‘0 COREMEDIR

Workflow Manual

CoreMedia Content Cloud - v13

Workflow Manual |

Copyright CoreMedia GmbH © 2026
CoreMedia GmbH

Altes Klépperhaus, 5. OG
Rodingsmarkt 9

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be repro-
duced or copied in any form (print, photocopy or other process) without the written
permission of CoreMedia GmbH.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwédhnte CoreMedia Produkte
sowie die entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia
GmbH in Deutschland. Alle anderen Namen von Produkten sind Marken der jeweiligen
Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehoérigen Programme durfen in keiner
Weise (Druck, Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der
CoreMedia GmbH reproduziert oder vervielfaltigt werden. Unberuhrt hiervon bleiben
die gesetzlich erlaubten Nutzungsarten nach dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
January 28, 2026 (Release 2512.0)

COREMEDIA CONTENT CLOUD

Workflow Manual |

| I [ol deTe [0 [} u o] o TN 1
11 AUIENCE ..o s 2

1.2. Structure Of The Manual ..o 3

1.3. Typographic Conventionsccviuiiiiiiiiiiiiiiiiieannens 4

1.4. CoreMedia SEerViCeSvviiriiiiii e eeas 6

1.4.0. Registrationcoiuiiiiiiii i 6

1.4.2. CoreMedia Releasesccoeviiiiiiiiiiiiiiiiiiieaanns 7

1.4.3. Documentationccovviiiiiiiiiii i 8

1.4.4. CoreMedia Trainingcoueeiiiiiiiiiiiian e, n

1.4.5. CoreMedia SUPPOItooutiiiiiiiiiiiiiiceieieeas n

1.5. Changelogooinniiiii 13

2. Overview of CoreMedia Workflowccoiiiiiiiiiiiiiii i, 14
3. Configuration And Operationoouiiiiiiiiiiiiiiiii i, 19
3.1. Starting the Workflow Server ..., 20

3.2. Uploading Workflowscooeiiiiiiiiiiiiiiiiiiiiae 21

3.3. Converting Workflows ..o 22

3.4. Using JMX Managementoveiiiiiiiiiiiiiiiiiiieaens 23

3.5. Workflow Server Utilitiesccoiiiiiiiiiiii i 24

1T] -1 26

3.5.2. Download ..o 26

353 . Enable ... 28

3.5.4. Upload ...coeviiiii 29

3.5.5. Workflowconvertercccviiiiiiiiiiiiiiiiiieen.... 30

3.5.6. Processdefinitionsccovviiiiiiiiiiiiiiiii s 34

35,7 PrOCESSES ottt e 35

4. Customize Workflow Definitionscoooiiiiiiiiiiiiiii i 37
4.1. Defining WOorkflowsooiiiiiii 38

4.10. The BeanParseroovvviiiiiiiiiiiiic e 40

4.1.2. Elements of Activity Diagramsccoceveinnt.. 42

413, PrOCESSES . uuiitiittttet e et e e 43

AL, TaASKS e 45

415, Flow Controlooviiiiiiiiiiiiic s 50

4.1.6. Workflow Variablesccooiiiiiiiiiiiiiii i 57

407, EXPreSSiONS ..ouuiiiii i 57

4.8, ACTIONS L.ttt 59

409, RGOS .o 60

4.1.10. SUBWOIKFIOWS ..o 61

N O T =Y S 61

4.2. Upload Workflow Definitionscooeviiiiiiiiiiiiiinian, 63

4.3. Example of Workflow Definitioncooooiiiiiiiiiii, 64

4.4. Reference of Predefined Classescocevviiiiiiiiiiiiannn 7

4.4.1. Predefined Action Classescccovviiiiiiiiiaannnn 71

4.4.2. Predefined FinalAction Classescoovvenn 85

4.4.3. Predefined TimerHandler Classes 86

5. Implementing EXtENSIONSouiiiiiii e 88
5.1. Update WOrkflowsccooiuiiiiiiiiiiiiiiiiiii e 89

5.2. Variable Valuescoooiiiiiiiiiii i 90

5.3. Programming ACLiONScc.eiiiiiiiiiiiiiii e 91
5.3.1.General RUIES ... 91

COREMEDIA CONTENT CLOUD

Workflow Manual |

5.3.2. Repeated Execution of Actionsc.oceeueii 92
5.3.3. Server-Side ACtioNnsccooeiiiiiiiiiiii 93
5.3.4. Access Workflow Variables from the Action 93
5.3.5. Example ACtionccooeiiiiiiiiiiii 94
5.4. Programming EXPressionsooeviiiiiiiiiiiiiiniiineannnn. 95
5410 GeneralRules ... 95
5.4.2. Generic EXPressionscooiiiiiiiiiiiiiiii 96
5.4.3. Boolean EXpressionscoooeviiiiiiiiiiiiiiiniinnnn. 97
5.4.4. Example EXpressionccooiiiiiiiiiiiiiiii 97
5.5. Programming Rights Policiesccooviiiiiiiiiiinn. 100
5.5.1. Example Rights Policyc.ooiiiiiiiiiiiiin.. 101
5.6. Programming Performer Policiesccoooiiiiiiiiinn.. 105
5.7. Programming Clientsoooiiiiiiiiiiiiiiiiiiiiee 108
5.8. Spring in the Workflow Serveroooiiiiii., 109
5.8.1. Using Spring Beanscooiviiiiiiiiiiiiii, 109
5.9. Pitfalls of Implemented Classesccooeviiiiiiiiiininn... no
B.Reference n2
6.1. Configuration Reference ... n3
6.1.1. Configuration of Workflow Client Properties n3
6.1.2. Configuration of Workflow Server Properties n3
6.1.3. Managed Properties
6.2. XML Element Reference ...
6.3. Studio Simple Publication Workflow Definition 173
GlOSSANY .ttt 175
INAEX L 182

COREMEDIA CONTENT CLOUD

Workflow Manual |

List of Figures

2.1. CoreMedia architecture with integrated workflow 15
2.2. Control Room with workflow start windowo .. 16
2.3. Workflow in the Workflow Appeveiiiiiii 17
4.1. Activity diagram of a simple workflow ... 39
4.2. Elements of activity diagrams ... 42
4.3. State diagram of @ ProCesscooeiiiiiiiiiiiiiiiiii 44
4.4, State diagramof atask ... 45
4.5. Example of a sequence diagramc.ocoiiiiiiiiiiiiiiii 51
4.6. Example of a choice diagram ... 52
4.7. Example of an implicit choice ... 53
4.8. Example of @ 100D «...ueiiinii i 54
4.9. Example of a concurrency diagramoooiiiiiiiiii 56

COREMEDIA CONTENT CLOUD \Y

Workflow Manual |

List of Tables

11. Typographic conventionsooiiiiiiiiiiiiiiii i 4
12, Pictographs ..o
1.3. CoreMedia manuals

T4, Changes ..o
3.1. Common options of server utilities ... 25
3.2. OptioNs Of STaArt ..o e 26
3.3. Options of downloadcoouiiiiiiiiiii e 27
3.4. Options of enable ... 28
3.5. Options of UPload ... 29
3.6. Parameters of the workflowconverter toolcooviiin.. 31
3.7. Options of the processdefinitions toolc..ooceiiiiiiii... 34
3.8. Options of the processes utility ..., 35
4.1. Workflow elements vs. programming language 40
4.2, Status of Tasks ...oooiiii e 45
4.3. Attributes common to all actions ...t 7
4.4. Attributes of the Approve action.ccooviiiiiiiiiiiiiiiiii s 72
4.5. Attributes of the Publish action. ... 72
4.6. Attribute of the DisableTimer action.ccooiiiiiiiiiiiiinen... 74
4.7. Attribute of the EnableTimer action. ..o, 74
4.8. Attribute of the ExcludePerformer action. ..., 74
4.9. Attribute of the ExcludeUser action.c.ooviiiiiiiiiiiniennn. 75
4.10. Attributes of the ForceUser action.cooviiiiiiiiiiiiinennn. 75
4.11. Attributes of the Log action. ... 76
4.12. Attribute of the PreferPerformer action. ..., 77
4.13. Attributes of the RegisterPendingProcess action. 77
4.14. Attribute of the CancelUserTask action.ccoevviiiiiiiiinnn. 77
4.15. Attribute of the SkipUserTask action.cooviiiiiiiiiiiii... 78
4.16. Attributes of client-side actions.ccceviiiiiiiiiiiiiii e, 78
4.17. Attributes of the ApproveResource action. ..., 79
4.18. Attributes of the CheckinDocument action.cccvvvviiinnn 79
4.19. Attribute of the CeckOutDocument action.cooovvvvenn 80
4.20. Attributes of the CopyResource action.ccoooviiiiiiiiine. 80
4.21. Attributes of the CreateDocument action.ooiiiiinnnn 81
4.22. Attributes of the CreateFolder action.ccoviiiiiiiiiiiiiinn. 81
4.23. Attribute of the DeleteResource action.cceviiiiiiiiiinn., 82
4.24. Attribute of the DisapproveResource action.cc.ooeeeiin. 82
4.25. Attributes of the MoveResource action.ccevviiiiiiiiinn., 82
4.26. Attribute of the OpenDocument action.ccoooeiiiiiiiiiinn. 83
4.27. Attributes of the PublishResources action.cooovvinn 83
4.28. Attributes of the RenameResource action.ccoevvvee.... 84
4.29. Attribute of the SaveDocument action.oovviiiiiiinnen.... 84
4.30. Attribute of the StoreProperties action.c.ooocciiiiii... 84
4.31. Attribute of the UncheckOutDocument action. 85
4.32. Attribute of the UndeleteResource action.cccoevvvveen.... 85
4.33. Attributes of the ArchiveProcessFinalAction 86
6.1. Managed Workflow Server propertiescooeiiiiii.. na
6.2. Workflow Server operations propertiesc..ooeevviiiiiiiiiannnn. ne

COREMEDIA CONTENT CLOUD

Workflow Manual |

6.3. Attributes of Actionelementcooiiiiiiiiiiii i 120
6.4. Attributes of the AggregationVariable element. 121
6.5. Attribute of the Assignelement ... 122
6.6. Attributes of the Automated Task elementccooviiinitn 123
6.7. Attribute of the Blob element ... 124
6.8. Attribute of the Boolean elementcooiiiiiiiiiiiiii ... 125
6.9. Attributes of the Case elementcooviiiiiiiiiiiii i 125
6.10. Attributes of the Choice element. ..., 126
6.11. Attributes of the Condition elementcccviiiiiiiiiiiannn, 127
6.12. Attribute of the ContentType elementcoocoiiiiiiiiiinian.. 127
6.13. Attribute of the Date element ..o 128
6.14. Attributes of the Document element.coviiiiiiinnn... 128
6.15. Attribute of the DocumentType elementccoiviiiiiin... 129
6.16. Attribute of the Else element ...t 129
6.17. Attributes of EntryAction element ..., 129
6.18. Attributes of the Exists element ..o, 131
6.19. Attributes of the ExitActionelementcoviiiiiiiiiiinn, 132
6.20. Attributes of the Expression elementcooiiiiiiiin. 132
6.21. Attributes of the FinalActionelementcoocviiiiiiiinnn... 133
6.22. Attributes of the Folder element.cooiiiiiiiiiiiiiinn... 133
6.23. Attributes of the ForAllelementcooiiiiiiiiiiiii i, 134
6.24. Attributes of the Fork element ..., 135
6.25. Attributes of the ForkSubprocess elementl. 136
6.26. Attributes of the Get elementcoiiiiiiiiiiiiiiiii i, 138
6.27. Attributes of the Grantelementccoiiiiiiii i, 139
6.28. Attributes of the Group element.name ..., 141
6.29. Attributes of the If elementcooiiiiiiiii e 142
6.30. Attribute of the Integer element ..., 144
6.31. Attributes of the IsDocument elementcoviiiiiiiiin.an. 144
6.32. Attributes of the IsDocumentVersion element 145
6.33. Attributes of the IsEmpty element ..., 146
6.34. Attributes of the IsExpired elementcooiiiiiiiii.. 147
6.35. Attributes of the IsFolder elementoooiiiiiiiiiiians 147
6.36. Attributes of the Joinelement ..o 148
6.37. Attributes of the JoinSubprocess elementc.oeaet. 148
6.38. Attributes of the Length element ..., 149
6.39. Attributes of the Let elementcooiiiiiiiiiiiii e 151
6.40. Attributes of the NotEmpty element ..., 152
6.41. Attributes of the Performerselementcccoiiiiiiiinnnn, 154
6.42. Attributes of the PostCondition elementcooeeaan 154
6.43. Attributes of the Precondition elementcociiiiina 155
6.44. Attribute of the Predecessor elementcoooviiiiiiiiinnn. 156
6.45. Attributes of the Process elementcooiiiiiiiiiiiiiaannn, 156
6.46. Attributes of the Property element ..., 157
6.47. Attributes of the Read elementcociiiiiiiiiiiiiinea, 158
6.48. Attributes of the Reads elementccooiiiiiiiiii i, 159
6.49. Attributes of the Resource element.ccoiiiiiiiiinann, 160
6.50. Attributes of the Revoke element.ccooiiiiiiiiiiiiinan. 160
6.51. Attributes of the Rights element ..., 162

COREMEDIA CONTENT CLOUD

Workflow Manual |

6.52. Attribute of the String element ... 163
6.53. Attribute of the Successor elementcooiiiiiiiiiinnaa, 163
6.54. Attributes of the Switchelement. ..., 163
6.55. Attribute of the Thenelement ..ot 164
6.56. Attributes of the Timer elementccoiiiiiiiiiiiiiiiii 164
6.57. Attributes of the TimerHandler elementoooiiil 165
6.58. Attributes of the User element.ccooviiiiiiiiiiiiiiii i 166
6.59. Attributes of the UserTask element ...t 167
6.60. Attributes of the Validator elementccoviiiiiiiiiiin.. 169
6.61. Attributes of the Variable element ..., 170
6.62. Attributes of the Writes elementcoooiiiiiiiiiiiiiii e, 171

COREMEDIA CONTENT CLOUD viii

Workflow Manual |

List of Examples

4.1. Example of a BeanParser XML file ..o 41
4.2. Example listing of a sequence ... 51
4.3. Example listing of a choice ... 52
4.4. Example listing of an implicit choice ... 53
4.5. Example listing of @ lo0opooiiiiiiii 54
4.6. Example listing of concurrency ... 56
4.7. Example of @ GUArdooiiiiiiii i 59
4.8. Example of the ACL for a proCessooouveiiiiiiiiiiiiiiiiiiannae.. 60
4.9. Example of a self-defined timer which expires after 100

SECONAS ..ttt 62
4.10. General definitions of the workflowo 64
4.71. Automated task "Assign User’cooiiiiiiiiiiiiiiii 66
4.12. User Task COMPOSE ...uuuiiiiiei i 66
A0 TASK oot 67
414, User Task "Publish” 68
4.15. If Task "CheckPublication”c..cooiiiiiiiiiiiiiiiiiiia, 69
4.16. Example of automated task Finish ... 69
4.17. Example of ArchiveProcessFinalAction ..., 70
4.18. Example of the AssignVariable elemento 73
4.19. HOW tO fOrCe @ USEroiuiiiiiii i 75
4.20.How touse alog actioncooiiiiiiiiiiiiiii i 76
4.21. Example of the ArchiveProcessFinalActionooooeee. 86
4.22. Example of TimerHandlerusageoooiiiiiiiiiiiiinn 86
5.1. How to configure an action bean

5.2. Example of an actionccooiiiiiiiiiii
5.3. Use a generic expression in the workflow definition 96
5.4. Example of a generic expressioncoociiiiiiiiiiiiiiiiii
5.5. Example of a Boolean expressionc.oooiiiiiiiiiiiiiiiiiiiiiii.
5.6. Including expressions in the workflow definition

5.7. Example EXPressioncc.oooeeiiiiiiiiiiiiiiiine.n.

5.8. Integrate own rights policy in the workflow definition 101
5.9. Defining a performer policy in the workflow definition 106
5.10. Invoking a performer policy ..o 106
5.11. Create a workflow client ... 108
6.1. Example of the variable usageco no
6.2. Action with a Guard used ina UserTaskooooiii 120
6.3. Example of an aggregation variable 121
6.4. Example of an And element. ... 122
6.5. Example of an AutomatedTaskccoooiiiiiiiiiiiiiiiiiiiiii, 123
6.6. Example of an Assignment taskoooi 124
6.7. Example of a Blob variable ... 125
6.8. Example of a Boolean variable ... 125
6.9. Example of a Choice element ..o, 126
6.10. Example of a Condition element. It is checked whether the document
variable is null or NOt. 127
6.11. Example of a ContentType variable ..., 128
6.12. Example of a Date variable ... 128

COREMEDIA CONTENT CLOUD

Workflow Manual |

6.13. Example of a Document variable.ccoociiiiiiiii 129
6.14. Example of an EntryAction which checks out a document 129
6.15. Example of an Equal expressioncoocoiiiiiiiiiiiiniiiiiinan, 130
6.16. Example of an Exists expression which checks if one of the docu-
ments in the variable Articles has the entry Sports in Topics 131
6.17. Example of an Exit Action which checks whether the document is
NUITOr MOt ..o 132
6.18. Example of an Expression elementc..coiiiiiiiiiiiiiiiiiian 133
6.19. Example of a Folder variable ... 134
6.20. Example of a ForAll element which checks if all documents are
checked in before approving them ... 135
6.21. Example of a Fork taskcooiiiiiiiiiii 135
6.22. Example of a ForkSubprocess taskccooiiiiiiiiiiiiiiiiiii, 137
6.23. Example of a Getelementooceiiiiiiiiiiiiiiii i 138
6.24. Example of a Grant element ... 140
6.25. Example of a Greater eXpressiono.vveiiiiiiiiniiineenean.. 140
6.26. Example of a GreaterEqual expressionc.oooviiiiiiiin.. 141
6.27. Example of a Group variable ... 141
6.28. Example of a Guardccooiiiiiii i 142
6.29. Example of an If taskooeiiiiiiiii 142
6.30. Example for an Implies expressionc.oceviiiiiiiiiiiinian.. 143
6.31. Example of an InitialAssignment elementoiL. 144
6.32. Example of an Integer Variable ... 144
6.33. Example of an IsDocument expressioncooevviiiiiiinnenn.. 145
6.34. Example of an IsDocumentVersion expression 146
6.35. Example of an IsExpired expressionc.ccovviiiiiiiiiiiiiia... 147
6.36. Example of an IsFolder expressioncooviiiiiiiiiiiiiiinn... 147
6.37. Example of aLength element ... 150
6.38. Example of a Less eXPressioncevveiiiiiiiiiininaneane. 150
6.39. Example of a Let element which is needed to check whether the
headline of an article is longer than 50 charactersornot 151
6.40. Example of aNot element ... 152
6.41. Example of a NotEqual eXpressionccooeiiiiiiiiiiiiiianeann. 152
6.42. Example of an Or eXpressionevveiiiiiiiiiiiiiiiie 153
6.43. Performers element ... 154
6.44. Example of a PostCondition elementcoooviiiiiiiiine.. 155
6.45. Example of a PreConditionc.coviiiiiiiiiiiiiiie 155
6.46. Example of the Process element ..., 157
6.47. Example of a Property element ..., 158
6.48. Example of aReads element ... 159
6.49. Example of a Resource variablecoooiiiiL 160
6.50. Example of a Revoke element ... 161
6.51. Example of a Rights element ... 162
6.52. Example of a String variableoo 163
6.53. Example of the Switch element. ..., 164
6.54. Example of a Timer variable ... 165
6.55. Example of a TimerHandler element ..., 166
6.56. Example of a User variable ...t 166
6.57. Example of a UserTask taskccoeviiiiiiiiiiiiiiiiiiiiiinn.. 169

COREMEDIA CONTENT CLOUD X

Workflow Manual |

6.58. Example of a Validator element ..., 170
6.59. Example of a Variable element ... 7
6.60. Example of the Workflow element ..., 7
6.61. Example of a Writes element ... 172
6.62. Listing of the direct publication workflowot. 173

COREMEDIA CONTENT CLOUD

Introduction |

1. Introduction

The use of the CoreMedia CMS covers a range from sites maintained by a single
editor to very large portals edited by many users in different roles. The more
users are involved in editing, approving and publishing content items, the more
difficult it becomes to coordinate tasks and schedules. IT support can greatly
enhance productivity because the users do not have to deal with organizational
issues.

This goal can be achieved by introducing automated workflows. These workflows
do not precisely prescribe how tasks have to be performed, but coordinate and
support the timely execution of different tasks by different users with as much
flexibility as possible and as necessary. The CoreMedia Workflow has a non-re-
strictive, supportive approach: users are given access to the right resources at
the right time via tasks. In contrast to restrictively controlling users, the Core-
Media Workflow focuses on progress of the overall business processes.

The workflow manual does not cover all eventualities, but introduces concepts,
ideas and the technology. Our manuals undergo permanent revision, and Core-
Media is closely tracking progress in development and experience.

To make our manuals valuable tools in development and implementation of the
CoreMedia CMS, do not hesitate to contact us for ideas and suggestions via
<documentation@coremedia.com>.

COREMEDIA CONTEN

Introduction | Audience

1.1 Audience

This manual is intended for administrators, who configure and operate the system,
and for developers, who want to create own workflow definitions or who want
to program own extensions to the workflow system. You will find further inform-
ation on the usage of the predefined workflows in the Studio User Manual.

COREMEDIA CONTENT CLOUD 2

Introduction | Structure Of The Manual

1.2 Structure Of The Manual

This manual provides information on the principles of the CoreMedia Workflow,
on how to configure and operate the system, write own workflows and on how
to develop extensions for the workflow.

+ In Chapter 2, Overview of CoreMedia Workflow [14] you will find a short intro-
duction into the GUI and components of the Workflow.

 In Chapter 3, Configuration And Operation [19] you will learn how to configure
and operate the workflow system.

+ In Chapter 4, Customize Workflow Definitions [37] you will learn how to develop
your own workflow definitions. It explains the syntax of relevant XML files.

+ In Chapter 5, Implementing Extensions [88] you will learn how to implement
own extensions of the workflow.

+ In Chapter 6, Reference [112] you will find a list of the XML elements existing
for workflow definitions and some code examples and workflow definition
examples.

COREMEDIA CONTENT CLOUD 3

Introduction | Typographic Conventions

1.3 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements.
The following table lists typographic conventions for this documentation:

Element

Source code

Command line entries
Parameter and values
Class and method names

Packages and modules

Menu names and entries

Field names
CoreMedia Components

Applications
Entries

(Simultaneously) pressed keys

Emphasis
Buttons

Code lines in code examples
which continue in the next line

Table 1.1. Typographic conventions

Typographic format

Courier new

Bold, linked with |

Italic

In quotation marks

Bracketed in "<>", linked with
nyn

Italic

Bold, with square brackets

Example

cm systeminfo start

Open the menu entry

Format|Normal

Enter in the field Heading
The CoreMedia Component

Use Chef
Enter "On"

Press the keys <Ctrl>+<A>

It is not saved
Click on the [OK] button

cm systeminfo \

—u user

COREMEDIA CONTENT CLOUD 4

Introduction | Typographic Conventions

In addition, these symbols can mark single paragraphs:
Pictograph Description

@ Tip: This denotes a best practice or a recommendation.
Warning: Please pay special attention to the text.

o Danger: The violation of these rules causes severe damage.

Table 1.2. Pictographs

COREMEDIA CONTENT CLOUD 5

Introduction | CoreMedia Services

1.4 CoreMedia Services

This section describes the CoreMedia services that support you in running a
CoreMedia system successfully. You will find all the URLs that guide you to the
right places. For most of the services you need a CoreMedia account. See Section
1.4.1, “Registration” [6] for details on how to register.

NOTE @
CoreMedia User Orientation for CoreMedia Developers and Partners
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

« Section 1.4.], “Registration” [6] describes how to register for the usage of the
services.

« Section 1.4.2, “CoreMedia Releases” [7] describes where to find the download
of the software.

« Section 1.4.3, “Documentation” [8] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the doc-
umentation.

+ Section 1.4.4, “CoreMedia Training” [11] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

+ Section 1.4.5, “CoreMedia Support” [11] describes the CoreMedia support.

1.4.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia
Support (see Section 1.4.5, “CoreMedia Support” [11]) by email to request further
access depending on your customer, partner or freelancer status so that you
can use the CoreMedia services.

COREMEDIA CONTENT CLOUD 6

http://documentation.coremedia.com/new-user-orientation
https://www.coremedia.com/support
https://www.coremedia.com/support

Introduction | CoreMedia Releases

1.4.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

https://releases.coremedia.com/cmcc-13

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

NOTE @
If you encounter a 404 error then you are probably not logged in at GitHub or

do not have sufficient permissions yet. See Section 1.4.1, “Registration” [6] for
details about the registration process. If the problems persist, try clearing your
browser cache and cookies.

Maven artifacts

CoreMedia provides parts of its release artifacts via Maven under the following
URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as de-
scribed in section Section 3.1, “Prerequisites” in Blueprint Developer Manual .

npm packages

CoreMedia provides parts of its release artifacts as npm packages under the
following URL:

https://repository.coremedia.com/nexus/repository/coremedia-npm/

The .npmrc is configured to be able to utilize the registry (see Section 3.1, “Pre-
requisites” in Blueprint Developer Manual).

COREMEDIA CONTENT CLOUD 7

https://releases.coremedia.com/cmcc-13
https://github.com/coremedia-contributions/coremedia-blueprints-workspace
https://repository.coremedia.com
coremedia-en.pdf#Prerequisites
https://repository.coremedia.com/nexus/repository/coremedia-npm/
coremedia-en.pdf#Prerequisites
coremedia-en.pdf#Prerequisites

Introduction | Documentation

License files

You need license files to run the CoreMedia system. Contact the support (see
Section 1.4.5, “CoreMedia Support” [11]) to get your licences.

1.4.3 Documentation

CoreMedia provides extensive manuals, how-tos and Javadoc as PDF files and

as online documentation at the following URL:

https://documentation.coremedia.com

The manuals have the following content and use cases:

Manual Audience
Blueprint Developer Manual Developers, ar-
chitects, ad-

ministrators

Connector Manuals Developers,
administrators

Content Application De- Developers, ar-

veloper Manual chitects

Content Server Manual Developers, ar-
chitects, ad-

ministrators

COREMEDIA CONTEN

Content

This manual gives an overview over the structure
and features of CoreMedia Content Cloud. It de-
scribes the content type model, the Studio exten-
sions, folder and user rights concept and many
more details. It also describes administrative tasks
for the features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a description
of the Maven structure, the virtualization concept,
learn how to perform a release and many more.

This manuals gives an overview over the use cases
of the eCommerce integration. It describes the
deployment of the Commerce Connector and how
to connect it with the CoreMedia and eCommerce
system.

This manual describes concepts and development
of the Content Application Engine (CAE). You will
learn how to write Freemarker templates that ac-
cess the other CoreMedia modules and use the
sophisticated caching mechanisms of the CAE.

This manual describes the concepts and adminis-
tration of the main CoreMedia component, the
Content Server. You will learn about the content

https://documentation.coremedia.com

Introduction | Documentation

Manual

Deployment Manual

Elastic Social Manual

Frontend Developer Manual

Headless Server Developer

Manual

Multi-Site Manual

Operations Basics Manual

Search Manual

COREMEDIA CONTENT CLOUD 9

Audience

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Frontend De-
velopers

Frontend De-
velopers, ad-
ministrators

Developers,
Multi-Site Ad-
ministrators,
Editors

Developers,
administrators

Developers, ar-
chitects, ad-
ministrators

Content

type model which lies at the heart of a CoreMedia
system, about user and rights management,
database configuration, and more.

This manual describes the concepts and usage
of the CoreMedia deployment artifacts. That is
the deployment archive and the Docker setup.
You will also find an overview of the properties
required to configure the deployed system.

This manual describes the concepts and adminis-
tration of the Elastic Social module and how you
can integrate it into your websites.

This manual describes the concepts and usage
of the Frontend Workspace. You will learn about
the structure of this workspace, the CoreMedia
themes and bricks concept, the CoreMedia Free-
marker facade API, how to develop your own
themes and how to upload your themes to the
CoreMedia system.

This manual describes the concepts and usage
of the Headless Server. You will learn how to de-
ploy the Headless Server and how to use its end-
points for your sites.

This manual describes different otions to desgin
your site hierarchy with several languages. It also
gives guidance to avoid common pitfalls during
your work with the multi-site feature.

This manual describes some overall concepts such
as the communication between the components,
how to set up secure connections, how to start
application.

This manual describes the configuration and cus-
tomization of the CoreMedia Search Engine and

the two feeder applications: the Content Feeder
and the CAE Feeder.

Introduction | Documentation

Manual

Studio Developer Manual

Studio User Manual

Studio Benutzerhandbuch

Supported Environments

Unified API Developer Manual

Utilized Open Source Soft-
ware & 3rd Party Licenses

Workflow Manual

Table 1.3. CoreMedia manuals

Audience

Developers, ar-
chitects

Editors

Editors

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects

Developers, ar-
chitects, ad-
ministrators

Developers, ar-
chitects, ad-
ministrators

Content

This manual describes the concepts and extension
of CoreMedia Studio. You will learn about the un-
derlying concepts, how to use the development
environment and how to customize Studio to your
needs.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It also
describes the usage of the Native Personalization
and Elastic Social GUI that are integrated into
Studio.

The Studio User Manual but in German.

This document lists the third-party environments
with which you can use the CoreMedia system,
Java versions or operation systems for example.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the recom-
mended API for most applications. This includes
access to the content repository, the workflow
repository and the user repository.

This manual lists the third-party software used
by CoreMedia and lists, when required, the licence
texts.

This manual describes the Workflow Server. This
includes the administration of the server, the de-
velopment of workflows using the XML language
and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the

Documentation department:

Email: documentation@coremedia.com

COREMEDIA CONTENT CLOUD

mailto:documentation@coremedia.com

Introduction | CoreMedia Training

1.4.4 CoreMedia Training

CoreMedia's training department provides you with the training for your Core-
Media projects either live online, in the CoreMedia training center or at your own
location.

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

https://www.coremedia.com/training
Contact the training department at the following email address:

Email: training@coremedia.com

1.4.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can
always reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to
our forums visit the CoreMedia Online Support at:

https://support.coremedia.com/

Do not forget to request further access via email after your initial registration
as described in Section 1.4.1, “Registration” [6]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, vir-

tual machines, class libraries and customized code in many different combina-

tions. That's why CoreMedia needs detailed information about the environment

for a support case. In order to track down your problem, provide the following

information:

+ Which CoreMedia component(s) did the problem occur with (include the re-
lease number)?

