained in the CMS could be collected without having
the proper access rights to the Content Repository.

70COREMEDIA CONTENT CLOUD

The Content Repository | Observed Property Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
contentserver-en.pdf#changeObserveOfStringProperty
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyEvent.html

5.8 Query Service

The QueryService allows synchronous, structured queries against the content
repository. A query is a string formulated in the CoreMedia query language, with
an optional array of parameter objects which may be referenced from the query
string. The number of results to return can be limited. There are two variants of
queries, those applying to content objects and their current property values,
and those applying to versions (including working versions). Queries are initiated
with the poseContentQuery and poseVersionQuery , respectively.

A query string expresses a condition on content objects. The QueryService
returns all Content or Version objects in the repository for which the con-
dition is true. The condition is made up of a logical combination (AND , OR , NOT)
of type constraints, comparisons and tests, which may refer to the object's
properties.

A query may also refer to getters defined in the Content , Version and
PublicationService interfaces in the same way it refers to user-defined
properties, by giving its name. The names of API methods are transformed as
follows:

• Content

For a zero-argument method whose name starts with get , the implied
property name omits the get and starts with a lowercase letter. So the
method getCreationDate() becomes creationDate . For a zero-ar-
gument method whose name starts with is , the implied property has the
same name as the method. So the method isCheckedIn() becomes
isCheckedIn .

• Version

Transformation is similar to Content , but to avoid confusion, all getters are
prefixed with version . So getEditor() becomes versionEditor .
Boolean-valued getters start with versionIs .

• PublicationService

A one-argument method that takes a Content as its argument is transformed
as if it were a zero-argument method defined in class Content , and analog-
ously for Version . So isApproved(Version) becomes versionIs
Approved and getPublisher(Content) becomes publisher .

An implied property based on a Version getter is only defined for content
items, not for folders. In a content query, it implicitly refers to the working version
for a checked out content item, or to the latest version for a checked in content
item.

71COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

There are three implied properties with a deviating semantics:

• The word id represents the current content (and not the string returned by
the method getId() defined in Content).

• For version queries, the word version represents the current version. For
content queries, it represents the working version for checked-out content,
and the latest version for checked-in content.

• The implied property containsWideLink is true if the content or version
contains a link (in a link list or in XML) to a content that belongs to a different
base folder.

The following implied properties are currently defined:

• baseFolder
• containsWideLink
• creationDate
• checkedInVersion
• checkedOutVersion
• creator
• editor
• id
• isDeleted
• isCheckedIn
• isCheckedOut
• isDocument
• isFolder
• isInProduction
• isMoved
• isNew
• isPlaceApproved
• isPublished
• isRenamed
• isToBeDeleted
• isToBeWithdrawn
• isUndeleted
• lastParent
• latestApprovedVersion
• latestPublishedVersion
• modificationDate
• modifier
• name
• parent
• placeApprovalDate
• placeApprover
• publicationDate

72COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

• publicationName
• publicationParent
• publisher
• versionApprovalDate
• versionApprover
• versionEditionDate
• versionEditor
• versionIsApproved
• versionIsPublished
• version
• versionPublicationDate
• versionPublisher
• workingVersion

When an ORDER BY clause is given, the query result is sorted according to the
values of the given properties. These properties must be defined for all content
types for which the condition may be true.

Please refer to the Javadoc of class QueryService for a comprehensive list
of implied properties available in query expressions.

The query syntax is as follows:

query ::=
conditional_expression [order_by] [limit]
;

order_by ::=
ORDER BY order_entry {"," order_entry}
;

limit ::=
LIMIT numeric_literal
;

order_entry ::=
property [ASCENDING | ASC | DESCENDING | DESC]
;

conditional_expression ::=
TYPE ["="] type { "," type } [":" conditional_expression]
| conditional_expression OR conditional_expression
| conditional_expression AND conditional_expression
| NOT conditional_expression
| (conditional_expression)
| BELOW content
| REFERENCES content
| property REFERENCES content
| REFERENCED
| REFERENCED BY versionOrContent
| property IS [NOT] NULL
| comparison_expression
| contains_expression
| value_expression
;

type ::=
identifier
;

73COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

comparison_expression ::=
value_expression comparison_operator value_expression
;

comparison_operator ::=
"=" | ">" | ">=" | "<" | "<="
;

contains_expression ::=
property CONTAINS literal_expression
| property CONTAINS EXACT literal_expression
| property CONTAINS PREFIX literal_expression
| property CONTAINS STEM literal_expression
;

value_expression ::=
property
| literal_expression
;

property ::=
implied_property
| identifier
;

content ::=
literal_expression
;

version ::=
literal_expression
;

versionOrContent ::=
literal_expression
;

literal_expression ::=
string_literal
| numeric_literal
| boolean_literal
| DATE string_literal
| PATH string_literal
| USER string_literal
| ID string_literal
| input_parameter
;

boolean_literal ::=
TRUE
| FALSE
;

NOTE
The operator "=" in a comparison expression of String literals is handed over to
the database. Thus, it depends on the database if the operator is case-sensitive
or not.

Identifiers consist of Java identifier characters. Where the name of an identifier
collides with a keyword or an implied property, the identifier can be enclosed in
double quotes to preserve its meaning as an identifier. Examples:

74COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

• Article
• title
• Document_
• "parent"
• "DATE"

String literals are delimited by single quotes. A single quote inside a string literal
is represented by two successive single quotes. Examples:

• 'hello world'
• 'banker''s baguette'

Numeric literals conform to Java syntax. Essentially, a numeric literal is a sequence
of digits, optionally preceded by a minus sign. Examples:

• 123
• -3

As date literals, the String has to be of the form recognized by DateConverter .
This class generates and parses a subset of ISO8601 strings, namely those
matching yyyy-MM-dd'T'HH:mm:ssTZD where the time zone distance TZD
is expressed as +hh:mm or -hh:mm . Examples:

• DATE '2004-09-08T13:47:07-02:00'
• DATE '2004-12-31T23:59:59+00:00'

PATH literals denote a content by giving its path, beginning at the root folder.
It is an error if no content exists at the given path. Examples:

• PATH '/Home/admin'
• PATH '/'

USER literals denote a user name and a domain name separated by an @ char-
acter. If the domain name is empty, the @ character may be omitted. Examples:

• USER 'admin'
• USER 'fred@msad'

ID literals denote a content, version or user by giving its ID, as returned by
CapObject.getId() . Examples:

• ID 'coremedia:///cap/content/1'
• ID 'coremedia:///cap/version/4/2'
• ID 'coremedia:///cap/user/0'

An input parameter refers to an object passed along with the query string. Input
parameters are represented by a question mark immediately followed by a se-

75COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/DateConverter.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/DateConverter.html

quence of digits, which represents the zero-based index of the parameter object.
Examples:

• ?0
• ?1
• ?42

Type rules

Queries are strongly typed. For example, when you try to compare a String with
an Integer, an error (MalformedQueryException) will be reported. There are rules
that govern the required types for subexpressions, and the resulting type of
each expression in the grammar above.

The following tables show all possible types that occur in subexpressions of a
query. The second column shows corresponding Java types, which is relevant
for parameter objects and implied properties. The third column shows the cor-
responding CapPropertyDescriptor type of a content property, which is relevant
for non-implied properties.

CapProperty-
Descriptor
type

Java typeType

BLOBn.a.Blob

BOOLEANjava.lang.BooleanBoolean

DATEjava.util.CalendarDate

INTEGERjava.lang.IntegerInteger

STRINGjava.lang.StringString

n.a.com.coremedia.cap.content.ContentContent

n.a.com.coremedia.cap.content.VersionVersion

LINK listn.a.Content List

MARKUPcom.coremedia.xml.MarkupMarkup

76COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

CapProperty-
Descriptor
type

Java typeType

n.a.com.coremedia.cap.user.UserUser

Table 5.2. Types in subexpressions

The type of an implied_property clause depends on the return type of
the corresponding getter method. For example, the return type of Content#get
Name() is java.lang.String , so the type of the expression name is
String . There are three exceptions: For id , the type is Content . For ver-
sion , the type is Version . For containsWideLink , the type is Boolean .

An identifier in a property clause is resolved as a property of the content
type in the closest surrounding TYPE clause. The property type is then mapped
to a query expression type using the table above. For example, assuming a string
property called headline in a content type Article , the subexpression
headline in the query "TYPE Article: headline CONTAINS 'foo'"
would have type String . If there is no surrounding TYPE clause, the content
type Content is assumed, which does not define any properties. If the TYPE
clause lists multiple content types, the type of the property with the given name
has to be same in all listed content types.

A property name in an order_entry clause is resolved as a property of the
most specific type that can fulfill the query. Only properties of type Boolean ,
Date , Integer , or String are allowed.

In a REFERENCES clause, the property (if given) must be a Markup or Link List
property.

In a comparison_expression , the types of both subexpressions must be
the same, and must be one of Boolean , Date , Integer , or String , or one
subexpression must be of type Integer and the other type must be integer
compatible. User , Version and Content are integer compatible, by using
the user id, content id, or version number for comparison.

The property in a CONTAINS expression must be a String or Markup property.
The literal must be a String .

Where a value_expression is used as a conditional_expression ,
the value_expression must be a Boolean .

The expression type of an input_parameter depends on the class of the
java object passed as a parameter. The mapping from Java type to expression
type is given in the table above. For example, when passing in an instance of

77COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html

java.lang.String , the corresponding parameter expression will have the
type String .

Where a content , version , or contentOrVersion clause is used in the
grammar above, the literal_expression must have the respective type.

Interpretation

So far, you have seen when a query is syntactically correct, and when its types
are correct. This section describes what the query expression actually means,
where it was not explained before.

The following description is geared towards content queries (QuerySer
vice#poseContentQuery). In a version query, where the following descrip-
tion refers to a "content", the version's content is understood. Where the descrip-
tion refers to a "content object", the version itself is understood.

A "TYPE =" condition is true for a content if the content's type is one of the
types listed, and the content fulfills the condition on the right hand (if given).
This form does not take type inheritance into account.

A "TYPE" condition (without "=") is true if the content is a (direct or indirect) in-
stance of at least one of the types listed, and the content fulfills the condition
on the right hand (if given). This form takes type inheritance into account.

A "BELOW folder" condition is true for a content if the content is a child of
the given folder. For the purpose of this condition, a folder is a child of itself.

A "REFERENCES target" condition is true for a content object if the content
object contains a link to the given target in any markup or link list property.

A "property REFERENCES target" condition is true for a content object
if the named property of the content object contains a link to the given target.
The property must be a markup or link list property.

A "REFERENCED" condition is true for a content if it has at least one referrer,
that is a content containing a link to this content in any markup or link list prop-
erty.

A "REFERENCED BY contentOrVersion" condition is true for a content
if the given content or version has a reference to this content in any markup or
link list property.

A "property CONTAINS literal" condition is true for a content object
for a string property, if the literal's string value is a substring of the content ob-
ject's property's string value. For a markup property, all XML markup is discarded,
and the string is searched for in the concatenated cdata elements.

78COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

CONTAINS EXACT , PREFIX , and STEM are only available if your database
supports them. Currently only Oracle databases with the special module "multi-
media" (formerly named interMedia) support this.

In an order_by clause, the first order_entry takes priority. If contents
compare equal according to the first order entry, the next order entry is con-
sidered, etc. The ordering of String values is database dependent. The ordering
of Date values ignores the time zone. The Boolean value FALSE is considered
less than TRUE.

The limit clause limits the number of results that will be returned, and may
improve performance, especially if only one result is required, and if sorting is
not requested. It is equivalent to passing a limit argument to the query service
method.

Examples

Search for a specific ID
This query returns the object with the given ID.

Collection<Content> result =
qs.poseContentQuery("id = 1486")

Items reference another content item
This query gives all content items that reference a given item, defined by its
content ID:

Collection<Content> result =
qs.poseContentQuery("REFERENCES ID 'coremedia:///cap/content/1486'")

Articles that contain specific text
Consider that you are searching for all content items of type CMArticle that
are not deleted and that contain the word 'Gin' in its detailText property:

Collection<Content> result =
qs.poseContentQuery("TYPE CMArticle: NOT isDeleted AND detailText CONTAINS
'Gin'")

NOTE
This query will find all occurrences of 'Gin' even it is part of, for example, 'Ginger'.
There is the clause CONTAINS EXACT which would only find 'Gin', but at the
moment, it is only supported by Oracle databases with the multimedia module.

79COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

Search for the latest published versions
This query will find the last published versions of all CMChannel content items.

Collection<Content> result =
qs.poseVersionQuery("TYPE CMChannel: versionIsPublished AND

version=latestPublishedVersion")

Search for the latest published version of a specific content item
This query will find the last published versions of content item with ID 586.

Collection<Content> result =
qs.poseVersionQuery("TYPE Document_: versionIsPublished AND

version=latestPublishedVersion AND id=586")

Search for all content items lastly edited by a user
Consider that you are searching for all content items that were lastly edited by
the user admin . Given that the variable qs holds a reference to the query ser-
vice, you could issue the following statement:

Collection<Content> result =
qs.poseContentQuery("TYPE Document_: editor = USER 'admin'")

All content items checked out by a user
Consider that you are searching for all content items that are checked out by
the user admin .

Collection<Content> result =
qs.poseContentQuery("TYPE Document_: isCheckedOut AND editor = USER 'admin'")

Published content below a specific folder
This statement retrieves arbitrary published content that is stored in the folder
/Home . At most 50 results are returned.

Collection<Content> result =
qs.poseContentQuery("isPublished AND BELOW PATH '/Home' LIMIT 50")

Items of type Articles, marked for deletion or withdrawal, approved before the
given date

A parametrized query is shown that retrieves all content items of the type
Article that are marked for deletion or withdrawal and were approved before
the given date.

Collection<Content> result =
qs.poseContentQuery("TYPE Article: placeApprovalDate < ?0 AND "+
"(isToBeDeleted OR isToBeWithdrawn)",
maxApprovalDate);

Search in structs
As structs are a subset of XML properties you can search for a specific text using
CONTAINS. However, it is not possible to address one specific inner property of
a struct.

80COREMEDIA CONTENT CLOUD

The Content Repository | Query Service

5.9 Search Service of the Unified
API

The SearchService provides full-text search capabilities. You can use its
methods to quickly find contents based on their current property values and
some of their implied properties (such as content creator).

