
CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Content Application
Developer Manual

CoreMedia Content Application Developer Manual
Copyright CoreMedia AG © 2015

CoreMedia AG

Ludwig-Erhard-Straße 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

iiCoreMedia DXP 8

CoreMedia Content Application Developer Manual |

1. Introduction .. 1
1.1. Audience .. 2
1.2. Typographic Conventions .. 3
1.3. CoreMedia Services .. 5

1.3.1. Registration .. 5
1.3.2. CoreMedia Releases .. 5
1.3.3. Documentation .. 6
1.3.4. CoreMedia Training .. 8
1.3.5. CoreMedia Support . 9

1.4. Change Chapter . 12
2. Overview .. 13

2.1. Components and Use Cases .. 14
2.2. Architecture .. 15
2.3. Caching .. 16

2.3.1. Unified API Cache .. 16
2.3.2. Data View Cache .. 16
2.3.3. CacheKey Cache .. 16

2.4. The Spring Framework .. 18
3. Administration and Operation .. 19

3.1. Connecting and Caching .. 20
4. Development .. 22

4.1. Content Beans - Mapping content to objects 23
4.1.1. Generate Content Beans from the Content Type
model . 23

4.2. Data Views .. 31
4.2.1. Defining Data Views .. 32
4.2.2. Data View Design .. 33
4.2.3. Configuring Cache Sizes .. 46
4.2.4. Writing Cacheable Beans .. 47

4.3. The CAE Web Application .. 50
4.3.1. Handling Requests . 50
4.3.2. Building Links .. 59
4.3.3. Views .. 65
4.3.4. Writing Templates .. 75
4.3.5. Adding Document Metadata .. 87
4.3.6. Working with Forms .. 93
4.3.7. Integrating with Spring Web Flows 102
4.3.8. Unit Testing a CAE Application .. 104
4.3.9. Dealing with Errors . 107

4.4. Multi-Site and Localization Management 110
4.5. CAE Developer Toolbox .. 111

iiiCoreMedia DXP 8

CoreMedia Content Application Developer Manual |

4.6. Image Transformation API .. 115
5. Appendix .. 121

5.1. Customizer .. 122
5.2. Aspects . 125
5.3. Entity Resolver . 128
5.4. Content Placeholders .. 129
5.5. Configuration Property Reference .. 132
5.6. Bean Definition Reference .. 135

Glossary .. 145
Index .. 152

ivCoreMedia DXP 8

CoreMedia Content Application Developer Manual |

List of Figures
4.1. Phases of a data view lifecycle .. 36
4.2. Example site structure .. 42
4.3. Entity Model . 42
4.4. Dependencies of the Unified API cache .. 49
4.5. Processing chain of DispatcherServlet, handlers and view dis-
patcher .. 50
4.6. Processing chain of handlers and link schemes .. 59
4.7. View lookup sequence .. 67
4.8. Cache Statistics . 111
4.9. Cache Browser .. 112

vCoreMedia DXP 8

CoreMedia Content Application Developer Manual |

List of Tables
1.1. Typographic conventions .. 3
1.2. Pictographs .. 3
1.3. CoreMedia manuals . 6
1.4. Log files check list . 10
1.5. Changes .. 12
2.1. Components of the CAE framework .. 14
3.1. Connection properties .. 20
3.2. Properties for cache size settings .. 20
4.1. Parameters of the Beangenerator . 24
4.2. Document property to Java property mappings 27
4.3. Association types .. 36
4.4. Bean Properties in the DataView Example .. 42
4.5. Implicit macros, functions and variables in FreeMarker tem-
plates .. 84
4.6. Example of image transformation strings .. 115
5.1. Configuration Properties .. 132
5.2. META-INF/coremedia/component-cae.xml in artifact cae-
component .. 135
5.3. com/coremedia/cae/view-services.xml in artifact cae-
viewservices-impl . 136
5.4. com/coremedia/cae/view-error-services.xml in artifact cae-
viewservices-impl . 136
5.5. com/coremedia/cae/view-development-services.xml in artifact
cae-viewservices-impl . 137
5.6. com/coremedia/cae/view-freemarker-services.xml in artifact
cae-viewservices-impl . 138
5.7. com/coremedia/cap/common/uapi-services.xml in artifact
cap-unified-api . 138
5.8. com/coremedia/cae/uapi-services.xml in artifact cae-util 138
5.9. com/coremedia/cae/dataview-services.xml in artifact cae-
contentbeanservices-impl . 139
5.10. com/coremedia/cae/contentbean-services.xml in artifact cae-
contentbeanservices-impl . 139
5.11. com/coremedia/cache/cache-services.xml in artifact core-
media-cache .. 139
5.12. com/coremedia/cae/link-services.xml in artifact cae-linkser-
vices-impl . 139