» Which database is in use (version, drivers)?

« Which operating system(s) is/are in use?

* Which Java environment is in use?

COREMEDIA CONTENT CLOUD

https://www.coremedia.com/training
mailto:training@coremedia.com
https://support.coremedia.com/
mailto:support@coremedia.com

Introduction | CoreMedia Support

» Which customizations have been implemented?

A full description of the problem (as detailed as possible)

+ Can the error be reproduced? If yes, give a description please.
« How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

An essential feature for the CoreMedia system administration is the output log Log files
of Java processes and CoreMedia components. They're often the only source

of information for error tracking and solving. All protocolling services should run

at the highest log level that is possible in the system context. For a fast break-

down, you should be logging at debug level. See Section 4.7, “Logging” in Opera-

tions Basics for details.

Which Log File?

In most cases at least two CoreMedia components are involved in errors: the
Content Server log files together with the log file from the client. If you know
exactly what the problem is, solving the problem becomes much easier.

Where do | Find the Log Files?

By default, application containers only write logs to the console output but can
be accessed from the container runtime using the corresponding command-
line client.

For the docker command-line client, logs can be accessed using the docker
logs command. For a detailed instruction of how to use the command, see
docker logs. Make sure to enable the timestamps using the ——timestamps
flag.

docker logs --timestamps <container>

For the kubect!/ command-line client in a Kubernetes environment you can use
the kubectl logs command to access the logs. For a detailed instruction of how
to use the command, see kubectl logs. Make sure to enable the timestamps using
the -—timestamps flag.

kubectl logs --timestamps <pod>

COREMEDIA CONTEN

operation-basics-en.pdf#LoggingAdmin
https://docs.docker.com/reference/cli/docker/container/logs/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs

Introduction | Changelog

1.5 Changelog

In this chapter you will find a table with all major changes made in this manual.

Section Version Description

Table 14. Changes

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |

2. Overview of CoreMedia
Workflow

NOTE @
The Workflow Server is installed as a Spring Boot application. So you have to

use the standard Spring Boot mechanisms to start and stop the server. The
workflow server utilities described in Section 3.5, “Workflow Server Utilities” [24]
on the other hand are started with the cm utility.

The CoreMedia Workflow consists of two components:

+ The Workflow Server
This component is a complete server that communicates with the Content
Management Server. The Workflow Server executes the workflow instances.
* The Client GUI
The Client GUI is what the user works with: by means of the Client GUI tasks
are offered and processed.

See the illustration below for grouping and interaction of the components:

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |

Editorial Staff

CoreMedia workspaces

Production System

Directory

Service
Adapter
UAPI
Session
Persistence
Adapter

Figure 2.1. CoreMedia architecture with integrated workflow
CoreMedia CMS has a user interface for the creation and administration of
workflows, which is integrated into CoreMedia Studio.

Studio workflow support

You can start and manage workflows from the Control Room in Studio and in the
Workflow App. For details please consult Section 4.7.2, “Publishing Content” in
Studio User Manual.

COREMEDIA CONTENT CLOUD

studio-user-en.pdf#PublishingContentOverview

Overview of CoreMedia Workflow |

= Studio Favorites Create ~

hef Corp. USA Home % Moderation # Privacy Policy =

Control Room

Publication Workflow

Workflow
Rick C2021/11/26 4:54 PM

‘Workflow Type
Direct Publication

[~}
. ~ Content
]
Lal
E Privacy Policy ra

Dependent Content @

~ Localization ~ Notes

You can add additional notes here

3

Start Cancel

Figure 2.2. Control Room with workflow start window

COREMEDIA CONTE D)

Overview of CoreMedia Workflow |

Type -~ Current Task Offered 10 n
Reviewed Publication &) Needs Review Teresa, Peter C, Adam, ...3 m
ore

Rick C 2021/11/26 4:54 PM

Content

B Privacy Policy

Type here to search or drag and drop content onto this area

Dependent Content @

Notes
Reviewed Publication You can add additional notes here:

Rick C 2021/11/26 4:54 PM

Figure 2.3. Workflow in the Workflow App

The CoreMedia Workflow comes with three predefined workflows. Two of these
workflows deal with the approval and publication of resources, the third workflow
handles translation.

+ simple-publication
A user (who needs approval and publish rights) creates a workflow with all
necessary resources. The resources will be published (and implicitly approved)
by the same user.

+ two-step-publication
A user creates a workflow with all necessary resources. A second user (who
needs approval and publish rights) can approve the resources. After the
successful completion of this task, the resources will be published automat-
ically.

+ Translation Workflow
Workflow to translate content from the master site to derived sites.

* Synchronization Workflow

COREMEDIA CONTENT CLOUD

Overview of CoreMedia Workflow |

Merges changes from the master site to derived sites.

COREMEDIA CONTENT CLOUD

Configuration And Operation |

3. Configuration And Operation

This chapter describes the configuration and operation of CoreMedia Workflow.

+ Section 3.1, “Starting the Workflow Server” [20] describes how you start the
Workflow Server and how you can upload workflow definitions.

+ Section 3.2, “Uploading Workflows” [21] describes how you can upload your
own workflow definitions.

+ Section 3.3, “Converting Workflows"” [22] describes how you can convert up-
loaded workflows when classes have changed.

+ Section 3.4, “Using JMX Management” [23] describes where you find informa-
tion for JMX management of the Workflow Server.

+ Section 3.5, “Workflow Server Utilities” [24] describes how you can use the
workflow tools. Small utilities for process overviews or uploading workflow
definitions.

COREMEDIA CONTENT CLOUD

Configuration And Operation | Starting the Workflow Server

3.1 Starting the Workflow Server

In order to start the Workflow Server, start the corresponding Spring Boot applic- Start the Workflow
ation. See the official Spring Boot documentation for details. Server

This will also create groups required by the standard workflows. In order to upload
a workflow definition you can use the upload utility (see Section 3.5.4, “Up-
load” [29]).

The names have to be suffixed with .xml. When you would use the simple-
publication workflow, For example, you have to execute the following command
when you want to use the simple-publication workflow.

cm upload -u admin -p <Password> -n simple-publica
tion.xml

COREMEDIA CONTENT CLOUD

https://docs.spring.io/spring-boot/4.0.0/reference/using/running-your-application.html

Configuration And Operation | Uploading Workflows

3.2 Uploading Workflows

Upload workflows

You can create your own workflow definitions. In order to make these definitions
available to the users you need to upload them. For this purpose, you can use
the upload utility (see Section 3.5.4, “Upload” [29] for a detailed description).

COREMEDIA CONTENT CLOUD

Configuration And Operation | Converting Workflows

3.3 Converting Workflows

Convert uploaded workflows

Uploaded workflow definitions are stored in the database as serialized objects.
If incompatible changes in classes occurred, you need to convert these workflows.
For this purpose, you have to use the workflowconverter utility (see Section
3.5.5, “Workflowconverter” [30] for a detailed description).

COREMEDIA CONTENT CLOUD

Configuration And Operation | Using JMX Management

3.4 Using JMX Management

The CoreMedia Workflow Server provides JMX access for management and
monitoring. Read the following chapters for further information:

1. Inthe CoreMedia Operations Basics Manual read the Basics of Operations/JMX
Management chapter with general information about JMX and its configuration
in CoreMedia applications.

2. Read Section 6.1.3, “Managed Properties” [114] in order to see the managed
properties of the Workflow Server.

Note that configuration changes made via JMX are not persisted, that is they
are effective only until the next server restart.

COREMEDIA CONTENT CLOUD

Configuration And Operation | Workflow Server Utilities

3.5 Workflow Server Utilities

There are some tools that help you to work with the Workflow Server.

General usage in a Windows 64-bit environment

The server utilities can be started using the cm64 . exe command in a Windows
64-bit environment with a JVM 64-bit, as described in the Operations Basics.

General usage

The CoreMedia system supports gRPC and CORBA for internal communication.
While servers always offer both protocols for clients to connect, server utilities
can be configured to use either gRPC or CORBA. The protocol can be chosen
freely on each start of a component. Currently, CORBA is the default protocol.

NOTE @
With release 2512.0 of the CoreMedia system, the Workflow Server does not

yet offer gRPC services to its clients. Activating gRPC on server utilities connect-
ing to the Workflow Server won't do any harm as long as these are of release
2512.0, too. Future clients, though, will fail to connect to this Workflow Server if
gRPC is active on them.

Keep this in mind when operating a mixed-release CoreMedia system setup. In
such scenarios (e.g., during upgrades), it is recommended to leave clients in
their default protocol mode which is CORBA.

To activate gRPC on a Workflow Server utility, export environment variable RE
POSITORY USEGRPC set to true or precede the command with a local
variable definition. You then have to specify the gRPC endpoint of the Content
Server to connect to with option —g and the IOR URL of the Content Management
Server with option —url. Example:

> REPOSITORY_USEGRPC=true \
cm start -u admin -p admin \
-url http://content-management-server:40180/ior \
-g content-management-server:40165 \
-pn Synchronization

Alternatively to the command line options —g and —url, you may also use en-
vironment variables. Example:

COREMEDIA CONTENT CLOUD

operation-basics-en.pdf#OperationBasicsManual

Configuration And Operation | Workflow Server Utilities

> REPOSITORY_USEGRPC=true \

REPOSITORY URL=http://content-management-server:40180/ior \

SPRING GRPC CLIENT CHANNELS CAP ADDRESS=content-management-server:40165 \
cm start -u admin -p admin -pn Synchronization

Parameter Description
-u <name> The name of the user
-d <domain> The domain of the user (optional, only for LDAP users)

-g <gRPC endpoint> The gRPC endpoint of the Content Server (optional). Using this option
is equivalent to defining Spring Boot property
spring.grpc.client.channels.cap.address. The tool
option takes precedence over the Spring Boot property.

--http-base-uri HTTP base URI of Content Server where HTTP servlets are provided
<HTTP base URI> (e.g. blob servlet) (optional). This option is irrelevant for Workflow
Server utilities.

--grpc-wfs-endpoint The gRPC endpoint of the Workflow Server (optional). This option is

<WFS gRPC endpoint> only effective for releases after 2512.0 as the Workflow Server cur-
rently does not offer gRPC services to its clients. Using this option is
equivalent to defining Spring Boot property spring.grpc.cli
ent.channels.wf.address. The tool option takes precedence
over the Spring Boot property.

-p <password> The password of the user (optional). Using this option is equivalent
to defining Spring Boot property repository.password. The tool
option takes precedence over the Spring Boot property. If you don't
specify the password at all, the tool will prompt for it at runtime.

--url <ior url> The IOR URL of the content server (optional). Using this option is
equivalent to defining Spring Boot property repository.url.The
tool option takes precedence over the Spring Boot property. If not
specified otherwise, the URL is taken fromfile capclient.proper
ties.

Table 3.1. Common options of server utilities

COREMEDIA CONTENT CLOUD

Configuration And Operation | Start

3.5.1 Start

With the start tool you can start new workflows.

usage:
<idl> <id2> ...]

available options:

Options
-d, --domain <domain name>
-g, —-—grpc-endpoint <gRPC endpoint>

--grpc-wfs-endpoint <WFS gRPC endpoint>

—-http-base-uri <HTTP base URI>
—-password <password>

~Pr

-pn, —--processdefinition-name <name>
-u, --user <user name>

--url <ior url>

-v, -—--verbose

The options have the following meaning:

Parameters

-pn

Table 3.2. Options of start

cm start -u <user> [other options]

Usage of start
[-pn <namel> <name2>

Description

domain for login
(default=<builtin>)

gRPC endpoint to connect to

gRPC endpoint of Workflow Server
to connect to

HTTP base URI of Content Server
where HTTP servlets are provided
(e.g. blob servlet)

password for login; you will be
prompted for password if not
given

names of workflows to start

user for login (required)

url to connect to

enables verbose output

Description

The names of the workflows to be started.

start creates a new workflow for each specified name or ID. You can start
multiple workflows of the same type by specifying the name or the ID several
times. Use the processdefinitions tool (see Section 3.5.6, “Processdefin-
itions” [34]) to list the available process definitions. Note that you can only start
workflows of process definitions which are enabled.

3.5.2 Download

The download tool fetches a process definition and, when existing, an associ-
ated JAR from the Workflow Server and writes them into files.

Usage of download

usage: cm download [-?] [-d <domain name>] [-f <file>] [-g <gRPC
endpoint>] [--grpc-wfs-endpoint <WFS gRPC endpoint>] [--http-base-uri
<HTTP base URI>] [-j <jar-file>] [-p <password>] -u <user name> [--url

[=v]

<ior url>]

available options:

COREMEDIA CO

Configuration And Operation | Download

Options
-2, —-—help
-d, --domain <domain name>
-f, --definition <file>
-g, --grpc-endpoint <gRPC endpoint>

—--grpc-wfs-endpoint <WFS gRPC endpoint>

--http-base-uri <HTTP base URI>

-j, —-—-jar <jar-file>

-p, —--password <password>
-u, --user <user name>
--url <ior url>

-v, --verbose

The options have the following meaning:

Parameters

--jar, -J

Description

Description

Print usage information and
quit.

domain for login
(default=<builtin>)

file name for the workflow
definition to download
(default=processdefinition-<
id>.xml)

gRPC endpoint to connect to

gRPC endpoint of Workflow
Server to connect to

HTTP base URI of Content
Server where HTTP servlets
are provided (e.g. blob
servlet)

file name for the workflow jar
to download
(default=processdefinition-<
id>.jar)

password for login; you will
be prompted for password if
not given

user for login (required)

url to connect to

enables verbose output

The name of the file into which the JAR file should be written. The

defaultis processdefinition-<name>-<id>.jar.If thereis
no custom JAR file associated with the process definition, this option

is irrelevant.

--definition, -f

The name of the file into which the process definition should be writ-

ten. The default is processdefinition-<name>-<id>.xml.

Table 3.3. Options of download

The downloaded process definition corresponds to the coremedia-work

flow.dtd.

Example

You can use the Section 3.5.6, “Processdefinitions” [34] tool to get the IDs of all
workflow definitions that are uploaded to the Workflow Server. Then use, for
example, the following call, where "1" is the ID of one of the uploaded workflow

definitions:

COREMEDIA CO

Configuration And Operation | Enable

./cm download -u admin -p admin 1

The output will tell you about the process definition identified from input (such
as its name and ID) as well as the files written.

The written file(s) can be found by default in the directory of the download tool.
To change the download location, consider providing a different path via
--definition parameter and possibly —-jar parameter, for additional
process definition classes download.

3.5.3 Enable

With the enable tool you can enable or disable process definitions.

Usage of enable
usage: cm enable -u <user> [other options] [-n <namel> <name2> ... | -i
<namel> <name2> ...]

available options:

Options Description
-d, --domain <domain name> domain for login
(default=<builtin>)
-g, —--grpc-endpoint <gRPC endpoint> gRPC endpoint to connect to

--grpc-wfs-endpoint <WFS gRPC endpoint>

—--http-base-uri <HTTP base URI>

gRPC endpoint of Workflow
Server to connect to
HTTP base URI of Content

Server where HTTP servlets
are provided (e.g. blob
servlet)

-i, --disable <disable> names of workflows to disable

-n, --enable <enable> names of workflows to enable

-p, —--password <password> password for login; you will
be prompted for password if
not given

-u, --user <user name> user for login (required

--url <ior url> url to connect to

-v, -—--verbose enables verbose output

The options have the following meaning:

Parameters Description
-1 Disable the specified workflows.
-n Enable the specified workflows.

Table 3.4. Options of enable

Editors cannot start new workflows from disabled process definitions. Initially
uploaded process definitions are enabled.

COREMEDIA CO

Configuration And Operation | Upload

3.5.4 Upload

With the upload tool you can add new process definitions to the workflow

server.
Usage of upload
usage: cm upload -u <user> [other options] [-f <definition path> [-J <Jjar
path>] | -n <namel> <name2>

available options:

Options Description

-d, --domain <domain name> domain for login
(default=<builtin>)

-f, —--definition <definition> file name of the workflow
definition to upload

-g, --grpc-endpoint <gRPC endpoint> gRPC endpoint to connect to

-—-grpc-wfs-endpoint <WFS gRPC endpoint> gRPC endpoint of Workflow
Server to connect to

—--http-base-uri <HTTP base URI> HTTP base URI of Content

Server where HTTP servlets
are provided (e.g. blob

servlet)

-j, --jar <jar> file name of the workflow jar
to upload (deprecated)

-n, --names <names> filenames of the built-in
workflows to upload

-p, —--password <password> password for login; you will

be prompted for password if
not given

-u, —--user <user name> user for login (required
--url <ior url> url to connect to
-v, —--verbose enables verbose output

The options have the following meaning:
Parameters Description

-n Specify workflows by filename (such as studio-two-step-pub
lication.xml). This works only for the standard workflows which
are delivered with the CoreMedia CMS.

-f Specify the XML file which contains the process definition.

-3 Deprecated: Specify an optional JAR file which contains custom re-
sources for your workflow. Required classes should be added to the
classpath of the Workflow Server instead. This option cannot be used
with the default configuration of the Workflow Server, which disables
JAR uploads (see property workflow.server.use-uploaded-
jar). Also, it is only useful in combination with the —f option for

COREMEDIA CO

Configuration And Operation | Workflowconverter

Parameters Description

custom workflows. The standard workflows don't need additional re-
sources.

Table 3.5. Options of upload

If a process definition with the name of the uploaded process definition exists
already, that definition is superseded by the uploaded definition. Process in-
stances of the old definition run to completion, but additional instances are built
using the new definition.

If your process definition references custom Java classes, such classes are
preferentially loaded from the classpath of the Workflow Server. Only if a class
with a given name is not found there, then it will be read from an uploaded JAR
file, if not disabled with configuration property workflow.server.use-
uploaded-jar.

See also Section 6.7, “Managing Process Definitions” in Unified APl Developer
Manual.

3.5.5 Workflowconverter

Uploaded workflow definitions are parsed and stored in the database as serialized
objects. These serialized objects may require to be updated in case of incom-
patible changes to their used classes. See Section 5.9, “Pitfalls of Implemented
Classes” [110] how to reduce such incompatible changes in your custom exten-
sions as, for example, actions, expressions and handlers. Also, when updating
the Workflow Server the workflows need to be parsed and serialized again.
Otherwise, object deserialization errors can occur (see Oracle JDK documentation
for details).

The Workflowconverter takes care of this process either as an automatic con-
version, or it can be triggered manually. The automatic conversion on every
Workflow Server start can be enabled by the workflow.server.enable-
workflow-converter flag (see Section 6.1.2, “Configuration of Workflow
Server Properties” [113]). The manual conversion can be triggered by the Workflow
Server tool cm workflowconverter. The manual conversion must be
triggered before starting the Workflow Server. A possible example call for
manual conversion: cm workflowconverter --convert.

Workflowconverter Tool: The workflowconverter tool used for manual conversion
has the following syntax:

COREMEDIA CONTENT CLOUD

uapi-developer-en.pdf#ManagingProcessDefinitions

Configuration And Operation | Workflowconverter

cm workflowconverter [-7?]
[-A [<ids>] | -c [<ids>] | -f [<ids>] | -r <id> <jar> | -v | -X [<ids>]]

Conversion modes —-A (-—archive)and -X (--destroy) will destroy run-
ning workflows if the workflow definition cannot be parsed anymore.

If your workflow creates intermediate states, that must be rolled back, you will
need to manually apply these, as also final actions will not be triggered. You
may want to take extra care, if the workflow is bound to external services (like
translation services), that require to be informed if workflows they are bound
to are not available anymore.

Server States

Make sure that the Workflow Server is stopped prior to running this tool. Make
sure that the involved Content Management Server is up and running.

The parameters have the following meaning:

Parameter Description

-A, --archive Conversion Mode: Same as ——convert, but fallback on parsing error

[<ids>] to a parsing mode with reduced requirements, enough for archived
workflows.

Note, that workflow definitions that are parsed and eventually serial-
ized in this mode are dysfunctional (cannot be used to start new
workflows), which is why the corresponding workflow definition is also
marked as disabled.

A workflow definition disabled this way must not be enabled again
via cm enable, for example. To get such a workflow definition active
again, you must fix it first (like by re-adding deleted classes to the
classpath) and upload the workflow definition again to be able to use
it.

Parsing Errors: If the workflow definition XML cannot be parsed any-
more even in this mode, the conversion for the affected workflow
definition will fail. If fixing the parsing error is not an option, you may
want to consider using ——destroy instead.

COREMEDIA CONTENT CLOUD

Configuration And Operation | Workflowconverter

Parameter

-c, —-convert
[<ids>]

-f, ——-force [<ids>]

COREMEDIA CONTENT CLOUD

Description

Running Workflows: Running workflows for successfully parsed
workflow definitions will not be affected and continue to work after
Workflow Server start. Any running workflow based on now dysfunc-
tional workflow definitions will be destroyed. Thus, also any defined
final actions will not be applied anymore.

Archived Workflows: Archived workflows will not be affected and
continue to be accessible after Workflow Server start.

ID Parameter: If not given, all workflow definitions will be validated,
otherwise just the given ones.

Conversion Mode: Applies conversion to workflow definitions by
parsing the workflow definition XML anew when the serialized object
is considered invalid.

Parsing Errors: If the workflow definition XML cannot be parsed any-
more, the conversion for the affected workflow definition will fail. If
fixing the parsing error is not an option, you may want to consider
using ——archive (preferred) or ——destroy instead.

Running Workflows: Running workflows will not be affected and con-
tinue to work after Workflow Server start.

Archived Workflows: Archived workflows will not be affected and
continue to be accessible after Workflow Server start.

ID Parameter: If not given, all workflow definitions will be validated,
otherwise just the given ones.

Conversion Mode: Forcibly applies conversion to workflow definitions
by parsing the workflow definition XML anew no matter of the state
of the serialized object.

Forced conversion is useful if group IDs used in the serialized workflows
have become invalid. Even though this should be an exceptional case,
sometimes it happens that external groups (like LDAP groups) vanish
and reappear, for example, by a temporary misconfiguration of the
user provider, and then get a new ID in the CMS. The workflow convert-
er does not detect this, because it is not a matter of deserialization,
so you have to enforce the conversion.

Parsing Errors: If the workflow definition XML cannot be parsed any-
more, the conversion for the affected workflow definition will fail. If
fixing the parsing error is not an option, you may want to consider
using ——archive (preferred) or ——destroy instead.

Configuration And Operation | Workflowconverter

Parameter

-X, —--destroy
[<ids>]

-r, --replace-jar
<id> <jar>

-v, —--verify

Description

Running Workflows: Running workflows will not be affected and con-
tinue to work after Workflow Server start.

Archived Workflows: Archived workflows will not be affected and
continue to be accessible after Workflow Server start.

ID Parameter: If not given, all workflow definitions will be converted,
otherwise just the given ones.

Conversion Mode: Similar to —-convert, but on parsing error the
workflow definition and its corresponding workflows (including
archived ones) will be destroyed.

Parsing Errors: If the workflow definition XML cannot be parsed any-
more, the workflow definition will be removed (in other words: des-
troyed).

Running Workflows: Running workflows for successfully parsed
workflow definitions will not be affected and continue to work after
Workflow Server start. Any running workflow based on removed
workflow definition will be destroyed. Thus, also any defined final ac-
tions will not be applied anymore.

Archived Workflows: Archived workflows for successfully parsed
workflow definitions will not be affected and continue to be accessible
after Workflow Server start. Any archived workflow based removed
workflow definition will be destroyed.

ID Parameter: If not given, all workflow definitions will be validated,
otherwise just the given ones.

Replace a custom-made JAR file for a workflow with a new version
(see Section 3.5.4, “Upload” [29] for the upload of a JAR file).

Only validates workflow definitions (all of them) whether they can still
be deserialized or not. If fixing the deserialization error is not an option
(like re-adding missing classes), you may want to consider running
the tool with ——convert or one of its alternatives.

Table 3.6. Parameters of the workflowconverter tool

The argument id refers to a single numeric id of a workflow process. The argu-
ment ids refers to a list of space-separated numeric process ids. For conversion

COREMEDIA CONTENT CLOUD

Configuration And Operation | Processdefinitions

modes all given or available workflow definitions will be processed, thus, conver-
sion continues with the next even on intermediate invalid workflow definitions.

To convert the workflows, use the cm workflowconverter tool as follows:

1. Make sure that the Workflow Server is stopped.

2. Make sure that the Content Management Server to which the Workflow
Server is attached is running. If necessary, start the Content Management
Server.

3. Copy the changed classes (if any) into the appropriate directories.

4. Start the workflowconverter tool. Note that the conversion only takes
place, if the —c, —f, -X or —Aflag is given.

5. Finally, start the Workflow Server again.

The Content Management Server must run so that usernames and group names
can be resolved while reparsing the workflow definitions.

3.5.6 Processdefinitions

The processdefinitions tool shows all uploaded workflow process defin-
itions.

Usage of the pro-

sage: cm ocessdefinitions -u <user> [other options = P
St 2 e Fomee leter epittensl L cessdefinitions tool

available options:

Options Description
-d, --domain <domain name> domain for login
(default=<builtin>)
-g, —--grpc-endpoint <gRPC endpoint> gRPC endpoint to connect to
--grpc-wfs-endpoint <WFS gRPC endpoint> gRPC endpoint of Workflow
Server to connect to
—--http-base-uri <HTTP base URI> HTTP base URI of Content

Server where HTTP servlets
are provided (e.g. blob
servlet)

-p, --password <password> password for login; you will
be prompted for password if
not given

-u, --user <user name> user for login (required)
--url <ior url> url to connect to
-v, --verbose verbose

The processdefinitions tool has only one additional option:

Parameter Description

-v, --verbose Verbose output, prints out additional information

Table 3.7. Options of the processdefinitions tool

Configuration And Operation | Processes

The non-verbose output of processdefinitions shows the names and
IDs of all uploaded process definitions, for example:
process definitions:
id: coremedia:///cap/processdefinition/1,
name: ThreeStepPublication, enabled: true
id: coremedia:///cap/processdefinition/6,
name: SimplePublication, enabled: true

id: coremedia:///cap/processdefinition/5,
name: SimplePublication, enabled: false

This overview is useful to find out appropriate arguments for other server tools
like start, download or enable. The IDs of the process definitions are
unique. The names are not unique (see SimplePublication in the above
example), but only one process definition of a certain name can be enabled at
a time.

The verbose output provides detailed information about the process definitions.

3.5.7 Processes

The processes utility shows all running workflow processes.

Usage of the pro-

usage: cm processes -u <user> [other options] [-Vv|-v2] cesses utﬂhy

available options:

Options Description
-d, --domain <domain name> domain for login
(default=<builtin>)
-g, -—grpc-endpoint <gRPC endpoint> gRPC endpoint to connect to
--grpc-wfs-endpoint <WFS gRPC endpoint> gRPC endpoint of Workflow
Server to connect to
—-http-base-uri <HTTP base URI> HTTP base URI of Content

Server where HTTP servlets
are provided (e.g. blob
servlet)

-p, —--password <password> password for login; you will
be prompted for password if
not given

-u, —--user <user name> user for login (required)
--url <ior url> url to connect to

-v, —--verbose enables verbose output
-v2, --very-verbose include task details

The processes tool has the following additional options:

Parameter Description
-v Verbose output, prints out additional information
-v2 Even more verbose output, includes task details

Table 3.8. Options of the processes utility

COREMEDIA CO

Configuration And Operation | Processes

The following sample output of the processes utility shows two simple-pub-
lication workflows:

processes:
id: coremedia:///cap/process/46, definition: SimplePublication
(coremedia:///cap/processdefinition/3)
id: coremedia:///cap/process/26, definition: SimplePublication
(coremedia:///cap/processdefinition/3)

Use the —v option or the dump tool (see the Content Server Manual) to obtain
details about a process.

COREMEDIA CONTENT

contentserver-en.pdf#ContentServerManual

Customize Workflow Definitions |

4. Customize Workflow
Definitions

This chapter is about the definition and description of workflows. Definition
means that a desired workflow (or business process) is described by means of
UML activity diagrams. Then, description means the translation of a UML workflow
description into a workflow XML file and probably some Java classes.

+ Section 4.1, “Defining Workflows"” [38] gives a short survey of how to analyze
and define a workflow by means of activity diagrams and the syntactical ele-
ments of the XML workflow description language.

+ Section 4.2, “Upload Workflow Definitions” [63] describes how you can upload
your workflow definition to the workflow server.

+ Section 4.3, “Example of Workflow Definition” [64] gives an example on how
to define a workflow.

« InSection 6.2, “XML Element Reference” [117], all elements of the XML workflow
description language are described as a reference.

NOTE @
The BeanParser, that is used to parse the CoreMedia Workflow definition allows

you to configure all bean properties of the beans that are introduced in the
following. Since not all configuration hooks will be explained, it's always a good
idea to consult the Javadoc and discover all configuration possibilities.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Defining Workflows

4.1 Defining Workflows

A useful notation for defining workflows are activity diagrams as specified by
the Unified Modeling Language (UML). CoreMedia Workflow definitions are based
on activity diagrams. They have to be converted to a CoreMedia CMS specific
XML format for the workflow engine.

After presenting a small example, the notation of activity diagrams is presented
and the translation into the CoreMedia Workflow XML is shown.

Figure 4.1, "Activity diagram of a simple workflow” [39] describes the following
simple workflow with an activity diagram:

A resource is created by one user (an editor) and approved and published by
another user (the chief editor). More precisely, the users fill the roles editor and
chief editor, respectively. The workflow "edit and publish resource" consists of
the following tasks:

« Auser of the role editor creates and edits a content item.

» A user of the chief editor role now has to read the resulting content item and
judge whether to approve or disapprove it.

+ If the content item is approved, the chief editor is requested to publish it.

+ If the resource is not approved, the resource has to be changed again by the
first user.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Defining Workflows

o
\

edit _ «performs»
document

l Editor

check for
approval

|

l [approved]

[else]

Chief Editor

publish

Figure 4.1. Activity diagram of a simple workflow

In the following you will find a description of the UML elements used for the
definition of workflows and their mapping to the XML format used by CoreMedia
Workflow. The details of the XML elements are given in the Section 6.2, “XML
Element Reference” [117], the workflow XML reference.