Client search requests are routed through the CoreMedia Content Server to the
CoreMedia Search Engine. The CoreMedia Search Engine is a facade to a con-
figured third-party search server which by default is an Apache Solr instance.
The search server returns the search result back to the CoreMedia Content
Server and the requesting client.

NOTE
Note, that the index of theCoreMedia Search Engine is updated asynchronously
and therefore does not always represent the current state of the content repos-
itory. Note further, that the CoreMedia Search Engine does not allow searching
in old content item versions.

If you need up-to-date results or want to search for content item versions, you
should consider using the QueryService .

The SearchService has the following methods:

• isSearchEnabled returns true, if search service is enabled, false otherwise.
• search methods to search for not deleted contents using a simple query

language as described below.
• searchNative to search in a search server specific search query language,

like Apache Solr Query Language described below.

CAUTION
Note, that search , and searchNative methods may return contents for
which the user of the current session does not have read rights. You must handle
rights yourself and filter out unreadable contents if needed.

81COREMEDIA CONTENT CLOUD

The Content Repository | Search Service of the Unified API

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html

Search with Simple Query Language

Use one of the search methods to perform a simple search for not deleted
contents. There are multiple search methods with different parameters to restrict
the query to contents of a given type and below a given folder. See the API
documentation for details.

These methods take a query string in a simple query language which consists
of terms and/or phrases separated by white space. The terms and/or phrases
are combined with a logical AND.

A query term is basically a word to search for. Only alphanumeric characters
are allowed here. You can prefix the term with a minus operator ('- ') to indicate
a NOT expression, that is the word must not appear in the search results. Likewise,
you can use a plus operator ('+ ') as prefix but it is the default and will be ignored.
The following example query will search for contents which contain the word
news but not the word sport :

news -sport

The query term may end with an asterisk ('* ') to perform a wildcard query which
matches all words that start with the characters before the asterisk. Note, that
the asterisk may appear at the end of the term only. The next example returns
all contents containing words that start with test :

test*

A phrase to search for is enclosed in double quotes. Wildcards are not allowed
in phrases and plus and minus operators are ignored. A search for contents
containing the phrase Hello World can be performed with:

"hello world"

The following example searches for content items of any type (but not folders)
which contain the word hamburg below a folder /Site . The list obtained from
the SearchResult contains the found Content objects sorted by their
name. Sorting is explained in a following section.

Content site = contentRepository.getChild("Site");
ContentType type = contentRepository.getDocumentContentType();
SearchResult result =
searchService.search("hamburg", // the query string

"name", true, // sort ascending by name
site, true, // below folder site
type, true, // documents only
0, 100); // max. 100 hits

82COREMEDIA CONTENT CLOUD

The Content Repository | Search Service of the Unified API

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html

List<Content> hits = result.getMatches();

Search with Solr Query Language

If you need a more powerful search with Apache Solr directly, you can use the
more generic searchNative method and perform a query in the Solr Query
Language. For details on the query language refer to the Apache Solr document-
ation.

One of the fields in the Solr schema is creator which contains the ID of the
user who created the content. The following example searches for all contents
created by user admin that are located below the folder /Site and contain
the word test .

User user = userRepository.getUserByName("admin");
int userId = IdHelper.parseUserId(user.getId());

Content folder = contentRepository.getChild("/Sites");
int folderId = IdHelper.parseContentId(folder.getId());

String query = "feederstate:SUCCESS" +
" creator:" + userId +
" folderpath:" + folderId +
" test";

SearchResult result = searchService.searchNative(
query,
"name", true, // sort ascending by name
0, 100); // max. 100 hits

List<Content> hits = result.getMatches();

An important thing to note is the term feederstate:SUCCESS within the
query string. You must specify this term in every query except when searching
for contents that were not successfully indexed. In the latter case you must in-
clude the term feederstate:ERROR . If you don't want to find contents in
the recycle bin, you must either search below a given folder, as shown in the
example above, or include the term isdeleted:false .

The term test is not prefixed with the name of an index field. In that case the
default field textbody is used and the search is performed on the full-text
content.

Sort search results

You can use method parameters of the search and searchNative methods
to specify the sorting of the returned results. The search methods take the name
of the search field and whether sorting should be ascending or descending as

83COREMEDIA CONTENT CLOUD

The Content Repository | Search Service of the Unified API

parameters and return the results sorted accordingly. Sorting is handled by the
search engine which is much more efficient than client-side sorting could be.

84COREMEDIA CONTENT CLOUD

The Content Repository | Search Service of the Unified API

5.10 Workflow Content Service

Content objects are often edited and published in formalized business processes.
To this end, the WorkflowRepository as described in Chapter 6, The
Workflow Repository [89] provides a means to define your own processes, which
may refer to content items and folder using their variables. Accessing content
through workflow objects is well supported by the instances of the Task and
Process interfaces. But sometimes it is interesting to know the processes in
which a certain content item or folder is processed.

To this end, the WorkflowContentService provides the method getPro
cesses(Content) for obtaining a collection of processes that reference a
given content. It is up to you to determine the exact variable and possibly task
that is currently dealing with the content, if desired. Usually obtaining a reference
to the process is enough to perform the remaining operations efficiently.

85COREMEDIA CONTENT CLOUD

The Content Repository | Workflow Content Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html

5.11 Property Service

A Content Server can store an arbitrary number of persistent key/value pairs in
a dedicated database table. These values can be used to store global resource-
independent states. For example, some values are used internally to store the
current database schema version and other information.

The PropertyService allows you to access this persistent store. The
PropertyService presents the table as a map from strings to strings. You
can get individual entries or the entire map and you can set and remove key/value
pairs.

It is advisable to keep the number of key/value pairs moderate. It would be
possible to store the path of a configuration folder or perhaps the time of the
last run of a certain script. It is not recommended to store individual values per
content item and folder.

Please refer to the documentation of PropertyService for information about
reserved keys that may not be used for arbitrary purposes.

86COREMEDIA CONTENT CLOUD

The Content Repository | Property Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html

5.12 Listeners

The ContentRepository supports two different listeners: the ContentRepos-
itoryListener and the PublicationServiceListener .

The ContentRepositoryListener can be registered directly at the
ContentRepository . It receives events about content creation, update and
destruction and about operations of the PublicationService on content,
e.g, approvals, deletions or publications. Additionally, it receives events about
the observed properties. The listener methods of these three categories of
events are separated into three sub interfaces ContentListener , Public-
ationContentListener and ObservedPropertyListener. In addition,
methods for handling rights rule changes are defined directly in ContentRe
positoryListener.

While these interfaces highlight the conceptual differences between the various
events provided to a ContentRepositoryListener , the full implementation
of the entire ContentRepositoryListener is allowed when registering a
listener. The class ContentRepositoryListenerBase helps with an ab-
stract implementation when you want to react to a small subset of events.

When attaching a ContentRepositoryListener , you can provide a
timestamp. The timestamp has to lie in the past, you might have obtained it, for
example, when listening to an earlier event. Exactly those events that occurred
after that timestamp will be propagated. Once the past events have been de-
livered, the event stream switches transparently to the live stream of events.

A special timestamp constant Timestamp.SYNTHETIC_REPLAY indicates
that a synthetic sequence of events should be delivered instead of the real
events that occurred in the past. A synthetic replay is typically shorter than a
full historic replay, but the load and memory requirements on the Content
Server while generating the synthetic events can be significant. If possible, it is
recommended that you attach listeners with relatively recent timestamps or
with no timestamp at all

The PublicationServiceListener is provided with events about the
state of the publisher itself. An event is sent whenever a publication is enqueued,
started, completed or aborted. The listener is also informed when the publication
targets of a Content Management Server with Multi-Master Management are
redefined.

87COREMEDIA CONTENT CLOUD

The Content Repository | Listeners

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationContentListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationContentListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationContentListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationContentListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/events/ObservedPropertyListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/events/ContentRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/events/PublicationServiceListener.html

5.13 Further Reading

To learn more about the design of a content type system, see the corresponding
chapter in the Content Server Manual it will also provide you with additional in-
formation on rights and rights rules.

The Javadoc of theUnified API is the recommended source for in-depth descrip-
tions of individual classes and methods. If you want to skim the Javadoc at this
point of time, you will get some hints now.

The most common use cases involve the access and modification of content.
For this, look at the package com.coremedia.cap.content , particularly
at the interfaces ContentRepository and Content . Look at Version
for getting an idea of how to handle the historic states of content. Afterwards,
it will be interesting to inspect the content meta model, which is represented
by the class ContentType .

In the case of content, the following service objects are provided: Publica-
tionService , AccessControl , PropertyService , QueryService ,
SearchService, ObservedPropertyService, and WorkflowContent-
Service . Have a look at the individual services and their getters in Conten-
tRepository , so you can refer back to them when the functionality is required.
You may want to investigate the PublicationService in more detail right
away, because the approval of content and its transfer to the Live Servers are
important in many contexts.

88COREMEDIA CONTENT CLOUD

The Content Repository | Further Reading

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Content.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/Version.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/PropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/query/QueryService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/search/SearchService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/observe/ObservedPropertyService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/publication/PublicationService.html

6. The Workflow Repository

The WorkflowRepository stores tasks and processes, and the definitions
that describe their structure. Tasks and processes in the repository are executed
by the server-side workflow engine, up to the point where user interaction is
required. Users can select the tasks they wish to work on, modify the respective
workflow variables and related content, and finally pass back control to the
Workflow Server.

To support user interaction, the Unified API allows to

• create and start new processes,
• observe the current state of the computation (states and variables of tasks

and processes),
• observe the progress of the computation (events),
• provide rights policies and performers policies for determining authorized

users,
• determine where user interaction is required (work list management), and
• feed back a user's inputs (values, and commands like accept, complete) to

the workflow engine.

To perform automated actions, the Unified API allows to

• define actions and expressions for execution in the Workflow Server.

For administrative purposes, the Unified API allows to

• monitor the running and the escalated processes and tasks,
• interrupt processes by suspending or aborting,
• upload and download process definitions, and
• inspect the structure of a process definition

In the following, these aspects will be described in some more detail. In Section
6.1, “Objects” [91] you will find a description of the basic types and objects stored
in the workflow repository, and their relationships. Their lifecycle states are de-
scribed in the next section, Section 6.2, “Workflow States” [94]. All objects relevant
to a user in their current state, such as offered tasks, can be tracked using the
work list service described in Section 6.4, “The Work List Service” [102]. Access
to task-specific subsets of a workflow's variables is implemented using views,
described in Section 6.5, “Workflow Variables and Views” [104]. Read Section 6.6,
“The Access Control Service” [107] to learn how to determine the permissions
granted to a user. The upload and download of process definitions is covered
in Section 6.7, “Managing Process Definitions” [109]. All changes taking place in a

89COREMEDIA CONTENT CLOUD

The Workflow Repository |

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html

workflow repository can be observed as events, as described in Section 6.8,
“Events” [110].

Now, the plugin interfaces (also called service provider interfaces) are described,
which you may implement.

Finally, a few examples are given in Section 6.11, “Examples” [129], and you will find
pointers for further reading in Section 6.12, “Guide to the API Documentation” [140].

90COREMEDIA CONTENT CLOUD

The Workflow Repository |

6.1 Objects

The workflow repository, like the content repository and the user repository,
provides access to objects stored persistently on a CoreMedia Server, in this
case, the CoreMedia Workflow Server. The objects to be accessed are modeled
as subclasses of CapObject , and their structure is modeled by workflow-
specific subclasses of CapType .

Like all persistent objects in the CoreMedia CMS, workflow objects carry an ID
that uniquely identifies the object within the system, across users and sessions.
This ID can be used to retrieve an object encountered before. The workflow re-
pository offers a number of getter methods taking an ID argument, which differs
only in the expected type of the retrieved object.

There are also methods to retrieve all objects of a certain kind (which, depending
on the repository's size, can be quite expensive).

Many client applications will navigate the repository beginning from a process
or task that is relevant for the current user. These tasks and processes can be
determined using the work list service described in Section 6.4, “The Work List
Service” [102]. If you want to navigate from a given content object to the processes
that affect it, use the WorkflowContentService as described in Section
5.10, “Workflow Content Service” [85].

Figure 6.1. Workflow Class Diagram

The objects stored in the workflow repository can be discriminated into pro-
cesses and tasks. Each process is composed of a number of tasks, which will be
executed in a defined order. As can be seen in Figure 6.1, “Workflow Class Dia-
gram” [91], the Unified API represents these objects using the classes Process
and Task .

91COREMEDIA CONTENT CLOUD

The Workflow Repository | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowContentService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html

All names of association end in Figure 6.1, “Workflow Class Diagram” [91] corres-
pond to getter methods in the Unified API. For example, the aggregation between
Process and Task can be navigated in both directions: The Process containing
a Task can be determined using Task#getContainingProcess() , and
the set of Tasks contained in a Process can be determined using Pro
cess#getTasks() .

The set of tasks of a process conforms to the process' definition. For each task
definition contained in the process' definition, the process contains a task, which
is created at the time the process is created. The successor relation between
tasks conforms to the structure of the task definitions, as expressed by the
successorDefinition relation. The task structure is also fixed at process
creation time. The first task to be executed when a process is started is determ-
ined by the process definition's startTaskDefinition .

Both processes and tasks pass through various states during their lifetime. These
states are modeled using the enumeration types ProcessState and
TaskState , respectively, and are described in further detail in Section 6.2,
“Workflow States” [94].

In addition to the states predefined by CoreMedia, information about the progress
of a process or task can be stored in workflow variables. Workflow variables can
also be used to pass information from and to automated tasks, and may be seen
or edited by users in task-specific forms.

Workflow variables are represented just like content properties and user attrib-
utes. As described in Section 7.1, “Objects” [142], each CapObject carries a
property value for each property declared by its type. Both ProcessDefini
tion and TaskDefinition inherit from CapType the ability to declare
properties. In the context of workflow objects, the type association between
object and type is called definition , and differs only in its more explicit
typing: When a WorkflowObject is asked for its type, the result can only be
a WorkflowObjectDefinition ; even more specifically, a Process is al-
ways defined by a ProcessDefinition , and a Task is always defined by
a TaskDefinition .