viCoreMedia DXP 8

CoreMedia Content Application Developer Manual |

5.13. com/coremedia/id/id-services.xml in artifact coremedia-
id .. 140
5.14. com/coremedia/cae/handler-services.xml in artifact cae-
handlerservices-impl . 140
5.15. com/coremedia/mimetype/mimetype-service.xml in artifact
coremedia-common ... 141
5.16. com/coremedia/cae/security-services.xml in artifact cae-
util . 142
5.17. com/coremedia/transform/blob-transformer.xml in artifact
coremedia-transform ... 142
5.18. com/coremedia/cae/controller-services.xml in artifact cae-
handlerservices-impl . 144

viiCoreMedia DXP 8

CoreMedia Content Application Developer Manual |

List of Examples
4.1. Auto completion example .. 38
4.2. Auto completion exclusion example .. 39
4.3. Bean property with custom dependency .. 48
4.4. Accessing a bean property with a custom dependency 48
4.5. Triggering an invalidation of a custom dependency 48
4.6. A link scheme .. 60
4.7. Defining a link scheme .. 60
4.8. Iterating over java.util.Map entries in FreeMarker tem-
plates .. 80
4.9. Code for Idea auto-completion .. 82
4.10. A DOM with Metadata and Generated Metadata Tree 87
4.11. Responsive Device Slider Metadata .. 88
4.12. Studio Specific CSS and JavaScript Metadata .. 89
4.13. Content With Property .. 92
4.14. Responsive Device Slider Metadata .. 92
4.15. Mixed preview and custom metadata in FreeMarker 93
4.16. Mixed preview and custom metadata in JSP .. 93
4.17. Adding the anti-CSRF header to jQuery Ajax requests 101
4.18. Forcing token creation from a login web flow 102
5.1. Add aspect support to content beans .. 125
5.2. Registering an aspects provider for content beans 126
5.3. Definition of an aspects provider for arbitrary Java beans 126
5.4. Annotating a Substitution method .. 130
5.5. Use of cm:substitute in CMAction.jsp .. 130
5.6. Registering a substitution programmatically . 130

viiiCoreMedia DXP 8

CoreMedia Content Application Developer Manual |

1. Introduction

This manual provides information on the administration and development of content
applications using the Content Application Engine (CAE).

➞ In Chapter 2, Overview [13] you will get an overview of the CAE and its con-
cepts.

➞ In Chapter 3, Administration and Operation [19] you will learn some admin-
istrative tasks.

➞ In Chapter 4, Development [22] you will learn how to use the Content Applic-
ation Engine for your own applications.

1CoreMedia DXP 8

Introduction |

1.1 Audience
This manual is intended for developers of CoreMedia projects, people who set up
and tune, who integrate and implement CoreMedia CMS. You'll find a description
of ideas and concepts, building blocks, and detailed examples.

2CoreMedia DXP 8

Introduction | Audience

1.2 Typographic Conventions
CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:

Table 1.1. Typographic
conventions

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entry

Format|Normal

Bold, linked with |Menu names and entries

Enter in the field Heading

The CoreMedia Component

ItalicField names

CoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed
keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \

-u user

\Code lines in code examples
which continue in the next
line

See the [Studio Developer
Manual] for more information.

Square BracketsMention of other manuals

In addition, these symbols can mark single paragraphs:

Table 1.2. PictographsDescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

3CoreMedia DXP 8

Introduction | Typographic Conventions

DescriptionPictograph

Danger: The violation of these rules causes severe damage.

4CoreMedia DXP 8

Introduction | Typographic Conventions

1.3 CoreMedia Services
This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.3.1,
“Registration” [5] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

➞ Section 1.3.1, “Registration” [5] describes how to register for the usage of
the services.

➞ Section 1.3.2, “CoreMedia Releases” [5] describes where to find the
download of the software.

➞ Section 1.3.3, “Documentation” [6] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

➞ Section 1.3.4, “CoreMedia Training” [8] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

➞ Section 1.3.5, “CoreMedia Support” [9] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.3.5, “CoreMedia Support” [9]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

5CoreMedia DXP 8

Introduction | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5]
for details about the registration process. If the problems persist, try clearing
your browser cache and cookies.

Maven artifacts

CoreMedia provides its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual.

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [9]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia
manualsContentAudienceManual

This manual lists the third-party software used
by CoreMedia and lists, when required, the li-
cence texts.

Developers, ar-
chitects, admin-
istrators

CoreMedia Utilized Open-
Source Software

This document lists the third-party environ-
ments with which you can use the CoreMedia

Developers, ar-
chitects, admin-
istrators

Supported Environments

system, Java versions or operation systems for
example.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It

EditorsStudio User Manual, Eng-
lish

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

6CoreMedia DXP 8

Introduction | Documentation

https://repository.coremedia.com
livecontext-en.pdf#CoreMediaManual
http://documentation.coremedia.com/dxp8

ContentAudienceManual

This manual gives an overview over the struc-
ture and features of CoreMedia LiveContext.