In the CoreMedia Workflow, a workflow is defined in a file using XML syntax. A
formal description of the syntax of this XML file can be found in the corresponding
DTD coremedia-workflow.dtd whichis located in the zipped xm1 folder
of the 1ib/cap-schema-bundle-<version>. jar file. In principle, the
workflow file must obey the DTD, but cannot be validated against the DTD in all
cases. The reason is that CoreMedia Workflow XML can be customized by using
your own extensions. It is not possible to capture all future extensions in a static
DTD, so the DTD only describes the basis for CoreMedia Workflow XML.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | The BeanParser

In the following sections the important syntactical concepts of the workflow
description are explained. The elements of the workflow definition can be seen
as elements of a programming language. The following table shows this correlation
(not all XML elements are included):

Syntax element of programming language Respective elements of the workflow

definition
variable Variable,AggregationVariable
expression, comparator, function Equal, NotEqual, Greater, Greate

rEqual, Less, LessEqual, And, Or,
Implies, Not, ForAll, Exists, Let,
Get, Read, Length, IsEmpty,
NotEmpty, IsFolder, IsDocument,
IsDocumentVersion

data type value classes: Blob, Boolean, Content,
ContentType, Date, Document,
Folder, Group, Integer, String,
Timer, User

flow control Fork, Join, If, Choice, Switch,
Case

precondition, postcondition PreCondition, PostCondition

procedure Action, EntryAction, ExitAction

sub program ForkSubprocess, JoinSubprocess

Table 4.1. Workflow elements vs. programming language

4.1.1 The BeanParser

The XML files used to configure CoreMedia CMS components are processed by
the BeanParser, which is a basic part of the system. As such, it is used to

* read the license,
» define content types and workflows,

The BeanParser processes the XML files as follows:

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | The BeanParser

» For each XML element it tries to instantiate an object of a class, which is de-
termined by a factory or via the class attribute. The object is created via
Java Reflection and a zero-argument constructor.

» If the XML element occurs inside another XML element, it tries to set the object
created by the inner element on the object created by the outer element. For
this, it calls a setter method and passes the object. The setter method may
be named set<Element Name> (), add<ElementName> () or simply
set () oradd() .

» For each attribute of an element it calls a setter method on the object that
was created when parsing the element start tag. The setter method may be
named set<AttributeName> (), add<AttributeName> () orsimply
set () oradd() .

Example:

Assume the following XML file:

<FirstElement class="com.example.FirstElement" attributel="Ho">
<SecondElement class="com.example.SecondElement"
attribute="Hi"/>
</FirstElement>

Example 4.1. Example of a BeanParser XML file
The BeanParser will execute the following steps:

1. Create aninstance of class com.example.FirstElement.

2. Call setAttributel ("Ho") on thatinstance.

3. Create an instance of class com.example.SecondElement.

4. Call setAttribute ("Hi") on that second instance.

5. Call firstElement.setSecondElement (secondElement), thatis,
set the object created in step 3 on the object created in step 1.

Advanced features:

The class attribute has a special meaning as it determines the name of the class
to instantiate objects from. For this attribute, no setter methods has to be defined
inside the class.

The BeanParser works without an XML Document Type Definition (DTD), but in
connection with a DTD, it makes use of ID and IDREF feature of the XML
parsers. The object, that has been created by the element with the IDREF at-
tribute, is substituted by the object that is defined the corresponding ID attrib-
ute. Again, no setter methods have to be defined inside the involved classes.

COREMEDIA CONTENT CLOUD 4

Customize Workflow Definitions | Elements of Activity Diagrams

4.1.2 Elements of Activity Diagrams

The following Unified Modeling Language (UML) activity diagram symbols may
be translated in elements of CoreMedia Workflow definitions like this:

workflow workflow
‘ begin of workflow
@ end of workflow
Task activity, here called task

Subworkflow

S subactivity state, here called subworkflow
choice
—— synchronization bar

—_— control flow
[condition]

conditional control flow

actor with role

e) dependency used to assign roles to tasks

Figure 4.2. Elements of activity diagrams

+ Begin of workflow

This symbol marks the begin of the workflow. For this node, only outgoing
transitions are allowed.

« End of workflow

This symbol marks the end of the workflow. For this node, only incoming
transitions are allowed.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Processes

« Activity / Task

This symbol denotes an activity, which is called a task in the CoreMedia
Workflow.

» Sub activity state / Subworkflow

A separate workflow can be called from a task of another workflow. Thus, the
separate workflow can be called a subworkflow task.

« Decision node / Branch / Choice

This symbol stands for a node where the control flow branches, depending
on a decision. In a workflow definition, a decision-based branch is usually
called an If task.

* Synchronization bar

This symbol is used for splitting or synchronizing the control flow. In the
splitting case the control flow forks in more than one followup task. In the
synchronization case, multiple tasks executed in parallel are joined together.

« Control Flow

Transitions specify the control flow from a node to its successor. Nodes can
be any of begin or end of workflow, task, choice and synchronization bar.

» Conditional Control Flow

Transitions can be inscribed with a condition in square brackets. Such edges
are usually used as outgoing edges of a decision node (called a Choice task).

« Actor with Role

An actor is used in UML to denote a participant in a use case. CoreMedia in-
troduces actors to specify rights of users of certain groups (roles) for user
tasks.

+ Dependency used to assign Roles to Tasks

A dashed arrow denotes a UML dependency. CoreMedia uses special depend-
encies to connect roles (see above) with user tasks in order to assign rights.

4.1.3 Processes

Each workflow definition describes one process. A process can take several
states as shown in Figure 4.3, “State diagram of a process” [44].

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Processes

Ere closing closed

not_running completing completed

_—
not_started running / ;©
_> aborted

o—

suspended

Figure 4.3. State diagram of a process

There are five operations which can be applied to a process, depending on its
state:

e create a process

If a process is created, the variables of the process are initialized. The workflow
is in the state not_started, so no task is activated yet.

e start a process

If a process is started, it switches to the state running and starts executing
with its start task.

 suspend a process

A running process may be suspended by an authorized user. The further exe-
cution of all tasks is paused until the process is resumed again. Thus, tasks
can neither be accepted nor delegated or completed if a process is in state
suspended.

¢ resume a process

If a process was suspended it may be resumed by an authorized user and
continues where it had paused before.

* abort a process

A process may be aborted by an authorized user in any substate of the state
open. Aborting a process means deleting it. The actions which took place as
part of the workflow so far are not rolled back, so, for example, approved re-
sources remain approved.

COREMEDIA CONTEN

Customize Workflow Definitions | Tasks

4.1.4 Tasks

Tasks are the main building blocks of workflows. There are UserTasks and
AutomatedTasks, as well as auxiliary control flow tasks like If, Choice,
Fork, Join, Switch, ForkSubprocess and JoinSubprocess. All men-
tioned different types of tasks can be defined using the CoreMedia Workflow
XML format.

Like a process definition is a template for concrete process instances, a task
definition is a template for specific task instances. While being executed by the
workflow engine, a task instance can take several states as shown in the state
diagram in Figure 4.4, “State diagram of a task” [45].

open

[not)

not_started activated J running
—>

\ T)—I

suspended

closing closed

skipping skipped

not_running

waiting completing completed

aborted

Figure 4.4. State diagram of a task

Different operations are possible or mandatory during the execution of a task
instance to enter or leave the different states. A rights policy defines which op-
erations are allowed to a user. You can configure this rights policy. The following
table shows how to leave or enter the different task states. A user task always
requires its performing user to have the appropriate rights to perform an action
which changes the state of a task.

State

not_started

waiting

COREMEDIA CONTENT CLOUD

Enter State

This is the starting state of all task
instances after process creation.

This state is entered automatically,
after the task is reached by the
workflow server.

It is also entered from the activated
state if instance context changes

Leave State

The state is left automatically after
the workflow server has entered the
task.

The state is left automatically when
the task is ready for activation, that
is if the following conditions have
been fulfilled:

* The control flow of the workflow
has reached the task.

Customize Workflow Definitions | Tasks

State

activated

suspended

COREMEDIA CONTENT CLOUD

Enter State

have been made. So the guards are
recalculated.

This state is entered automatically,
after the waiting state has been left.

Assigning a task

If this state has been entered, you
can nominate a user or group for
this task via Task.assignTo ().
So only these users will see the task
in their task list (if they have the
appropriate rights). This operation
will not change the state of the task.

Rejecting a task

A user can also reject the task via
Task.reject (), so it will not be
offered to him anymore. If all appro-
priate users have rejected the task,
it will be offered again to all these
users (this is the default performers
policy).

Canceling a task

The state activated is also entered
if a task was accepted by a user and
then canceled by this user via
Task.cancel (). All changes
made so far by the user are saved,
but the task is offered again to all
appropriate users like before it was
accepted.

This state can only be entered via
Process.suspend () which
suspends the workflow. All task are
withdrawn from the task list (GUI
specific).

Leave State

» The optional guard specified in
the task definition evaluates to
"true”.

A user task must be accepted by
the user in order to leave the state
‘activated' via Task.accept ().
Then preconditions and entry ac-
tions are performed. After success-
fully running the actions, the task is
performed by the user and no more
available to other users.

Another way to leave the state is to
skip the task via Task.skip (),
switching to the state 'skipping'.

A fallback to waiting is possible.

This state can be left via
Task.resume (). The workflow
will restart at the same task where
it was suspended.

Customize Workflow Definitions | Tasks

State

running

skipping

skipped

completing

completed

COREMEDIA CONTEN

Enter State

If an automated task has been activ-
ated it automatically leaves the
state 'activated' and changes to
‘running’.

A user task must be accepted by
the user via Task.accept () in
order to enter the state running'.
The task is then performed by the
user and is no more available to
other users.

Intermediate state.

This state is entered if the task has
been skipped by a user via
Task.skip (). The process con-
tinues with the following task.

Intermediate state.

An automated task enters this state
when all actions have been success-
fully performed and the precondi-

Leave State

An automated task leaves the state
‘running’ and enters one of the
states '‘completed' (via
Task.complete ())and'aborted'
depending on the success of the
actions and preconditions
and Postconditions per-
formed.

A user task can leave the state run-
ning’ and enter one of the states
‘waiting’, 'completed' (via ‘complet-
ing") and 'aborted..

'Activated'is reached, when the user
cancels the task via Task.can
cel (). All changes made so far by
the user are saved, but the task is
offered again to all appropriate
users.

‘Completed' is reached, when the
task is completed via Task.com
plete () and the exit actions ex-
ecute successfully and the post-
conditions evaluate to "true".

‘Aborted' is reached, when one of
the exit actions and postconditions
fails.

Intermediate state.

This state can only be left, when the
flow of operation returns to the task.
That is, there is a loop in the work-
flow definition which returns to the
task.

Intermediate state.

This state can only be left, when the
flow of operation returns to the task.
That is, when there is a loop in the

Customize Workflow Definitions | Tasks

State Enter State Leave State
tions and postconditions have been workflow definition, which returns
evaluated to "true". to the task.
A user task enters this state when
the user completes the task, the exit
actions have been successfully ex-
ecuted and the post-conditions
evaluated to "true".
aborted This state is entered if the process Final state.
is abortedvia Process.abort ().
escalated This state is entered automatically You can leave this state retrying the

when an error occurs, if, for example,
a postcondition fails. The previous
user is still the performer if there
was a performer (depends on the
former state).

task via Task.retry (). This will
retry the last operation, which has

failed: for example, if a precondition
has failed, the task will restart with
the state transition from activated

to running, or if a postcondition has
failed the task will restart with the
state transition from running to
completing and repeating all actions.

Table 4.2. Status of Tasks

41.4.1 Common Features of All Tasks

User tasks, automated tasks and control flow tasks have many features in com-
mon. They are presented in this section.

The most important common feature of all tasks is that each must be assigned
a name, which identifies it uniquely within the process. The name has to be an
identifier according to the usual XML rules for names (NMTOKEN).

Since the name is only a symbolic identifier, a task may also contain a description.
Although any task may contain a description, it makes most sense for user tasks.
If you want to provide localized versions of descriptions, put an identifier instead
of the text itself into the description attribute in the workflow definition. In a re-
source bundle (. properties file, see the editor configuration in the Adminis-
trator Manual), you can map the identifier to the localized text, depending on
the chosen locale.

COREMEDIA CONTEN

Customize Workflow Definitions | Tasks

Tasks that finish a workflow process are declared final. There has to be at least
one task in a process definition, which is declared final. Only user tasks and
automated tasks can be declared final.

A task refers its successor by name. Each task must either have at least one
successor or be final. Forking tasks may have multiple successors. Joining task
may have multiple predecessors.

Variables in the task scope define the local state of a task instance. However,
task variables do not have restricted visibility. A variable in a task may be referred
to from other tasks by prefixing the variable name with the task name and a dot.
A variable defined in the process can be referred to by simply using its name
without a prefix. For the definition of variables, see section Section 4.1.6, “Workflow
Variables” [57].

A guard defines an expression that delays activation of a user or automated task
until the expression evaluates to true. The expression is re-evaluated each
time the state of process- or task instances changes or the content, name, or
place of referred resources in the Content Management Server changes.

A precondition defines requirements which have to be fulfilled before the task
itself is executed. A postcondition defines requirements which will be evaluated
after the exit action has been executed. If more than one precondition or post-
condition is provided, then the conditions are evaluated in the order specified.
The result of such an evaluation operation is equivalent to define an And expres-
sion with an ordered set of conditions.

Note that violating a condition is considered an error. If you want to delay exe-
cution until a condition is true, use a guard. If you want to check a condition and
allow correction of wrong data entry within a user task, use a validator (see be-
low).

4.1.4.2 User Tasks

The most common kind of task is the user task, which is executed by participants
of the workflow.

When defining a user task, first consider the rule that selects which users to offer
the task. Usually, the appropriate users are selected from their groups. For each
group, a list of rights on the task is given, where accept is the most important
one for user tasks. For special requirements, you can implement your own busi-
ness logicina WEPerformersPolicy.

For a user task a client view has to be given. A client defines a view on the vari-
ables of the workflow that may be read and/or modified. For resource variables,
you can additionally determine whether the referred content may be editable.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html

Customize Workflow Definitions | Flow Control

Validators (see Section 4.1.7.4, “Validators” [59]) have a special feature in the
context of a client view. If a validator fails and provides a description, it is dis-
played as an error message in a client view. Like task descriptions, validator error
messages may be localized (see Section 4.14., “Common Features of All
Tasks” [48]).

41.4.3 Automated Tasks

Automated tasks usually consist of an action sequence, an optional guard and
preconditions or postconditions. They are executed by the workflow server.

A guard is used to activate the automated task depending on some condition.
For details about when conditions are reevaluated, see Section 4.1.4.1, “"Common
Features of All Tasks” [48].

Actions within an automated task usually modify workflow variables, manipulate
resources, perform calculations and/or access external systems. However, they
may not access the Client GUI, since they are not executed on the client side,
as the workflow server uses a direct connection to the Content Management
Server for automated tasks. If you want GUI interaction, you have to use a user
task.

Several actions which are to be executed sequentially should be given as an
action sequence within a single automated task, not as a sequence of automated
tasks. This is easier to understand and will be executed faster. The general rule
of identifying different tasks by potentially different users can also be applied
here, if you consider automated tasks as being accepted and performed by a
“robot".

An automated task completes as soon as all it actions have been executed and
its optional postcondition is evaluated. If an action raises an exception or the
postcondition evaluates to false, the automated task is aborted. The reason that
led to the error should be fixed before the task is retried. As a last resort, the
whole workflow can be aborted.

4.1.5 Flow Control

The control flow between the tasks can be defined by Unified Modeling Language
(UML) activity diagrams using the following schemes:

Sequence

When tasks are arranged in a sequence, a successor task may start just after
its predecessor task has been completed. Since the workflow server uses a pull
approach, the task does not run immediately after the predecessor has been

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control

completed, as this is delayed until a user accepts it (except for automated tasks).
The very first task of a process always runs immediately.

task1

task?2

Figure 4.5. Example of a sequence diagram

Respective elements and attributes of the workflow definition: successor
attribute of all task XML elements.

Example:

<UserTask name="taskl" successor="task2">

</UserTask>
<UserTask name="task2">

</ﬁserTask>
Example 4.2. Example listing of a sequence
Choice

Based upon a condition, the control flow continues at exactly one of two or more
followup tasks. This is also called an or-split, since only one task will be performed.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control

task1l

[else]

[expr] \1’

task?2 task3

task4

Figure 4.6. Example of a choice diagram

Respective elements of the workflow definition: <I£>[<Condition>, <Then>,
<Else>], <Switch>[<Case>]

Example:

<UserTask name="taskl" successor="choice">
gl== Cogle ==>
</UserTask>
<If name="choice">
<Condition>
<!-- expr —-->
</Condition>
<Then successor="task2"/>
<Else successor="task3"/>
</If>
<UserTask name="task2" successor="task4">
<!-- Code —-->
</UserTask>
<UserTask name="task3" successor="task4">

COREMEDIA CONTEN

Customize Workflow Definitions | Flow Control

<!-- Code -->
</UserTask>

Example 4.3. Example listing of a choice

Implicit Choice

If a choice is used (see above), the workflow engine decides where to continue
the control flow based on an explicit expression. An implicit choice lets the
workflow users decide where to continue, simply by offering two or more user
tasks, from which only one may be accepted. As soon as this one task is accep-
ted, the other task(s) is/are automatically withdrawn and may not be accepted
anymore. The notation is to draw two or more outgoing control flow edges without
a condition inscription. The decision node may be omitted, as in the example
diagram.

task1

task2 task3

\

task4

Figure 4.7. Example of an implicit choice

Respective elements of the workflow definition: <Choice> [<Successor>]

Example:

<UserTask name="taskl" successor="implicitChoice">
Ll== Coclea ===

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Flow Control

</UserTask>

<Choice name="implicitChoice">
<Successor name="task2"/>
<Successor name="task3"/>

</Choice>

<UserTask name="task2" successor="task4">
<!-- Code -->

</UserTask>

<UserTask name="task3" successor="task4">
<!-- Code -->

</UserTask>

Example 4.4. Example listing of an implicit choice
Loop

The loop is a special case of a choice, where one of the successor tasks is a
predecessor of the current task. Thus, a task may be repeatedly performed.

task1

Figure 4.8. Example of a loop

Respective elements of the workflow definition: <I£>[<Condition>, <Then>,
<Else>]

Example:
<UserTask name="task2" successor="loopCondition">

gl== Coele =—=>
</UserTask>

COREMEDIA CONTEN

Customize Workflow Definitions | Flow Control

<If name="loopCondition">

<Condition>
<!-- expr —-—>

</Condition>
<Then successor="task2"/>
<Else successor="task3"/>

</If>

<UserTask name="task3">
<!-- Code —-—>

</UserTask>

Example 4.5. Example listing of a loop

Concurrency/Parallel Execution

After the task before the synchronization bar is completed, all followup tasks
are activated. This is called a fork of the control flow. The resynchronization of
parallel executing tasks is called a join. This is also called an and-split, since all
followup tasks are performed. Each fork must be matched by exactly one join
that joins all previously forked tasks.

COREMEDIA CONTEN

Customize Workflow Definitions | Flow Control

task1l

task2a

task3

task2b

N

task4

Figure 4.9. Example of a concurrency diagram

Respective elements of the workflow definition: <Fork> [, <Join>]

Example:

<Fork name="fork">
<Successor name="task2a"/>
<Successor name="task3"/>

</Fork>

<UserTask name="task2a" successor="task2b">
<!-- Code —--—>

</UserTask>

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Workflow Variables

<UserTask name="task2b" successor="join">

gll== Cogle ==>

</UserTask>

<UserTask name="task3" successor="join">
gl== Cogle ==>

</UserTask>

<Join name="join" successor="task4">
<Predecessor name="task2b"/>
<Predecessor name="task3"/>
</Join>

Example 4.6. Example listing of concurrency

4.1.6 Workflow Variables

Workflow variables are declared within a workflow definition. They contain refer-
ences to resources or other values. There are single-valued variables (atomic
variables) and list-valued variables (aggregation variables) of a given type.
Workflow variables are the main connection between the workflow server and
the Content Management Server. By assigning resources to workflow variables,
these resources may easily be accessed in later tasks of the same workflow in-
stance. Workflow variables provide the context in which a task has to be carried
out. If a workflow variable is defined in a task, it can be accessed by another task
using the dot syntax name-of-task.name-of-variable.

Each Variable is typed. A variable can only be bound to a value of the correspond-
ing type or subtype. There is a fixed amount of types for workflow variables:

*+ basic value types: Boolean, blob, Integer, String, Date, Timer
+ CoreMediaresource related types: Content[Folder, Document], ContentType
» CoreMedia-user-manager-related types: Group, User

If a variable should be shown or edited in the client GUI, it must be mentioned
in a client view (see Section 4.1.4.2, “User Tasks” [49]). Please note, that for ag-
gregation variables there exists only an editor for resource variables. So by de-
fault, you can only edit resource aggregation variables in the variable view.

4.1.7 Expressions

Expressions are used to specify conditions in validators, guards, preconditions
or postconditions and to guard action execution.

Simple expressions return constants, access variables, read properties of re-
sources, or the like. More complex expressions can be build up from the simple
ones by comparison operators, logical connectives, logical quantors, and so on.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Expressions

It is possible to specify custom expressions via WfExpression, if the pre-
defined expressions are not sufficient.

4.1.7.1 Conditions

Conditions are used to define how processing should proceed. They are expres-
sions which evaluate to a Boolean value. There meaning depends on the action
in which the expression is specified.

+ Specifiedinan Action, EntryAction, or ExitAction, a condition de-
termines whether the action should be executed or skipped.

» Specified in an If element, a condition determines which branch should be
taken.

+ Specified in a Case element, a condition determines when a branch should
be taken.

» Specified in a Precondition or Postcondition element, a condition
determines whether constraints are fulfilled.

+ Specified ina Guard element, a condition determines when a task is activated.

4.1.7.2 Preconditions and Postconditions

Preconditions and postconditions are Boolean expressions that act as assertions
which are evaluated when entering or leaving a task. A task can contain any
number of preconditions and Postconditions.

Preconditions and postconditions help the developer to determine error condi-
tions that can not be handled by the normal workflow. If preconditions or post-
conditions evaluates to "false”, the task is escalated. It may be manually restarted
when the error condition has been resolved.

4.1.7.3 Guards

Guards are Boolean expressions that must evaluate to "true” before the task is
activated. The expression may be based on the current values of workflow vari-
ables, on resources in the Content Management Server or on external
resources. A possible use of guards is to determine the resources that are re-
quired for the task. The task then is deactivated until all resources are freely
available. Thus, the workflow suspends execution until the guard is fulfilled.

In Example 4.7, “Example of a Guard” [59] you see a guard that checks whether
the property isCheckedOut of the resource contained in the variable
"document” (variable="document") is set to false (the stored value is

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html

Customize Workflow Definitions | Actions

negated by Not). That is, the task continues when the content item is checked
in.

<Guard>
<Not><Read variable="document" property="isCheckedOut "/></Not>
</Guard>

Example 4.7. Example of a Guard

4.1.7.4 Validators

Validators are Boolean expressions that ensure that the variables that may be
modified via a client view satisfy certain constraints. For example, they can ensure
that values stay within a predefined range or that certain variable values have
been entered at all. If a validator expression evaluates to "false”, a message is
presented to the user who performed the task, so that the error condition may
be resolved by continuing work on the task.

Validators can be specified to verify each "save" of variables. When defining the
validator, set validatedOnSave="true".In this case, you will get an error
message if you try to save and the validator expression evaluates to "false".

4.1.8 Actions

Actions are used to automate or semi automate tasks. To do so, arbitrary actions
can be invoked at the start or end of a user task, during an automated task, or
at the very end after a process was completed or aborted.

User Task

* Element <EntryAction>
This kind of action is invoked after the task is accepted, but before the user
starts to work on the task. Typical start actions are the initialization of re-
sources.

+ Element <ExitAction>
These actions are invoked after the task has been completed by the user and
after the postconditions are checked, but before the workflow continues. A
typical exit action might complete the users work and set some calculated
properties, approve resources in the name of a user, show up a publication
window etc.

Automated Task

e Element <Action>

COREMEDIA CONTEN

Customize Workflow Definitions | Rights

An automated task is not performed by a user. The task duration is exactly
the duration of the invoked actions plus preconditions and conditions. If pre-
conditions or postconditions are violated, the task is aborted.

Final Action

* Element <FinalAction>
Final actions are invoked after the process completed successfully or was
aborted. Typical use cases are cleaning up used resources or archiving data
from the process before it gets deleted. Compared to actions running in a
task, these actions use a different interface and cannot modify the process
itself anymore.

User task actions are executed with the rights and on behalf of the user who
accepted the task. Actions in automated tasks and final actions run with the
Workflow Server's "user” account at the Content Management Server.

4.1.9 Rights

Rights determine which operations user and groups may perform on processes
and tasks. A rights policy is used to decide whether a concrete user may perform
an operation on a workflow object.

The rights policy, which is used by the CoreMedia Workflow Server is configurable.
By default, the ACLRightsPolicy is used. It determines the rights based on
Access Control Lists (ACL) for each workflow object. The ACLs are defined by
granting and revoking rights for a user or a group. The following rules apply:

+ Rights for a user are calculated from concrete rights defined for a user and
the rights from all the groups the user is a member of. Users and groups may
be specified directly or by storing them into a specified variable.

* Arevoke precedes a grant.

+ Rights for users and groups read from a variable precede rights granted to a
fixed user. These rights again precede rights for a fixed group.

For example:

<Rights>
<Grant user="admin" rights="create, start, suspend, resume, abort"/>
<Grant group="composer" rights="create,start"/>
<Grant group="suspender" rights="suspend,resume"/>

</Rights>

Example 4.8. Example of the ACL for a process

This ACL for a process gives the user admin the right to create, start, suspend,
resume and abort the process instance. Whether the user admin is in the groups

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Subworkflows

composer or suspender is not relevant. Users, that are member of the
composer group, may create and start process instances. If a composer
group member, is in the group suspender, too, he may suspend and resume,
the process instance, too. Users that are not member of the composer or
suspender group have no rights on the process instance.

4.1.10 Subworkflows

Basically a subworkflow is an ordinary workflow started by the task <ForkSub
process> within another workflow. The subworkflow may be passed parameters
via the subelements of the <Parameters> element.

A subworkflow is always started as a separate process, while the main process
continues. There are two different ways in which a subworkflow may be started:

* Synchronously via <ForkSubprocess detached="false">
If the main workflow is suspended, resumed or aborted, the subworkflow is
suspended, resumed or aborted, too, but it may finish without affecting the
subworkflow.
The main workflow may wait for the subprocess to complete or to be aborted
via the <JoinSubprocess> task. Note, that it is not possible to loop (see
Section Section 4.1.5, “Flow Control” [50]) a <ForkSubprocess> and join all
subprocesses afterwards. Use recursion in this case so that each subworkflow
starts exactly one subworkflow.

+ Asynchronously via <ForkSubprocess detached="true"> orsimply
<ForkSubprocess>
If the main workflow stops, the subworkflow is not affected. Since they are
not connected, there is no possibility for the main workflow to wait for the
subworkflow to finish.

411 Timers

Timers can be used to define time spans or moments in the execution of a
workflow. For example, the time available for a user task to be accepted. The
CoreMedia Workflow supports timers which can be initialized with relative (the
timeout value is added to current time giving the expiration time) or absolute
values.

By default, two timers are attached to UserTask definitions and one to the Process
definition which can be set via the following attributes:

+ defaultTimeout:Thisis arelative timer which is activated when a process
instance is started or a task instance is activated.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Timers

+ defaultOfferTimeout: This is a relative timer which is activated at the
first offer of the task after the activation. This means if the task is first accep-
ted by a user, then canceled by the user and again offered to the other users
the timer will not be restarted. In contrast, if the task is used in a loop, the
timer will be restarted each time the loop reaches this task.

If these timers expire, they will add a warning message to their process or task
instance. You might use one of the predefined TimerHandlers (using the
<TimerHandler> tag) to react differently if timers expire (see Section 4.4.3,
“Predefined TimerHandler Classes” [86]). The handler must be defined in the
same location, that is the process or task definition, where its associated timer
variable is defined.

In addition, you may define custom timers: At first you have to define a variable
of type Timer. Using the attribute relative you can define whether the
timer is a relative ("true") or absolute one ("false"). Defining an absolute value in
the workflow definition might not make much sense, it is more useful in the client
GUL.

The timer can be started and stopped using the actions EnableTimer and
DisableTimer (see Section 4.4.1, “Predefined Action Classes” [71]). Using the
expressions IsExpired or IsEnabled, you can check whether your timer
has been expired or is enabled and running.

Note that

» Timer values have no identity, they are bound to their variables.
» Aggregations of timers are not supported.

The following example shows an automated task which defines and enables a
timer variable. The succeeding user task waits until the timer expires:

<AutomatedTask name="StartTimer" description="SimplyStart"
successor="Wait">
<Variable name="waiting" type="Timer">
<Timer value="100"/>
</Variable>
<Action class="EnableTimer" timerVariable="waiting"/>
</AutomatedTask>
<UserTask name="Wait" successor="Next">
<Guard>
<IsExpired variable="StartTimer.waiting">
</Guard>
<!-- Code -->
</UserTask>

Example 4.9. Example of a self-defined timer which expires after 100 seconds

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Timer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/Timer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/EnableTimer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/DisableTimer.html

Customize Workflow Definitions | Upload Workflow Definitions

4.2 Upload Workflow Definitions

In order to make your workflow definitions available to the users you need to
upload them. For this purpose, you can use the upload utility. See Section
3.5.4, "Upload” [29] for details.

If you upload a workflow definition with a name (the attribute name of the
Process tag, not the file name) which has already been loaded, then a new
instance of the workflow will be created and the old workflow instance will be
disabled. So, running workflows will still use the old workflow definition, but you
cannot create new workflows from the old definition. This may be a problem if
you are using subworkflows.

To manually enable or disable workflow definition, you can use the enable
utility (see Section 3.5.3, “Enable” [28] for a detailed description).

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition

4.3 Example of Workflow Definition

Here the definition of a workflow is shown by means of the Studio simple public-
ation workflow.

The routine is: An editor creates and edits a change set in the compose task.
After completing the compose task, the resources will be approved and published
automatically (only if the forceUser action succeeds). In Example 6.62,
“Listing of the direct publication workflow” [173] you find the complete XML
definition of this workflow.

The workflow definition consists of multiple blocks:

» The general definitions of the workflow
* An automated task AssignComposer

* Am user task Compose

* An if task CheckEmptyChangeset

* A user task Publish

* An if task CheckPublication

* An automated task Finish

+ AFinalAction

These blocks will be illustrated in detail.