The types of properties generally available are described in Section 4.5,
“Types” [41]. The Workflow Server allows more kinds of properties than the
Content Server, especially, lists can be declared of all element types (not just
Content links), and additional atomic property types are available: User ,
Group , Boolean , ContentType , and Timer . Also, properties can be de-
clared to be read-only.

When a Timer property is declared, this has two effects: Firstly, it creates a
property that can hold a TimeLimit , and secondly, it creates a Timer , which,
when enabled, notifies the application when the time limit is reached. See section
Section 6.9, “Timers” [112] for details.

92COREMEDIA CONTENT CLOUD

The Workflow Repository | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html

Being a CapType , each process definition has a name. The repository remembers
the most recently uploaded process definition for each name, and automatically
disables earlier definitions carrying the same name. A disabled process definition
cannot be used to start new processes, but continues to be available for running
processes. A process definition can be disabled explicitly even if it is not super-
seded by a newer version. The repository can be queried for a process definition
by name, and again to support expression languages, a Map containing all enabled
process definitions by name can be obtained.

A new process is created either by calling the method ProcessDefini
tion#create on an enabled process definition, or automatically by a server-
side fork task (see the Workflow Manual for details on task types). A process
that is started as a sub process of another process can be asked for its parent
process.

The parent relation between processes must not be confused with the contain-
ment relation between processes and tasks; a process' tasks are created at the
same time the process is created, but a sub process is only created when the
corresponding fork task is executed (which, among other considerations, allows
for recursion).

93COREMEDIA CONTENT CLOUD

The Workflow Repository | Objects

6.2 Workflow States

Since processes and tasks are dynamic, interacting entities, their lifecycle needs
to be explained in some detail.

Process States

The state chart of a process is shown in Figure 6.2, “States of a process” [95].
After being created, a process is started, and may be suspended and resumed
a number of times. Ultimately, the final task is completed and the process closes.

When a process is created, it does not immediately start running. Instead, the
process remains "not started" until its start method is invoked. This way, the
process' variables can be initialized at leisure. Note that as long as the process
is not started, its initial view is active (see Section 6.5, “Workflow Variables and
Views” [104]). For example, this allows some variables to be writable only during
initialization, and allows different validation rules to apply during setup and during
the process' runtime.

When the start method is invoked, the process becomes "running" and starts
with its first task. All relevant automated action and user interaction happens
during the execution of tasks. The process itself mostly serves to structure and
coordinate their execution.

While a process is running, it may be suspended at any time by invoking its
suspend method. This stops all progress, be it in automated or user tasks. The
process can be continued by invoking the resume method.

A process can terminate either normally, by reaching and completing its final
task, or it may be aborted by an invocation of its abort method. Registered
final actions are executed and may perform some cleanup or archive process
data, but cannot modify the process itself anymore. After a short delay, the
process and all its sub processes are destroyed, and all state and variable values
are irretrievably lost. If some part of the process' state is still of interest, a process
should handle this in a final action, or it should first be suspended and inspected
before aborting it.

94COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

Figure 6.2. States of a process

automated tasks
Automated Tasks

Now you will learn the lifecycle of tasks.

For simplicity, begin with an automated task. In the normal case, the task's state
progresses linearly from left to right, shown in the state diagram in Figure 6.3,
“States of an automated task” [96]. The task is started by its process, or by the
completion of its predecessor. It waits for its (optional) guard condition to be-
come true. Then the automated actions are executed. When the automated
actions are finished, the task becomes "completing". As soon as control is suc-
cessfully transferred to the successor task, the task enters the "completed"
state. The task structure of a process definition may contain loops, so a task
that has been executed once may later be reached and start again. A task's life-
cycle terminates when the containing process terminates.

Since the guard condition as well as the automated actions can contain custom-
ized code, error conditions must be modeled explicitly. When the evaluation of
a condition or the execution of an action fails, or if a timer expires, the task is
escalated, and will not automatically make any further progress. The previous
state before escalation is recorded (denoted as history state (H*) in the state
diagram) and can be inquired using Task#getEscalatedState() . If the
failure was caused by external circumstances, it may make sense to retry the
task after resolving the problem. When the retry method is invoked, the task
goes back to the state before escalation and tries to execute the condition or
actions once more.

As described above, a process may be suspended. This operation cascades to
all tasks contained in the process, which will all be suspended. Each task's state
before suspension is recorded (denoted by the lower history state in Figure 6.3,
“States of an automated task” [96]), and can be inquired using Task#getSus-
pendedState() . The task can only continue when the complete process is
resumed, which will move each task back to the state before it was suspended.

95COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html

When a process is aborted, each of its tasks will be marked as aborted (making
most methods unusable) and will be destroyed soon after.

Figure 6.3. States of an automated task

User Tasks

While the execution of an automated task only consists of server-side actions,
a user task's execution is split into several steps. As soon as the guard condition
is true, a user task is activated, and waits for a user to accept the task. When a
user accepts, on the server, the task's preconditions are checked, and the task's
entry actions are executed. When the entry actions are finished, the task be-
comes running, and responsibility for further actions passes to the user. When
the user has completed his or her part, the server checks the task's postcondi-
tions and runs the task's exit actions.

Figure 6.4, “States of a Task” [97] is a combined state chart for automated and
user tasks. Look out for [isUserTask()] conditions which annotate the
differences between the task types.

There are several transitions where customized server-side code is executed.
In each of these cases, when something goes wrong, the task becomes escalated.
Another potential cause for escalation is a timer expiring, for example because
the user does not complete a task in the expected period. The mechanism for

96COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

retry, suspend/resume and abort is the same as described for automated tasks
above.

Figure 6.4. States of a Task

When a task is activated, that is its guard check has been passed, it may be
offered to several users. By default, all users that have the right to accept the
task (see Section 6.6, “The Access Control Service” [107]), and have not rejected
the task yet, appear in the set of offered users. A task may also be assigned
directly to a user or to a group, or a certain performer may have been forced by
a previous task. The strategy for offering tasks to users can be overridden by
providing a customized performer policy (see the Workflow Manual for details),
or by changing the handling of the accept right in a custom rights policy (see
Section 6.10.8, “Rights Policies” [123]).

The set of users a task is offered to may be inquired using the method
Task#getOfferedTo() . All tasks that are offered to the current user can
be determined using the work list service (see Section 6.4, “The Work List Ser-
vice” [102]). Changes to a task's set of offered users are signaled by
TaskOfferedEvent and TaskRevokedEvent instances (see Section 6.8,
“Events” [110]). There are no events for changes to the work list. Instead, when
working inside theCoreMedia CAE caching infrastructure, your code simply calls

97COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html

the work list getters, and can rely on the correct dependencies being registered
behind the scenes. In this way, your code will be automatically reexecuted when
any accessed work list changes. See the CoreMedia CAE Developer Manual and
Section 4.10, “Caching” [53] for further details.

A task's guard condition may become false before the task is accepted by any
eligible user. In this case, the task goes back to the waiting state.

The user who accepts a task becomes the performer of the task. This entails
certain privileges required to perform the task, namely the ability to read and
write the task's variables, and the ability to cancel, complete or retry the task.

Before passing control to the user, first, the task's preconditions are checked.
This feature can be used to verify assumptions by the workflow designer. If a
condition is not met, the task is escalated. If all checks are passed, the task's
entry actions are executed. This may include GUI-based remote client actions,
which will be executed in the name of the user (see Section 6.10.9, “Remote Client
Actions (deprecated)” [126]).

The Unified API offers the method Task#acceptAndEnter() , which waits
until the task has safely arrived in the running state. Any exceptions thrown by
failing preconditions or entry actions are passed on to the method's caller. This
allows for a synchronous programming model: When acceptAndEnter returns
normally, you can be sure that the task is running. In contrast, accept supports
an asynchronous programming model, insofar as it only triggers the server-side
computation. When accept returns, the server-side code may not have finished
yet.

A task can be passed directly from one performer to another using the method
Task#delegate() . The task remains in the running state, no conditions are
checked or actions executed.

A task may also be canceled, sending it back to the activated state. The user
ceases to be the task's performer. Again, postconditions are not checked, and
exit actions are not executed.

Note that these methods may also be invoked by a different user than the per-
former, assuming the respective rights are granted. For example, when a user is
on vacation and has left behind some running task, an administrator or process
owner may still lead the process to conclusion by delegating or canceling the
task. An additional option for a user task is to skip the task, in order to make
progress even when no suitable performer can be found.

A call to Task#complete() indicates to the workflow server that the user
has finished his or her work. All configured postconditions are checked. If any
post condition fails, the user probably has not fulfilled his task as planned. The
task becomes escalated, and may be retried by the performer, returning it to

98COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html

the running state. Note that the current performer is remembered while the task
is escalated and/or suspended.

After all postconditions are successfully checked, the configured exit actions
are run, and the task changes to state completing. Similar to acceptAndEnter ,
the method Task#completeAndExit() synchronously waits until the task
including all post conditions and server-side actions has completed, and passes
any exceptions on to its caller.

The remaining lifecycle is as described for automated tasks, above.

99COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow States

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html

6.3 Differences to the Classic
Workflow API

There are currently two APIs for accessing workflow objects: the classicWorkflow
API (or WfAPI for short) and the Unified API. While it is still supported for legacy
stand-alone clients and server-side extensions, CoreMedia recommends that
such code be ported to the Unified API.

The Unified API covers all workflow-related functionality required for developing
client-side applications. In comparison to theWfAPI, it is integrated much better
with the content repository, and provides a simpler model for accessing workflow
variable values.

When migrating a WfAPI client to the Unified API, note that what is a process in
theUnified API used to be called a "process instance" in theWfAPI, while a process
definition in the Unified API used to be called a "process" in the WfAPI, and simil-
arly for tasks.

The state hierarchy has been reshuffled slightly (compare the state charts in
the Workflow Manual and in this manual). Note, that some events have been re-
named, shown in Table 6.1, “WfAPI signal names and UAPI event classes” [100].
There are no per-object listeners in the Unified API, only the WorkflowRepos-
itoryListener . The WfAPI's directory service functionality is covered com-
pletely by the Unified API's user repository.

UAPI nameWfAPI name

TaskGuardsCheckedEventCHECK

TaskAcceptedEventACCEPT

TaskEnteredEventRUN

TaskCompletedEventVALIDATE

TaskExitedEventFINISH

TaskDeactivatedEventRESET

TaskTimerExpiredEventTIMEOUT

100COREMEDIA CONTENT CLOUD

The Workflow Repository | Differences to the Classic Workflow API

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListener.html

UAPI nameWfAPI name

TaskControlTransferredEventCOMPLETE

Table 6.1. WfAPI signal names and UAPI event classes

101COREMEDIA CONTENT CLOUD

The Workflow Repository | Differences to the Classic Workflow API

6.4 The Work List Service

The work list service is probably the most useful part of the workflow API, as it
tells a user what work there is to do for her.

A user interacts with the Workflow Server in several ways:

• selecting tasks to accept
• working on, and eventually completing accepted tasks
• resolving problems, represented by escalated tasks
• starting new processes
• monitoring the started processes

The work list service is implemented as a separate interface, and can be accessed
using WorkflowRepository#getWorklistService() . All methods in
the interface perform their computation for the current user. See Section 4.9,
“Sessions” [50] for information on how to switch between different user sessions.

The first request by a certain user needs some time to initialize and retrieve the
required information from the server. Subsequent requests are much faster,
because the work lists are cached, and updated incrementally. The work lists
are kept in memory until the user logs out, so especially when dealing with work
lists, be sure to log out each user you have logged in.

All methods of the work list service are cache-aware. This means that when the
work list service is accessed from within theCoreMedia CAE, the calling method's
result will only be recomputed if the contents of the accessed work list actually
changed. See the Content Application Engine section in the Delivery Developer
Manual for further details.

The names of user-aware methods follow the pattern "get<Objects>< Predicate>",
which should be read as "return all <Objects> that fulfill the condition <Predicate>
for the current user".

The specific work lists available are:

• tasks offered

Contains all tasks that the current use can accept. In order to decide which
task to accept, a user might want to inspect the task's variables.

• tasks accepted

Contains all tasks that the user has accepted, and is currently performing.
These are the tasks whose variables a user might want to inspect and modify.
The user may finish working on this task by delegating, canceling or completing
it, or by aborting the whole process. This list includes suspended tasks.

102COREMEDIA CONTENT CLOUD

The Workflow Repository | The Work List Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html

• tasks escalated

Contains all tasks that are escalated, that the user might want to get running
again (retry), possibly after fixing the work environment. These include the
tasks that the user has performed (or was about to perform), and also all tasks
in processes owned by the user.

• process definitions of which new processes may be created

Contains all types of processes that the user may want to instantiate. For
example, this list is suitable for the selection in a "create new workflow" GUI
action.

• processes not started

Contains all freshly created processes owned by the current user. For these
processes, the user will want to fill out the initial view, before starting (or
aborting) the process.

• processes running

Contains all running processes owned by the current user. This list also includes
suspended processes. A user might want to inspect the process' running view
in order to observe the current state of the process global variables. Processes
in this list may be suspended and resumed (or aborted) by the current user.

• tasks with warning

Contains all tasks that have a warning, and whose process is owned by the
current user. This aids the user in tracking the progress of his/her processes.

There are some methods that may only be called by an administrator. The names
of these methods look like getAll<Objects><Predicate> . This should
be read "return all <Objects> that fulfill the condition <Predicate> for any user".

The administrative methods serve to give an overview of everything that is going
on in the system. However, if the system is busy, the resulting lists can be quite
large, so care must be taken to access them sensibly.

103COREMEDIA CONTENT CLOUD

The Workflow Repository | The Work List Service

6.5 Workflow Variables and Views

Workflow variables may be defined directly in the process, as well as locally in
any of the tasks. While performing a task, a user needs to inspect, and possibly
modify, some of those variables. Which variables the user needs, depends on
the concrete task.

Therefore, each task definition contains a view definition, which specifies the
variables to be accessed, and the kind of access required (read or write), while
performing the task. The view definitions of different task definitions may refer-
ence the same variables, for example to share a common process description,
or a common list of content objects to operate on.