General definitions

g <?xml version="1.0" encoding="iso-8859-1"?>
28
33 <Workflow>
4: <Process name="StudioSimplePublication"
description="studio-simple-publication"
startTask="AssignUser">
58
6: <Rights>
78 <Grant group="administratoren"
rights="read, create, start, suspend, resume,
abort"/>
8: <Grant group="composer-role"
rights="read, create, start, suspend, resume,
abort"/>
9g <Grant group="approver-role" rights="read"/>
10: <Grant group="publisher-role" rights="read"/>
11: </Rights>
12:
13: <Variable name="subject" type="String"/>
14: <Variable name="comment" type="String"/>
15: <AggregationVariable name="changeSet" type="Resource"/>
16: <AggregationVariable name="comments" type="String"/>
17
18: <Variable name="changeSetLockedInStudio" type="Boolean">
19; <Boolean value="true"/>
20: </Variable>
21 g <Variable name="publicationSuccessful" type="Boolean">
22: <Boolean value="false"/>
23: </Variable>

COREMEDIA CO

Customize Workflow Definitions | Example of Workflow Definition

24: <AggregationVariable name="publicationResultResources"
type="Resource" />

258 <AggregationVariable name="publicationResultCodes"
type="Integer"/>

26: <AggregationVariable name="publicationResultVersions"
type="Integer"/>

27: <AggregationVariable name="publicationResultParams"
type="String"/>

28:

293 <InitialAssignment>

30: <Writes variable="subject"/>

3ilg <Writes variable="comment"/>

32: <Writes variable="changeSet"/>

33: <Writes variable="comments"/>

34: </InitialAssignment>

358

36: <Assignment>

37: <Reads variable="subject"/>

38: <Reads variable="comment"/>

39: <Reads variable="changeSet"/>

40: <Reads variable="comments"/>

41: </Assignment>

42: o

43:

44: 0

45: </Process>

46: </Workflow>

Example 4.10. General definitions of the workflow

In the general definitions the workflow itself is described.

Line 4 - 5: The process is named 'SimplePublication’. The localized name is dis-
played in the GUI when selecting a workflow. The first task that is executed after
the workflow start is the task 'AssignComposer’.

Line 6 - 11: The rights (see Section 4.1.9, “Rights” [60]) concerning the workflow
are assigned to users and groups. The user admin can create, start, suspend,
resume and abort a workflow instance. The members of the group composer-
role are allowed to create, start, suspend, resume and abort the workflow process
instance.

Line 13 - 27: Different variables are defined by name and type for storing the
state of the workflow. The changeSet and comment variables store the re-
sources which are processed and the comments of the users. The four aggrega-
tion variables which are prefixed with publication are used to store the publication
result.

Lines 29 - 34: If a new workflow has been created a dialog box opens up (this
can be suppressed) where workflow variables can be initialized. The variables
to show or set are defined in this initial client view. The variables subject,
comment, changeSet and comments will be shown in the initial window, so
that the creator of the workflow can change the content of the variable.

Line 36 - 41: If the workflow has been started, the variables defined in this client
view will be shown in the variable view of the workflow window. The variables
need not to be read only as in the example. The variables subject, comment,
changeSet and comments will be shown in the variable view (if the workflow

COREMEDIA CONTE D

Customize Workflow Definitions | Example of Workflow Definition

is selected in the workflow list), but it is not possible to change the variables,
because they are defined as read only via the <Reads .. .> elements.

Automated Task 'AssignUser’
1l: <AutomatedTask name="AssignUser"

description="assignuser-task"
successor="CheckEmptyChangeSet">

23 <Action class="ForceUser" task="Publish"
userVariable="OWNER_"/>

33 <Action class="ForceUser" task="Compose"
userVariable="OWNER "/>

4: <Action class="RegisterPendingProcess"

userVariable="OWNER "/>
5: </AutomatedTask>

Example 4.11. Automated task "Assign User”

The first task in the workflow is an automated task that assigns a user to the
main tasks - the user task 'Compose’ and 'Publish - of the workflow. The user to
assign is the creator and thus owner of the workflow.

Line 1+ 5: The automated task is named 'AssignUser’. The names of tasks are
used in the definition of a successor of a task. The task, that is started after task
‘AssignUser' completes, is '‘CheckEmptyChangeSet'.

Line 2 + 3: The Action element defines the action which should be executed
in the automated task. Here the predefined ForceUser action is used, which
assigns the user defined in userVariable to the task defined in task. Thus,
the Compose and Publish tasks will only be offered and automatically accep-
ted to the user defined in the variable OWNER . WfVariableOWNER is a
predefined variable which contains the user, who created the workflow.

Line 4: The RegisterPendingProcess registers the workflow process in
the user's pending processes list. Users can watch their pending workflows in
the Control Room.

User Task '‘Compose'

1l: <UserTask name="Compose"
description="studio-simple-publication-compose-task"
successor="CheckEmptyChangeSet" reexecutable="true"
autoAccepted="true">

2 <Rights>

3 <Grant group="administratoren" rights="read, accept, delegate, skip"/>
4: <Grant group="composer-role" rights="read, accept, delegate, skip"/>
53 </Rights>

6:

7 <Assignment>

8: <Writes variable="subject"/>

93 <Writes variable="comment"/>

10: <Writes variable="changeSet" contentEditable="true"/>

11: <Writes variable="comments"/>

12: <Reads variable="publicationResultCodes"/>

13: </Assignment>

14: </UserTask>

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html

Customize Workflow Definitions | Example of Workflow Definition

Example 4.12. User Task Compose

This task is called when the publication fails so that one might fix problems. The
purpose of the task is to enable the user to collect the content items which
should be published at once.

Line 1: The user task is named 'Compose’. The localized description is looked up
in a resource bundle under the key "simple-publication-compose-taskLabel"
(the tooltip key is "simple-publication-compose-taskToolTip") and shown in the
workflow window. The task CheckEmptyChangeSet is started after task
Compose has completed.

Line 2 - 5: The rights concerning the task are assigned to groups. The group
administratoren can read, accept, delegate or skip the task. The members of the
group composer-role are allowed to read, accept, delegate, or skip the task.
Line 7 - 13: If the task has been selected, the variables defined in this section
will be shown in the variable view of the workflow window if the user has the
read right. You can change the content of the variables subject, comment,
changeSet and comments because they are defined in Writes elements.
In addition, you can change the content of the content items, which are provided
by the variable changeSet due to the attribute contentEditable="true".
The variable publicationResultCodes defined in the <Variable>
section of the workflow, will be shown if you press the appropriate button in the
variable view (if the task has been selected in the workflow list). You cannot
change the content of the variable because it is defined as <Reads ...>.

If Task CheckEmptyChangeset

<If name="CheckEmptyChangeSet">
<Condition>
<IsEmpty variable="changeSet"/>
</Condition>
<Then successor="Finish"/>
<Else successor="Publish"/>
</I1f>

SO U WN

Example 4.13. If Task

The second task in the workflow is the '‘CheckEmptyChangeSet' task, an I £ task.
The aim of the task is to check if the change set is empty. Then, no publication
is necessary and the workflow can be finished.

Line1-7: An If taskis defined with the name 'CheckEmptyChangeSet. An If
task is a control flow element, which will be executed automatically. Thus, no
visible description is necessary.

Line 2 - 4: A condition is defined that checks, whether the variable changeSet
contains elements or not.

Line 5: If the condition evaluates to "true" (change set is empty) the workflow
should be finished. Thus, the succeeding task is Finish.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Example of Workflow Definition

Line 6: If the condition evaluates to "false” (change set contains elements) the
changes should be published. Thus, the succeeding task is Publish.

User Task 'Publish’

1 <UserTask name="Publish"

28 description="studio-simple-publication-publish-task"

33 successor="CheckPublication" autoCompleted="true"
reexecutable="true" autoAccepted="true">

4 <Rights>

5 <Grant group="administratoren" rights="read, accept,retry"/>

®8 <Grant group="composer-role" rights="read,accept, retry"/>

78 </Rights>

8:

93 <Assignment>

10: <Reads variable="subject"/>

11: <Reads variable="comment"/>

123 <Reads description="publish-changeSet"
variable="changeSet"

13: contentEditable="false"/>

14: <Reads variable="comments"/>

158 </Assignment>

16:

178 <EntryAction class="Approve"

18: resourceVariable="changeSet"

19 successVariable="publicationSuccessful"/>

23:

24: <EntryAction class="Publish"

258 resourceVariable="changeSet"

268 resultVariable="publicationResultResources"

27: versionVariable="publicationResultVersions"

28: codeVariable="publicationResultCodes"

298 parameterVariable="publicationResultParams"

30: successVariable="publicationSuccessful"/>

32: </UserTask>

Example 4.14. User Task "Publish”

The third task of the workflow is a user task called 'Publish’, that will publish the
changes contained in the change set. This task will be automatically accepted
by the composer of the change set due to the exit action ForceUser in the
‘AssignUser' task.

Line 1- 3: The user task is named "Publish” and its successor is the task "Check-
Publication". The task will automatically be completed after execution of the
entry actions because of the attribute autoCompleted="true". This is
useful when a set of automated actions should be executed on behalf of a user.
Line 4 - 7: The rights are granted to the groups administratoren and
composer-role.

Line 9 - 15: Like mentioned before, variables are defined which should be shown
in the variable view of the workflow window. Nevertheless, automatically com-
pleted tasks will only be shown in the case of error in the task list. In contrast to
the declaration of these variables in the Compose task no changes at all can
be applied to the variables (due to Reads) and its content (due to conten
tEditable="false").

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html

Customize Workflow Definitions | Example of Workflow Definition

Line 17 - 22: The first action performed in the task is the predefined Approve
action which approves the content items given via the attribute resourceVari
able.

Line 24 - 31: After executing the first entry action, the second one will be per-
formed. Here the content items given via the attribute resourceVariable
will be published by the predefined action Publish. The other attributes define
the variables to store the publication result into, to set timeouts and to ignore
publication errors only.

If Task "CheckPublication”

<If name="CheckPublication">
<Condition>
<Get variable="publicationSuccessful"/>
</Condition>
<Then successor="Finish"/>
<Else successor="Compose"/>
</If>

S U WN

Example 4.15. If Task "CheckPublication”

The fifth task in the workflow is the 'CheckPublication’ task, an If task. The aim
of the task is to check if the publication was successful. If it was, the workflow
will be finished, otherwise the compose task will be started again.

Line 1+ 7: The If taskis named 'CheckPublication’. An If task is a control flow
element which will be executed automatically.

Line 2 - 4: A condition is defined which will be evaluated. The value of the Boolean
variable publicationSuccessful, which has been set in the Publish
task will be read using the Get element.

Line 5: If the condition evaluates to "true” (publicationSuccessful ="true")
the workflow should be finished. Thus, the succeeding task is "Finish" task.

Line 6: If the condition evaluates to "false" (publicationSuccessful ="false")
the Compose task should be offered again.

Automated Task 'Finish'

1: <AutomatedTask name="Finish" final="true">

23 <Action class="AssignVariable"
resultVariable="changeSetLockedInStudio">

38 <Boolean value="false"/>

4: </Action>

5: </AutomatedTask>

Example 4.16. Example of automated task Finish

The last task of the workflow is an automated task and defines actions that are
executed before the workflow completes. The task would also be needed if no

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Approve.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Approve.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Publish.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Publish.html

Customize Workflow Definitions | Example of Workflow Definition

such actions were necessary because the previous If task may not be the final
task of the workflow.

Line 1: The automated task is named Finish'. Because the task should be the last
one in the workflow, it must be marked as final. If the control flow of the workflow
reaches a task with the attribute final="true", it quits the execution of the
workflow after the task was successfully executed.

Line 2 - 4: The lock on the change set in Studio is removed.

Final Action 'ArchiveProcessFinalAction’

1: <FinalAction class="ArchiveProcessFinalAction"
maxProcessesPerUser="100"/>

Example 4.17. Example of ArchiveProcessFinalAction

Final actions are executed at the very end, after a workflow completed success-
fully or was aborted. The ArchiveProcessFinalAction archives data of
the workflow and moves it from the list of pending workflows to the list of finished
workflows for all users for that the RegisterPendingProcess action was
called before.

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Reference of Predefined Classes

4.4 Reference of Predefined Classes

In this chapter you will find a summary of all predefined classes which you can
use in the tasks of the CoreMedia Workflow.

4.4.1 Predefined Action Classes

These are the predefined action classes which can be performed in tasks. They
can be used with the elements <Action>, <EntryAction> and <ExitAc
tion> by specifying the name of the action class as the class attribute of the
respective action element.

If an action is described as applying to one resource in an atomic variable, it can
be applied to a set of resources in an aggregation variable, too.

All predefined action classes discussed here support the following additional
attributes to be specified as part of the action element:

Attribute Type Default Description
class NMTOKEN #REQUIRED the name of the action
successVariable NMTOKEN #IMPLIED the name of a Boolean

variable that will rep-
resent whether the
action was success-
fully executed

resultVariable NMTOKEN #IMPLIED the name of a variable
that will receive a
possible result of the
action, if any

Table 4.3. Attributes common to all actions

Furthermore, every predefined action may contain a Condition element,
which will be evaluated to determine whether the action should be executed at
all.

Approve

Use this action to approve one or more CoreMedia resources referenced by a
variable. If the variable stores an explicit version, that version is approved and

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

a place approval takes place. If the variable stores a content, a place approval
takes place and the content's latest checked-in version is approved. The content

will be checked in if necessary.

Attribute Type
resourceVari- NMTOKEN
able

userVariable NMTOKEN
ignoreErrors (Boolean)

Table 4.4. Attributes of the Approve action.

Publish

Default

#REQUIRED

#IMPLIED the per-
former of a UserTask
or the process owner
if not used in a User-
Task

"true”

Description

the name of the vari-
able that contains the
resource(s) to be ap-
proved

the variable which
contains the user to
whose list of pending
processes the pro-
cess should be added
to

whether to continue
the task containing
the action normally
after an error was en-
countered

Use this action to publish one or more CoreMedia resources referenced by a
variable. If the variable stores an explicit version, that version is published. If no
version information is present, the most recent version will be published.

The aggregation variables resultVariable, codeVariable, paramet-
erVariable, and versionVariable jointly represent the result of the

publication.

Attribute Type
codeVariable NMTOKEN
ignorePublica- (Boolean)
tionErrors

COREMEDIA CONTENT CLOUD

Default

#REQUIRED

"false”

Description

an integer aggregation
variable

whether an unsuccess-
ful publication should
be ignored

Customize Workflow Definitions | Predefined Action Classes

Attribute Type Default Description

ignoreErrors (Boolean) "false” whether to continue
the task containing
the action normally
after an error was en-

countered
parameterVari- NMTOKEN #REQUIRED a string aggregation
able variable
resourceVari- NMTOKEN H#REQUIRED Defines the name of
able the variable that con-

tains the resource(s)
to be published

versionVariable NMTOKEN #REQUIRED an integer aggregation
variable

Table 4.5. Attributes of the Publish action.

AssignVariable

Use this action to assign a new value to a variable. It takes a list of expressions
(that evaluatetoa WfValue)viathe Expression subelementor WfValues
via the Boolean, Date, String etc. subelements.

Example:

This example will assign Integer values to the variable defined via the attribute
resultVariable.

<Action class="AssignVariable" resultVariable="resultVariable">
<Read variable="firstVariable" property="version_ "/>
<Expression class="AddLatestVersion">
<Get variable="secondVariable"/>
</Expression>
<Integer value="4711"/>
</Action>

Example 4.18. Example of the AssignVariable element

DisableTimer

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/Expression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html

Customize Workflow Definitions | Predefined Action Classes

Use this action to disable a timer.

Attribute Type Default Description

timerVariable NMTOKEN #REQUIRED the variable that con-
tains the timer that
should be disabled

Table 4.6. Attribute of the DisableTimer action.

EnableTimer
Use this action to enable a timer. Note, that a timer has to be enabled before it

may expire later.

Attribute Type Default Description

timerVariable NMTOKEN #REQUIRED the variable that con-
tains the timer that
should be enabled

Table 4.7. Attribute of the EnableTimer action.

ExcludePerformer

Use this action to exclude the performer of the current task from performing
another specified task. When the specified task coincides with the current task,
the exclusion will take effect when the task is reached the next time.

Attribute Type Default Description

task NMTOKEN #lmplied the name of the task
for which an exclusion

current task should be established

Table 4.8. Attribute of the ExcludePerformer action.

ExcludeUser

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

Use this action to exclude a configured user from performing another specified
task. When the specified task coincides with the current task, the exclusion will
take effect when the task is reached the next time.

Attribute Type Default Description

task NMTOKEN #Implied the name of the task
K for which an exclusion
current tas should be established
userVariable NMTOKEN #IMPLIED The variable which
contains the user who

performer should be excluded.

Table 4.9. Attribute of the ExcludeUser action.

ForceUser

Use this action to preset a user as the performer of a task. The task will be
automatically accepted by the Client GUI for the user.

Example:

<AutomatedTask name="AssignComposer" description="assignUser"
successor="Compose">

<Action class="ForceUser" task="Compose" userVariable="OWNER "/>
</AutomatedTask> -

Example 4.19. How to force a user

Attribute Type Default Description

task NMTOKEN #IMPLIED The task for which the

user is predefined.
current task

userVariable NMTOKEN #IMPLIED The variable which
contains the user who
should accept the
task.

performer

Table 4.10. Attributes of the ForceUser action.

Log

Use this action to write output to the log. The log name can be defined using the
facility attribute. You can write text to the output defined via the attribute

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

message. Using the subelement Get you can output the content of variables.
Define the log level using the attributes debug, info, warning, or error
(see Section 4.7, “Logging” in Operations Basics for details on the logging).

Attribute Description

debuglinfolwarninglerror Defines the log level "debug”, "info", "warning", or
"error”. Value must be "true”.

message The message which is printed to the log.

facility Define a different log facility for the output.

The default log facility contains both the process
and the task name. For example, the following
entry in the Workflow Server's Logback configur-
ation would match all info output of MyProcess
workflows:

<logger name="workflow.actions.log.MyProcess"
additivity="false" level="info">
<appender-ref ref="file" />

</logger>

Table 4.11. Attributes of the Log action.

<Task ...>
<Action class="Log" info="true" message="Enter task with x ">
<Get variable="x"/>
</Action> </Task>
</Task>

Example 4.20. How to use a log action

PreferPerformer

COREMEDIA CONTENT CLOUD

operation-basics-en.pdf#LoggingAdmin

Customize Workflow Definitions | Predefined Action Classes

Use this action to set the performer of the current task as the preferred performer
of another task. When the given task coincides with the current task, the prefer-
ence will take effect when the task is reached the next time.

Attribute Type

task NMTOKEN

Table 4.12. Attribute of the PreferPerformer action.

RegisterPendingProcess

Default

#IMPLIED

current task

Description

the name of the task
for which a preference
should be established

Use this action to add the process to a user's pending processes list that is

shown in Studio's Control Room.

The action stores the user's pending processes to a MongoDB database. To
configure it, set the properties mongodb.client-uri, mongodb.prefix
and repository.caplist.connect inthe Workflow Server. See Section
6.1, “Configuration Reference” [113] for a description of these properties.

Attribute Type

userVariable NMTOKEN

Default

#IMPLIED

the performer of a
UserTask or the pro-
cess owner if not used
in a UserTask

Table 4.13. Attributes of the RegisterPendingProcess action.

CancelUserTask

Use this action to cancel an activated user task.

Attribute Type

task NMTOKEN

Table 4.14. Attribute of the CancelUserTask action.

SkipUserTask

COREMEDIA CONTENT CLOUD

Default

#IMPLIED

current task

Description

the variable which
contains the user to
whose list of pending
processes the pro-
cess should be added
to

Description

The name of the user
task to cancel.

Customize Workflow Definitions | Predefined Action Classes

Use this action to skip an activated user task.

Attribute Type Default Description
task NMTOKEN #IMPLIED The name of the user
task to skip.

current task
Table 4.15. Attribute of the SkipUserTask action.

Client-side actions (Deprecated)

The following actions derived from AbstractClientAction are deprecated
and will be removed in a future release.

For some non-trivial actions there are replacements like Approve and Pub
1ish.Other trivial actions are deprecated without replacement. For such cases,
please consider implementing your own LongAction or extending
LongActionBase.

In the past there has been the concept of executing actions inside a client ap-
plication using the AbstractClientAction, which is no longer the case.
There are still actions based on AbstractClientAction, but they are ex-
ecuted in the workflow-server. As these Actions are still executed inside this
client-server framework they come with some unnecessary overhead like
timeouts, potentially causing issues during execution. To this end the Ab
stractClientAction and all derived Actions have been deprecated.

Client action classes that are used to modify resources on the GUI Client respond
to the following attributes:

Attribute Type Default Description

gui (Boolean) "true" Defines whether a GUI
element will be shown
on execution of the
action ("true") or not.
For instance, execut-
ing pub
lishResources
with gui="false"
will not show the pub-
lication window.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Approve.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Approve.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Publish.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Publish.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Publish.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/Publish.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/cap/workflow/plugin/LongAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/cap/workflow/plugin/LongActionBase.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html

Customize Workflow Definitions | Predefined Action Classes

Attribute Type Default Description

ignoreErrors (Boolean) "false” If set to "true”, this at-
tribute makes sure
that the task contain-
ing the action will con-
tinue normally after an
error was en-
countered.

timeout NMTOKEN "30" The timeout in
seconds for the ac-
tion. The default
timeout is 30
seconds.

Table 4.16. Attributes of client-side actions.
ApproveResource

Use this action to approve one or more CoreMedia resources referenced by a
variable. If the variable stores an explicit version, that version is approved and
a place approval takes place. If the variable stores a content, a place approval
takes place and the content's latest checked-in version is approved. The content
will be checked in if necessary.

Attribute Type Default Description
resourceVari- NMTOKEN #REQUIRED the name of the vari-
able

able that contains the
resource(s) to be ap-
proved

Table 4.17. Attributes of the ApproveResource action.
CheckinDocument

Use this action to check-in one or more CoreMedia content items referenced
by a variable.

Attribute Type Default Description
documentVari- NMTOKEN #REQUIRED the name of the vari-
able

able that contains the

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

Attribute Type Default

Table 4.18. Attributes of the CheckInDocument action.

CheckOutDocument

Description

document(s) to be
checked in

Use this action to check-out one or more CoreMedia content items referenced

by a variable.

Attribute Type Default
documentVari- NMTOKEN #REQUIRED
able

Table 4.19. Attribute of the CeckOutDocument action.
CopyResource

Use this action to copy a resource to a specified folder.

Attribute Type Default
sourceVariable NMTOKEN #REQUIRED
destinationVari- NMTOKEN #REQUIRED
able

Table 4.20. Attributes of the CopyResource action.
CreateDocument

Use this action to create a new content item in a specified folder.

COREMEDIA CONTENT CLOUD

Description

the name of the vari-
able that contains the
content item(s) to be
checked out

Description

the name of the vari-
able that contains the
resource to be copied

the name of the vari-
able that contains the
folder where the
copied resource
should be located

Customize Workflow Definitions | Predefined Action Classes

This element may contain any number of Property elements that specify initial
property values for the newly created content item.

Attribute Type Default Description

folderVariable NMTOKEN H#REQUIRED the name of the vari-
able that contains the
folder where the re-
source should be cre-
ated

nameVariable NMTOKEN #REQUIRED the name of the string
variable that contains
the name to be used

typeVariable NMTOKEN #REQUIRED the name of the vari-
able that contains the
content type for
which a content item
should be created

Table 4.21. Attributes of the CreateDocument action.

CreateFolder

Use this action to create a new folder in a specified parent folder.

Attribute Type Default Description

folderVariable NMTOKEN H#REQUIRED the name of the vari-
able that contains the
existing folder in
which the new folder
should be created

nameVariable NMTOKEN #REQUIRED the name of the string
variable that contains
the name to be used

Table 4.22. Attributes of the CreateFolder action.

DeleteResource

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

Use this action to mark a resource for deletion.

Attribute Type Default Description
resourceVari- NMTOKEN #REQUIRED the name of the vari-
able able that contains the

resource(s) to be
marked for deletion

Table 4.23. Attribute of the DeleteResource action.

DisapproveResource

Use this action to disapprove one or more CoreMedia resources referenced by
a variable. If the variable stores an explicit version, that version is disapproved.
If no version information is present, the most recent version will be disapproved.

Attribute Type Default Description

resourceVari- NMTOKEN H#REQUIRED the name of the vari-

able able that contains the
resource(s) to be dis-
approved

Table 4.24. Attribute of the DisapproveResource action.

MoveResource

Use this action to move a resource to another folder.

Attribute Type Default Description

sourceVariable NMTOKEN H#REQUIRED the name of the vari-
able that contains the
resource to be moved

destinationVari- NMTOKEN #REQUIRED the name of the vari-

able able that contains the
destination folder for
the move

Table 4.25. Attributes of the MoveResource action.

OpenDocument

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined Action Classes

Use this action to open a content item in the editor.

Attribute Type Default Description
documentVari- NMTOKEN #REQUIRED the name of the vari-
able able that contains the

content item to open
Table 4.26. Attribute of the OpenDocument action.

PublishResources

Use this action to publish one or more CoreMedia resources referenced by a
variable. If the variable stores an explicit version, that version is published. If no
version information is present, the most recent version will be published.

The aggregation variables resultVariable, codeVariable, paramet-
erVariable, and versionVariable jointly represent the result of the

publication.
Attribute Type Default Description
codeVariable NMTOKEN #REQUIRED an integer aggregation
variable
ignorePublica- (Boolean) "false” Defines whether an
tionErrors unsuccessful publica-
tion should be ignored
parameterVari- NMTOKEN #REQUIRED a string aggregation
able variable
resourceVari- NMTOKEN #REQUIRED Defines the name of
able the variable that con-
tains the resource(s)
to be published
versionVariable NMTOKEN #REQUIRED an integer aggregation

Table 4.27. Attributes of the PublishResources action.

RenameResource

COREMEDIA CONTENT CLOUD

variable

Customize Workflow Definitions | Predefined Action Classes

Use this action to rename a resource.

Attribute Type Default
resourceVari- NMTOKEN #REQUIRED
able

nameVariable NMTOKEN #REQUIRED

Table 4.28. Attributes of the RenameResource action.

SaveDocument

Description

the name of the vari-
able that contains the
resource to be re-
named

the name of the string
variable that provides
the new name of the
resource

Use this action to save a content item that has to be opened in the Client GUL.

Attribute Type Default
documentVari- NMTOKEN #REQUIRED
able

Table 4.29. Attribute of the SaveDocument action.

StoreProperties

Description

the name of the vari-
able that contains the
content item to be
saved

Use this action to store property values in a content item. The property name

and value are defined using the subelement Property.

Attribute Type Default
documentVari- NMTOKEN #REQUIRED
able

Table 4.30. Attribute of the StoreProperties action.

UncheckOutDocument

COREMEDIA CONTENT CLOUD

Description

the name of the vari-
able that contains the
content item

Customize Workflow Definitions | Predefined FinalAction Classes

Use this action to revert the check out of one or more CoreMedia content items
referenced by a variable.

Attribute Type Default Description

documentVari- NMTOKEN H#REQUIRED the name of the vari-

able able that contains the
checked-out content
item(s)

Table 4.31. Attribute of the UncheckOutDocument action.

UndeleteResource

Use this action to remove the deletion from a resource.

Attribute Type Default Description
resourceVari- NMTOKEN #REQUIRED the name of the vari-
able able that contains the

deleted resource(s)

Table 4.32. Attribute of the UndeleteResource action.

4.4.2 Predefined FinalAction Classes

These are the predefined action classes which can be executed after a process
completed or was aborted. They are used with the element <FinalAction>
and by specifying the name of the action class as the class attribute.

ArchiveProcessFinalAction

Use this action to archive data of the process after it completed or was aborted
and before it gets destroyed in the Workflow Server. If the RegisterPending
Process action was used before to add the process to some users' lists of
pending processes, then these users can view the completed process in Studio’s
Control Room.

The action can store the process data to a MongoDB database. To configure it,
set the properties mongodb.client-uri, mongodb.prefix and repos
itory.caplist.connect inthe Workflow Server. See Section 6.1, “Config-
uration Reference” [113] for a description of these properties.

The Workflow Server will retry the execution of this action in case of communic-
ation problems with the MongoDB database. The exception classes that trigger

COREMEDIA CONTENT CLOUD

Customize Workflow Definitions | Predefined TimerHandler Classes

a retry are defined in the configuration property workflow.serv
er.archive.retry-exception,whichisdescribedin Table 3.34, “Workflow
Server Properties” in Deployment Manual.

Attribute Type Default Description
maxProcessesPer— NMTOKEN (unlimited) The maximum number
User of processes to show

in the list of finished
processes in Studio's
Control Room. This at-
tribute should be set
to the same value for
all ArchivePro-
cessFinalAction and
ArchiveProcess ac-
tions in different
workflow definitions,
because all processes
are stored in the same
list.

Table 4.33. Attributes of the ArchiveProcessFinalAction

Example:

<FinalAction class="ArchiveProcessFinalAction"
maxProcessesPerUser="100"/>

Example 4.21. Example of the ArchiveProcessFinalAction

4.4.3 Predefined TimerHandler Classes

Timer handler classes are invoked when a timer expires.

<UserTask name="c0 edit" final="true">
<Variable name="skipExpiredTimer" type="Timer">
<Timer value="30"/>
</Variable>
<TimerHandler class="RunActionTimerHandler" name="TimerHandler"
timerName="skipExpiredTimer">
<Action class="Log" debug="true" message="timer expired"/>
<Action class="CancelUserTask" task="c0_edit"/>
</TimerHandler> -
<EntryAction class="EnableTimer"
timerVariable="skipExpiredTimer"/>

COREMEDIA CONTENT

deployment-en.pdf#workflowServerProperties
deployment-en.pdf#workflowServerProperties

Customize Workflow Definitions | Predefined TimerHandler Classes

<EntryAction class="Log"

debug="true" message="c0 edit accepted"/>
<Rights> -
<Grant user="cpesch"
rights="read, accept, complete, cancel, retry"/>
</Rights>
<Client>
<Reads variable="skipExpiredTimer"/>
</Client>
</UserTask>

Example 4.22. Example of TimerHandler usage

AbortTaskTimerHandler
This timer handler aborts the task instance in which it is defined on expiration.

AddWarningTimerHandler
This timer handler adds a timer expiration warning to a process or task instance.

RetryTaskTimerHandler
This timer handler retries an escalated task. The handler and its timer need to
be defined below the Process element. The name of the task to retry is specified
in the additional attribute "task".

RunActionTimerHandler
This timer handler runs one or more actions on expiration. The actions can be
defined using the sub element Action.

SkipUserTaskTimerHandler

This timer handler aborts the activated user task on expiration. It does not work
with a task if it is not activated.

COREMEDIA CONTEN

Implementing Extensions |

5. Implementing Extensions

Note that this manual describes the old Workflow API that was the sole means
for writing extensions up to CMS 2005. From CMS 2006 on, it is recommended
to use the Unified API for writing extensions, there called plugins. In general, old
and new extensions mix without problems. Please consult the Unified APl De-
veloper Manual for details regarding the new API. Most information from the
following sections carries over to the new API.

This chapter deals with the customizing of the workflow by programming own
extensions and configuring the workflow. The following types of workflow beans
are supported:

« Actions (server-side and client-side actions)

+ Expressions (used in guards, conditions, validators)
+ Rights policies

» Performers policies

In addition, you can implement own

+ Clients,
» Workflow startups.

You will find some programming guidelines and examples for each bean in the
following subsections. Please refer to the Workflow API for more details on the
classes described in the following chapters.

COREMEDIA CONTENT CLOUD

Implementing Extensions | Update Workflows

5.1 Update Workflows

Uploaded workflow definitions are stored in the database as serialized objects.
Every time, you have made incompatible changes to your extension classes,
which are used in already uploaded workflows, you need to convert these
workflows. Use the workflow converter utility for this. In case of an update of the
CoreMedia Workflow Server, the workflows have to be converted, too. Otherwise,
object deserialization errors can occur (see Oracle JDK documentation for de-
tails).

Changes at classes that are used in uploaded workflows should happen with
great care and intensive testing. The classes must be compatible with the up-
loaded XML workflow definition.

See Section 5.9, “Pitfalls of Implemented Classes” [110] for more hints on this
topic.

COREMEDIA CONTENT CLOUD

Implementing Extensions | Variable Values

5.2 Variable Values

Variables are typed. A variable of a certain type can only contain values of its
defined type or subclasses of the type.

The existing values are closely related to CoreMedia CMS property types and
resource objects:

+ Boolean

+ Blobs

« Contents, Folders and Documents
» Content types

« Dates

+ Exceptions

» Groups and Users

* Integers

+ Strings

+ Timers

All values implement the java.lang.Comparable interface. They may
contain null values and are immutable. So, their setValue() methods must
never be called from your own code, the result of such an action is unpredictable.

COREMEDIA CONTENT CLOUD

Implementing Extensions | Programming Actions

5.3 Programming Actions

Actions are used to automate or semi automate tasks. Two kinds of actions exist:

» Actions running only on server side.
Server-side actions run completely inside the CoreMedia Workflow Server.
They may use the CoreMedia Workflow Server's session to the CoreMedia
Content Management Server to access resources.

» Client actions running partly on the server and on a client.
ClientActions in a user task run remotely using the Client GUI's session to the
CoreMedia Content Management Server to access resources. ClientActions
in an automated task run in a server internal client environment using the
CoreMedia Workflow Server's session to the CoreMedia Content Management
Server to access resources.

5.3.1 General Rules

Actions can only be used in automated tasks, user tasks, in the predefined
RunActionTimerHandler, oras final actions. They are performed at different
times:

» Entry actions are performed when a user accepts a task.

+ Exit actions are performed when a user completes a task.

» Actions in an automated task run when the guard evaluates to true.

» Actions in a timer handler are run if the associated timer expires.

+ Final actions run after a process was completed or aborted. Final actions use
a different interface, which is not available in the old Workflow API. See the
Unified APl Developer Manual which describes final actions as part of the
Unified API.

Actions should run for shortest period that is feasible since they run inside a
server transaction and block precious server resources. To avoid problems, stick
to the following rules:

» Don't write client actions that require user interaction.

+ If you interact with another system and need to wait for a result, for example
sending a mail and waiting for a notice of its reception, always use a second
task with a guard (see Section 4.1.7.3, “Guards” [58]) following the initial task
with your action. The example in Section 5.4.4, “Example Expression” [97] de-
scribes an expression which checks whether a mail has been received or not.

Note the following features which are helpful when you program your own actions:

COREMEDIA CONTENT CLOUD

Implementing Extensions | Repeated Execution of Actions

« Actions are Java beans.

+ Parameters for the global configuration of the action bean can be defined via
the XML workflow definition (see Section 5.3.4, “Access Workflow Variables
from the Action” [93]).

» Actions can set a success variable which may be used to control the error
handling within the workflow.

+ Actions can assign a result to a workflow variable (see Section 5.3.4, “Access
Workflow Variables from the Action” [93] for details).

5.3.2 Repeated Execution of Actions

If there are concurrent running transactions in an instance (if you've forked the
workflow) and the actions run by these transactions are creating read/write
conflicts in the context. They may be seen as transaction serialization errors in
the log. To solve a conflict, the CoreMedia Workflow Server automatically repeats
the conflicting transactions. This means that even already executed actions are
repeated, too.

Since there is a complete rollback of the transactions, the actions cannot de-
termine if they are run repeatedly. Try to avoid the conflicts arising from this
under all circumstances or you may experience problems with your workflow.
Stick to the following rules:

» Write actions that are fault-tolerant and can handle multiple repeated execu-
tions.

+ Split your critical sections into several tasks to isolate the non-repeatable
actions from the actions creating the conflicts.

Note that, even if you follow these rules, an action may be executed repeatedly
in the unlikely event of a CoreMedia Workflow Server crash. During the next re-
start, all failed transactions are repeated to reach a consistent state. This may
repeat the execution of your action, too.

If an action throws any exception, its task instance will be escalated immediately:

+ Side effects on the instances context will become persistent, there is no roll-
back of the transaction.

« If you are running two actions and the second one fails, the success and result
variables of the first action will keep their values.

» Upon aretry, these variables can be used by the first action's guard to avoid
repeated execution.

Exceptions within the RunActionTimerHandler actions will have no effect
other than the handler failing.

COREMEDIA CONTEN

Implementing Extensions | Server-Side Actions

5.3.3 Server-Side Actions

Note that the old legacy Workflow APl is described here. It is preferable to use
the Unified API for writing server-side actions. Please consult Section 6.10.3,
“Actions” in Unified APl Developer Manual for details.

Interface to implement

Server-side actions implement the interface com.coremedia.work-
flow.WfAction.

Convenience classes

For convenience you can subclass com. coremedia.workflow.common.ac—
tions.AbstractAction which already includes implementations of all
needed getter and setter methods and which uses a condition as guard
(isExecutable ()). You need to implement the execute () method for
your own functionality. This method will be called by the CoreMedia Workflow
Server. In Section 5.3.5, “Example Action” [94] you will find a complete example
of a server-side action.

5.3.4 Access Workflow Variables from
the Action

It is good practice not to hard code the variable names into the action bean, but
to use configurable attributes to access the workflow variables. Thus, it is easier
to reuse the action in other workflow definitions. Here is how you do this:

« Configure your action bean from the workflow definition by adding an attribute
to the <Action> element like in Example 5.1, “How to configure an action
bean” [93]

+ Define a setter method in your action for the configuration like in Example 5.2,
“Example of an action” [94].

» Directly access workflow variables using the WfInstance.getAtom
icVariable () or WfInstance.getAggregationVariable ()
method.

1: <Variable name="MyFirstVariable" type="String>
28 <String value="OnlyATest"/>
3: </Variable>

COREMEDIA CONTENT CLOUD

uapi-developer-en.pdf#Actions
uapi-developer-en.pdf#Actions
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html

Implementing Extensions | Example Action

4: <AutomatedTask name="One" successor="Two">

5: <Action
class="com.customer.example.workflow.action.ParameterAction"

6: variableToPass="MyFirstVariable"/>

7: </AutomatedTask>

Example 5.1. How to configure an action bean

In the example above, you defined a string variable with the name "MyFirstVari-
able" and the value "OnlyATest". With line 6 you configure the action bean that
the method setVariableToPass () onaninstanceof com.customer.ex
ample.workflow.action.ParameterAction is called with the name
of the string variable as a parameter.

: public class ParameterAction extends AbstractAction {
: private String text;

public void setVariableToPass (String t) {variableToPass = t;}
public WfActionResult execute (WfTaskInstance wfTaskInstance)
throws WfException {

1

2

BE 000

4: public String getVariableToPass () {return variableToPass; }
5g

6

73 coo

8: WfAtomicVariable variable =
wfTaskInstance.getAtomicVariable (variableToPass)) ;

93

10: }

11:}

Example 5.2. Example of an action

Line 4 - 5: Here you define the setter and getter methods for the configuration
of your action bean.

Line 8: Here you get the workflow variable using the name configured with the
setVariableToPass () method.

5.3.5 Example Action

The Workflow API described in this manual is an outdated way to write actions.
You can find an example action based on the easier and more modern Unified
APl in Section 6.11.3, “Example Code of the Mail Action” in Unified APl Developer
Manual.

uapi-developer-en.pdf#MailActionCode

Implementing Extensions | Programming Expressions

5.4 Programming Expressions

Expressions come in two variants:
+ generic expressions and
» Boolean expressions.

A generic expression must evaluate to a java.lang.Comparable result
and can be used for example ina <Less> or <Greatexr> expression. A Boolean
expression must evaluate to a Boolean result value and can be used for ex-
ample in a <Condition> task.

Expressions can be used for many purposes in the workflow:

* Guards for automated and user tasks

+ Preconditions and postconditions (assertions) in automated and user task
» Validators for variable assignments in client views

» Conditions for branching tasks

* Guards for actions

5.4.1 General Rules

When you are programming own expressions, respect the following general rules:

» Expressions must not have any side effects.

» Expressions must not hold any state.

» Expressions must be repeatable any number of times.

« All top level expressions used in the workflow configuration must be Boolean
expressions.

Depending on their arity, expressions may have a specific number of subexpres-
sions, which are added through the addExpression () method. For example,
a comparison has an arity of two, as it compares exactly two expressions. A lo-
gical expression like And or Or are n-ary, it must have at least two subexpres-
sions, but may have any number of expressions. In contrast to that,a Not must
have exactly one subexpression. If a maximum number of expressions is ex-
ceeded, a WfRuntimeException with the error code TOO MANY SUBEX
PRESSIONS thrown.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRuntimeException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRuntimeException.html

Implementing Extensions | Generic Expressions

5.4.2 Generic Expressions

Interface to implement

For a generic expression you have to implement the interface com.core-
media.workflow.WfExpression. Such an expression must return a
java.lang.Comparable value.f you want to use the result of your expres-
sion for further evaluation, you should return a WfValue because this is what
all built-in expressions operate on.

Convenience classes

For convenience you can subclass from com. coremedia.workflow.com-
mon.expressions.AbstractExpression and implement the evalu
ate () method, which is called by the CoreMedia Workflow Server. See Ex-
ample 5.4, “Example of a generic expression” [96] for a simple example of an
expression.

Define expressions

The following XML fragment shows, how to define your expressions in the workflow
definition.

<Variable name="comment" type="String">
<String value="TestString"/>
</Variable>

<If name="One">
<Condition>
<Less>
<Expression class="com.coremedia.example.
expression.DemoExpression"/>
<Get variable="comment"/>
</Less>
</Condition>
<Then successor="True"/>
<Else successor="False"/>
</If>

Example 5.3. Use a generic expression in the workflow definition
Example generic expression

The following code example shows a simple expression which returns a
StringValue.

public class SampleExpression extends AbstractExpression {

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfValue.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractExpression.html

Implementing Extensions | Boolean Expressions

public String getName () {return "SampleExpression";}
public Comparable evaluate (WfInstance instance,
Map localvVariables) {

return new StringValue ("ConstantValue");
}

Example 5.4. Example of a generic expression

5.4.3 Boolean Expressions

Interface to implement

For a Boolean expression you need to implement the interface WfBooleanEx—
pression. It extends WfExpression and defines an evaluateExpres
sion () method with a Boolean result.

Convenience classes

For convenience you can subclass from com. coremedia.workflow.com-
mon.expressions.AbstractBooleanExpression and implement its
evaluateExpression () method.

The abstract classes evaluate () methodcalls evaluateExpression ()
and builds a BooleanValue from the returned value. The next example shows
a simple Boolean expression which always returns true - a tautology.

public class Tautology extends AbstractBooleanExpression {
public String getName () {return "Tautology";}
public boolean evaluateExpression(WfInstance instance,
Map localVariables) {
return true;

}
}

Example 5.5. Example of a Boolean expression

5.4.4 Example Expression

This chapter describes how to create a Boolean expression and insert it in the
workflow definition. Have a look at Example 5.7, “Example Expression” [98] for
the example of a simple Boolean expression which always returns "true”.

Define the expression in the workflow definition

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html

Implementing Extensions | Example Expression

You can use your expression in the workflow definition via the <Expression>
tag. See Example 5.6, “Including expressions in the workflow definition” [98] for
an expression inserted in an <If> tag.

<If name="One">
<Condition>
<Expression class="com.coremedia.example.expression.
DemoExpression"/>
</Condition>
<Then successor="True"/>
<Else successor="False"/>
</I1f>

Example 5.6. Including expressions in the workflow definition

If the expression evaluates to true then the successor is the task named True,
otherwise it is the task named False.

Programming the expression

See Example 5.7, “Example Expression” [98] for the important lines of the code.
Configuring the expression with variable names from the workflow is not shown
in this example but it is similar to the method in the action example. The same
is true for accessing the repository.

1: package com.coremedia.examples.workflow.expression;
28
3: import java.util.Map;
4: import com.coremedia.workflow.WfInstance;
5: import com.coremedia.workflow.common.expressions.
AbstractBooleanExpression;
6:
7: public class DemoExpression
extends AbstractBooleanExpression {
8
9 public String getName () {
10: return "DemoExpression";
11: }
128
133 public String getSymbol () {
14: return getName () ;
15 }
16:
17: public boolean isInfix() {
18: return false;
19: }
20
21: public boolean evaluateExpression(WfInstance instance,
Map localVariables) {
2238 return true;
23: }
24: }

Example 5.7. Example Expression

Line TI: The package to which the action belongs.

Lines 3 - 5: All Java classes which are at least necessary for an expression to
use.

COREMEDIA CO

Implementing Extensions | Example Expression

Line 7:In order to create a Boolean expression you need to implement the inter-
face WfBooleanExpression. For convenience you can extend the abstract
AbstractBooleanExpression class.

Line 9 - 19: If you extend AbstractBooleanExpression, you need toim-
plement four methods. Three of them getName (), getSymbol () and
isInfix () areused forbetter reading of the log, if the expression is converted
into a string using the toString () method.

Line 21 - 23: The fourth method to implement is the most important one,
evaluateExpression (WfInstance instance, Map localVari
ables) . This method will be called when the expression is evaluated. Here you
can implement the logic of your expression. Using the parameter instance,
you can access the workflow instance as shown in the action example. The Map
localVariables gives access to expression local variables, which may be
defined with ForAll and Let.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AbstractBooleanExpression.html

Implementing Extensions | Programming Rights Policies

5.5 Programming Rights Policies

Rights policies protect access to process and task instance operations. They
can be performed on the server and client side so a GUI Client component may
limit the offered buttons, menus etc. to the actual permitted operations.

The following rights are defined for process instances and can be granted to in-
dividual users or groups:

* Read and write variables exported by the processes client view
+ Create new process instances

+ Start process instances

+ Suspend and resume process instances

+ Abort process instances

The following rights are defined for task instances and can be granted to indi-
vidual users or groups:

» Read and write variables exported by the tasks client view
* Reject, accept, cancel and complete a task instance

» Assign, delegate and skip a task instance

* Retry the last transaction of an escalated task instance

The policies are not directly accessible, checks must be performed via WfIn
stance.hasPermission (), which checks the rights of the current session's
user.

Customized rights policies must never access any client or server specific classes,
as it will be executed on both sides. It may provide a client and a server-specific
implementation of an interface, that gives access to client or server specific
classes.

Interface to implement
Rights policies must implement the interface WERightsPolicy.
Default implementation

If you only want to adapt the default policy to your needs, subclass the default
rights policy AclRightsPolicy and override the appropriate methods.

Defining the policy in the workflow definition

Defining your own rights policy in the workflow definition is quite simple. You
only need to add the policyClass attribute to the <Rights> tag as shown
in Example 5.8, “Integrate own rights policy in the workflow definition” [101]. This
class must be available in the classpath of the Workflow Server and the client.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html

Implementing Extensions | Example Rights Policy

That means you need a runtime dependency on this JAR file in your client applic-
ation module and Workflow Server web application in the workspace.

<Workflow>
<Process name="TestWorkflow" startTask="FirstOne">
<Rights policyClass="myPackage.MyOwnRightsPolicy">
<!-- ... more elements and attributes ... -->
</Rights>

</Process>
</Workflow>

Example 5.8. Integrate own rights policy in the workflow definition

5.5.1 Example Rights Policy

This example describes the implementation of a rights policy. The aim of the
policy is to implement a very simple rights policy that can grant rights to the
user who started a process instance. The policy should be usable with very large
user sets, in an intranet for instance. To this end, the policy computes the
members of a group only when necessary. The policy can be used as a replace-
ment of the default ACLRightsPolicy in the standard simple publication
workflow.

The new class OnlyOwnerWfRightsPolicy will be serializable by means
of theinterface WfRightsPolicy.One field holds the optional id of the group
that is granted create rights and one field denotes whether a group was actually
set.

public class OnlyOwnerWfRightsPolicy implements WfRightsPolicy {
private static final long
serialVersionUID = 7389049258655067247L;
private int groupId;
private boolean grouplIdSet = false;

The standard callback for setting the set of rights is unused: the policy grants
or denies all rights

public void setRights (String[] rights) {}

Some methods for managing the policy configuration are needed.

public void setGroupId(int groupId) {

this.groupId = groupId;
this.groupIdSet = true;

}

public int getGroupId() {
return groupld;

}

public boolean isGroupIdSet () {
return groupIdSet;

}

public void setGroup (String groupAtDomain) throws WfException {

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html

Implementing Extensions | Example Rights Policy

int pos = groupAtDomain.indexOf ('Q@"');

WfGroup group;

if (pos < 0) {

group = WfServer.getDirectoryServiceAdapter ().
getGroup (groupAtDomain, "");

else {

String name = groupAtDomain.substring (0, pos);

String domain = groupAtDomain.substring (pos+1l);

group = WfServer.getDirectoryServiceAdapter() .
getGroup (name, domain) ;

}
setGroupId(group.getId());

Note that the last method is never actually called from Java code. It is called
dynamically during the process definition parsing.

Because the policy grants special access to the owner of a process instance,
you can make use of a utility method for determining that user.

private WfUser getOwner (WfInstance instance) throws WfException

if (instance instanceof WfTaskInstance) {
instance = ((WfTaskInstance)instance) .getProcessInstance();
}
return ((WfProcessInstance)instance) .getOwner () ;
}

Now you can write the methods from the interface WfRightsPolicy. Some
group-related methods are not shown. They are only called in the context of
delegation to a group, which is not an appropriate use case for this class.

public boolean hasPermission (WfInstance instance,
WfDirectoryServiceAdapter adapter, WfUser user,
String rights)
throws WfException {
return hasPermission (instance, adapter, user);

}

public boolean hasPermission (WfInstance instance,
WfDirectoryServiceAdapter adapter, WfUser user,
String[] rights)

throws WfException {
return hasPermission(instance, adapter, user);

}

Now have a look at the central method for permission computation. First of all,
you must make sure to grant all rights to the internal server user, which performs
certain automated actions. The super administrator also needs all rights.
private boolean hasPermission (WfInstance instance,

WfDirectoryServiceAdapter adapter, WfUser user)
throws WfException {

if (user.islInternalServerUser()) return true;
if (user.getId() == Id.ADMIN) return true;
if (instance == null) {

You are being asked for rights on the definition. This can only be a create opera-
tion that needs to be checked.

COREMEDIA CO

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html

Implementing Extensions | Example Rights Policy

if (!isGroupIdSet()) return false;
WEGroup group = adapter.getGroup (getGroupId()) ;
return user.isMember (group) ;
} else {

You already checked for the admin and for the internal server user, so that the
remaining code is simple.

WfUser owner = getOwner (instance);
return owner != null && owner.getId() == user.getId();
}
}

When computing a worklist, you sometimes need to compute the set of all users.
Expensive group operations are only needed in the case of rights on the definition.

public WfUser[] getUsers (WfInstance instance,
WfDirectoryServiceAdapter adapter, String right) throws
WfException {
if (instance == null) {
if (isGroupIdSet()) {
WfGroup group = adapter.getGroup (groupld) ;
return group.getUsers();
} else {
return new WfUser[0];
}
} else {
WfUser owner = getOwner (instance) ;
WfUser admin = adapter.getUser (Id.ADMIN) ;

if (owner == null || owner.getId() == Id.ADMIN) {
return new WfUser[]{admin};
} else {

return new WfUser([]{admin, owner};
}
}
}

Finally, you must provide a marshaller for transferring the rights policy to clients,

public WfRightsPolicyMarshaller getMarshaller() {
return new OnlyOwnerWfRightsPolicyMarshaller () ;
}
}

The marshaller itself is implemented in a separate class. It is identified by its
policy id.

public class OnlyOwnerWfRightsPolicyMarshaller
implements WfRightsPolicyMarshaller {
public String getPolicyID() {
return "coremedia:///cap/workflow-rights-policy/OnlyOwner";
}

The main methods affect the marshalling an unmarshalling of the policy group
parameter, which has to be encoded as an array of bytes.

public byte[] marshal (WfRightsPolicy policy) {
OnlyOwnerWfRightsPolicy onlyOwner =
(OnlyOwnerWfRightsPolicy) policy;
int groupId = onlyOwner.getGroupId();

COREMEDIA CO

Implementing Extensions | Example Rights Policy

return new byte[] {
(byte) (groupId), (byte) (groupId>>8),
(byte) (groupId>>16), (byte) (groupId>>24),
(byte) (onlyOwner.isGroupIdSet() 2 1 : 0)
}i
}
public WfRightsPolicy unmarshal (byte[] data) {
OnlyOwnerWfRightsPolicy result = new OnlyOwnerWfRightsPolicy();
if (data[4] == 1) {
result.setGroupId((data[0] & 0x000000ff) +
(data[l]<<8 & 0x0000ff00) +
(data[2]<<16 & 0x00££0000) +
(data[3]<<24));
}
return result;
}
}

This policy has also been implemented using the Unified API. For details see the
Unified API Developer Manual.

COREMEDIA CONTE

Implementing Extensions | Programming Performer Policies

5.6 Programming Performer Policies

Performer policies control to which users a task instance should be offered. A
performers policy calculates this set of users based on the users which have
permission to accept the task instance defined by the rights policy. The performer
policy is called by the CoreMedia Workflow Server.

A performers policy may optionally support:

+ Users who must be excluded from the offer (determined by the Exclude-
Performer or ExcludeUser action).

+ Users who may be preferred (determined by the PreferPer former action).

» Groups which may be preferred.

+ Users who actively reject the offered task instance.

A single user who must perform the task (which will force an accept of the
instance as soon as the user logs on to the workflow server, determined by
the ForceUser action)

The DefaultPerformersPolicy supports all options.

NOTE

There is no automatic recalculation of the user sets if there are changes in the
user management. This may cause the following effects:

« New users or users assigned to new groups won't see any offers already
pending.

» Users removed from groups won't see already offered task disappear from
their task lists. This is not a security problem, since the rights are checked
on every access on the server.

Interface to implement

Own performer policies must implement the interface com. coremedia.work-
flow.WfPerformersPolicy. The important method is calculateAs
signment (WfTaskInstance taskInstance, WfUser[] permitte
dUsers) which is called by the CoreMedia Workflow Server. It returns a
WfUserAssignment object (see the Workflow APl documentation for details).

Default implementation

If you only want to adapt the default performer policy to your needs it would be
easier to subclass the default performer policy DefaultPerformersPolicy
and to override the appropriate methods.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludePerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ExcludeUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/ForceUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html

Implementing Extensions | Programming Performer Policies

Defining the policy in the workflow definition

In Example 5.9, “Defining a performer policy in the workflow definition” [106] you
see how to define your own performer policy in the workflow definition.

<Workflow>
<Process name="PerformerTest" startTask="One">

<UserTask name="One" final="true">

<Performers policyClass=

"com.coremedia.example.DemoPerformersPolicy" />
<Rights>
<Grant group="composer-role"
rights="read, accept, complete"/>

</Rights>

</UserTask>

</Process>
</Workflow>

Example 5.9. Defining a performer policy in the workflow definition

Customize the performer policy

See Example 5.10, “Invoking a performer policy” [106] for a customization of the
default performer policy which performs a very simple task. It calls the default
performer policy and cuts off the last user from the result.

1: package com.coremedia.example.policy;
2:
33 import com.coremedia.workflow.*;
4: import com.coremedia.workflow.common.policies.
DefaultPerformersPolicy;
58
6: public class DemoPerformersPolicy
extends DefaultPerformersPolicy {
e
8: public String toString() {
9: return "DemoPerformersPolicy()";
10: }
11:
12: public String getName () {
13: return "DemoPerformersPolicy";
14: }
15
16: public String getDescription() {
17: return "quite simple policy implementation”;
18: }
19:
20: public WfUserAssignment
21: calculateAssignment (WfTaskInstance taskInstance,
WfUser[] permittedUsers) throws WfException ({
22: WfUserAssignment userAssignment =
23: super.calculateAssignment (taskInstance, permittedUsers);
24
253 WfUser[] users = userAssignment.getUsers();
26: WfUser[] result = new WfUser[users.length-1];
273 if (result.length < 1) {
28: result = users;
29: } else {
30: System.arraycopy (users, 0, result, 0, result.length);
31: }

COREMEDIA CO

Implementing Extensions | Programming Performer Policies

32: return new WfUserAssignment (result, false);
A
Example 5.10. Invoking a performer policy
Line 1 - 4: Your package and the packages to import.
Line 6: You subclass DefaultPerformersPolicy for convenience.
Line 12 -14: Return the name of the policy.
Line 16 - 18: Return a description of the policy.
Line 20 - 33: The most important method which is called by the workflow server.

Line 20- 21: On call, the workflow server passes a WfTaskInstance and the
WfUsers to the method. WfUsers contains all users which are allowed to accept
the task.

Line 22 -23: At first you call the method calculateAssignment method of
the super class, because the aim of this example policy is to modify the default
result.

Line 25: Prepare the manipulation of the result by getting the WEUser from the
WfUserAssignment.

Line 26: Prepare a new WfUser array which should keep the resulting users.
Remember, you only want to get rid of the last user, so the length of the array
is users.length-1.

Line 27 - 29: If the result contains no user, this result is returned.

Line 30: Otherwise, all users but the last are copied from the default result array
to the returned array.

Line 32: The result array is returned to the workflow server. The second parameter
determines that the selected user is not forced to accept the task.

COREMEDIA CONTENT CLOUD 1

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfTaskInstance.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfTaskInstance.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUserAssignment.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUser.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfUser.html

Implementing Extensions | Programming Clients

5.7 Programming Clients

If you want to implement your own client, for example to trigger external events
into the workflows or the query workflow state for reports etc, the Unified API
provides the WorkflowRepository.Inorder to create a workflow client, use
a code like the following:

CapConnection connection =
Cap.connect ("http://localhost:40180/ior" +
"?useworkflow=true", "admin", "admin");

try {
WorklistRepository r = connection.getWorkflowRepository () ;
/ . work on the repository ...

} finally {
connection.close() ;

}

Example 5.11. Create a workflow client
Remote action handlers

A remote action handler is responsible for executing a user tasks client actions
on behalf of the clients user.

* Handlers must implement the interface RemoteActionHandler.
» A handler receives the command and parameters to process.
* Ithastoreturnan ActionResult.

A client action is the result of one of the following client calls to the server:

« Task.accept ()
« Task.complete ()
e Task.retry()

The client call is blocked at least until all client actions have been handled.

NOTE

Never implement client actions requiring any user interaction by a remote action
handler:

» They will block server transactions for an undefined time and will eventually
time out.

« They won't work in a synchronous client.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/WorkflowRepository.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RemoteActionHandler.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/ActionResult.html

Implementing Extensions | Spring in the Workflow Server

5.8 Spring in the Workflow Server

You can use the Spring framework to make Java beans available to your custom-
ized workflow actions and expressions. The workflow server's Spring application
context is exposed by the built-in manager named springcontext of type
com.coremedia.workflow.common.util.SpringContextManager.
It can be used by custom actions and expressions that retrieve the Spring ap-
plication context from the manager.

5.8.1 Using Spring Beans

The Spring context is loaded at startup time and is shut down when the server
is shut down. The Spring configuration can refer to the Workflow Server's Unified
API connection, using the same name ("connection”) as in the CAE. An action or
expression may implement the interface com.coremedia.cap.work-
flow.plugin.CapConnectionAware.lfit does so, the connectionis injec-
ted before the action is executed or the expression is evaluated for the first
time.

In order to use a bean in your action or expression proceed as follows:

1. Use the common Spring ways to add your custom configuration to the work-
flow server's Spring application context.

2. Let your customized actions or expressions extend com. coremedia.work-
flow.common.util.SpringAwareActionor com.coremedia.work-
flow.common.util.SpringAwareExpression respectively.

3. Get access to Spring beans inside your customized code using the getS
pringContext () method, for example use

protected ActionResult execute (Process process) {
InboxFactory inboxes = getSpringContext ().getBean (InboxFactory.class);

The configured beans may implement the common Spring ways to receive life
cycle events from the workflow server's application context. Additionally, the
beans may implement the interface com.coremedia.workflow.com—
mon.util.WorkflowServerLifecycleAware, if they want to initiate
asynchronous operations. Such operations may start after the method work
flowServerStart () is called and must be completed before the method
workflowServerStop () returns. Only singleton beans receive these call-
backs and only if they implement the given interface.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/CapConnectionAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/SpringAwareExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/util/WorkflowServerLifecycleAware.html

Implementing Extensions | Pitfalls of Implemented Classes

5.9 Pitfalls of Implemented Classes

A workflow definition is stored in the database as a stream of serialized objects.
That's why your own workflow beans have to stick to the following rules:

+ Avoidincompatible changes to classes which are already in use by a workflow
definition.

« Consider using a serial UID for all your classes from the start on.