The Unified API represents a view as a special kind of CapObject . A view ap-
pears to have properties that can be read and written, while in fact, each of
those properties is stored in some task or process. Each read and write access
to a view is redirected according to the view definition. By inspecting the view
definition, which is a subclass of CapType , the available properties can be listed.

Figure 6.5. Workflow Object and View Definitions

The Unified API representation for view definitions is shown in Figure 6.5,
“Workflow Object and View Definitions” [104]. The diagram shows all subclasses
of CapType managed in a workflow repository. Their instances form a hierarchy,
which corresponds to the nesting in the workflow definition XML file (see the
Workflow Manual for details). A process definition contains a number of task
definitions. Views can be defined by both process definitions and task definitions.

104COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow Variables and Views

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html

There is one view definition per task definition, and two per process definition,
where the initial view applies before the process starts running, and the running
view applies after the process has started.

At the bottom of the diagram, you can see the property descriptors. Each
CapType aggregates a number of property descriptors. In the case of workflow
and task definitions, these are the workflow variables. So for each process or
task, a value is stored for each descriptor of its definition.

A view definition also is a CapType , its property descriptors are Proper
tyViewDescriptors . In addition to being regular property descriptors, they
provide information on how to represent the view during user interactions, and
information on where the actual value is stored. A view as an instance of a view
definition does not itself store any values. Instead, the name of the property
view descriptor determines where the actual value is stored, relative to the view's
origin. The origin of a view is the process or task the view was obtained from.

Figure 6.6. Workflow views

The concrete mechanism for variable resolution should not bother a Unified API
client, because the complete mapping from view property to workflow variable
is managed transparently by the API. A view can be treated just like a CapOb-
ject that just has slightly unusual property names. For completeness, the
mapping from view property to target object and target property works as fol-
lows:

105COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow Variables and Views

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html

A qualified property view descriptor name, of the form <task>.<property>, is re-
solved to the property with the given name of the task with the given name in
the same process as the view's origin.

An unqualified property view descriptor name, of the form <property>, refers to
the named property of the view's origin. If the origin is a task and does not contain
such a property, the property view descriptor refers instead to the named
property of the task's containing process.

Two additional flags are specified per property view descriptor. Firstly, a property
is declared as read-only or writable. This overrides the value of the writable flag
in the target property declaration. For example, a workflow variable declared as
read-only in the process may be writable from the process' initial view.

Secondly, for a property containing content links, the contentWritable flag
determines how the referenced content should be presented to the user. If the
flag is false, the content should be displayed as read-only. For example, assume
one task in a process that has the goal of selecting a set of content items for
later tasks to work on. This task will only need to add and remove links, not change
the content items themselves. Therefore, this task view should contain a property
mapping that is writable, but not content writable.

Workflow views also affect the interpretation of READ and WRITE rights. See
Section 6.6, “The Access Control Service” [107] for further details.

106COREMEDIA CONTENT CLOUD

The Workflow Repository | Workflow Variables and Views

6.6 The Access Control Service

The AccessControl service of the WorkflowRepository allows you to
determine whether a user has the right to execute some operation on some
workflow object. There is one right for each operation defined in the Task and
Process interfaces, plus a read and a write right, plus the right to create instances
of a process definition.

A right can be queried using the generic method AccessControl#mayPer-
form , which expects as arguments the object to which the operation would
apply, and the operation, represented as a Right object. The user for whom
the right should be checked can optionally be passed as a third parameter, and
defaults to the connection's current user.

Note that in contrast to the ContentRepository 's AccessControl , in
the workflow access control, there is no method signature expecting a set of
groups. Whereas content rights can only be granted at group granularity, workflow
rights can be granted per user. Therefore, group memberships are not sufficient
to compute workflow rights.

For each right, there is a method mayOperation , where operation is the name
of the right, which serves as a shortcut for mayPerform with the respective
right as argument. So for example, the following two statements are equivalent:

ac = wr.getAccessControl();
allowed = ac.mayPerform(task, Right.TASK_ACCEPT, user);
allowed = ac.mayAccept(task, user);

The Javadoc of each operation specifies the required rights. Note that even
when a user has the right to execute an operation, he may still be unable to do
so. For example, some operations are only applicable in certain object states.
Such "physical" requirements are expressed as preconditions, whereas "legal"
requirements are expressed as rights.

There are two rights whose names do not directly correspond to operations,
namely Right.READ and Right.WRITE . These rights govern access to the
properties of a WorkflowObject . The WorkflowObject in question can
be a Process , a Task , or a WorkflowView . When the READ right is given,
all declared properties can be read, for example using WorkflowOb-
ject#get(String) . When the WRITE right is given, all properties that are
not read-only can be assigned to, for instance using WorkflowOb-
ject#set(String,Object) .

As explained in Section 6.5, “Workflow Variables and Views” [104], the properties
of a view may actually be stored in various tasks or in the process. However, for
rights computation, the rights defined on the view's origin are considered, not

107COREMEDIA CONTENT CLOUD

The Workflow Repository | The Access Control Service

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/Right.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/ContentRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/content/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowView.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html

the rights on the workflow object that stores the variable. In this way, a view can
be used to grant access to a controlled subset of the process variables. This is
especially interesting because a task's current performer is granted READ and
WRITE rights on the task, which applies to all properties in the task's view.

The actual rights computation is performed by a rights policy, which is described
in section Section 6.10.8, “Rights Policies” [123].

108COREMEDIA CONTENT CLOUD

The Workflow Repository | The Access Control Service

6.7 Managing Process Definitions

The Unified API offers some administrative functionality for dealing with process
definitions. As described in the Workflow Manual, a process definition consists
of some XML, which may contain references to custom Java classes. The byte
code of custom Java classes has to be supplied either in the classpath of the
Workflow Server, or in an accompanying JAR file. Note however, that uploading
accompanying JAR files is not recommended anymore. The possibility to upload
JAR files has been deprecated, is disabled by default, and will be removed in a
future release.

Code that is deployed in the Workflow Server's class path is shared between all
versions of all workflows, and can only be changed by shutting down and restart-
ing the Workflow Server. If a new workflow version requires changes in custom
classes that are not compatible with previous versions, then these new classes
should use different Java packages or class names, so that both old and new
classes can be provided in the classpath.

In contrast, custom code that is uploaded as JAR file together with the process
definition's XML is used only by this version of this process definition. Such code
can be updated without restarting the Workflow Server, and runs in a separate
class loader, so that classes are not shared with other process definitions.
However, this approach has been deprecated, is disabled by default, and should
not be used anymore, because of potential problems with storing executable
code in the database. With different versions of custom code in the database,
it can become hard to track which code is actually used in production, and to
detect and fix security issues in all variants of uploaded custom code. Further-
more, in case attackers have gained write access to the database, they could
use this feature to execute code in the Workflow Server. It is recommended to
keep the usage of uploaded classes disabled. For details, see the description of
deprecated property workflow.server.use-uploaded-jar in Table 3.34,
“Workflow Server Properties” in Deployment Manual.

In the Unified API, the method WorkflowRepository#createProcess-
Definition is used to upload an XML process definition to the Workflow
Server. Later, it can be retrieved again using ProcessDefinition#getPro-
cessDefinition .

109COREMEDIA CONTENT CLOUD

The Workflow Repository | Managing Process Definitions

deployment-en.pdf#workflowServerProperties
deployment-en.pdf#workflowServerProperties
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html

6.8 Events

Similar to the content repository, the workflow repository allows you to add
listeners that get informed of every state transition, property change, task offer
or warning, expired timer, and process definition update.

A workflow repository listener can be added by invoking the method Work-
flowRepository#addWorkflowRepositoryListener . To assist in
implementing custom listeners, the Unified API offers the class WorkflowRe-
positoryListenerBase , which can be used to handle selected types of
events (by overriding the respective methods), or to handle all workflow events
uniformly (by overriding the method #handleWorkflowRepositoryEvent)

When a listener is invoked, the same session is active that was active when the
listener was registered. See Section 4.7, “Listeners” [47], and Section 4.9, “Ses-
sions” [50] for details.

Events are delivered serially to all registered listeners. That is, the next event will
only be delivered after the current event was processed by all registered
listeners. If you need to do any time-consuming computations, you should
transfer the relevant events to a separate queue.

At the time the listener is invoked, the effect of the event is guaranteed to have
reached the Unified API objects belonging to the same connection. So for ex-
ample, in the method handling a TaskEnteredEvent , you can assume that
isRunning returns true for the affected user task if the user has not completed
the task yet. Note that the event may be significantly delayed, so the state may
well have been changed in the meantime.

In contrast to the content repository, a workflow repository listener may lose
events when the server connection is lost. All listeners will resume their work,
but an application generally has to assume that the workflow server state has
changed completely while the connection was lost. So in addition to workflow
repository events, you may also want to observe connection events (see Section
4.1.3, “Connection Listener” [31]).

When mixing reaction to events with accesses to the current repository state,
it is often easier to use the cache and invalidation based programming model
offered by theCoreMedia CAE (see theDelivery Developer Manual). The caching
framework also handles connection failures: When the connection is reestab-
lished, all cached values that depend on the workflow repository are automatically
invalidated (or a recomputation is triggered).

The events related to process and task states can be gleaned from the state
charts shown in Section 6.2, “Workflow States” [94]. In the task state chart, an
event name accepted on the transition label corresponds to an instance of

110COREMEDIA CONTENT CLOUD

The Workflow Repository | Events

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/WorkflowRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskEnteredEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskEnteredEvent.html

Task AcceptedEvent dispatched to the workflow repository listener. Simil-
arly, a started label in the process state diagram corresponds to a Process
Started Event .

When a task is newly offered to some users, or when the offer to some users
has been revoked, a TaskOfferedEvent or TaskRevokedEvent is signaled,
respectively. See the subsection on user tasks in Section 6.2, “Workflow
States” [94] for more information, or see the Workflow Manual.

A ProcessCreatedEvent is signaled when a new process is created. The
event indicates the performer - the user who invoked the ProcessDefini-
tion#create method - as well as the new process' owner.

The remaining kinds of events are related to process definitions. A Process-
DefinitionCreatedEvent is sent when a process definition is uploaded,
for instance using WorkflowRepository#createProcessDefinition .
When a process definition is uploaded as described in Section 6.7, “Managing
Process Definitions” [109], it supersedes any previous process definition with the
same name. In addition to the identity of the created process definition, the
event therefore carries information about the process definition's name, and the
identity of the superseded process definition. The superseded process definition
is implicitly disabled. A process definition can also be disabled or enabled expli-
citly by calling ProcessDefinition#enable or #disable , which causes
a ProcessDefinitionEnabled event to be sent.

111COREMEDIA CONTENT CLOUD

The Workflow Repository | Events

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Process.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskOfferedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TaskRevokedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessCreatedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessCreatedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/ProcessDefinitionCreatedEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ProcessDefinition.html

6.9 Timers

The workflow server supports timers, which implement a reaction when some
part of the workflow takes too long. There are system defined timers, which ob-
serve the time it takes to complete a process or a task, and the time it takes
until an offered task is accepted; and there are user defined timers, which are
enabled and disabled according to the process definition.

At any time, a timer can be in one of three states: off, running, or suspended. A
timer is initially off, and starts running when it is enabled. A running timer is sus-
pended exactly when the containing process is suspended, and becomes running
again when the process is resumed. When a running timer is disabled, it is turned
off again.

As long as a process is suspended, its timers cannot be enabled or disabled.
Also, suspending a timer that is off has no effect on the timer's state.

In addition to its lifecycle state, a timer holds a time limit and an expiration flag.

A time limit can be given either in relative or in absolute form. The relative form
indicates a time distance, represented as a number of seconds, and is used for
system-defined timers, and (usually) when initializing a timer inside a process
definition. The absolute form indicates a fixed point in time, represented as date
and time, and makes most sense when a time limit is set interactively by a user
("This article is needed by next Friday").

When a timer first becomes running after setting a time limit, the timer's expiration
date is computed, either adding the relative time limit to the current time, or
directly using the absolute time limit. The expiration date remains fixed even if
the process is suspended and resumed again.

When a running timer reaches or exceeds its expiration date, it expires. This has
the following effects:

• The expiration flag is set.
• A TimerExpiredEvent is sent.
• All server-side timer handlers registered for this timer are invoked. Timer

handlers are defined in the process definition.

As long as the timer's expiration flag is set, no further TimerExpiredEvents
or handler invocations take place. The expiration flag is cleared each time the
time limit is modified.

If a timer's expiration date is reached while the timer is suspended, the timer will
expire as soon as the process is resumed.

112COREMEDIA CONTENT CLOUD

The Workflow Repository | Timers

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/events/TimerExpiredEvent.html

In the following, the different system-defined timers and the handling of user-
defined timers are described.

Process Completion Timer

The process completion timer observes the total execution time of a process.
Its relative time limit can be set in the process definition using the default
Timeout attribute, as described in theWorkflowManual. The process comple-
tion timer is enabled when the process is started, and is cleared when the process
completes or is aborted.

By default, the process completion timer adds a warning to the process when
the timeout expires. Different handlers can be defined in the process definition.

Task Completion Timer

The task completion timer is defined for user tasks only, and measures the total
time the task is waiting for users: from when the task is first offered, to when the
task is completed by a user. The relative time limit is set using the task definition's
defaultTimeout attribute.

If the guard of an activated task becomes false, the task goes back to the
WAITING state, and the timer is disabled. However, the timer's expiration date
is not changed.

The timer is cleared when the task is completed, interrupted, or skipped, or when
an alternative task in an implicit choice is accepted.

By default, the task completion timer adds a warning to the task when the timeout
expires, causing the task to appear on the tasks-with-warning work list.
Different handlers can be defined in the process definition.

Task Acceptance Timer

The task acceptance timer is also specific to user tasks, and measures the time
from when the task was first offered to when it is accepted. It is configured using
the defaultOfferTimeout attribute in the task definition.

The task acceptance timer is enabled exactly when the containing task is in the
ACTIVATED state. The timer is enabled when the task first changes from
WAITING to ACTIVATED . It is disabled when the task is accepted, or becomes
WAITING again because the guard condition becomes false. When the task
becomes ACTIVATED again (because the guard condition becomes true, or
because a previously accepted task is canceled), the timer is enabled again, and
continues running with unchanged expiration date.