+ Serialize and deserialize the object graph manually (see Oracle JDK Serialization
documentation for details). This gives you the most control, but the most
work, too.

+ Usethe workflowconverter tool toreparse and rebuild definitions which
are not deserializable anymore.

* New versions of a workflow bean must be compatible with all uploaded XML
definitions.

+ New configuration options can be added as long as they are backwards
compatible with the old ones.

+ Additional objects, such as workflow variables, introduced with a new bean
and definition will never be available in any old instance.

+ If semantics have to be changed you should consider writing a new bean and
keeping the old one.

The semantics must work in any still existing instances of older workflow
definitions.

Since the workflow beans of a given definition are shared by all the definitions
instances:

» No workflow bean must store any state in a local variable. State is always re-
stricted to an instances context.

» No workflow bean must cache any objects requested from the server or client
instances such as ObjectRepository, DirectoryService, CoreMedia Content
Management Server Session etc. These objects may carry session specific
information that is only valid to the current bean invocation.

» Every bean must be reentrant, that means is must be thread safe and never
use nested synchronization.

To circumvent some of the mentioned problems, you might want to use the
feature to upload a JAR together with a workflow definition. This separates the
classes for each workflow definition. But when you update the JAR file for an

COREMEDIA CONTENT CLOUD

Implementing Extensions | Pitfalls of Implemented Classes

existing workflow definition, the same problems occur as when loading the classes
from the workflow servers classpath.

Additionally, references from the classes inside the JAR to classes outside of
the JAR file are likely to cause problems. It might seem, that packaging all classes
that are referenced by the customized workflow classes into one huge JAR file
is a solution. But consequently, you would have to package the transitive closure
of your workflow classes into that one JAR. That may not be feasible. It's better
to document the dependencies of the customized workflow classes and to keep
care that they are always fulfilled when running the Workflow Server.

COREMEDIA CONTENT CLOUD

Reference |

6. Reference

In this chapter you will find the XML workflow reference and unabridged code
examples from the previous chapters.

COREMEDIA CONTENT CLOUD

Reference | Configuration Reference

6.1 Configuration Reference

In addition to the general configuration possibilities described in Chapter 3,
CoreMedia Properties Overview in Deployment Manual, you can configure the
workflow system with the following files:

« workflowclient.properties
This file contains the general configuration of a workflow client.

* capclient.properties
This file contains the configuration how the Workflow Server connects to the
Content Management Server

+ sgl.properties
This file contains the database configuration for the Workflow Server. The
configured database must match the one of the Content Management Server.
See the Content Server Manual for details.

Note that Workflow Server properties can be configured via Spring Boot. For
details please consultChapter 3, CoreMedia Properties Overview in Deployment
Manual.

6.1.1 Configuration of Workflow Client
Properties

The file workflowclient.properties defines configuration options for
user management for the workflow client, remote action handlers and parameters
for the connection to the CoreMedia Workflow Server.

6.1.2 Configuration of Workflow Server
Properties

All configuration properties are bundled in the Deployment Manual (Chapter 3,
CoreMedia Properties Overview in Deployment Manual). The workflow properties
contain general configuration of the Workflow Server such as the mapping of
LDAP groups to the workflow groups. The following link references the properties
that are relevant for the Workflow Server:

+ Table 3.34, “Workflow Server Properties” in Deployment Manual contains
properties for the configuration of the Workflow Server.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#Properties
deployment-en.pdf#workflowServerProperties

Reference | Managed Properties

6.1.3 Managed Properties

In this section, you will find tables with all properties and actions manageable
via JMX. The entries below the JMImplementation key display information
on the JMX implementation which will not be described here.

NOTE @
The information contained in the Statistics section are not described, because

this information can only be interpreted by trained CoreMedia consultants who
are familiar with the inner workings of the CoreMedia components.

Workflow Server Properties

Attribute Type Description

AppDesc Read-only Description of the CoreMedia System.
HostInfo Read-only Installation host of the Workflow Server
JavaClasspath Read-only Classpath used by the current Java installation
JavalnstDir Read-only Installation directory of the used Java.
JvmInfo Read-only Information about the used JVM.
JvmProcessInfo Read-only Java process information, the number of threads,

free memory, used memory, total memory.

LogActions Read/Write Enable ("true") logging of actions.
LogClientActions Read/Write Enable ("true") logging of client actions.
LogContentManager Read/Write Enable ("true") logging of the ContentManager.
LogErrorLog Read/Write Enable ("true") logging of ErrorLog.
LogExpressions Read/Write Enable ("true") logging of expressions.
LogPersistenceAd Read/Write Enable ("true") logging of the PersistenceAdapter.
apter

COREMEDIA CONTENT CLOUD

Reference | Managed Properties

Attribute Type Description

LogPolicies Read/Write Enable ("true") logging of policies.

LogProcessSweeper Read/Write Enable ("true") logging of the ProcessSweeper.

LogSignals Read/Write Enable ("true") logging of signals.

LogTimers Read/Write Enable ("true") logging of timers.

LogTransactions Read/Write Enable ("true") logging of transactions.

LongActionsMax Read/Write The maximum number of concurrently executed
long actions.

FinalActionsMax Read/Write The maximum number of concurrently executed

final actions. The default value is derived from
configuration property workflow.server.fi
nal-actions—-max, which is described in
Table 3.34, “Workflow Server Properties” in De-
ployment Manual

FinalActionsRetryEn Read/Write If the execution of workflow final actions is retried

abled after a RetryableActionException was
thrown. Set this to false to completely disable
retries after these exceptions. The default value
is derived from configuration property work
flow.server.retry-final-actions.en
abled, whichis described in Table 3.34, “Work-
flow Server Properties” in Deployment Manual.

OsInfo Read-only Information about the operating system of the
Workflow Server host.

SessionReaper Read/Write The interval in seconds between checks for inact-

Timeout ive sessions (see SessionTimeout).

SessionTimeout Read/Write The time in seconds before an inactive session
is closed.

TxIdleTimeout Read/Write The time in seconds before an idle database

connection is closed.

COREMEDIA CONTENT CLOUD

deployment-en.pdf#workflowServerProperties
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/cap/workflow/plugin/RetryableActionException.html
deployment-en.pdf#workflowServerProperties
deployment-en.pdf#workflowServerProperties

Reference | Managed Properties

Attribute Type

TxMax Read/Write
Table 6.1. Managed Workflow Server properties

Workflow Server Operations
Operation Attribute

clearCaches

Table 6.2. Workflow Server operations properties

COREMEDIA CONTENT CLOUD

Description

The maximum number of database connections.

Description

Clear the caches of the Work-
flow Server.

Reference | XML Element Reference

6.2 XML Element Reference

The order of the elements in the workflow definition is not relevant except for
the Action [119] and the Condition [126] elements. The reason for this is obvious,
as you have to control the order of the actions and a condition that is comparing
values depends on an ordering, too. Mostly NMTOKEN is used instead of CDATA
as the content model for the attributes. This restrictive policy avoids escaping
of names.

This chapter describes the workflow definition XML file format. You will find two
kinds of items described here:

+ Parameter entities (headline printed in bold italics)
Parameter entities constitute rules for the XML grammar or standard sets of
attributes. Parameter entities are reused in various places to shorten the
definition of XML elements.

+ XML elements (headline printed in bold)
XML elements describe the actual parts of a workflow description.

Action attributes
Grammar:

You will find the attributes of the actions described for each action later in this
chapter.

BooleanExpression

Definition: Equal [130] | NotEqual [152] | Greater [140] | GreaterEqual [140] | Less [150]
| LessEqual [150] | And [121] | Or [153] | Implies [143] | Not [152] | ForAll [134] | Exists [130]
[Let [151] | Get [137] | Read [158] | Length [149] | IsEmpty [146] | NotEmpty [152] | Is-
Folder [147] [lsDocument [144] | sDocumentVersion [145] | IsExpired [146] | IsEnabled

The BooleanExpression parameter entity is used to define a subset of all available
expressions which evaluate to a Boolean value.

Expression

Definition: Expression [132] | Equal [130] | NotEqual [152] | Greater [140] | Greate-
rEqual [140] | Less [150] | LessEqual [150] | And [121] | Or [153] | Implies [143] | Not [152]
| ForAll [134] | Exists [130] | Let [151] | Get [137] | Read [158] | Length [149] | IsSEmpty [146]
| NotEmpty [152] | IsFolder [147] | IsDocument [144] | IsDocumentVersion [145] | ISEx-
pired [146] | AddLatestVersion [120] | Value [118]: Blob | Boolean | Content | Content-
Type | Date | Document | Folder | Group | Integer | String | Timer | User

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

The Expression parameter entity is used to define all available expressions. You
can use the predefined expressions listed above or implement your own expres-
sions, using the Expression [132] element.

FlowControlTask

Definition: Choice [126] | Fork [135] | If [142] | Join [148] | JoinSubprocess [148] | Fork-
Subprocess [135]| Switch [163]

FlowControlTasks define the flow of control in a workflow process.

This is just an abstract definition, only concrete FlowControl tasks may be used
in a valid workflow definition.

Note: A FlowControlTask may not be final.
Task

Definition: AutomatedTask [122] | UserTask [166] | FlowControlTask [118]: Choice |
Fork | If | Join | JoinSubprocess | ForkSubprocess | Switch

Tasks define the steps a workflow process must complete. A task is identified
by its name. Like a process is a template for concrete process instances, a task
is a template for concrete task instances. Tasks refer to each others by the
name(s) of their Successor [163](s). Each task must either have at least one suc-
cessor or be final.

The description of the task is a human readable explanation about what the task
does. It may be localized by the editor.

Tasks which finish a workflow process are declared final. There has to be at least
one task in a process definition which is final. Only UserTasks and Auto-
matedTasks can be final.

Variables in the task scope define the local state of task instances. This does
not restrict the visibility of the variables. A variable in a task may always be re-
ferred to from other tasks by prefixing the variable name with the task name
and a dot.

There are nine task types:

+ An AutomatedTask [122] is executed automatically.
+ An UserTask [166] has to be carried out by a user.
+ The other task types are used to control the flow of execution of tasks.

Value

Definition: Blob [124] | Boolean [125] | Resource [159] | ContentType [127] | Date [128]
| Document [128] | Folder [133] | Group [141] | Integer [144] | String [162] | Section 4.1.11,
“Timers” [61] | User [166]

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

A Value represents one or many values of a variable. A Value element is used to
initialize a variable or to be evaluated in expressions (see Example 6.1, “"Example
of the variable usage” [119]).

<Variable name="publicationSuccessful" type="Boolean">
<Boolean value="false"/>
</Variable>
<AggregationVariable name="success" type="Boolean">
<Boolean value="true"/>
<Boolean value="false"/>
</AggregationVariable>
<Condition>
<Equal>
<Boolean value="true"/>
<Get variable="success" index="1"/>
</Equal>
</Condition>

Example 6.1. Example of the variable usage

Boolean

Definition: true | false

Definition of a Boolean XML attribute type.

varies

Definition: Entity for tagging varying parts of the DTD.

Action
« Grammar: (Condition, Property)

An action is external code which may be called to customize the processing of
the workflow engine (see Section 5.3, “Programming Actions” [91] for implement-
ing own actions).

You can either give the full qualified name of your own action class which must
be an implementation of interface com. coremedia.workflow.WfAction
or an unqualified class name which will be searched for in the package
com.coremedia.workflow.common.actions.

A predefined Action or one subclassed from AbstractAction/Ab-
stractClientAction (deprecated) may contain a Condition element
which serves as a "guard"” for the action code (see the example below). Only if
the condition is satisfied, the code is executed, otherwise nothing happens.

The following actions are supplied with the workflow engine by default: Approve,
AssignVariable, CancelUserTask, EnableTimer, DisableTimer, ExcludePerformer,
ExcludeUser, ForceUser, Log, PreferPerformer, Publish, RegisterPendingProcess,
SkipUserTask

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/AbstractClientAction.html

Reference | XML Element Reference

The following actions are supplied with the workflow engine by default, but are
deprecated: ApproveResource, CheckinDocument, CheckOutDocument,
CopyResource, CreateDocument, CreateFolder, DeleteResource, Disap-
proveResource, MoveResource, PreferPerformer, PublishResources, Re-
nameResource, UncheckOutDocument, UndeleteResource, UnmarkResource-
ForUnpublication.

The predefined actions use some of the Action attributes defined above.

Note: The Property [157] child element is valid for the CreateDocument action

only.
Attribute Type Default Description
varies additional parameters

according to the imple-
mentation of the ac-
tion class

Table 6.3. Attributes of Action element

<UserTask name="TestActionGuard" successor="final">

<Action class="EnableTimer" timerVariable="TimeVariable">
<Condition>
<Equal>
<Read variable="document" property=" name"/>
<String value="Article"/> -
</Equal>
</Condition>
</Action>

</UserTask>

Example 6.2. Action with a Guard used in a UserTask
AddLatestVersion
Grammar: ((Expression)*)

An AddLatestVersion expression adds the latest version to a document
value or to each member of an aggregate containing only documents. If a docu-
ment already contains version information, the value is handed through. Other-
wise, the Content Management Server is queried for the latest version of the
document and the document version is added.

No attributes.

AggregationVariable

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AddLatestVersion.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/expressions/AddLatestVersion.html

Reference | XML Element Reference

Grammar: ((Value [118])*)

In contrast to a variable, whose value is one value, an AggregationVariable [120]
may have a list of values as its value. See Variable for details.

Attribute Type Default Description

name NMTOKEN #REQUIRED The name of the vari-
able

type NMTOKEN #REQUIRED The type of the vari-

able, see Value

readOnly (Boolean [119]) “false” Defines whether it is
forbidden to modify
the variable

static (Boolean [119]) "false” Defines whether the
variable is initialized
only once

Table 6.4. Attributes of the AggregationVariable element.

<Workflow>
<Process name="AggregationExample" startTask="Start">
<AggregationVariable name="StringTest" type="String">
<String value="World"/>
<String value="Hello"/>
</AggregationVariable>

</Process>
<Workflow>

Example 6.3. Example of an aggregation variable
And
Grammar: ((Expression)*)

An And expression evaluates to the conjunction of its subexpressions, all of
which must return Boolean values. The subexpressions are evaluated in a "short-
circuit” fashion, that is, they are evaluated top down until the first subexpression
evaluates to "false" or all subexpressions have evaluated to "true". This helps to
avoid exceptions during the computation, for example when checking the type
of a document before accessing a property of the document of that expected
type.

COREMEDIA CONTENT CLOUD 1

Reference | XML Element Reference

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<PreCondition>
<And>
<Equal>
<Get variable="OWNER "/>
<User value="0"/>
</Equal>
<Equal>
<Get variable="Comment"/>
<String value="42"/>
</Equal>
</And>
</Precondition>
<!-- Code -->
</UserTask>

Example 6.4. Example of an And element.
Assign
Grammar: (Expression [117])

Assign transfers a value which is defined by the expression into a variable in the
initial client view of the subprocess. For an XML example see Example 6.22, “Ex-
ample of a ForkSubprocess task” [137].

Attribute Type Default Description

variable NMTOKEN #REQUIRED name of the variable
in the subprocess

Table 6.5. Attribute of the Assign element
AutomatedTask

+ Grammar: ((Variable [170] | AggregationVariable [120])*, Action [119]* Guard [141]?,
PreCondition [155]*, PostCondition [154])

An AutomatedTask [122] is executed automatically by the workflow engine. It
performs some automated action on the Content Management Server content
or on other third-party systems or internal actions. The Action [119] of an auto-
mated task are used to customize the processing of the workflow engine. If [142]
more than one Action [119] is provided, the actions are executed in the order in
which they are specified.

A PreCondition [155] defines requirements which have to be fulfilled before the
actions of the automated task are executed. A PostCondition [154] defines re-
quirements which have to be fulfilled after the action has been executed. If [142]

COREMEDIA CONTENT CLOUD 1

Reference | XML Element Reference

more than one PreCondition [155] or PostCondition [154] are provided, then the
conditions are evaluated in the order they are defined. The result of such an
evaluation operation is equivalent to specifying an 'and’ expression with an
ordered set of expressions.

A Guard [141] defines an expression, which activates and executes the task as
soon as the expression evaluates to true. The expression is evaluated on state
changes of process- or task instances in the Workflow [171] Server and content
or name changes of referred resources in the Content Management Server. Note
that changes to other, external entities do not trigger reevaluation of a guard.

A successor must be given if and only if the task is not final.

Note: An Section 4.1.4.3, “Automated Tasks” [50] does not allow you to specify
Rights [161], Performer [153], and Client [126]. This is restricted to UserTask [166]
elements which interact with the users of the CoreMedia Workflow Server.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the task

description CDATA #IMPLIED the textual description
of the task

final (Boolean [119]) "false” Defines whether the
task is the final task to
execute

successor NMTOKEN #IMPLIED Defines the next task

to execute after the
automated task has
been completed

varies

Table 6.6. Attributes of the Automated Task element

<Variable name="document" type="Document"/>
<Assignment>
<Writes variable="document"/>
</Assignment>
<AutomatedTask name="automatic" successor="final">
<Action class="CheckInDocument" documentVariable="document"/>
</AutomatedTask>

Example 6.5. Example of an AutomatedTask

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Assignment
« Grammar: ((Reads [158] | Writes [171])*, Validator [169])

An Assignment element determines that a variable is 'important’ to a task or
process instance and need to be shown. It can or has to be modified by a user
or an external process. Thus, it defines a view on the variables.

With Reads [158] and Writes [171] the variables are specified. The modifications
of the variables may be validated by Validators.

Processes have two variants of Assignment specifications, the InitialAssignment
which is valid as long as the process instance is not started and the Assignment
for all other instance states. This way it is possible to set initial arguments for a
process instance which cannot be changed after the instance is started.

No attributes.

<Workflow>
<Process name="ClientExample" startTask="TheFirst">
<Variable name="Resource" type="Document"/>
<Variable name="Comment" type="String"/>
<UserTask name="TheFirst" successor="TheEnd">
<Assignment>
<Reads variable="Resource" contentEditable="true"/>
<Writes variable="Comment"/>
</Assignment>
<!-- Code -->
</UserTask>
<!-- Code —-—>
</Process>
</Workflow>

Example 6.6. Example of an Assignment task
Blob
Grammar: EMPTY

The Blob element is used to specify a single constant blob value within expres-
sions or variable initializers.

Attribute Type Default Description
value CDATA #IMPLIED the blob value in bytes
mimeType CDATA #REQUIRED the blob's MimeType

Table 6.7. Attribute of the Blob element

COREMEDIA CONTEN

Reference | XML Element Reference

<Variable name="Logical" type="Blob">
<Blob value="Some text..." mimeType="text/plain"/>
</Variable>

Example 6.7. Example of a Blob variable

Boolean

Grammar: EMPTY

The Boolean element is used to specify a single constant Boolean value within

expressions or variable initializers.

Attribute Type Default Description

value (Boolean [119]) #REQUIRED the Boolean value
("true" or "false")

Table 6.8. Attribute of the Boolean element

<Variable name="Logical" type="Boolean">
<Boolean value="true"/>
</Variable>

Example 6.8. Example of a Boolean variable
Case
Grammar. ($BooleanExpression;)

A case extends a condition by defining a successor to be activated if the condi-
tion's expression evaluates to true. A 'case’ condition may be based on the state
of workflow variables, the content of documents from the Content Management
Server or the external state of third-party products. For an example see

Switch [163].

Attribute Type Default Description

name NMTOKEN #IMPLIED The name of the ex-
pression.

description CDATA #IMPLIED A textual description
of the expression.

successor NMTOKEN #REQUIRED The successor which

should be activated if

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

the condition’s expres-
sion evaluates to true.

Table 6.9. Attributes of the Case element

Choice
Grammar: ((Variable [170] | AggregationVariable [120])*, Successor [163]+)

A Choice task branches the flow of tasks into two or more successors which
must be UserTasks. So it is an implicit choice. One of these successor tasks can
be accepted and executed by a user. As this happens the other Successor [163]
tasks are withdrawn from any offer list and reset as if they haven't been started

atall.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the task
description CDATA #IMPLIED the textual description

of the task

Table 6.10. Attributes of the Choice element.

<UserTask name="TheTaskBefore" successor="ChoiceExample">
<!-- Code —--—>

</UserTask>

<Choice name="ChoiceExample">
<Successor name="FirstChoice"/>
<Successor name="SecondChoice"/>

</Choice>

<UserTask name="FirstChoice" successor="final">
<!-- Code -->

</UserTask>

<UserTask name="SecondChoice" successor="final">
<!-- Code -->

</UserTask>

Example 6.9. Example of a Choice element
Client

Deprecated. See Assignment instead.
Condition

Grammar: (Expression [117])

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

A condition defines an expression that must evaluate to a Boolean value. It may
be based on the state of workflow variables, the content of documents from the
Content Management Server or the external state of third-party products. A
condition is defined based on an expression which may be formed from nested
subexpressions.

Attribute Type Default Description

name NMTOKEN #IMPLIED the name of the condi-
tion

description CDATA #IMPLIED the textual description

of the condition

Table 6.11. Attributes of the Condition element

<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument" documentVariable="Article">
<Condition>
<NotEmpty variable="Article"/>
</Condition>
</EntryAction>
Ll== Coclea ==>
</UserTask>

Example 6.10. Example of a Condition element. It is checked whether the docu-
ment variable is null or not.

ContentType
Grammar: EMPTY

The ContentType element is used to specify a single constant content type
within expressions or variable initializers.

Attribute Type Default Description
value NMTOKEN H#REQUIRED the name of the con-
tent type

Table 6.12. Attribute of the ContentType element

COREMEDIA CONTEN

Reference | XML Element Reference

<Variable name="Type" type="ContentType">
<ContentType value="Article"/>
</Variable>

Example 6.11. Example of a ContentType variable

Date

Grammar: EMPTY

The Date element is used to specify a single constant date value within expres-

sions or variable initializers.

Attribute Type Default Description

value CDATA #REQUIRED the date in the format
dd.MM.yyyy hh:mm

Table 6.13. Attribute of the Date element

<Variable name="Time" type="Date">
<Date value="10.11.2002 13:00"/>
</Variable>

Example 6.12. Example of a Date variable
Document
Grammar: EMPTY

The Document element is used to specify a single constant document within
expressions or variable initializers. It is not useful to define a fixed document ID
in the workflow definition. Either path or value should be specified.

Attribute Type Default Description

path NMTOKEN #IMPLIED The path of a docu-
ment.

value NMTOKEN #IMPLIED The ID of the docu-
ment.

version NMTOKEN #IMPLIED The version number of

the document.

Table 6.14. Attributes of the Document element.

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

<Variable name="Article" type="Document">
<Document value="10"/>
</Variable>

Example 6.13. Example of a Document variable.

Attribute Type Default Description
value NMTOKEN #REQUIRED the name of the con-
tent type

Table 6.15. Attribute of the DocumentType element
Else
Grammar: EMPTY

Else defines the successor of the If [142] task if the condition evaluates to false,
see If [142] for details and an XML example.

Attribute Type Default Description

successor NMTOKEN #REQUIRED the name of the suc-
cessor task for the
"else" case

Table 6.16. Attribute of the Else element

EntryAction

Grammar: (Condition [126]?, Property [157]?)

EntryAction and ExitAction [131] elements are identical to Action [119] elements,

see Action [119] and Action-Attributes [117] for details.

Attribute Type Default Description

varies additional parameters
according to the imple-
mentation of the ac-
tion class

Table 6.17. Attributes of EntryAction element

<Variable name="Article" type="Document"/>
<Assignment>

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument"
documentVariable="Article" gui="false">

<Condition>
<NotEmpty variable="Article"/>
</Condition>
</EntryAction>
gll== Cogle ==>
</UserTask>

Example 6.14. Example of an EntryAction which checks out a document
Equal
Grammar: ((Expression [117]), (Expression [117]))

An Equal expression contains exactly two subexpressions, which are both eval-
uated during the evaluation of the Equal expression. The expression evaluates
to "true” if and only if the computed values of the subexpressions are equal.

Although an Equal expression may compare values of any type, this element
makes sense only for values like integer, string, date, resource and timer values
as defined in the workflow. Note that document references are considered equals
only if they refer to the same document, that is, the document contents are not
considered.

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">
<Guard>
<Equal>
<Get variable="Comment"/>
<String value="LetMeIn"/>
</Equal>
</Guard>
<!-- Code -->
</UserTask>

Example 6.15. Example of an Equal expression
Exists
Grammar: (Expression [117])

Exists is the counterpart to ForAll [134] and behaves similarly. It evaluates to true
if any of the instances of the subexpression evaluate to "true”. Evaluation is also

COREMEDIA CO

Reference | XML Element Reference

short-circuited, that is, it stops as soon as a subexpression instance evaluates

to "true”.

Attribute Type Default Description

variable NMTOKEN #REQUIRED the name of a new
variable that iterates
over all members of
the aggregate

aggregate NMTOKEN #REQUIRED the name of an aggreg-
ate variable

index NMTOKEN #IMPLIED the name of a new in-

teger variable that is
set to the current in-
dex in the aggregate
during the iteration

Table 6.18. Attributes of the Exists element

<AggregationVariable name="Articles" type="Document"/>
<Assignment>

<Writes variable="Articles"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">

<Guard>
<Exists variable="Element" aggregate="Articles">
<Equal>
<String value="Sports"/>
<Read variable="Element" property="Topic"/>
</Equal>
</Exists>
</Guard>
€l== Cocle ==>
</UserTask>

Example 6.16. Example of an Exists expression which checks if one of the docu-
ments in the variable Articles has the entry Sports in Topics

ExitAction

Grammar: (Condition [126]?, Property [157]?)

COREMEDIA CONTEN

Reference | XML Element Reference

ExitAction and EntryAction [129] elements are identical to Action [119] elements,
see Action [119] for details.

Attribute Type Default Description

varies additional parameters
according to the imple-
mentation of the ac-
tion class

Table 6.19. Attributes of the ExitAction element

<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument"
documentVariable="Article" gui="false">

<Condition>
<NotEmpty variable="Article"/>
</Condition>
</EntryAction>
<I=—= Code ——>
</UserTask>

Example 6.17. Example of an Exit Action which checks whether the document is
null or not

Expression
Grammar: ((Expression [117])*)

You can implement your own expressions (see Section 5.4, “Programming Expres-
sions” [95]). Custom expressions must implement the interface com.core-
media.workflow.WfExpression or com.coremedia.workflow.Wf-
BooleanExpression.

Attribute Type Default Description

class NMTOKEN H#REQUIRED the name of the ex-
pression class

varies

Table 6.20. Attributes of the Expression element

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfBooleanExpression.html

Reference | XML Element Reference

<Variable name="comment" type="String">
<String value="TestString"/>
</Variable>
<If name="One">
<Condition>
<Less>
<Expression
class="com.coremedia.examples.expression.DemoExpression"/>
<Get variable="comment"/>
</Less>
</Condition>
<Then successor="True"/>
<Else successor="False"/>
</If>

Example 6.18. Example of an Expression element
FinalAction

The element FinalAction defines a final action that is executed after a pro-
cess was completed or aborted. Its class attribute specifies the fully qualified
name of a custom final action, which must be an implementation of
com.coremedia.cap.workflow.plugin.FinalAction.Section4.4.2,
“Predefined FinalAction Classes” [85] lists predefined classes that can also be

used.

Attribute Type Default Description

class NMTOKEN #REQUIRED the name of the final
action class

varies additional parameters

according to the imple-
mentation of the class

Table 6.21. Attributes of the FinalAction element

Folder
Grammar: EMPTY

The Folder element is used to specify a single constant folder within expressions
or variable initializers. It is not useful to define a fixed folder ID in the workflow
definition. Either value or path must be selected.

Attribute Type Default Description

value NMTOKEN #IMPLIED The ID of the folder.

COREMEDIA CONTEN

Reference | XML Element Reference

Attribute Type Default

path NMTOKEN #IMPLIED

Table 6.22. Attributes of the Folder element.

<Variable name="RootFolder" type="Folder">
<Folder value="1"/>
</Variable>

Example 6.19. Example of a Folder variable
ForAll

Grammar: (Expression [117])

Description

The path of the folder.

A ForAll expression checks its Boolean subexpression for all members of the
value of the "aggregate” AggregationVariable [120] and evaluates to "true" if all
instances of the subexpression evaluate to "true". The subexpression can (and
should) contain a Get [137] expression with the variable name that evaluates to
the n-th value in the aggregate. The logical "and" is short-circuited in the sense
that evaluation is done in the order of the aggregate's elements and stops as
soon as the subexpression evaluates to "false”. The optional index variable eval-
uates to an IntegerValue representing the index of the current element in the
aggregate and can be used, for example to access the member at the same index

in another aggregate.

Attribute Type Default
variable NMTOKEN #REQUIRED
aggregate NMTOKEN #REQUIRED
index NMTOKEN #IMPLIED

Table 6.23. Attributes of the ForAll element

COREMEDIA CONTENT CLOUD

Description

the name of a new
variable that iterates
over all members of
the aggregate

the name of an aggreg-
ation variable

the name of a new in-
teger variable that is
set to the current in-
dex in the aggregate
during the iteration

Reference | XML Element Reference

<AggregationVariable name="Articles" type="Document"/>
<Assignment>

<Writes variable="Articles"/>
</Assignment>

<AutomatedTask name="Approve" successor="TheNext">
<Action class="Approve" resourceVariable="Articles">
<ForAll variable="Element" aggregate="Articles">
<Not>
<Read variable="Element" property="isCheckedOut "/>
</Not> -
</ForAll>
</Action>
gl== Cogle ==>
</AutomatedTask>

Example 6.20. Example of a ForAll element which checks if all documents are
checked in before approving them

Fork
Grammar: ((Variable [170] | AggregationVariable [120])*, Successor [163]+)
A Fork task forks the flow of tasks into two or more Successors to perform exe-

cution in parallel. All forked tasks must be joined together by a Join [148] task.

<!-— Code ——>

<Fork name="Parallel" description="Fork tasks">
<Successor name="FirstParallel"/>
<Successor name="SecondParallel"/>

</Fork>

<AutomatedTask name="FirstParallel" successor="Together">
<!-— Code ——>

</AutomatedTask>

<UserTask name="SecondParallel" successor="Together">
<!-— Code ——>

</UserTask>

<Join name="Together" successor="Next">
<Predecessor name="FirstParallel"/>
<Predecessor name="SecondParallel"/>

</Join>

<!-— Code ——>

Example 6.21. Example of a Fork task

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the task

description CDATA #IMPLIED the textual description
of the task

Table 6.24. Attributes of the Fork element

ForkSubprocess

COREMEDIA CO

Reference | XML Element Reference

+ Grammar: ((Variable [170] | AggregationVariable [120])*, Parameters [153])

The ForkSubprocess task starts a separate workflow process, which is referenced
by its name, from the current process.

If detached is set to true, the forked subprocess has no relationship to its
parent process. If set to false, which is the default, a suspend, abort or resume
on the parent process suspends, aborts or resumes the forked subprocess, too.

The forked subprocess may be parametrized via Parameters [153] child elements.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the task

description CDATA #IMPLIED the textual description
of the task

subprocess NMTOKEN #REQUIRED the name of the sub

process to start

subprocessVari NMTOKEN #IMPLIED the name of the sub

able process to start,
defined via a string
variable. The name of
the string variable is
set with subpro
cessVariable.
subprocess or
subprocessVari
able must be
defined. If both are
set, subprocess
has precedence.

ownerVariable NMTOKEN #IMPLIED the owner of the sub
process is by default
the owner of the par-
ent process. Using
ownerVariable a
user variable can be
defined. If this variable
contains a valid user
id at runtime, this user
becomes the owner of
the sub process.

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

successor NMTOKEN #REQUIRED the name of the next
task to execute after
the subprocess has
been started

detached (Boolean [119]) "false” If set to “false”, the
subprocess may be
joined and it is af-
fected by suspend,
abort and resume op-
erations on the origin-
al process.

Table 6.25. Attributes of the ForkSubprocess element

<Workflow>
<Process name="FirstWF" startTask="Fork">
<Variable name="Comment" type="String"/>
<Assignment>
<Writes variable="Comment"/>
</Assignment>
gl== Cogle ==>
<ForkSubprocess name="Fork" subprocess="SecondWF"
successor="Wait" detached="false">
<Parameters>
<Assign variable="SubComment">
<Get variable="Comment"/>

</Assign>

</Parameters>

</ForkSubprocess>
gl== Cogle ==>

<JoinSubprocess name="Wait" forkTask="SecondWF"
successor="Final"/>
<AutomatedTask name="Final" final="true"/>
</Process>

</Workflow>

<!-- NEW FILE -->

<Workflow>
<Process name="SecondWF" startTask="FirstOne">
<Variable name="SubComment" type="String/>
<InitialAssignment>
<Writes variable="SubComment"/>
</InitialAssignment>

gl== Cogle ==>
</Process>
</Workflow>

Example 6.22. Example of a ForkSubprocess task

Get
Grammar: EMPTY

COREMEDIA CO

Reference | XML Element Reference

Get evaluates to the value of a variable. The variable can be a workflow variable
(normal or aggregate) or an expression-local variable (see Let, ForAll, Exists). If
the variable is an AggregationVariable [120], an index can be given either as an
integer constant or an integer variable in the index attribute. For aggregation
variables the Get expression evaluates to the value at this index in the aggrega-
tion, if an index is given, or to the entire aggregate otherwise.

Attribute Type Default Description

variable NMTOKEN H#REQUIRED the variable that con-
tains the result value

index NMTOKEN #IMPLIED the optional index into
an aggregation vari-
able, given by a vari-
able name or a con-
stant value

Table 6.26. Attributes of the Get element

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<If name="IfTask">
<Condition>
<Equal>
<Get variable="Comment"/>
<String value="42"/>
</Equal>
</Condition>
<Then successor="Taskl"/>
<Else successor="Task2"/>
</If>

Example 6.23. Example of a Get element
Grant
Grammar: EMPTY

Grant authorizes users or groups to perform actions on the process or task in-
stance they are specified in. Grant is only defined for the predefined ACLRight -
sPolicy. If you implement own policies, you may parameterize the policy as
you want.

One of 'user’, 'group’, or 'variable' must be set to specify the subject who is au-
thorized to do actions. If you use 'group’ or 'user' the optional ‘'domain’ might be
used in addition.

COREMEDIA CONTEN

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html

Reference | XML Element Reference

If the attribute 'variable' is set, then the indicated variable is read at runtime. If
the variable contains a user, the grant applies to that user. If it contains a group,
the grant applies to all direct or indirect members of that group. If it contains a
list of users or groups, it applies to all of these.

Rights specified using variables precede user rights, which again precede group
rights. Within each category, revokes precede grants.

The 'rights' are a comma-separated list of names for operations, which may be
performed. The actions, defined in the WERightsPolicy interface are:

read, write for process and task instances; create, start, suspend, resume, abort
for process instances; accept, reject, assign, complete, delegate, cancel, skip,
retry for task instances

Attribute Type Default Description
user NMTOKEN #IMPLIED the name of a user
or

the user ID of a user

group NMTOKEN #IMPLIED the name of a group
or

the group ID of a
group

domain NMTOKEN #IMPLIED The domain of a user
or group. May be used
if group or user is
chosen.

variable NMTOKEN #IMPLIED the name of a variable
that stores a user or a
group or a list of these

rights CDATA #REQUIRED a comma-separated
list of rights as spe-
cified above

Table 6.27. Attributes of the Grant element

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html

Reference | XML Element Reference

<UserTask name="GrantExample" successor="TheNext">
<Rights>
<Grant group="composer-role"
rights="accept, complete, read"/>
<Grant user="demol"
rights="accept, complete, delegate, read"/>
</Rights>
gl== Cogle ==>
<UserTask>

Example 6.24. Example of a Grant element
Greater
Grammar: ((Expression [117]), (Expression [117]))

A Greater expression contains exactly two subexpressions, which are both
evaluated during the evaluation of the Greater expression. The expression eval-
uates to "true” if and only if the computed value of the first subexpression is
greater than the value of the second subexpression.

Although a Greater expression may compare values of any type, this element
makes sense only for integer, string, date and timer values as defined in the
workflow.

<Variable name="Published" type="Date"/>
<Assignment>

<Writes variable="Published"/>
</Assignment>

<If name="IfTask">
<Condition>
<Greater>
<Get variable="Published"/>
<Date value="31.12.2000 24:00"/>
</Greater>
</Condition>
<Then successor="NewCentury"/>
<Else successor="0ldCentury"/>
</If>

Example 6.25. Example of a Greater expression
GreaterEqual
Grammar: ((Expression [117]), (Expression [117]))

A GreaterEqual expression contains exactly two subexpressions, which are both
evaluated during the evaluation of the GreaterEqual expression. The expression
evaluates to "true" if and only if the computed value of the first subexpression
is greater than or equal to the value of the second subexpression.

Although a GreaterEqual expression may compare values of any type, this element
makes sense only for integer, string, date and timer values.

COREMEDIA CO

Reference | XML Element Reference

<Variable name="Published" type="Date"/>
<Assignment>

<Writes variable="Published"/>
</Assignment>

<If name="IfTask">
<Condition>
<GreaterEqual>
<Get variable="Published"/>
<Date value="31.12.2000 24:00"/>
</GreaterEqual>
</Condition>
<Then successor="NewCenturyOrNewYearsEve"/>
<Else successor="0OldCentury"/>
</I1f>

Example 6.26. Example of a GreaterEqual expression
Group
Grammar: EMPTY

The Group element is used to specify a single constant group value within ex-
pressions, variable initializers or policies. Either 'value' or 'name’ must be specified.

If you delete a group in the user administration, which you have used in the
Group element of an uploaded workflow definition, its polices will fail.

Attribute Type Default Description
name NMTOKEN #IMPLIED Name of a group.
domain NMTOKEN #IMPLIED Domain of the group.

Might be used in addi-
tion to name.

value NMTOKEN #IMPLIED numeric ID of a group.

Table 6.28. Attributes of the Group element.name

<Variable name="Writer" type="Group"/>
<Group value="10"/>
</Variable>

Example 6.27. Example of a Group variable
Guard

Grammar: (Expression [117])

COREMEDIA CONTEN

Reference | XML Element Reference

A Guard contains a Boolean expression, that defines a condition which must
become true before a task is activated. See UserTask [166], AutomatedTask [122]
and Condition [126] for details.

<AggregationVariable name="Articles" type="Document"/>
<Assignment>

<Writes variable="Articles"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">

<Guard>
<Exists variable="Element" aggregate="Articles">
<Equal>
<String value="Sports"/>
<Read variable="Element" property="Topic"/>
</Equal>
</Exists>
</Guard>
<!-- Code -->
</UserTask>

Example 6.28. Example of a Guard
If

Grammar: ((Variable [170] | AggregationVariable [120])* Condition [126], Then [164],
Else [129])

An If task determines the successor task based on the result of a Condition [126].
A condition may be based on the state of workflow variables, the content of
documents from a Content Management Server or the external state of third-
party products.

If the condition evaluates to true, the successor of the Then [164] element is
chosen, else the one of the Else [129] element. See Example 6.29, “Example of an
If task” [142].

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the task

description CDATA #IMPLIED the textual description
of the task

Table 6.29. Attributes of the If element

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<If name="IfTask">
<Condition>

COREMEDIA CONTEN

Reference | XML Element Reference

<Equal>
<Get variable="Comment"/>
<String value="42"/>
</Equal>
</Condition>
<Then successor="Taskl"/>
<Else successor="Task2"/>
</If>

Example 6.29. Example of an If task
Implies
Grammar: ((Expression [117]), (Expression [117])*)

An Implies expression determines whether the first subexpression logically implies
all remaining sub expressions. Thus, <Implies>E1l E2 E3 ...<Implies/>
is equivalent to <Or><Not>E1</Not> <AND>E2 E3 ...</And></Or>.
For the common case of two subexpressions, an Implies expression evaluates
to "true" if and only if the first expression evaluates to "false" (without caring for
the result of the second subexpressions) or both expressions evaluate to "true”.

<Assignment>
<Writes variable="changeSet" contentEditable="true"/>
<Validator name="AllCheckedIn"
description="all-checked-in-validator">
<ForAll variable="change" aggregate="changeSet">

<Implies>
<And>
<IsDocumentVersion variable="change"/>
<Equal>
<Read variable="change" property="version_ "/>
<Read variable="change"
property="latestVersion "/>
</Equal>
</And>
<Not>
<Read variable="change" property="isCheckedOut "/>
</Not> -
</Implies>
</ForAll>
</Validator>
</Assignment>

Example 6.30. Example for an Implies expression
InitialAssignment
« Grammar: ((Reads [158] | Writes [171], Validator [169] Validator [169])

An InitialAssignment element defines that a variable is 'important’ to a process
instance during the initial creation of the workflow before the workflow is started.
This way it is possible to set initial arguments for a process instance which
cannot be changed after the instance is started.

With Reads [158] and Writes [171] the variables are specified. The variables can
or have to be modified by a user or an external process. Thus, the InitialAssign-

Reference | XML Element Reference

ment element defines a view on the variables. The modifications of the variables
may be validated by Validators.

<Workflow>
<Process name="InitialClientTest" startTask="TheFirst">
<Variable name="Comment" type="String"/>
<Variable name="Articles" type="Document"/>
<InitalAssignment>
<Reads variable="Comment"/>
<Writes variable="Articles"/>
</InitalAssignment>

<!-— Code ——>
</Process>
</Workflow>

Example 6.31. Example of an InitialAssignment element

InitialClient

Deprecated. See InitialAssignment instead.

Integer

Grammar: EMPTY

The Integer element is used to specify a single constant integer value within

expressions or variable initializers.

Attribute Type Default Description

value NMTOKEN #REQUIRED the integer value

Table 6.30. Attribute of the Integer element

<Variable name="Number" type="Integer">
<Integer value="100"/>
</Variable>

Example 6.32. Example of an Integer Variable

IsDocument
Grammar: EMPTY
IsDocument queries whether a resource value contained in the variable, which

is given as in Get [137], is a document with or without an explicit version.

Attribute Type Default Description

variable NMTOKEN H#REQUIRED the name of the docu-
ment variable

COREMEDIA CONTEN

Reference | XML Element Reference

Attribute Type Default Description

index NMTOKEN #IMPLIED the optional index into
an aggregation vari-
able, given by a vari-
able name or a con-
stant value

Table 6.31. Attributes of the IsDocument element

<Variable name="Article" type="Resource"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="AndTest" successor="theNext">
<EntryAction class="CheckOutDocument"”" documentVariable="Article">

<Condition>
<IsDocument variable="Article"/>
</Condition>
</EntryAction>
<!-- Code —-->
</UserTask>

Example 6.33. Example of an IsDocument expression

IsDocumentVersion
Grammar: EMPTY

IsDocumentVersion queries whether a resource value contained in the variable,
which is given as in Get [137], is a document with an explicit version.

This is helpful because document variables may refer simply to a document or
to a specific version of that document, so that processing may have to vary
depending on the kind of value stored.

Attribute Type Default Description

variable NMTOKEN H#REQUIRED the name of the docu-
ment variable

index NMTOKEN #IMPLIED the optional index into
an aggregation vari-
able, given by a vari-
able name or a con-
stant value

Table 6.32. Attributes of the IsDocumentVersion element

COREMEDIA CONTEN

Reference | XML Element Reference

<Variable name="Article" type="Document"/>
<Assignment>

<Writes variable="Article"/>
</Assignment>

<UserTask name="IsTest" successor="theNext">
<EntryAction class="PublishResource" documentVariable="Article">

<Condition>
<IsDocumentVersion variable="Article"/>
</Condition>
</EntryAction>
<!-- Code —-—>
</UserTask>

Example 6.34. Example of an IsDocumentVersion expression
IsEmpty
Grammar: EMPTY

IsEmpty evaluates to true if the value of the specified variable or resource
property is "null’. For an aggregation variable, length of zero is considered as
empty, too. See Length [149] for details. For an XML example see PostCondi-

tion [154].

Attribute Type Default Description

variable NMTOKEN #REQUIRED the name of the docu-
ment variable

index NMTOKEN #IMPLIED the optional index into
an aggregation vari-
able, given by a vari-
able name or a con-
stant value

property NMTOKEN #IMPLIED the optional name of

a resource property
Table 6.33. Attributes of the IsEmpty element

IsExpired

Grammar: EMPTY

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

IsExpired queries whether the timer given by the defined variable has expired.

Attribute Type Default Description
variable NMTOKEN #REQUIRED the name of the timer
variable

Table 6.34. Attributes of the IsExpired element

<AutomatedTask name="StartTimer" description="SimplyStart"
successor="Wait">
<Variable name="waiting" type="Timer">
<Timer value="100"/>
</Variable>

<Action class="EnableTimer" timerVariable="waiting"/>
</AutomatedTask>

<UserTask name="Wait" successor="Next">

<Guard>
<IsExpired variable="StartTimer.waiting"/>
</Guard>
€l== Cocle ==>
</UserTask>

Example 6.35. Example of an IsExpired expression
IsFolder
Grammar: EMPTY

IsFolder queries whether a resource value contained in the variable given via the
variable attribute is a folder and not a content item or content version.

Attribute Type Default Description

variable NMTOKEN #REQUIRED the name of the re-
source variable

index NMTOKEN #IMPLIED the optional index into
an aggregation vari-
able, given by a vari-
able name or a con-
stant value

Table 6.35. Attributes of the IsFolder element

<Variable name="Location" type="Resource"/>

<!-- Code —--—>

<AutomatedTask name="CreateDocument" successor="TheNext">
<PreCondition name="CheckLocation">

COREMEDIA CONTENT

Reference | XML Element Reference

<IsFolder variable="Location"/>
</PreCondition>
<!-- Code —-—>
</AutomatedTask>

Example 6.36. Example of an IsFolder expression
Join
Grammar: ((Variable [170] | AggregationVariable [120])*, Predecessor [155]+)

A Join task waits for two or more tasks to complete. Joined tasks must have
been forked by a Fork [135] task to perform execution in parallel. A Join task waits
for all of them to be completed.

The Predecessor elements contained in this element list all tasks that use this
Join element as the successor. For an example see Fork [135].

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of this task

description CDATA #IMPLIED the textual description
of this task

successor NMTOKEN #REQUIRED the next task to ex-

ecute after all prede-
cessors have been
joined

Table 6.36. Attributes of the Join element
JoinSubprocess

Grammar: (Variable [170] | AggregationVariable [120])*

A JoinSubprocess [148] task waits for a non detached subprocess to complete.
For an XML example see ForkSubprocess [135].

Attribute Type Default Description
name NMTOKEN #REQUIRED The name of this task
description CDATA #IMPLIED The textual descrip-

tion of this task

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description
forkTask NMTOKEN #REQUIRED The name of the task
that forked the subpro-

cess to wait for

successor NMTOKEN #REQUIRED The next task to ex-
ecute after the subpro-
cess has been joined

processRes-— NMTOKEN #IMPLIED Name of the variable
ultVariable of the subprocess
that contains the res-
ult variable.
localResultVari- NMTOKEN #IMPLIED Name of the variable
able of the current process

into that the result
value should be
stored.

Table 6.37. Attributes of the JoinSubprocess element

Length
Grammar: EMPTY

Length evaluates to the length of the value of the specified variable or resource
property and depends on the type. For an aggregation variable it returns the
number of elements, for a string variable or string property it returns the length
of the string. See also Get [137] and Read [158].

Attribute Type Default Description

variable NMTOKEN #REQUIRED the name of the vari-
able

index NMTOKEN #IMPLIED the optional index into

an aggregation vari-
able, given by a vari-
able name or a con-
stant value

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

property NMTOKEN #IMPLIED the optional name of
a resource property

Table 6.38. Attributes of the Length element

<Variable name="Input" type="String">
<Assignment>
<Writes variable="Input"/>
</Assignment>
<UserTask name="LengthCheck" successor="TheNext">
<Guard>
<Greater>
<Length variable="Input"/>
<Integer value="4"/>

</Greater>
</Guard>

<I== Code ——>
</UserTask>

Example 6.37. Example of a Length element

Less
Grammar: ((Expression [117]), (Expression [117]))

A Less expression contains exactly two subexpressions, which are both evaluated
during the evaluation of the Less expression. The expression evaluates to "true”
if and only if the computed value of the first subexpression is less than the value
of the second subexpression.

Although a Less expression may compare values of any type, this element makes
sense only for integer, string, date, and timer values as defined in the workflow.

LessEqual
Grammar: ((Expression [117]), (Expression [117]))

A LessEqual expression contains exactly two subexpressions, which are both
evaluated during the evaluation of the LessEqual expression. The expression
evaluates to "true" if and only if the computed value of the first subexpression
is less than or equal to the value of the second subexpression.

Although a LessEqual expression may compare values of any type, this element
makes sense only for integer, string, date and timer values as defined in the
workflow. See Less [150] for an XML example.

<Variable name="Published" type="Date"/>

<!-- Code -->
<If name="IfTask">
<Condition>

COREMEDIA CONTEN

Reference | XML Element Reference

<Less>
<Get variable="Published"/>
<Date value="31.12.2000 24:00"/>
</Less>
</Condition>
<Then successor="NewCentury"/>
<Else successor="0OldCentury"/>
</If>

Example 6.38. Example of a Less expression
Let
Grammar: ((Expression [117]), (Expression [117]))

Let binds an expression-local variable to a value determined by the first subex-
pression. It evaluates to the value of the second subexpression, which can use
the expression-local variable. Let is useful to reuse complex subexpressions and
store their result in an expression-local variable. Some functions as Length [149]
and Read [158] can only be applied to variable values. Using Let they can be ap-

plied to any expression (mostly custom expressions), which must return values
which must make sense.

Attribute Type Default Description

variable NMTOKEN H#REQUIRED the name of the local
variable that will be
bound to the result of
the first subexpres-
sion

Table 6.39. Attributes of the Let element

<Variable name="Article" type="Document"/>

<Assignment>
<Writes variable="Article"/>
</Assignment>
<UserTask name="LetTest" successor="Final">
<Guard>

<Let variable="Test">
<Read variable="Article" property="Headline"/>
<Greater>
<Integer value="50"/>
<Length variable="Test"/>

</Greater>
</Let>
</Guard>
<!-— Code ——>

</UserTask>

Example 6.39. Example of a Let element which is needed to check whether the
headline of an article is longer than 50 characters or not

COREMEDIA CONTENT

Reference | XML Element Reference

Not
Grammar: (Expression [117])

A Not expression evaluates its Boolean subexpression and returns the logical
negation of the result.

<ForAll variable="Element" aggregate="Articles">
<Not>
<Read variable="Element" property="isCheckedOut "/>
</Not> -
</ForAll>

Example 6.40. Example of a Not element
NotEmpty
Grammar: EMPTY

NotEmpty is the negation of ISEmpty. See IsSEmpty [146] for details.

Attribute Type Default Description

variable NMTOKEN #REQUIRED the name of the docu-
ment variable

index NMTOKEN #IMPLIED the optional index into
an aggregation vari-
able, given by a vari-
able name or a con-
stant value

property NMTOKEN #IMPLIED the optional name of
a resource property

Table 6.40. Attributes of the NotEmpty element

NotEqual
Grammar: ((Expression [117]), (Expression [117]))

A NotEqual expression is the negation of an Equal expression.

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

<UserTask name="AndTest" successor="TheNext">
<Guard>

COREMEDIA CONTENT CLOUD 1

Reference | XML Element Reference

<NotEqual>
<Get variable="Comment"/>
<String value="LetMeIn"/>

</NotEqual>
</Guard>

<!-- Code —-—>
</UserTask>

Example 6.41. Example of a NotEqual expression
Or
Grammar: ((Expression [117])*)

An Or expression evaluates to the disjunction of its subexpressions, all of which
must return Boolean values. The subexpressions are evaluated in a "short-circuit"
fashion, that is, they are evaluated from left to right until the first subexpression
evaluates to "true” or all subexpressions have evaluated to "false".

<UserTask name="AndTest" successor="theNext">
<PreCondition>
<Or>
<Equal>
<Get variable="OWNER "/>
<User value="0"/>
</Equal>
<Equal>
<Get variable="Comment"/>
<String value="42"/>
</Equal>
</0r>
</Precondition>
gl== Cosle ==>
</UserTask>

Example 6.42. Example of an Or expression
Parameters
Grammar: (Assign [122]+)

Parameters is used to enclose the elements that define how to parametrize a
subprocess. For an XML example see ForkSubprocess [135].

Performers
Grammar: ANY

A Performers element specifies external code that is called to determine which
users to offer a task for acceptance. If you do not use this element, the default
policy DefaultPerformersPolicy is used.

You can either give the fully qualified name of your own Performers class which
must be animplementation of com.coremedia.workflow.WfPerformer—
sPolicy, an unqualified class name which will be searched for in the package
com.coremedia.workflow.common.policies oritdefaults to abuilt-

COREMEDIA CONTENT

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfPerformersPolicy.html

Reference | XML Element Reference

in generic implementation com.coremedia.workflow.com-
mon.policies.DefaultPerformersPolicy.

The default implementation keeps a blacklist of users not permitted to perform
a task and a list of preferred users. Upon setting a new preferred user or group
the old preference is deleted. For details see the Action class PreferPer—

former.

Attribute Type Default Description

policyClass NMTOKEN #IMPLIED the class that determ-
ines the performers

varies additional parameters

according to the imple-
mentation of the
policy class

Table 6.41. Attributes of the Performers element

<UserTask name="PerformersTest" successor="TheNext">
<Performers policyClass="com.coremedia.MyPolicyClass"/>
Kl== Cogle ==>

</UserTask>

Example 6.43. Performers element
PostCondition
Grammar: (Expression [117])

A PostCondition assert a condition that must hold after an (optional) exit action
(user task) or action (automated task) has run. See Condition [126] for details.

Attribute Type Default Description

name NMTOKEN #IMPLIED the name of the Post-
Condition

description CDATA #IMPLIED a textual description
of the verified condi-
tion

Table 6.42. Attributes of the PostCondition element

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/policies/DefaultPerformersPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/workflow-server/com/coremedia/workflow/common/actions/PreferPerformer.html

Reference | XML Element Reference

<Variable name="Article" type="Document">
<UserTask name="PostCondition" successor="TheNext">
<!-- Code —-—>
<Assignment>
<Writes variable="Article"/>
</Assignment>
<!-- Code -->
<PostCondition name="CheckDocument">
<Not>
<IsEmpty variable="Article"/>
</Not>
</PostCondition>
</UserTask>

Example 6.44. Example of a PostCondition element
PreCondition
Grammar: (Expression [117])

A PreCondition asserts a condition that must hold when the task has been ac-
cepted but before an entry action (user task) or action (automated task) has
run. It is described by an expression. See Condition [126] for details.

Attribute Type Default Description

name NMTOKEN #IMPLIED the name of the Pre-
Condition

description CDATA #IMPLIED a textual description
of the verified condi-
tion

Table 6.43. Attributes of the Precondition element

<Variable name="Location" type="Folder"/>
<Variable name="DocName" type="String"/>
<Assignment>
<Writes variable="Location"/>
<Writes name="DocName"/>
</Assignment>
<AutomatedTask name="CreateDocument" successor="TheNext">
<PreCondition name="CheckLocation">
<IsFolder variable="Location"/>
</PreCondition>
<Variable name="DocType" type="DocumentType">
<DocumentType value="Article"/>
</Variable>
<Action name="CreateDocument" folderVariable="Location"
nameVariable="DocName" typeVariable="DocType"/>
</AutomatedTask>

Example 6.45. Example of a PreCondition

Predecessor

COREMEDIA CO

Reference | XML Element Reference

Grammar: EMPTY

A Predecessor elements defines a predecessor of a Join [148] task by its name.
See Fork [135] for an XML example.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of one pre-
decessor task

Table 6.44. Attribute of the Predecessor element

Process

Grammar: (Rights [161]?, (Variable [170] | AggregationVariable [120])*, InitialCli-
ent [144]?, Client [126]?, (Task [118])+)

A process is a definition of a workflow process which is identified by its name.
It consists of tasks, which reference each other by name. The startTask at-
tribute defines the name of the start task. A process is the template for a process
instance. To run a process, it has to be instantiated. At that time an actual process
instance is created, which carries the process state and completes the workflow
steps that are defined by tasks and carried out by task instances.

The description of the process is a human readable explanation about what the
process does or a key used for localization.

The subprocessOnly attribute defines whether an instance of the process
can be created as a top level instance or only as a subprocess instance. The
default is false.

The Rights [161] element configures user and group permissions for the process
instance operations.

Variables in the process scope define the global state of the workflow process.
With InitialClient [144] and Client [126], you define which variables are to be read
or written by a user or an external process. The InitialClient [144] element is used
for initializing the process before it is started while the Client [126] element is
used afterwards when the process is running.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the pro-
cess

description CDATA #IMPLIED a textual description

of what the process

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

does or a localization

key.
startTask NMTOKEN #REQUIRED the name of the initial
task
subprocessOnly (Boolean [119]) "false” Specify this attribute

for processes that
cannot run stand-
alone.

defaultTimeout NMTOKEN #IMPLIED the maximum number
of seconds that an in-
stance of this process
is supposed to take

Table 6.45. Attributes of the Process element

<Workflow>
<Process name="Example" description="An example"
startTask="First">
gl== Cosle ==>
</Process>
</Workflow>

Example 6.46. Example of the Process element

Property
Grammar: EMPTY

The Property element defines the properties with which a new document is

created.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of a prop-
erty as defined in the
content type

value CDATA #REQUIRED a value of the appropri-

ate type

Table 6.46. Attributes of the Property element

COREMEDIA CONTENT CLOUD 7

Reference | XML Element Reference

<Variable name="Location" type="Folder"/>
<Variable name="DocName" type="String"/>
<Assignment>
<Writes variable="Location"/>
<Writes name="DocName"/>
</Assignment>
<AutomatedTask name="CreateDocument" successor="TheNext">
<Variable name="DocType" type="DocumentType">
<DocumentType value="Article"/>
</Variable>
<Action name="CreateDocument" folderVariable="Location"
nameVariable="DocName" typeVariable="DocType">
<Property name="Headline" value="Politics"/>
<Property name="Creator" value="AutomaticCreator"/>
</Action>
</AutomatedTask>

Example 6.47. Example of a Property element

Read
Grammar: EMPTY

Read evaluates to the contents of the given property of a resource. 'property’
can be the name of any implied or schema property of a resource. A blob prop-
erty will be returned as an XML representation in a string value, a linklist property
will be returned as an aggregation variable of documents and an SGML property
will be returned as a string. All other property types will be returned as the ap-
propriate workflow variable value. See Exists [130] for an XML example.

Attribute Type Default Description

variable NMTOKEN H#REQUIRED the name of the docu-
ment variable

index NMTOKEN #IMPLIED the optional index into
an aggregation vari-
able, given by a vari-
able name or a con-
stant value

property NMTOKEN #IMPLIED the name of the re-
source property to
read

Table 6.47. Attributes of the Read element

Reads

Grammar: EMPTY

COREMEDIA CONTENT

Reference | XML Element Reference

Reads and Writes [171] specify the variables that are 'important' to a task or
process instance. For variables that are specified with Reads, it is not possible
to modify them. They are just shown in the editor. Accordingly, Writes [171] allows
you to modify variables on a workflow client.

The variable attribute specifies the name of the variable. The description is a
human readable explanation about how to interpret or modify the variable. It
may be localized by the editor.

Resource variables may be declared as contentEditable, which means that
you can change the content of the resource stored in the variable (if you have
the appropriate rights on the resource) but you can not change the resource to
which the variable references even if the variable itself is read-only.

Attribute Type Default Description

variable NMTOKEN H#REQUIRED Defines the name of
the read variable

description CDATA #IMPLIED Defines the textual
description of the
meaning of the vari-
able

contentEditable (Boolean [119]) "true” Defines whether a
document referred to
by a variable may be
edited in the embed-
ded document view

Table 6.48. Attributes of the Reads element

<Variable name="Comment" type="String"/>
<Variable name="Article" type="Document"/>
<Assignment>

<Reads variable="Comment"/>

<Reads variable="Article" contentEditable="true"/>
</Assignment>

Example 6.48. Example of a Reads element

Resource

Grammar: EMPTY

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

The Resource element is used to specify a single constant resource within ex-
pressions or variable initializers. It is not useful to define a fixed resource ID in
the workflow. Either value or path must be selected.

Attribute Type Default Description

value NMTOKEN #IMPLIED The ID of the resource.

path NMTOKEN #IMPLIED The path of the re-
source.

Table 6.49. Attributes of the Resource element.

<Variable name="DocFol" type="Resource">
<Resource value="12"/>
</Variable>

Example 6.49. Example of a Resource variable
Revoke
Grammar: EMPTY

Revoke revokes the operations for users or groups like Grant [138] grants them
(only valid for the default ACL rights policy). See Grant [138] for details. Rights
specified using variables precede user rights, which again precede group rights.
Within each category, revokes precede grants.