113COREMEDIA CONTENT CLOUD

The Workflow Repository | Timers

Like the task completion timer, the timer is eventually cleared when the task is
completed, interrupted, or skipped, or when an alternative task in an implicit
choice is accepted.

By default, the task acceptance timer adds a warning to the task when the
timeout expires, causing the task to appear on the tasks-with-warning
work list. Different handlers can be defined in the process definition.

User-defined Timer

Additional timers can be defined in the process definition, by defining a timer
variable. These timers are not enabled or disabled automatically, but need to be
handled explicitly using EnableTimer and DisableTimer actions.

A timer variable consists of two parts: The time limit is a value like all other
property values that can be freely read and written to the containing workflow
object property. The timer object itself observes the value of this variable, and
can be accessed using WorkflowObject#getTimer(name) (or #get
Timers or #getTimersByName).

t.get("MyTimer"); // property access
t.getTimeLimit("MyTimer"); // typed property access
t.getTimer("MyTimer").getLimit(); // this works, too

Absolute and relative time limits are implemented using the value classes Abso-
luteTimeLimit and RelativeTimeLimit , which implement the Time-
Limit interface, and may be freely constructed by an application programmer:

t.set("MyTimer", new RelativeTimeLimit(300));
Calendar abs = DateConverter.convertToCalendar(

"2004-09-15T21:59:00+01:00");
t.set("MyTimer", new AbsoluteTimeLimit(abs));

114COREMEDIA CONTENT CLOUD

The Workflow Repository | Timers

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/AbsoluteTimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/RelativeTimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/RelativeTimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/TimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/TimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/TimeLimit.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/TimeLimit.html

6.10 Writing Own Plugins

In this section you will see how Workflow Server plugins are written using the
Unified API. There are eight possible types of plugins: actions, long actions, final
actions, expressions, rights policies, performer policies, client action handlers,
and managers. While most of these plugins can still be written using the classic
Workflow API introduced with CoreMedia CAP 4.0, it is generally simpler to use
the Unified API.

Of these plugins, the client action handlers live purely in Unified API clients, rights
policies are needed both in the clients and on the Workflow Server, and the re-
maining three interfaces are instantiated on the server, only.

When implementing plugins, the comments from the Workflow Developer
Manual generally carry over directly to the Unified API. In particular, restrictions
on the permitted operations for the various plugin types are also applicable
when using the Unified API.

In the following, you will learn about actions in Section 6.10.3, “Actions” [117], long
actions in Section 6.10.4, “Long Actions” [118], final actions in Section 6.10.5, “Final
Actions” [120], expressions in Section 6.10.6, “Expressions” [121], performers policies
in Section 6.10.7, “Performer Policies” [122], rights policies in Section 6.10.8, “Rights
Policies” [123], client action handlers in Section 6.10.9, “Remote Client Actions
(deprecated)” [126] and managers in Section 6.10.10, “Managers” [127].

6.10.1 Programming Restrictions

All workflow plugins can be executed in theWorkflow Server. While rights policies
and remote action handlers are also executed on the client-side, they still should
be coded according to the server-side rules in order to be executable every-
where. In the following, the restrictions are listed that apply when programming
code for the Workflow Server.

Limitations of the API

The main restriction arises from the fact that the server calls workflow plugins
in the context of a transaction. In theWorkflow Server, one transaction may write
the variables of at most one process and its tasks. Accessing multiple processes,
even if they are instances of the same definition, is not allowed. All server-side
plugins are passed a workflow object in the signature of their main business
methods. It is this workflow object that should be read or possibly modified by
the plugin.

115COREMEDIA CONTENT CLOUD

The Workflow Repository | Writing Own Plugins

There are also some parts of the API that are not supported. Normally, these
parts are not needed for writing plugins.

• No rights checks are performed when writing workflow variables. This ensures
compatibility with the old WfAPI. The AccessControl service is still avail-
able without restrictions.

• When opening lightweight sessions by means of Connection.login(...),
these sessions will have no influence on the objects of the workflow repository.
This is because the plugin is already running inside a transaction whose owner
cannot be changed later on.

• No state modifying operations like accept() or suspend() are permitted.
This is because server-side plugins are typically executed exactly during such
state transitions and state transitions cannot be nested.

• Worklists are unavailable.

• Workflow repository events are not currently delivered inside the workflow
server. Already adding a listener results in an exception. Only events regarding
content and users are delivered. However, even such listeners should not
normally be used, because plugins are supposed to terminate quickly without
waiting for external conditions.

• As a consequence of missing events, your own cache entries should only ac-
cess objects of the content and user repositories. When accessing workflow
objects, no invalidations will be generated, resulting in outdated cache entries
later on.

General Remarks

A plugin should not engage in user interactions. It may still connect to external
processes, for example when sending a mail message or when accessing an ex-
ternal database, but it should not freeze when a user does not respond.

A plugin should be able to complete without requiring progress other parts of
the workflow in order to avoid potential deadlocks.

In order to resolve concurrent accesses to shared data, the server may restart
a transaction. This may also happen during a system failure, but that is far less
likely. In any case, a restart amounts to a repeated execution of your plugin.
Therefore, your plugins should be robust to handle such a situation. Usually ex-
pressions, right policies, and performers policies do not result in side effects, so
that it is irrelevant whether they are executed once or twice, but action are a
more difficult matter.

Finally, keep in mind that your plugin will run in a server with an expected uptime
of weeks or months. Therefore, any memory leak should be avoided. Preferably,
your plugins do not use mutable fields except those that are used for configura-

116COREMEDIA CONTENT CLOUD

The Workflow Repository | Programming Restrictions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html

tion and they do not use mutable static fields at all. When you create own threads,
make sure that they are guaranteed to terminate. When you use system resources
like sockets or file handles, make sure they are released sooner rather than later.

6.10.2 Serialization

The plugin interfaces Action , LongAction , FinalAction , Expression ,
PerformersPolicy , and RightsPolicy inherit from the interface
java.io.Serializable . That means that you must take care to make your
implementations serializable, in particular by marking all non-serializable fields
as transient. Remember thatUnified API objects are serializable, so that it is alright
to reference such objects from your plugin, for example when configuring folders
or groups.

If you want to add special code for restoring transient fields after read, you can
do so in a readObject method.

It is advisable to define a serial version UID for your class to be able to indicate
the compatibility of serialized versions appropriately. Note that you may make
changes that break serialization compatibility, but that you must invoke the tool
cm workflowconverter while the server is down after such changes.

6.10.3 Actions

Actions are executed during the entry and exit phases of a user task, during the
execution of an automated task, or during the processing of a RunAction
TimerHandler . This means that an action is typically executed in the context
of a task, but that it may be executed in the context of a process, too, if used
with a timer handler.

By means of the interface Action , you can only implement server-side actions,
that is, actions that run completely within the Workflow Server. Actions are run
on the server on behalf of the workflow user as configured in the Workflow
Server properties.

The main method of an action is execute(WorkflowObject) , where the
argument is either a task or a process depending on the context of the action.
While executing, the action implementation should only read and write variables
of the argument workflow object and its view. It is recommended that the exact
variable names are made configurable by means of bean-style getters and set-
ters.

The method isExecutable(WorkflowObject) , should return false, when
it is not currently possible to execute an action. Normally, you should always

117COREMEDIA CONTENT CLOUD

The Workflow Repository | Serialization

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Action.html

return true from this method, but there are cases where you might want to
wait for a workflow variable to be set correctly before processing an action.

After execution, you may return a new instance of ActionResult in order to
indicate success or failure. If you use the attributessuccessVariable and/or
resultVariable in your XML workflow definition, the action result is auto-
matically evaluated to set those variables. The action result can also take excep-
tions that are interpreted as warnings. If you include warnings in your result, they
are added to the list that is returned from the method getWarnings() of
the affected workflow object.

The method abort() should be implemented to let all running execute calls
return early, possibly by throwing an ActionAbortedException . This
method is called when the Workflow Server is shutting down. There is no need
to implement special logic if the execute method always returns early. If execution
takes some time, you should also consider implementing a long action instead.

The name returned by the method getName() of an action is used solely for
logging and for parameterizing exceptions. It does not carry any semantic
meaning, so that you may choose it as you like.

In order to simplify the development of an action, you may derive your class
from the predefined classes AbstractAction or SimpleAction . Thereby,
it is enough to implement a single method, namely execute(Process) in
the former and doExecute(Process) in the latter case. Because the exact
task in which the action is executed is not included in the signature of these
methods, this approach requires that all relevant variables are defined at the
process level. This is the typical use case. A detailed example of an action
sending mail implemented as SimpleAction is given in Section 6.11.3, “Example
Code of the Mail Action” [136].

The server may run an action more than once, in particular when a transaction
has to be restarted due to concurrent activity. Therefore, you should design
your actions in such a way that either the second execution detects that the
action has already been executed or that a repeated execution is acceptable.
For example, it is preferable to set a variable to a certain value rather than to
increment an integer or to toggle a flag

6.10.4 Long Actions

Long actions are very similar to actions, but they are executed in three separate
phases. Only the first and the last phase are permitted to access the containing
process and its variables. The second phase runs completely outside of any
database transaction. Therefore, the second phase does not consume system

118COREMEDIA CONTENT CLOUD

The Workflow Repository | Long Actions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html

resources and there is no need to finish it quickly. Long actions are particularly
well suited for accessing remote servers that may not respond immediately.

The first phase consists of the method

Object extractParameters(Task task);

which must read all task and process variables that are needed for processing.
Afterwards, all relevant data must be packaged into an object of arbitrary type,
which is returned from the method. If multiple values have to be returned, either
an object array or a custom class can be used for aggregating these values. Be-
cause a long action always runs in the context of an automated task, the method
is passed a correctly typed task object immediately. Often you will have to re-
trieve the containing process before reading any variables. Afterwards the
method

Object execute(Object params);

is executed. It is passed the object that was returned from extractParamet
ers . It may perform arbitrary computations for an extended period before it
returns its result as an object. The method may not, however, access any objects
of the workflow repository. Finally

ActionResult storeResult(Task task, Object result);

is called with the result from execute . It may write task and process variables
as needed. The returned action result is processed as by an ordinary action.

The class LongActionBase implements the LongAction interface and
provides some convenience code. Instead of execute and storeResult
you simply implement the method

Object doExecute(Object params) throws Exception;

If that method throws an exception, that exception forms the basis of a failed
action result. If a value is returned, that value is wrapped in a successful action
result. Note that you must implement the extractParameters method even
if you base you action on the LongActionBase class.

The method abort() should be implemented to let all running extractPara
meters , execute and storeResult method calls return early, possibly by
throwing an ActionAbortedException . This method is called when the
Workflow Server is shutting down.

Like an ordinary action, a long action must be reentrant and it must be robust
against being rerun in the case of a problem.

119COREMEDIA CONTENT CLOUD

The Workflow Repository | Long Actions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html

6.10.5 Final Actions

Final actions are executed when a process was completed or aborted. They are
typically used to clean up other resources that have been accessed during the
lifetime of the process, or to archive process data somewhere else before the
process gets destroyed. Like long actions, final actions are executed in separate
phases, but there are only two phases, because final actions must not modify
the completed or aborted process anymore. Only the first phase is permitted
access to the process. The second phase runs outside of any database transac-
tion, and may access remote servers that do not respond immediately.

The first phase consists of two methods

boolean isExecutable(Process process);

which returns whether the action needs to be executed for the given process.
If this method returns false , no further methods are called.

T extractParameters(Process process);

which reads data from the process that is needed for the actual execution of
the final action. All relevant data must be packaged into an object of some type,
and returned from the method.

The second phase consists of the method

void execute(T parameters);

It is passed the object that was returned from extractParameters . It may
perform arbitrary computations for an extended period. The method may not,
however, access any objects of the workflow repository.

If any of the above methods throws an unexpected exception, it will be logged
and the next configured final action will be invoked. The process will finally be
destroyed, even if the execution of some final actions failed.

The methods may however throw a RetryableActionException for
temporary failures. In that case, the Workflow Server will call the method again
after some delay. The retry of final actions is configurable with the Workflow
Serverproperties workflow.server.retry-final-action.*. For details
see Table 3.34, “Workflow Server Properties” in Deployment Manual.

The method abort() should be implemented to let all running isExecut
able , extractParameters , and execute method calls return early, pos-
sibly by throwing an ActionAbortedException . This method is called when
the Workflow Server is shutting down.

120COREMEDIA CONTENT CLOUD

The Workflow Repository | Final Actions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
deployment-en.pdf#workflowServerProperties
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionAbortedException.html

The class FinalActionBase implements the FinalAction interface and
provides some convenience code.

Like other actions, final actions must be reentrant and robust against being rerun
in the case of a problem.

6.10.6 Expressions

Expressions are executed when guards are evaluated, when they are nested in
actions, and for other configurable computations. Like actions, expressions are
typically executed in the context of a task, but may occasionally be executed
in the context of a process.

The main method of an expression is evaluate(WorkflowOb
ject,Map<String,Object>) , which receives as arguments the workflow
object in which the expression is evaluated and a number of local properties.
These properties must not be confused with the variables present in the workflow
object or its view. Instead, the properties are purely local to the expression,
without any form of persistence. They are typically set in the predefined expres-
sions Let , Exists , or ForAll .

If an expression modifies the given map, it should make sure to return it to its
previous state before returning from the evaluate method. Preferably, this is
done in a try/finally construction.

Please see the Javadoc for more details regarding the data types that are per-
mitted as return values of the expression and for the parameter map.

If you are creating an expression that will only return Boolean values, you can
implement the interface BooleanExpression . Thereby you indicate the re-
duced set of return values and make your expression usable in a greater number
of contexts, in particular in guards and as a subexpression of predefined Boolean
connectives.

Mixing Unified API and WfAPI Expressions

You can include Unified API expressions and WfAPI expressions in one process
definition. This allows a stepwise migration of existing plugins to the new APIs.
You may even use, for example, old-style expressions as subexpressions of
Unified API expressions. In this case, the expressions are automatically wrapped
so that they appear as objects of the API that is used by the containing object.
The wrappers will take care of converting argument values and return values
when calling methods of the wrapped expression.