Attribute Type Default Description
user NMTOKEN #IMPLIED the name of a user
or

the user ID of a user

group NMTOKEN #IMPLIED the name of a group
or

the group ID of a
group

domain NMTOKEN #IMPLIED Domain of a group or
user. Might be used in
addition, if group or
user has been chosen.

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

variable NMTOKEN #IMPLIED the name of a variable
that stores a user or a
group or alist of these

rights CDATA #REQUIRED a comma-separated
list of rights as spe-
cified above

Table 6.50. Attributes of the Revoke element.

<UserTask name="GrantExample" successor="TheNext">
<Rights>
<Grant group="composer-role"
rights="accept, complete, delegate, read"/>
<Revoke user="demol" rights="delegate"/>
</Rights>
€l== Cocle ==>
<UserTask>

Example 6.50. Example of a Revoke element
Rights
Grammar: (Grant [138]*, Revoke [160])

The Rights element defines user and group permissions for the workflow opera-
tions.

You can either give the full qualified name of your own Rights class which must
be animplementation of com.coremedia.workflow.WfRightsPolicy,
an unqualified class name which will be searched for in the package
com.coremedia.workflow.common.policies oritdefaults to abuilt-
in generic implementation com.coremedia.workflow.com-
mon.policies.ACLRightsPolicy.

The default policy ACLRightsPolicy defines an access control list like im-
plementation:

« Right can be granted to individual users or group (Grant [138]).

+ Rights can be revoked for individual users or groups (Revoke [160]).
+ User defined rights precede group rights.

+ Negative rights (revokes) precede positive rights.

+ The admin user has all rights (this is the user with id O).

Specific rights are explicitly granted to the owner of the process and the per-
former of a task.

COREMEDIA CONTENT CLOUD

https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/WfRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html
https://documentation.coremedia.com/cmcc-13/artifacts/2512.0-latest/javadoc/common/com/coremedia/workflow/common/policies/ACLRightsPolicy.html

Reference | XML Element Reference

The process owner may:

» Read and write variables exported by the processes client view.

 Start the process instance.

+ Skip, assign and delegate any user task.

+ Retry the last transaction on an aborted task instance (not dependent on the
policy).

The task performer may:

» Read and write variables exported by the tasks client view.
» Cancel or complete the accepted task instance.
* Retry the last transaction if the task instance is aborted.

Attribute Type Default Description

policyClass NMTOKEN #IMPLIED the class that determ-
ines the policy

varies additional parameters
according to the imple-
mentation of the
policy class

Table 6.51. Attributes of the Rights element

<Workflow>
<Process name="RightsExample" startTask="First">
<Rights>
<Grant group="composer-role"
rights="create, start, suspend"/>
</Rights>
Kl== Cogle ==>

<UserTask name="First" description="The first Task"
successor="Next">
<Rights>
<Grant user="demol"
rights="accept, complete, read"/>

</Rights>
<!-- Code —-->
</UserTask>
Kl== Cogle ==>
</Process>

</Workflow>
Example 6.51. Example of a Rights element
String

Grammar: EMPTY

COREMEDIA CONTEN

Reference | XML Element Reference

The String element is used to specify a single constant string value within expres-
sions or variable initializers.

Attribute Type Default Description

value CDATA #REQUIRED the string value

Table 6.52. Attribute of the String element

<Variable name="Text" type="String">
<String value="Hello World"/>
</Variable>

Example 6.52. Example of a String variable

Successor

Grammar: EMPTY

A Successor element defines a successor task of a Fork [135] or Choice [126] task

by its name. See Fork [135] for an example.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the suc-
cessor task

Table 6.53. Attribute of the Successor element

Switch

Grammar: (Variable | AggregationVariable)*, (Case)+)>

A Switch task determines the successor based on the result of two or more
‘case’ conditions. The successor is defined by the first ‘case’ condition evaluating
to true. The conditions are evaluated in sequential order of their definition. A
default successor is mandatory if all given conditions evaluate to false.

Attribute Type Default Description
name NMTOKEN #REQUIRED The name of the task.
description CDATA #IMPLIED The textual descrip-

tion of the task.

defaultSuc- NMTOKEN #REQUIRED The default successor
cessor task that is chosen if

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

no case condition
matches.

Table 6.54. Attributes of the Switch element.

<Switch name="SwitchTask" defaultSuccessor="DefaultTask">
<Case successor="FirstSuccessor">
<Equal>
<Get variable="Comment"/>
<String value="42"/>
</Equal>
</Case>
<Case successor="SecondSuccessor">
<Equal>
<Get variable="Comment"/>
<String value="13"/>
</Equal>
</Case>
</Switch>

Example 6.53. Example of the Switch element.
Then
Grammar: EMPTY

Then defines the successor of the If [142] task if the condition evaluates to true,
see If [142] for details and an example.

Attribute Type Default Description

successor NMTOKEN #REQUIRED the name of the suc-
cessor task in the
"then" case

Table 6.55. Attribute of the Then element

Timer

Grammar: EMPTY

The Timer element is used to specify a single constant timer value within expres-

sions or variable initializers.

Attribute Type Default Description

value NMTOKEN #IMPLIED For relative timers, this
attribute specifies the
number of seconds

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

until the timer runs
out.

relative (Boolean [119]) "true” This attribute determ-
ines whether the timer
should be a relative
timer. An absolute
timer will not be useful
in the workflow defini-
tion.

Table 6.56. Attributes of the Timer element

<Variable name="Expires" type="Timer">
<Timer value="100"/>
</Variable>
<Action class="EnableTimer" timerVariable="Expires"/>

Example 6.54. Example of a Timer variable
TimerHandler

Grammar: EMPTY

The TimerHandler element is used to assign a timer handler to a timer. The
handler must be defined in the same location, that is the process or task defini-
tion, where its associated timer variable is defined. See Section 4.4.3, “Predefined
TimerHandler Classes” [86] for a list of predefined timer handlers.

Attribute Type Default Description

class NMTOKEN #REQUIRED Timer handler class
that is called.

name NMTOKEN #IMPLIED Name of the timer
handler.
timerName NMTOKEN #REQUIRED Name of the timer for

which the timer hand-
ler is installed.

Table 6.57. Attributes of the TimerHandler element

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

<AutomatedTask name="StartTimer" description="SimplyStart"
successor="Wait">
<Variable name="waiting" type="Timer">
<Timer value="100"/>
</Variable>
<Action class="enableTimer" timerVariable="waiting"/>
<TimerHandler class="RunActionTimerHandler"
name="TimerHandler"
timerName="waiting">
<Action class="Log" info="true"
message="Entering task with x = "/>
</TimerHandler>
</AutomatedTask>

Example 6.55. Example of a TimerHandler element
User
Grammar: EMPTY

The User element is used to specify a single constant user value within expres-
sions, variable initializers or policies. Either 'value' or 'name’ must be specified.

If you delete a user in the user administration, which you have used in the User
element of an uploaded workflow definition, its polices will fail.

Attribute Type Default Description

value NMTOKEN #IMPLIED The numeric ID of a
user.

name NMTOKEN #IMPLIED The name of a user.

domain NMTOKEN #IMPLIED The domain of a user.

Might be used in addi-
tion to name.

Table 6.58. Attributes of the User element.

<Variable name="Admin" type="User">
<User value="0"/>
</Variable>

Example 6.56. Example of a User variable
UserTask

Grammar: (Rights [161], Performer [153]?, (Variable [170] | AggregationVariable [120])*,
Client [126]* EntryAction [129]*, ExitAction [131]*, Guard [141]?, PreCondition [155]*,
PostCondition [154])

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

A UserTask has to be carried out by a participant. The performers policy is ex-
ternal code which is called to determine which users to offer this task for accept-
ance.

The defaultOfferTimeout defines the default time in seconds that task
instances are offered to users to be accepted. The defaultTimeout defines
the default time in seconds until task instances have to be completed after being
accepted. If no timeout time is set, then no timeout is defined at all. A de-
faultPriority sets the default priority of task instances. Priorities may be
used to distinguish the urgency of task instances. A successor must be given if
and only if the task is not final.

The run time of an autocompleted task is determined by the time that the ex-
ecuted actions and the PreConditions and PostConditions take. It will
not be completed by the user but just runs through all included actions. Since
EntryActions and ExitActions are executed, the effect is that a user can determine
when this execution is supposed to take place and that it takes place on behalf
of the user. Consider autocompleted tasks as semi-automatic tasks.

The Rights [161] element configures user and group permissions for the task in-
stance operations.

Client [126] determines which variables are relevant for this task and may be
changed.

A user task may perform some automated action (EntryAction [129]) after the
task is accepted and after the task has been completed by the user (ExitAc-
tion [131]). If [142] more than one EntryAction [129] or ExitAction [131] is provided,
then the actions are executed in the order they are specified.

PreConditions define requirements which have to be fulfilled before the
entry actions of the user task are executed. PostConditions define requirements
which have to be fulfilled after all the exit actions have been executed. PreCon
ditions and PostConditions are evaluatedin the order they are specified.
The result of such an evaluation operation is equivalent to specifying an ‘and’
expression with an ordered set of conditions.

A Guard [141] defines an expression, which activates the task, if the expression
evaluates to true. The expressions of the condition are rechecked on state
changes of process instances or task instances and resources in the Live Server.

Attribute Type Default Description

name NMTOKEN #REQUIRED the name of the task

description CDATA #IMPLIED the textual description
of the task

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description
defaultPriority NMTOKEN #IMPLIED the priority of the task
defaultTimeout NMTOKEN #IMPLIED the default timeout in
seconds
defaultOffer- NMTOKEN #IMPLIED the default offer
Timeout timeout in seconds
successor NMTOKEN #IMPLIED the next task to ex-

ecute after the user
task has been com-

pleted
final (Boolean [119]) “false” Defines whether the
task is the final task to
execute
autoAccepted (Boolean [119]) “false” Defines whether the

task is automatically
accepted if it was as-
signed to a single user
withthe ForceUser
action. Entry actions
of automatically ac-
cepted tasks will by
default be executed
by user workflow.
Note that even if this
attribute is set to
“false”, tasks may still
be automatically ac-
cepted by workflow
clients.

autoCompleted (Boolean [119]) "false” Defines whether the
task is autocompleted

varies additional parameters
according to the imple-

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

mentation of the user
task class

Table 6.59. Attributes of the UserTask element

<UserTask name="UserTaskExample" description="Example UserTask"
successor="Next">
<Rights>

<Grant user="demol" rights="accept, complete, read"/>
</Rights>
<I=—= Code ——>
</UserTask>

Example 6.57. Example of a UserTask task

Validator
Grammar: (Expression [117]

A validator verifies variable bindings to keep certain rules, which are defined in
the Validator element.

By default, the variable bindings are verified only on initial process assignment
or task completion. If validatedOnSave is set to "true’, the verification takes
place on every save.

To specify a valid state, you provide an expression to the validator.

Attribute Type Default Description

name NMTOKEN #IMPLIED the name of the valid-
ator

description CDATA #IMPLIED the textual description
of the condition that
is verified

validatedOnSave (Boolean [119]) "false” Defines whether the

verification should
take place on every
save

varies additional parameters
according to the imple-

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

mentation of the valid-
ator class

Table 6.60. Attributes of the Validator element

<Assignment>
<Writes variable="subject"/>
<Writes variable="comment"/>
<Writes variable="changeSet" contentEditable="true"/>
<Validator name="AllCheckedIn"
description="all-checked-in-validator">
<ForAll variable="change" aggregate="changeSet">
<Implies>
<And>
<IsDocumentVersion variable="change"/>
<Equal>
<Read variable="change" property="version_ "/>
<Read variable="change" property="latestVersion "/>
</Equal> -
</And>
<Not>
<Read variable="change" property="isCheckedOut "/>
</Not>
</Implies>
</ForAll>
</Validator>
</Assignment>

Example 6.58. Example of a Validator element
Variable

Grammar: (Value [118])?

Variables carry state for the workflow process. It may be modified from within
the workflow engine or by changing client view variables.

A variable is referenced by its name. It has a type which is determined by the
Value class given with the type attribute. See Value for details. The value of a
variable is defined by one of the elements Boolean, String etc.

If [142] a variable is declared as readOn1y and the process instance has been
started, it is not possible to modify it. If [142] a variable is declared as static, it
maintains its state, otherwise it is reinitialized to the defined default every time
a task instance is started.

Attribute Type Default Description
name NMTOKEN H#REQUIRED the name of the vari-
able

COREMEDIA CONTENT

Reference | XML Element Reference

Attribute Type Default Description

type NMTOKEN #REQUIRED the type of the vari-
able, see Value

readOnly (Boolean [119]) "false" Defines whether it is
forbidden to modify
the variable

static (Boolean [119]) "false” Defines whether the
variable is initialized
only once

Table 6.61. Attributes of the Variable element

<Variable name="Comment" type="String">
<String value="42"/>
</Variable>

Example 6.59. Example of a Variable element
Workflow

Grammar: (Process [156])

You can configure exactly one process per workflow definition, which means
one workflow per file. If [142] you wish to define more workflow processes, create
their definition in separate files. This might be extended in the future.

<Workflow>
<Process name="WorkflowExample" startTask="First">
<!-- Code —--—>
</Process>
</Workflow>

Example 6.60. Example of the Workflow element
Writes
Grammar: EMPTY

In a Client, a Writes element declares that a variable may be viewed and modified.
See Reads for details.

Attribute Type Default Description
variable NMTOKEN #REQUIRED the name of the writ-
ten variable

COREMEDIA CONTENT CLOUD

Reference | XML Element Reference

Attribute Type Default Description

description CDATA #IMPLIED the textual description
of the meaning of the
variable

contentEditable (Boolean [119]) "true” Defines whether a

document referred to
by a variable may be
edited in the embed-
ded document view
(not enforced by the
workflow server)

Table 6.62. Attributes of the Writes element

<Variable name="Comment" type="String"/>
<Assignment>

<Writes variable="Comment"/>
</Assignment>

Example 6.61. Example of a Writes element

COREMEDIA CONTENT CLOUD

Reference | Studio Simple Publication Workflow Definition

6.3 Studio Simple Publication
Workflow Definition

In this chapter you find the complete workflow definition of the Studio Direct
Publication workflow as described in Section 4.3, “Example of Workflow Defini-
tion” [64].

<?xml version="1.0" encoding="iso-8859-1"7?>

&l==

CoreMedia Simple Publication Workflow for Studio
-—>

<Workflow>
<Process name="StudioSimplePublication" description="studio-simple-publication"
startTask="AssignUser">

<Rights>
<Grant
<Grant
<Grant
<Grant

</Rights>

'composer-role"
pprover-role"

ead, create, start, suspend, resume,
ead"/>

<Variable nam
<Variable name="comment"
<AggregationVariable name="changeSet" type="Resource"/>
<AggregationVariable name="comments" type="String"/>

<Variable name="changeSetLockedInStudio" type="Boolean">

<Boolean value="true"/>
</Variable>
<Variable name="publicationSuccessful” type="Boolean">

<Boolean value="false"/>
</Variable>
<AggregationVariable name="publicationResultResources" type="Resource"/>
<AggregationVariable ublicationResultCodes" type="Integer"/>
<AggregationVariable ublicationResultVersions" type="Integer"/>
<AggregationVariable name="publicationResultParams" type="String"/>

<InitialAssignment>
<Writes variable="subject"/>
i 'comment" />
"changeSet"/>
<Writes variable="comments"/>
</InitialAssignment>

<Assignment>
<Reads variable ubject"/>
omment" />
hangeSet"/>
<Reads variable="comments"/>
</Assignment>

<AutomatedTask name="AssignUser"
description="assignuser-task" successor="CheckEmptyChangeSet">
task="Publish" userVariabl OWNER_"/>
ForceUser" task="Compose" userVariabl OWNER " />
<Action class="RegisterPendingProcess" userVariable="OWNER_"/>
</AutomatedTask>

<If name="CheckEmptyChangeSet">
<Condition>
<IsEmpty variable="changeSet"/>
</Condition>
<Then successor inish"/>
<Else successor="Publish"/>

COREMEDIA CONTENT CLOUD

'"administratoren" rights="read, create, start, suspend, resume, abort"/>

abort"/>

Reference | Studio Simple Publication Workflow Definition

</If>

<UserTask name="Publish"
description="studio-simple-publication-publish-task"
successor="CheckPublication" reexecutable="true" autoAccepted="true" autoCompleted="true">
<Rights>

administratoren" rights="read, accept, retry"/>
="composer-role" rights="read, accept, retry"/>
</Rights>

<Assignment>

<Reads description="publish-changeSet" variable="changeSet" contentEditable="false"/>
<Reads variable="comments"/>
</Assignment>

<EntryAction class="Approve"
resourceVariable="changeSet"
successVariable="publicationSuccessful"/>

<EntryAction class="Publish"
resourceVariable="changeSet"
resultVariable="publicationResultResources"
versionVariable="publicationResultVersions"
codeVariable="publicationResultCodes"
parameterVariable="publicationResultParams"
successVariable="publicationSuccessful"/>

</UserTask>

<If name="CheckPublication">
<Condition>
<Get variable="publicationSuccessful"/>
</Condition>
Finish"/>
Compose" />

<UserTask name="Compose"
description="studio-simple-publication-compose-task"
successor="CheckEmptyChangeSet" reexecutable="true" autoAccepted="true">
<Rights>
<Grant group="administratoren" rights="read, accept, delegate, skip"/>
<Grant group="composer-role" rights="read, accept, delegate, skip"/>
</Rights>

<Assignment>

<Writes variable="subject"/>
i i "comment" />
'changeSet" contentEditable="true"/>
'comments" />
publicationResultCodes"/>

<Reads variable=
</Assignment>
</UserTask>

<AutomatedTask name="Finish" final="true">
<Action class="AssignVariable" resultVariable="changeSetLockedInStudio">
<Boolean value="false"/>

</Action>
</AutomatedTask>
<!-- Finally, make sure finished processes are archived and appear in the list of finished workflows
for
participating users, i.e. for users for whom the RegisterPendingProcess action was called. -->
<FinalAction class="ArchiveProcessFinalAction" maxProcessesPerUser="100"/>
</Process>
</Workflow>

Example 6.62. Listing of the direct publication workflow

COREMEDIA CONTENT CLOUD

Glossary |

Glossary

Blob
CaaS

CAE Feeder

Content Application Engine (CAE)

Content Bean

Content Delivery Environment

COREMEDIA CONTENT CLOUD

Binary Large Object or short blob, a property type for binary objects, such
as graphics.

Content as a Service or short caas, a synonym for the CoreMedia Headless
Server.

Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable
in other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

A content bean defines a business oriented access layer to the content,
that is managed in CoreMedia CMS and third-party systems. Technically,
a content bean is a Java object that encapsulates access to any content,
either to CoreMedia CMS content items or to any other kind of third-party
systems. Various CoreMedia components like the CAE Feeder or the data
view cache are built on this layer. For these components the content beans
act as a facade that hides the underlying technology.

The Content Delivery Environment is the environment in which the content
is delivered to the end-user.

It may contain any of the following modules:

* CoreMedia Master Live Server

+ CoreMedia Replication Live Server

+ CoreMedia Content Application Engine
» CoreMedia Search Engine

» Elastic Social

+ CoreMedia Native Personalization

Glossary |

Content Feeder

Content item

Content Management Environment

Content Management Server

Content Repository

Content Server

Content type

Contributions

Control Room

CORBA (Common Object Request
Broker Architecture)

COREMEDIA CONTENT CLOUD

The Content Feeder is a separate web application that feeds content items
of the CoreMedia repository into the CoreMedia Search Engine. Editors can
use the Search Engine to make a full text search for these fed items.

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following mod-
ules:

» CoreMedia Content Management Server
« CoreMedia Workflow Server

« CoreMedia Studio

» CoreMedia Search Engine

« CoreMedia Native Personalization

« CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

CoreMedia CMS manages content in the Content Repository. Using the
Content Server or the UAPI you can access this content. Physically, the
content is stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

» Content Management Server
» Master Live Server
* Replication Live Server

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it
clients, partners or CoreMedia employees. CoreMedia contributions are
hosted on Github at https://github.com/coremedia-contributions.

Control Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

The term CORBA refers to a language- and platform-independent distrib-
uted object standard which enables interoperation between heterogenous
applications over a network. It was created and is currently controlled by

https://github.com/coremedia-contributions

Glossary |

CoreMedia Studio

Dead Link

Derived Site

DTD

Elastic Social

EXML

Folder

FTL

COREMEDIA CONTENT CLOUD

the Object Management Group (OMG), a standards consortium for distrib-
uted object-oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest
standards like Ajax and is therefore as easy to use as a normal desktop
application.

A link, whose target does not exist.

A derived site is a site, which receives localizations from its master site. A
derived site might itself take the role of a master site for other derived
sites.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the
document prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Iden-
tifier. The System Identifier is just that: a URL to the DTD. The Public Identi-
fier is an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users
engage with your website. It supports features like comments, rating, likings
on your website. Elastic Social is integrated into CoreMedlia Studio so editors
can moderate user generated content from their common workplace.
Elastic Social bases on NoSQL technology and offers nearly unlimited
scalability.

EXML is an XML dialect used in former CoreMedia Studio version for the
declarative development of complex Ext JS components. EXML is Jangaroo
2's equivalent to Apache Flex (formerly Adobe Flex) MXML and compiles
down to ActionScript. Starting with release 1701 / Jangaroo 4, standard
MXML syntax is used instead of EXML.

A folder is a resource in the CoreMedia system which can contain other
resources. Conceptually, a folder corresponds to a directory in a file system.

FTL (FreeMarker Template Language) is a Java-based template technology
for generating dynamic HTML pages.

Glossary |

gRPC

Headless Server

Home Page

IETF BCP 47

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions

(UMX)

Locale

Master Live Server

COREMEDIA CONTENT CLOUD

gRPC is an open source high performance Remote Procedure Call (RPC)
framework.

CoreMedia Headless Server is a CoreMedia component introduced with
CoreMedia Content Cloud which allows access to CoreMedia content as
JSON through a GraphQL endpoint.

The generic APl allows customers to use CoreMedia CMS for headless use
cases, for example delivery of pure content to Native Mobile Applications,
Smartwatches/Wearable Devices, Out-of-Home or In-Store Displays or
Internet-of-Things use cases.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for
all subpages.

Document series of Best current practice (BCP) defined by the Internet
Engineering Task Force (IETF). It includes the definition of IETF language
tags, which are an abbreviated language code such as en for English, pt-
BR for Brazilian Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken
in Taiwan using traditional Han characters.

A CORBA term, Interoperable Object Reference refers to the name with
which a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
TypeScript (formerly MXML/ActionScript) as an input language which is
compiled down to JavaScript compatible with Ext JS. You will find detailed
descriptions on the Jangaroo webpage http://www.jangaroo.net. Jangaroo
4 is the ActionScript/MXML/Maven based version for CMCC 10. Since CMCC
11 (2110), Jangaroo uses TypeScript and is implemented as a Node.js and
npm based set of tools.

The Java Management Extensions is an APl for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification
are already integrated with Java 5. JMX provides a tiered architecture with
the instrumentation level, the agent level and the manager level. On the in-
strumentation level, MBeans are used as managed resources.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment.
It receives the published content from the Content Management Server
and makes it available to the CAE. If you are using the CoreMedia Multi-
Master Management Extension you may use multiple Master Live Server
in a CoreMedia system.

http://www.jangaroo.net

Glossary |

Master Site
MIME

MXML

OCI (Open Container Initiative)

ORAS (OCI Registry As Storage)

Personalisation

Projects

Property

Replication Live Server

Resource

COREMEDIA CONTENT CLOUD

A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

With Multipurpose Internet Mail Extensions (MIME), the format of multi-
part, multimedia emails and of web documents is standardised.

MXML is an XML dialect used by Apache Flex (formerly Adobe Flex) for the
declarative specification of Ul components and other objects. Up to CMCC
10 (2107), CoreMedia Studio used the Open Source compiler Jangaroo 4
to translate MXML and ActionScript sources to JavaScript that is compatible
with Ext JS 7. Starting with CMCC 11 (2110), a new, Node.js and npm based
version of Jangaroo is used that supports standard TypeScript syntax in-
stead of MXML/ActionScript, still compiling to Ext JS 7 JavaScript.

The Open Container Initiative (OCI) is a Linux Foundation project that
defines open industry standards for container formats and runtimes. OCI
specifications ensure compatibility and interoperability between container
tools, engines, and orchestration platforms like Docker and Kubernetes.

ORAS (OCI Registry As Storage) is a tool and specification that extends
OClregistries to store and distribute OCl artifacts beyond container images.
It provides a standardized way for developers to push and pull arbitrary
content types to and from container registries, enabling these registries
to function as general artifact stores.

On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

With projects you can group content and manage and edit it collaboratively,
setting due dates and defining to-dos. Projects are created in the Control
Room and managed in project tabs.

In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content item depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

The aim of the Replication Live Server is to distribute load on different
servers and to improve the robustness of the Content Delivery Environment.
The Replication Live Server is a complete Content Server installation. Its
content is an replicated image of the content of a Master Live Server. The
Replication Live Server updates its database due to change events from
the Master Live Server. You can connect an arbitrary number of Replication
Live Servers to the Master Live Server.

A folder or a content item in the CoreMedia system.

Glossary |

ResourceURI

Responsive Design

Site

Site Folder

Site Indicator

Site Manager Group

Template

Translation Manager Role

User Changes Application

Variants

Version history

COREMEDIA CONTENT CLOUD

A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number
of key/value pairs as additional parameters.

Responsive design is an approach to design a website that provides an
optimal viewing experience on different devices, such as PC, tablet, mobile
phone.

A site is a cohesive collection of web pages in a single locale, sometimes
referred to as localized site. In CoreMedia CMS a site especially consists
of a site folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

All contents of a site are bundled in one dedicated folder. The most prom-
inent document in a site folder is the site indicator, which describes details
of a site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site
and that they accept translation tasks for that site.

In CoreMedia, FreeMarker templates used for displaying content are known
as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages.
Defined by typically an administrative user a content editor can use this
template to quickly create a complete new page including, for example,
navigation, predefined layout and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes Application is a Content Repository listener, which col-
lects all content, modified by Studio users. This content can then be man-
aged in the Control Room, as a part of projects and workflows.

The set of all content items in a multi-site hierarchy related to each other
via master references. This includes the top-level master content items
themselves.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Glossary |

Weak Links In general CoreMedia CMS always guarantees link consistency. But links
can be declared with the weak attribute, so that they are not checked
during publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the
workflow software ensures that the individuals responsible for the next
task are notified and receive the data they need to execute their stage of
the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Envir-
onment. It comes with predefined workflows for publication but also ex-
ecutes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated
but also metadata about the text. For example, the source and target lan-
guage. CoreMedia Studio allows you to export content items in the XLIFF
format and to import the files again after translation.

COREMEDIA CONTENT CLOUD 1

Index |

Index

A

access variables, 93
AclRightsPolicy, 100
action, 71

actions, 59, 91-92
actionsserver-side, 93
activity diagrams, 38

B

BeanParser, 37, 40

C

case, 125
choice, 50
components, 14
conditions, 58

D

DefaultPerformersPolicy, 105
DTD coremedia-workflow, 119

E

expressions, 57, 95, 97
expressions:boolean, 97
expressions:generic, 96

P

postconditions, 58
process, 43

R

rights, 60-61

COREMEDIA CONTENT CLOUD 2

S

serialization, 110
serialization error, 30
serialization errors, 89

T

task, 49-50
timer, 61
timer handler, 86

V)

upload, 21
upload new workflows, 63

\Y

validator, 59

W

workflow, 61

workflow clients, 108
workflow definition, 37, 64
workflow variables, 57
workflowclient.properties, 113

	Workflow Manual
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Structure Of The Manual
	1.3 Typographic Conventions
	1.4 CoreMedia Services
	1.4.1 Registration
	1.4.2 CoreMedia Releases
	1.4.3 Documentation
	1.4.4 CoreMedia Training
	1.4.5 CoreMedia Support

	1.5 Changelog

	2. Overview of CoreMedia Workflow
	3. Configuration And Operation
	3.1 Starting the Workflow Server
	3.2 Uploading Workflows
	3.3 Converting Workflows
	3.4 Using JMX Management
	3.5 Workflow Server Utilities
	3.5.1 Start
	3.5.2 Download
	3.5.3 Enable
	3.5.4 Upload
	3.5.5 Workflowconverter
	3.5.6 Processdefinitions
	3.5.7 Processes

	4. Customize Workflow Definitions
	4.1 Defining Workflows
	4.1.1 The BeanParser
	4.1.2 Elements of Activity Diagrams
	4.1.3 Processes
	4.1.4 Tasks
	4.1.4.1 Common Features of All Tasks
	4.1.4.2 User Tasks
	4.1.4.3 Automated Tasks

	4.1.5 Flow Control
	4.1.6 Workflow Variables
	4.1.7 Expressions
	4.1.7.1 Conditions
	4.1.7.2 Preconditions and Postconditions
	4.1.7.3 Guards
	4.1.7.4 Validators

	4.1.8 Actions
	4.1.9 Rights
	4.1.10 Subworkflows
	4.1.11 Timers

	4.2 Upload Workflow Definitions
	4.3 Example of Workflow Definition
	4.4 Reference of Predefined Classes
	4.4.1 Predefined Action Classes
	4.4.2 Predefined FinalAction Classes
	4.4.3 Predefined TimerHandler Classes

	5. Implementing Extensions
	5.1 Update Workflows
	5.2 Variable Values
	5.3 Programming Actions
	5.3.1 General Rules
	5.3.2 Repeated Execution of Actions
	5.3.3 Server-Side Actions
	5.3.4 Access Workflow Variables from the Action
	5.3.5 Example Action

	5.4 Programming Expressions
	5.4.1 General Rules
	5.4.2 Generic Expressions
	5.4.3 Boolean Expressions
	5.4.4 Example Expression

	5.5 Programming Rights Policies
	5.5.1 Example Rights Policy

	5.6 Programming Performer Policies
	5.7 Programming Clients
	5.8 Spring in the Workflow Server
	5.8.1 Using Spring Beans

	5.9 Pitfalls of Implemented Classes

	6. Reference
	6.1 Configuration Reference
	6.1.1 Configuration of Workflow Client Properties
	6.1.2 Configuration of Workflow Server Properties
	6.1.3 Managed Properties

	6.2 XML Element Reference
	6.3 Studio Simple Publication Workflow Definition

	Glossary
	Index