121COREMEDIA CONTENT CLOUD

The Workflow Repository | Expressions

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/FinalAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/BooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/BooleanExpression.html

When using Unified API expression inside WfAPI actions, care has to be taken
with respect to the correct treatment of null values. Because the WfAPI uses
typed nulls and the Unified API expressions may return an ordinary Java null ,
a special subtype of WfValue has been introduced to theWfAPI: NullValue .

This value should not be used when working purely inside the WfAPI. Only when
aUnified API expression returns a null and when that value must be propagated
to a WfAPI action or expression, the above mentioned wrapper objects convert
the value to a NullValue . Of course a plugin that was written for CoreMedia
CMS 2005 or earlier may not expect a value of that type, possibly failing during
a type cast. Therefore, existing plugin implementations may have to be hardened
against the new value type NullValue , before you can use them with Unified
API subexpressions.

Note that it is often desired to port the entire set of plugins to the new API any-
way, so that this paragraph applies to a few specific cases, only. It is possible to
use the built-in actions and expressions without restrictions. They will neither
produce untyped nulls nor misbehave when they come across a NullValue .

6.10.7 Performer Policies

Performer policies are used when determining the users who are offered a certain
task on their to-do lists. This set of users is then stored persistently with the
task in order to reduce server startup times. When users reject the task from
their to-do lists, the performer policy will be invoked again to update the lists.

The interface to implement is PerformersPolicy . When implementing a
policy, it is advisable to start with the class AbstractPerformersPolicy ,
which takes care of managing the policy state, namely:

• the forced user, who is set by means of the predefined action ForceUser ,

• the excluded users, who are set by means of the predefined action Exclud-
ePerformer or ExcludeUser .

• the preferred users, who are set by means of the methods assignTo(User)
and assignTo(Group) in the interface Task ,

• the rejected users, who are set by means of the method reject() in the
interface Task .

The policy state is maintained in four variables, which are defined in the method
addInternalProperties(PropertyBuilder) in the interface Per-
formersPolicy . Such variables do not need to be declared in the XML
definition file. The interface PropertyBuilder provides one method per
variable type. In own implementations, you may create as many variables as
needed.

122COREMEDIA CONTENT CLOUD

The Workflow Repository | Performer Policies

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/values/NullValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Task.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PropertyBuilder.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PropertyBuilder.html

This simplifies the encapsulation of the internal working of custom performers
policies. Note that these variables reside in the same name space as variables
defined in the XML process definition, so that you should choose names that
are unlikely to occur as ordinary workflow variable names.

When using the class AbstractPerformersPolicy , you will have to imple-
ment only four methods and of those, the methods getName() and getDe
scription() are used for logging purposes, only.

The method calculatePerformers is the most important method of the
policy. When called, the policy return a Performers object, which is essentially
a collection of users together with a Boolean flag that determines whether the
current task is being forced onto a user. Some clients may choose to accept a
forced task automatically on behalf of the current user. In principle, you can use
any algorithm to compute the collection of users, but you should normally respect
at least exclusions and rejections in that computations.

When no users are found, the policy is free to take appropriate measures to re-
solve this situation, for example by clearing the set of rejections. When an empty
set of users is returned from the method, the task will be escalated.

A collection of users is passed into the method calculatePerformers .
This collection contains all users that are permitted to accept the task in question.
By taking this collection into account when determining the performers, you
avoid duplicating the rights rules in the performer policy.

The method mayDelegateTo is called when a user tries to delegate a task to
another user. While the permission check for the executing user is done by a
RightsPolicy , the PerformersPolicy checks whether a designated
user may receive the task, typically taking the set of excluded users into account.

6.10.8 Rights Policies

A rights policy governs, for a certain workflow object, which users have permission
to exercise which rights. The rights policy is configured for each process and for
each task in the workflow definition.

The rights policy can be retrieved and accessed directly from the AccessCon-
trol service (though this is rarely necessary), and is also used for various in-
ternal purposes.

• All methods in the AccessControl service eventually delegate to the rights
policy.

• All client-side access checks (for lightweight sessions) are based on the rights
policy. For the connection session, rights are checked on the server.

123COREMEDIA CONTENT CLOUD

The Workflow Repository | Rights Policies

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Performers.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Performers.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/PerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html

• The work list computation is based on the rights policy, on the client as well
as on the server.

In order to avoid costly network round-trips, each connection to the workflow
repository obtains a local copy of the rights policy configuration, and performs
all rights computations using client-side code.

The default rights policy is described in the Workflow Developer Manual. In the
following, you will learn how to deploy a custom rights policy.

A custom rights policy is often used to influence the "can do" work list, also known
as "tasks offered". As described in Section 6.4, “The Work List Service” [102], the
TASK_ACCEPT right forms the basis for the computation of the
tasksOffered work list, which can therefore be customized by changing the
rights policy.

Marshalling

Responsibility for computing work lists is split between server and client. It is
therefore essential that both the server-side and client-side code behave exactly
the same. The server-side implementation has to implement either the
WfRightsPolicy interface as described in the Workflow Developer Manual,
or the RightsPolicy interface of theUnified API. The client-side implement-
ation in the Unified API has to implement RightsPolicy .

The server-side rights policy is created and configured when the workflow
definition is uploaded and parsed, and is stored in the database in serialized
form. Since Java serialization is unsuitable as a cross-platform network protocol,
the rights policy needs to supply a marshaller implementation, which encodes
the rights policy configuration into a portable format such as XML, together with
an ID (the policy ID) identifying the format. This encoded form is transmitted to
the client when the client loads the process or task definition.

On the Unified API client side, the policy ID is used to select a RightsPoli-
cyMarshaller which parses the transmitted configuration, and creates the
client-side counterpart as an instance of a class implementing RightsPolicy .

The code for the client-side rights policy and its marshaller must be deployed
in a JAR file in the client's class path. The first implementation of RightsPoli-
cyMarshaller with a matching policy ID is used. Names of implementing
classes must be listed in a file called META-INF/services/com.core-
media.cap.workflow.plugin.RightsPolicyMarshaller inside
the JAR file, as described in the "Service Provider" section of the JAR File Spe-
cification.

For example, the cap-client.jar contains a file with the above name, con-
sisting of the following line:

124COREMEDIA CONTENT CLOUD

The Workflow Repository | Rights Policies

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicyMarshaller.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider

com.coremedia.cotopaxi.workflow.authorization.
ACLRightsPolicyMarshaller

This instructs the Unified API implementation to consult the class ACLRight-
sPolicyMarshaller in the given package when unmarshalling rights policies.
The method RightsPolicyMarshaler#getPolicyId of this class returns
the string "coremedia:///cap/workflow-rights-policy/ACL" ,
which is exactly the policy ID marshalled by the server side default rights policy.

When a rights policy with this policy ID is received on the client, the ACL rights
policy marshaller is invoked and reads the ACL configuration sent from the
server. The marshaller creates and returns an instance of ACLRightsPolicy
interpreting this configuration. As the name suggests, ACLRightsPolicy is
the implementation of the RightsPolicy interface for this rights policy.

Configuration

If you want to design a Unified API rights policy that can be used on the server
side, your policy must be configurable from the XML definition. The rights policy
is configured in the element <Rights> that may be included in the definition
of any task of process. Traditionally, configuration is done by including <Grant>
and <Revoke> subelements in the <Rights> element. If you want to support
this configuration style, you should implement the interface Configurable
RightPolicy instead of RightsPolicy .

That interface provides a number of grant and revoke methods that are called
by the server while it parses the definition file. It also contains the method
setRights(Set) , which informs the policy about those rights that it is sup-
posed to handle. Note that this set is different for tasks and processes.

Rights Computation

The interface RightsPolicy contains four mayPerform methods that must
return true or false as a certain operation is allowed or forbidden. The getUsers
methods allow the policy to determine those users who are allowed to perform
a certain operation. Similarly, the getGroups methods return collections of
groups. This is particularly useful when showing a selection of potential users or
groups during user interaction.

The rights for a certain task may depend on more than just a set of groups and
their membership relations, as is true for the default implementation. For example,
the right for an approval task may depend on the content items that are about
to be approved. Note that when accessing content in a rights policy, the "can
do" work list will only be re-evaluated after changes to content that is directly

125COREMEDIA CONTENT CLOUD

The Workflow Repository | Rights Policies

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicyMarshaller.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RightsPolicy.html

referenced by the process. Therefore, it is not recommended to access other
content from the rights policy.

6.10.9 Remote Client Actions
(deprecated)

Deprecation Note
Remote client actions were used in the past to execute actions in a client ap-
plication. There are no clients anymore supporting this remote execution, and
these action are just executed in the Workflow Server with some unnecessary
overhead involved, like timeouts, potentially causing issues during execution.
To this end, respective actions and classes have been deprecated and will be
removed in a future release.

A workflow definition includes actions in several places, for example as entry
and exit actions of user tasks, and in automated tasks. Specific kinds of action
are the so-called remote client actions. While normally actions are executed on
the Workflow Server, a remote client action is invoked on the user's computer.

Remote client actions can be used to invoke functionality that is not easily
emulated using customized workflow variable editors. For example, a remote
client action might open a publication window, it might present a modal dialog,
or it might start a native application installed on the user's computer.

A remote client action can only execute when a session is open from the client
to the workflow server. Similar to receiving an event, the session is informed that
a remote client action should be executed. Since the server needs to know which
session to inform, this is only possible for task entry or exit actions. The session
that accepted or completed the task is recorded and used for the following re-
mote client action.

For a remote call, the name and parameters of the action are passed to the client.
There, the call is presented to each registered RemoteActionHandler in
turn. If a RemoteActionHandler cannot handle the call, it returns null instead
of an action result, and the next handler will be invoked. The Unified API includes
a remote action handler for all predefined workflow actions. Additional handlers
for custom remote client actions can be added using WorkflowReposit-
ory#addRemoteActionHandler . See the Javadoc for details.

126COREMEDIA CONTENT CLOUD

The Workflow Repository | Remote Client Actions (deprecated)

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html

Remote Actions That Are Not Remote

The same XML fragments and action names used for remote action invocation
can also be used in automated tasks, where no client connection is available. In
this case, the "remote" action is not actually remote, but is executed on the
server, by a server-local remote action handler.

It is also possible to execute an action in the name of a user without requiring
the user to be currently logged in to the workflow server. When using the XML
attribute userVariable for an action in an automated task, a content repos-
itory session for the given user is established before invoking the server-local
remote action handler. The attribute userVariable contains the name of a
UserVariable of the task or process, which is read every time the action is
executed.

In order to deploy a custom remote action handler on the Workflow Server, you
need to add its class name to the property workflow.server.remote-
action-handler which contains a comma separated list of fully qualified
class names. Your class should provide a public no-args constructor and should
implement the RemoteActionHandler interface. The built-in remote action
handler provided by CoreMedia, com.coremedia.cotopaxi.work
flow.BuiltInRemoteActionHandler , should usually come last. The JAR
file containing your classes must be in the workflow server's class path. New or
changed server-side handlers only become effective when the server is restarted.

6.10.10 Managers

Managers are components that are deployed in the Workflow Server, becoming
globally available for use by other plugins. Managers may encapsulate global
state that is relevant for multiple processes. They may also coordinate the inter-
action of processes with external entities, possibly acting as a connection pool.
They may react to an external event by requesting a recheck of one or more
processes. During a recheck, all guards that were evaluated to false are reevalu-
ated, so that waiting tasks may start running.

Managers must be registered by indicating at least the class of the manager in
a property named workflow.server.managers.<name>.class , where
<name> becomes the name of the manager. Using the optional properties
workflow.server.managers.<name>.order it is possible to control
the startup order of the managers. Additional properties with the prefix work
flow.server.managers.<name>. may be given in the configuration file
and retrieved by the manager during setup.

127COREMEDIA CONTENT CLOUD

The Workflow Repository | Managers

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html

All managers must implement the interface Manager . Typically, it is simpler to
base own implementations on the abstract base class AbstractManager ,
though. This class provides utility methods for obtaining the Unified API connec-
tion and for reading manager-specific configuration parameters.

The life cycle of a manager starts with its creation by means of a no-arg con-
structor. Afterwards, the setters setName and setConnection are called,
providing context information to the manager. Afterwards init() is called,
which allows the manager to set up itself based on configuration. It may not yet
start asynchronous behavior, because some parts of the server might not be
fully set up. That in turn is allowed after the method start() has been called.

The method stop() is called when the server is shut down, just before the
Workflow Server stops to execute automatic tasks and to accept external re-
quests. The manager should stop all asynchronous behavior before returning
from this method. Finally, the method dispose() is called. It provides the
manager with an opportunity to release any system resources, in particular if
custom workflow action were still accessing those resources.

In order to react to external events, processes should register themselves with
an appropriate manager. That manager reacts to events by calling
recheck(Process, ...) with the affected process as an argument. Note
that this is the only way for a manager to influence a process directly while op-
erating asynchronously out of the scope of a call from the server. Particularly, it
is not allowed for the manager to update process variables itself. This must be
done by the process after requesting information from the manager or in a call
from the process to the server during the execution of an action.

Using the ManagerService , which is an aspect of the workflow repository
that is only available in the Workflow Server, other plugins may request a refer-
ence to a manager by providing the manager's name. Note that one manager
class may be registered multiple time using different names, if that is required.
Clients will have to make a cast to be able to call the business methods of the
manager.

128COREMEDIA CONTENT CLOUD

The Workflow Repository | Managers

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Manager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Manager.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ManagerService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/ManagerService.html

6.11 Examples

In this section you will find examples for both the client API and the API for writing
Workflow Server plugins.

6.11.1 Example Clients

As a very simple application, here is a little tool that aborts all running workflows.

WorklistService worklist =
connection.getWorkflowRepository().getWorklistService();

Set<Process> running = worklist.getAllProcessesRunning();
for (Process process: running) {
process.abort();

}

Example 6.1. AbortAllProcesses

The code deals with the workflow repository and one of its aspects, the worklist
service. The worklist service maintains a number of collections of workflow ob-
jects. Each collection contains those objects that match a certain predicate:
running processes, escalated tasks, available process definitions, and so on.

In Example 6.1, “AbortAllProcesses” [129], one of the administrative worklists
is used. The method getAllProcessesRunning() returns the set of all
processes that are started, but not yet finished.

Elaborating on this example, a minor variant follows. Example 6.2, “Suspend My
Processes” [129] operates only on processes that were started by a single user.
More precisely, only processes of the current session's user are returned during
a call to getProcessesRunning .

WorkflowRepository repository = connection.getWorkflowRepository()
WorklistService worklist = repository.getWorklistService();
Set<Process> running = worklist.getProcessesRunning();
for (Process process: running) {
process.suspend();

}

Example 6.2. Suspend My Processes

As you can see, the processes are suspended instead of being aborted. Suspen-
ded processes keep their state and can be resumed later on.

In the next example, you will see how to create and control a process using the
Unified API. Before running the Example 6.3, “Create Process Example” [130], the

129COREMEDIA CONTENT CLOUD

The Workflow Repository | Examples

standard three-step publication workflow must have been uploaded. Please see
the Administration Manual for details.

The example code starts with retrieving the process definition via the well-known
name and creates a process instance afterwards. The process has to be started
before its first task can be started.

ProcessDefinition processDefinition =
repository.getProcessDefinition("ThreeStepPublication");

Process process = processDefinition.create();
process.start();

Example 6.3. Create Process Example

When the process is started, the process definition on the server takes control.
In the case of the three step publication, this leads to the Compose task even-
tually being offered to the process' owner. The code repeatedly tries to accept
the task, which may fail because the task is not offered yet, or because it was
already automatically accepted by a connected client.

Task composeTask = process.getTask("Compose");
while (!composeTask.isAccepted()) {
try {
composeTask.accept();

} catch (IllegalTaskStateException e) {
// not offered yet, or race condition with editor

}
Thread.sleep(1000);

}

Now that you are sure that the task is accepted, you can freely access its vari-
ables.

composeTask.getView().set("subject", "a subject");
connection.flush();
Thread.sleep(5000); // let the user have a good look
composeTask.complete();

Here one variable is set to a new value and the change is flushed to the server.
Just as with content, writes are buffered for workflows, too. After providing you
with some time to inspect the new variable value in the editor, the compose task
is completed. Because the change set was not changed and is still empty, the
three-step publication process terminates automatically.

6.11.2 Example Plugins

This section provides some examples of various types of plugins. All classes
must be deployed on the Workflow Server in order to become functional.

130COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

Expression

The first example show how to create a reusable expression for performing
queries in the Content Server. The expression starts by extracting the Unified
API connection from the argument workflow object. (Alternatively, the connection
could have been injected by implementing the CapConnectionAware interface)

public Object evaluate(WorkflowObject wo,
Map<String,Object> localVariables)

{
CapConnection connection = wo.getRepository().getConnection();
QueryService queryService = connection.getContentRepository()
.getQueryService();

Afterwards, all subexpressions are evaluated. Note that thelocalVariables
are passed to the subexpression unchanged.

Object[] parameters = new Object[expressions.size()];
for (int i = 0; i < parameters.length; i++) {
Expression expression = expressions.get(i);
parameters[i] = expression.evaluate(object, localVariables);

}

Lastly, you can pose the actual query.

return new ArrayList<Content>(queryService.
poseContentQuery(query, parameters));

}

In the XML definition, the subexpressions occur as XML subelements and the
query as an attribute of the <Expression> element.

<Expression class="com.coremedia.examples.plugin.QueryExpression"
query="REFERENCED BY ?0">
<Get variable="document"/>

</Expression>

The query string is passed into the QueryExpression object by means of a
specific setter setQuery(String) . The subexpression Get is parsed and
handed to the example expression and stored in a list named expressions
by means of the following method:

public void add(Object o) {
if (o instanceof Expression) {
expressions.add((Expression)o);

} else {
throw new RuntimeException("don't know how to add "+o);

}
}

Even if you do not intend to use subexpressions, you might want to implement
a similar method when requiring a highly flexible configuration mechanism. Every
nested XML element that cannot be handled by a more specific setter method
is passed to the set(Object) method.

131COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

Action

The next example introduces a custom action that is capable of moving and re-
naming a content atomically. The class is named MoveAndRenameAction . It
is derived from the base class SimpleAction , which further reduces its
complexity.

The arguments for the action are taken from three process variables, whose
names are configured in the XML definition and stored in three fields in the action.
The action is configured as follows:

<Action class="com.coremedia.examples.plugin.MoveAndRenameAction"
contentVariable="content"
targetVariable="target"
nameVariable="name" />

Except for the three fields and the setters, the implementation consists of a
single method.

public boolean doExecute(Process process) {
Content content = process.getLink(contentVariable);
Content target = process.getLink(targetVariable);
String name = process.getString(nameVariable);
content.moveTo(target, name);
return true;

}

By returning true, the action indicates that it completed normally.

Another example of an action implemented as SimpleAction that sends
emails is listed in Section 6.11.3, “Example Code of the Mail Action” [136]. Because
the mail server is an external component that might take long to respond this
action is a good candidate to be implemented as a LongAction as described
below.

LongAction

In the following, an action that sends a mail is implemented. Because the mail
server is an external component that might not respond immediately, a long
action is created. You omit the definition of various string fields that hold config-
uration values for the action and skip immediately the methods for executing
the action.

During the first phase the receiver, subject and body text of the mail are determ-
ined.

public class MailAction implements LongAction {
public Object extractParameters(Task task) {
com.coremedia.cap.workflow.Process process =
task.getContainingProcess();

String receiver = process.getString(receiverVariable);
String subject = process.getString(subjectVariable);

132COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/SimpleAction.html

String text = process.getString(textVariable);
return new Object[]{receiver, subject, text};

}
...

Afterwards, the mail is actually sent outside of a DB transaction.

public Object execute(Object params) {
Object[] paramArr = (Object[]) params;
String receiver = (String) paramArr[0];
String subject = (String) paramArr[1];
String text = (String) paramArr[2];
boolean result = false;
try {
result = send(host, user, password,
from, receiver, subject, text);

} catch (Exception e) {
return e;

}
return result;

}

protected boolean send(String host, String username,
String password, String from,
String receiver, String subject, String text)

throws MessagingException, AddressException {
...

}
}

Please see the full source code for details of the mail delivery, which is outside
the scope of this manual. Finally, the result is converted into an action result.

public ActionResult storeResult(Task task, Object result) {
if (result instanceof Boolean) {
return new ActionResult(((Boolean)result).booleanValue());

} else {
return new ActionResult((Exception)result);

}
}

}

Assuming there are process variables receiver , subject , and text , the
LongAction could be used in a process definition as follows:

<AutomatedTask name="SendMail" final="true">
<Action class="com.coremedia.examples.plugin.MailAction"
host="smtp.company.com"
user="automailer"
password="secret"
from="noreply@company.com"
receiverVariable="receiver"
subjectVariable="subject"
textVariable="text"/>

</AutomatedTask>

PerformersPolicy

One example of a performer policy is the DefaultPerformersPolicy ,
which is distributed together with the Unified API sources. The main method of
that class will be discussed here.

133COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html

First, the users that may execute the task are calculated.

public Performers calculatePerformers(Task task,
Collection permittedUsers)

{
Set<User> users = new HashSet<User>();
users.addAll(permittedUsers);
users.removeAll(getExcludedUsers(task));

If the task is forced to a user, that user is chosen.

User forcedUser = getForcedUser(task);
if(forcedUser != null) {
if(users.contains(forcedUser)) {
return new Performers(forcedUser, true);

}
}

Otherwise, you look for users who are preferred, but have to rejected the task.

users.removeAll(getRejectedUsers(task));
Set<User> preferredUsers =
new HashSet<User>(getPreferredUsers(task));

preferredUsers.retainAll(users);
if(preferredUsers.size() > 0) {
return new Performers(preferredUsers, false);

}

If you failed due to rejections, those rejections are cleared before recomputing
the set of users. Note that this is a side effect that is explicitly allowed during
the calculatePerformers method.

if(users.size() == 0 && getRejectedUsers(task).size() > 0) {
removeAllRejections(task);
return calculatePerformers(task, permittedUsers);

}

If there are no rejections to be cleared, you have to go with the users that are
not preferred.

return new Performers(users, false);
}

RightsPolicy

In the following, you will see the Unified API half of a custom rights policy. That
policy assigns rights to exactly that user who created a process and grants rights
for the creation of new processes to all members of a single group.

The server half, as presented in the Workflow Manual, is only sufficient for use
in the Workflow Server and for the editor. The Unified API needs its own imple-
mentation.

First, you need some code to deal with serialization and configuration.

134COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

public class OnlyOwnerRightsPolicy implements RightsPolicy {
private static final long serialVersionUID =
7465148942676430339L;

private Group group = null;

public void setGroup(Group group) {
this.group = group;

}

public Group getGroup() {
return group;

}

public void setGroup(String groupAtDomain) throws WfException {
UserRepository userRepository = WfServer.getConnection().
getUserRepository();
Group group = userRepository.getGroupByName(groupAtDomain);

if (group == null) {
throw new RuntimeException("Could not find
group "+groupAtDomain);

}
setGroup(group);

}
...

The last method is called only in the Workflow Server while an XML process
definition using the new policy is parsed. You are therefore allowed to obtain
the server's Unified API connection through the WfServer singleton.

Now you can look at some of the methods that compute the rights of individual
users.

private User getOwner(WorkflowObject workflowObject) {
if (workflowObject instanceof Task) {
workflowObject =
((Task)workflowObject).getContainingProcess();

}
return ((Process)workflowObject).getOwner();

}
public boolean mayPerform(WorkflowObject workflowObject,
Right right, User user)

{
if (user.isSuperUser()) return true;
User owner = getOwner(workflowObject);
return owner != null && owner.equals(user);

}
public boolean mayPerform(WorkflowObjectDefinition
definition, Right right, User user)

{
return user.isMemberOf(group);

}
...

Skipping some parts of the code that are very similar to the server-side code
as presented in the Workflow Manual, you observe that there is also a weight
method that estimates the main memory size of the policy in bytes. It is used
for caching policies. Here 12 bytes for the policy and 16 bytes for the referenced
group are estimated.

135COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Plugins

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/WfServer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/WfServer.html

public int getWeight() {
return 28;

}

Finally, there is the unmarshalling process that is needed to create a policy in-
stance in the client VM.

public RightsPolicyMarshaller getMarshaller() {
return new OnlyOwnerRightsPolicyMarshaller();

}
}

The marshaller itself resides in yet another class. Let us look at the unmarshal
method, only.

public class OnlyOwnerRightsPolicyMarshaller
implements RightsPolicyMarshaller {
...
public RightsPolicy unmarshal(CapConnection connection,
byte[] data)

{
OnlyOwnerRightsPolicy result = new OnlyOwnerRightsPolicy();
if (data[4] == 1) {
int groupId = (data[0] & 0x000000ff) +
(data[1]<<8 & 0x0000ff00) +
(data[2]<<16 & 0x00ff0000) +
(data[3]<<24);

result.setGroup(connection.getUserRepository().
getGroup(IdHelper.formatGroupId(groupId)));

}
return result;

}
...

}

Notice how a connection is passed into the unmarshaller, so that it can be used
to build Unified API objects for use in the policy.

6.11.3 Example Code of the Mail Action

Here you find the partial process definition and the simple implementation of
an action sending emails. The action is implemented as a SimpleAction with
predefined timeout. If you need to increase the timeout, you should implement
interface LongAction instead, which is better suited for long-running actions.

Assuming there are process variables field and document the mail action
can be defined as follows:

<?xml version="1.0" encoding="iso-8859-1"?>
<Workflow>
<Process name="SendMailProcess" startTask="SendMail">

<Variable name="receiver" type="String">
<String value="default@test.com"/>

</Variable>

<Variable name="field" type="String"/>

136COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/LongAction.html

<Variable name="document" type="Resource"/>

<Variable name="delivered" type="Boolean">
<Boolean value="false"/>

</Variable>

<AutomatedTask name="SendMail"
description="mail-task" final="true">

<Action class="com.coremedia.extension.workflow.mail.SendMail"
receiverVariable="receiver"
documentVariable="document"
fieldVariable="field"
successVariable="delivered"/>

</AutomatedTask>

...
</Process>

</Workflow>

The implementation then looks as follows:

package com.coremedia.extension.workflow.mail;

import com.coremedia.cap.content.Content;
import com.coremedia.cap.workflow.Process;
import com.coremedia.cap.workflow.plugin.SimpleAction;
import com.coremedia.xml.Markup;
import org.slf4j.*;
import javax.mail.*;
import javax.mail.event.*;
import javax.mail.internet.*;

public class SendMail extends SimpleAction {

private static final Logger LOG =
LoggerFactory.getLogger(SendMail.class);

static final long serialVersionUID = 1258062873454333627L;

protected String transportType = "smtp";
protected String host = "smtp.coremedia.com";
protected String user = "testuser";
protected String password = "testpassword";
protected String from = "testuser@coremedia.com";
protected String subject = "This is a test mail";

protected String receiverVariable;
protected String fieldVariable;
protected String documentVariable;

protected Message createMessage(Session session,
String from, String to,
String subject, String text)

throws MessagingException {

MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));
message.setSubject(subject);
message.setText(text);
message.saveChanges();
return message;

}

protected boolean send(String host, String username,
String password, String from,
String to, String subject, String text,
String transport_type)

throws MessagingException {

137COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

Session session = Session.getDefaultInstance
(System.getProperties(), null);

Message message = createMessage(session,from,to,subject,text);
MessageDelivery delivery = new MessageDelivery();

Transport transport = session.getTransport(transport_type);
transport.addTransportListener(delivery);
transport.connect(host, username, password);
transport.sendMessage(message, message.getAllRecipients());
transport.close();
transport.removeTransportListener(delivery);

return delivery.isMailDelivered();
}

@Override
protected boolean doExecute(Process process) {

String to = process.getString(receiverVariable);
Content content = process.getLink(documentVariable);
if (content == null) {
return false;

}
String field = process.getString(fieldVariable);
Markup markup = content.getMarkup(field);
String body = markup == null ? "" : markup.toString();
try {
return send(host, user, password, from, to, subject,

body, transportType);
} catch (MessagingException e) {
LOG.error(e.getMessage());

}
return false;

}

// Setters for configuring the action in a process definition.
public void setReceiverVariable(String receiverVariable) {
this.receiverVariable = receiverVariable;

}

public void setFieldVariable(String fieldVariable) {
this.fieldVariable = fieldVariable;

}

public void setDocumentVariable(String documentVariable) {
this.documentVariable = documentVariable;

}

protected static class MessageDelivery
implements TransportListener{

// wait a second for delivery
// (If you need to increase the timeout, you should instead
// implement interface LongAction which is better suited
// for long-running actions. You should also implement method
// #abort correctly so that the execution of the action does
// not interfere with the shutdown of the Workflow Server.)
private static final long TIMEOUT = 1000;

private Boolean delivered = null;

protected synchronized boolean isMailDelivered() {
long timeout = System.currentTimeMillis() + TIMEOUT;
while (delivered == null) {
long now = System.currentTimeMillis();
if (now >= timeout) {
break;

}
try {
wait(timeout - now);

138COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

} catch (InterruptedException e) {
LOG.error(e.getMessage());

}
}
return Boolean.TRUE.equals(delivered);

}

private synchronized void deliverySuccess(boolean state) {
delivered = state;
notifyAll();

}

public void messageDelivered(TransportEvent e) {
deliverySuccess(true);

}

public void messageNotDelivered(TransportEvent e) {
deliverySuccess(false);

}

public void messagePartiallyDelivered(TransportEvent e) {
deliverySuccess(false);

}
}

}

Example 6.4. The SendMail action

139COREMEDIA CONTENT CLOUD

The Workflow Repository | Example Code of the Mail Action

6.12 Guide to the API
Documentation

The WorkflowRepository in com.coremedia.cap.workflow handles
processes and tasks. It provides two aspects WorklistService and Ac-
cessControl .

You may want to start with the interface Task and inspect its methods and its
state diagram. The access to variables of a task is exactly the same as the access
to properties of a content (see CapObject). Keep in mind, however, that there
are additional data types available in the workflow context.

Afterwards, consult the interface Process , memorize that although there are
some similarities in its state diagram, equal state names mean different things
for processes and tasks. See Section 6.2, “Workflow States” [94] for further details.

Conclude the first look at the workflow repository with the WorklistService
aspect and examine the various collections of workflow objects it provides. Some
background information is provided in Section 6.4, “The Work List Service” [102].

140COREMEDIA CONTENT CLOUD

The Workflow Repository | Guide to the API Documentation

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/authorization/AccessControl.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html

7. The User Repository

The user repository stores information about users and groups. It allows you to
create, retrieve, read and update user and groups that are stored in the built-in
user management of the Content Server. It also provides read access to addi-
tional users and groups that are managed in an LDAP server that may be associ-
ated with the Content Server.

141COREMEDIA CONTENT CLOUD

The User Repository |

7.1 Objects

The user repository manages User objects and Group objects. A Group can
contain an arbitrary number of Member objects, which may be users or groups.
TheUnified API distinguishes between membership and direct membership. Only
the latter is directly stored, the former is computed dynamically. A Member
object is a member of a certain group, if there is a chain of direct member asso-
ciations that ultimately leads from the group to the member.

Every member has a name and a domain. There are typically only very few do-
mains in any given CoreMedia CMS installation, leaving the name as the main
identifying feature of a member. A user is often designated in the
<name>@<domain> format, for example, joe@mydomain or admin@ . As
you can see, for built-in users, the domain part is left empty.

The domain that is represented by the empty string provides access to the
built-in user management of the Content Server. For members of this domain
this is also indicated by the method isBuiltIn() . Only members of the built-
in user management may be changed under direct control of the Unified API.
Users of other, external domains are mapped into the system from external
servers by means of the LDAP protocol. Only read access is allowed for external
domains. You can access the distinguished name of an external user through
the Unified API in case you need to connect back to the LDAP repository.

For users of external domains, the getter methods of CapObject , which is a
super interface of Member , may be used to access custom string attributes
stored in the LDAP server. The built-in user management does not support
member attributes. Note that there is no fixed set of CapType objects for
members, because LDAP does not enforce a strict typing. Instead, there is one
artificial type per member that describes the available properties for these ob-
jects.

142COREMEDIA CONTENT CLOUD

The User Repository | Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapObject.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/common/CapType.html

Figure 7.1. Class Diagram: Users and Groups

In Figure 7.1, “Class Diagram: Users and Groups” [143] you can see an overview of
all classes involved in the representation of users and groups.

A group is called administrative, if its direct and indirect members are supposed
to gain special privileges while working in the CoreMedia CMS. A user is called
administrative, if at least one of its direct or indirect groups is administrative.

For users, the home folders can be retrieved as a content object. As already
explained, setting the home folder is only possible for built-in users.

143COREMEDIA CONTENT CLOUD

The User Repository | Objects

7.2 UUIDs

In addition to the simple string identifiers described in Section 4.6, “Identifiers
and Equality” [43], every Member on the Content Management Server has a
UUID since version 2007.1. UUIDs are stable and universally unique identifiers as
defined in RFC 4122 and are represented as java.lang.UUID . UUIDs are a
good choice for referencing users or groups in an external system or store, like
in a database or file. They are not meant as replacement of simple string IDs,
and should not be used where a simple ID is sufficient. UUIDs make sense in
certain scenarios where uniqueness across multiple repositories is important,
or when users or groups may be transferred to another repository and should
keep their identity. While the latter is not yet possible in version 2007.1, later
releases may add such features relying on UUIDs. External user provider imple-
mentations can provide the same UUIDs for identical users and groups on differ-
entContent Server installations. For example, users and groups from CoreMedia's
ActiveDirectory UserProvider implementation receive their UUIDs from Active
Directory. For details on user providers, see Section 3.12, “LDAP Integration” in
Content Server Manual. The LdapUserProvider class has methods that take
or return UUIDs, and that can be overridden by a custom user provider. See its
API documentation for details.

Similar to string IDs, the API provides a getUuid() method in class Member
to retrieve a UUID, and methods to look up a User or Group for a given UUID.
A User or Group with a given UUID can be retrieved from the UserReposit-
ory with method getMember(UUID) , getUser(UUID) , or get
Group(UUID) . It is important to note, that a UUID does not encode any further
information about the referred object. It cannot be used to identify the type of
the referred object, or the repository that contains it.

Note, that as of version 2007.1, UUIDs are only available on the Content Manage-
ment Server. If a connection is made to a live server, or to a server of a previous
release, then all methods that would return a UUID will return null instead.

144COREMEDIA CONTENT CLOUD

The User Repository | UUIDs

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
contentserver-en.pdf#LDAPIntegration
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/content-server/com/coremedia/ldap/LdapUserProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/content-server/com/coremedia/ldap/LdapUserProvider.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html

7.3 Retrieving Objects

The UserRepository interface contains a number of methods that allow you
to get access to User and Group objects. As in all repositories, you can obtain
a Member with a given string id using getMember(String) . It is also possible
to retrieve members based on their name and optionally their domain using the
getUserByName and getMemberByName methods.

You can issue a query for users or groups that provides only a substring of the
actual name. In this case, the methods findUsers and findGroups return
a collection of matching objects. Using these methods, you can set an upper
bound on the number of results, reducing the load on the repository.

145COREMEDIA CONTENT CLOUD

The User Repository | Retrieving Objects

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html

7.4 Listeners

The UserRepository provides listeners with events about all changes to
user and groups. The interface UserRepositoryListener is partitioned
into three main parts.

• The super interface UserListener contains methods regarding the creation,
update and destruction of users.

• The super interface GroupListener is concerned with groups.

• A UserRepositoryListener defines two additional methods to be called
when a group gains or loses a member.

The class UserRepositoryListenerBase provides an empty default im-
plementation that can be overridden as needed. Attach your listener using the
addUserRepositoryListener method of the UserRepository .

Because LDAP does not provide an event mechanism, the Content Server has
no immediate means to detect changes to members that are imported from an
LDAP server. When being accessed for the first time, a creation event is gener-
ated. Note that the first access may be seconds, days, or years after the user
was actually created.

LDAP data is cached for a certain amount of time and not refetched from the
server. During that time, changes to the LDAP server are not detected. If an LDAP
member is accessed again after it expires from the cache or if it is explicitly
updated using the calls invalidate() or refresh() , the Content Server
may detect some changes and send appropriate events. No events are sent for
custom properties of members. No events are sent for changes of the group-
member association. In short, while you may find it convenient to monitor the
events for LDAP members, the events are incomplete and may arrive late.

146COREMEDIA CONTENT CLOUD

The User Repository | Listeners

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/GroupListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/GroupListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListener.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/events/UserRepositoryListenerBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html

7.5 Further Reading

Refer to the Content Server Manual for more information on how to connect
CoreMedia CMS with an LDAP server and on how to create users by means of
the built-in user management.

The access control services of the content and workflow repositories must take
the structure of users and groups into account when computing rights. The
WorklistService , too, is dependent on the specific user who accesses the
worklist.

The Javadoc of theUnified API is the recommended source for in-depth descrip-
tions of individual classes and methods. Look at the interfaces UserReposit-
ory , User , Group , and Member in the package com.core
media.cap.user primarily.

147COREMEDIA CONTENT CLOUD

The User Repository | Further Reading

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorklistService.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/UserRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/User.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Group.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/user/Member.html

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such
as graphics.

CaaS Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. TheCAE Feedermakes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) TheContent Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

• CoreMedia Master Live Server
• CoreMedia Replication Live Server
• CoreMedia Content Application Engine
• CoreMedia Search Engine
• Elastic Social
• CoreMedia Native Personalization

148COREMEDIA CONTENT CLOUD

Glossary |

Content Feeder TheContent Feeder is a separate web application that feeds content items
of the CoreMedia repository into theCoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

Content item InCoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

• CoreMedia Content Management Server
• CoreMedia Workflow Server
• CoreMedia Studio
• CoreMedia Search Engine
• CoreMedia Native Personalization
• CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

• Content Management Server
• Master Live Server
• Replication Live Server

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

149COREMEDIA CONTENT CLOUD

Glossary |

https://github.com/coremedia-contributions

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

Dead Link A link, whose target does not exist.

Derived Site A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component ofCoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated intoCoreMedia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

Folder A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

150COREMEDIA CONTENT CLOUD

Glossary |

gRPC gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

Headless Server CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic API allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

Java Management Extensions
(JMX)

The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

151COREMEDIA CONTENT CLOUD

Glossary |

http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of UI components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

OCI (Open Container Initiative) The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) ORAS (OCI Registry As Storage) is a tool and specification that extends
OCI registries to store and distribute OCI artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of theContent Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
theMaster Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

Resource A folder or a content item in the CoreMedia system.

152COREMEDIA CONTENT CLOUD

Glossary |

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

Site Folder All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite .

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

Template In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes Application The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

Variants The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

153COREMEDIA CONTENT CLOUD

Glossary |

Weak Links In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

154COREMEDIA CONTENT CLOUD

Glossary |

Index

A
abort all running workflows, 129
Access Control, 65
access control servcie, 107
administrative group, 143
Audience, 2
automated task states, 95

B
Blob object, 37

C
caching, 53
CapException, 49
CapListener, 47

asynchronous information, 47
CapObject, 34
CapSession, 50
CapType, 41
comparing objects, 34
connection, 20

create, 20
Lifecycle, 28
map parameters, 22
passing parameters as a Map, 21
passing parameters as Java system properties, 28
passing parameters directly, 20
passing parameters in server URL, 27
ServerControl, 31

connection listener, 31
content repository, 56
ContentRepositoryListener, 87
create new folder, 17

I
ID, 43

formats for CapObject, 43
formats for CapType, 44
formats for other objects, 45

L
List, 38

M
Markup object, 36

O
ObservedPropertyService, 70

P
property service, 86
publication preview, 68
PublicationService, 67

Q
query service, 71

R
remote client actions, 126
repository, 19, 32
rights policies, 123

S
search service, 81
server side workflow API, 100
Simple Query Language, 82
system defined timer, 112

U
Unified API, 13

use cases, 15
User object, 142
UUID

Content, 62
Group, 144
User, 144
Version, 62

155COREMEDIA CONTENT CLOUD

Index |

V
values, 36

W
work list service, 102
workflow content service, 85
workflow events, 110
workflow repository, 89
workflow variables, 104
working version, 57
write buffering, 52

156COREMEDIA CONTENT CLOUD

Index |

	Unified API Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Changelog

	2. Unified API Overview
	2.1 Features and Design Goals
	2.2 Use Cases

	3. An Introductory Example
	4. Common Concepts
	4.1 Connection
	4.1.1 Creating a Connection
	4.1.2 Lifecycle and Caching
	4.1.3 Connection Listener
	4.1.4 Server Control

	4.2 Repositories and Services
	4.3 Objects
	4.4 Values
	4.4.1 XML Texts
	4.4.2 Blobs
	4.4.3 Lists
	4.4.4 Structs

	4.5 Types
	4.6 Identifiers and Equality
	4.7 Listeners
	4.8 Exceptions
	4.9 Sessions
	4.10 Caching
	4.11 Serialization
	4.12 Further Reading

	5. The Content Repository
	5.1 Objects
	5.2 UUIDs
	5.3 Types
	5.4 Variants
	5.5 Access Control
	5.6 Publication Service
	5.7 Observed Property Service
	5.8 Query Service
	5.9 Search Service of the Unified API
	5.10 Workflow Content Service
	5.11 Property Service
	5.12 Listeners
	5.13 Further Reading

	6. The Workflow Repository
	6.1 Objects
	6.2 Workflow States
	6.3 Differences to the Classic Workflow API
	6.4 The Work List Service
	6.5 Workflow Variables and Views
	6.6 The Access Control Service
	6.7 Managing Process Definitions
	6.8 Events
	6.9 Timers
	6.10 Writing Own Plugins
	6.10.1 Programming Restrictions
	6.10.2 Serialization
	6.10.3 Actions
	6.10.4 Long Actions
	6.10.5 Final Actions
	6.10.6 Expressions
	6.10.7 Performer Policies
	6.10.8 Rights Policies
	6.10.9 Remote Client Actions (deprecated)
	6.10.10 Managers

	6.11 Examples
	6.11.1 Example Clients
	6.11.2 Example Plugins
	6.11.3 Example Code of the Mail Action

	6.12 Guide to the API Documentation

	7. The User Repository
	7.1 Objects
	7.2 UUIDs
	7.3 Retrieving Objects
	7.4 Listeners
	7.5 Further Reading

	Glossary
	Index