Developers, ar-
chitects, admin-
istrators

LiveContext for IBM Web-
Sphere Manual

It describes the integration with the IBM
WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

This manual describes some overall concepts
such as the communication between the

Developers, ad-
ministrators

Operations Basics Manual

components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

This manual describes the configuration of and
development with Adaptive Personalization, the

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

CoreMedia module for personalized websites.
You will learn how to configure the GUI used
in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-
sions.

This manual describes how you can connect
your CoreMedia website with external analytic
services, such as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors
Manual

This manual describes concepts and develop-
ment of the Content Application Engine (CAE).

Developers, ar-
chitects

Content Application De-
veloper Manual

You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

This manual describes the concepts and admin-
istration of the main CoreMedia component,

Developers, ar-
chitects, admin-
istrators

Content Server Manual

the Content Server. You will learn about the
content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

7CoreMedia DXP 8

Introduction | Documentation

ContentAudienceManual

This manual describes the concepts and admin-
istration of the Elastic Social module and how
you can integrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the structure of the in-
ternal CoreMedia XML format used for storing

Developers, ar-
chitects

Importer Manual

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

This manual describes the configuration and
customization of the CoreMedia Search Engine

Developers, ar-
chitects, admin-
istrators

Search Manual

and the two feeder applications: the Content
Feeder and the CAE Feeder.

This manual describes the configuration and
customization of Site Manager, the Java based

Developers, ar-
chitects, admin-
istrators

Site Manager Developer
Manual

stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

This manual describes the concepts and exten-
sion of CoreMedia Studio. You will learn about

Developers, ar-
chitects

Studio Developer Manual

the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the re-

Developers, ar-
chitects

Unified API Developer
Manual

commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

This manual describes the Workflow Server. This
includes the administration of the server, the

Developers, ar-
chitects, admin-
istrators

Workflow Manual

development of workflows using the XML lan-
guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

8CoreMedia DXP 8

Introduction | CoreMedia Training

mailto:documentation@coremedia.com

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the Training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, virtual
machines, class libraries and customized code in many different combinations.
That's why CoreMedia needs detailed information about the environment for a
support case. In order to track down your problem, provide the following informa-
tion:

➞ Which CoreMedia component(s) did the problem occur with (include the
release number)?

➞ Which database is in use (version, drivers)?

➞ Which operating system(s) is/are in use?

➞ Which Java environment is in use?

➞ Which customizations have been implemented?

➞ A full description of the problem (as detailed as possible)

➞ Can the error be reproduced? If yes, give a description please.

➞ How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

9CoreMedia DXP 8

Introduction | CoreMedia Support

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of
Java processes and CoreMedia components. They're often the only source of in-
formation for error tracking and solving. All protocolling services should run at the
highest log level that is possible in the system context. For a fast breakdown, you
should be logging at debug level. The location where component log output is
written is specified in its < appName>-logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia.log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do I Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the logs/ directory of the servlet
container.See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files
check list

Log filesProblemComponent

generalCoreMedia Studio CoreMedia-Studio.log
coremedia.log

generalCoreMedia Editor editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre-
view

coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

10CoreMedia DXP 8

Introduction | CoreMedia Support

Log filesProblemComponent

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

communication errorsServer and client editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.jpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

not startingServer coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

11CoreMedia DXP 8

Introduction | CoreMedia Support

1.4 Change Chapter
In this chapter you will find a table with all major changes made in this manual.

Table 1.5. Changes
DescriptionVersionSection

Removed documentation of Persistent
Cache and ProActive Engine. Some con-

7.5.41Content in multiple sections

tent has been moved into the Search
Manual.

12CoreMedia DXP 8

Introduction | Change Chapter

2. Overview

The overall goal of the CoreMedia CAE (CAE) framework is to provide a structure
for any kind of web application that accesses the CoreMedia content repository.
The declarative nature of this framework and the independence of the layers ensure
fast development and maintainable application design. You may also encounter
the term "ObjectServer" throughout APIs or configuration files. Please read Core-
Media CAE in that case. The overall application setup and web request processing
are handled by the Spring framework, so it is useful to have a solid knowledge of
Spring before developing CAE applications.

To represent the content objects in the repository, Java objects called content beans
can be generated that directly reflect the repository structure. It is possible to extend
these generated beans with any kind of custom business logic. On top of this data
access object layer, a caching layer can be defined by simply declaring the cacheable
properties of the content beans. The elements of the caching layer are views on
the content beans and are therefore called data views. Based on the types of the
content beans and/or data views, suitable views are chosen in order to render the
back-end information. The object-oriented nature of the view registration and
mapping subsystem harnesses the full power of inheritance and implementation
relationships. Views may be defined in a supported template language, such as
JavaServer Pages or FreeMarker, or in Java code.

The modular design makes it possible to extend and modify the CAE framework.

13CoreMedia DXP 8

Overview |

2.1 Components and Use Cases
The Content Application Engine (CAE) is a framework for the development of content
applications. A content application, as defined by CoreMedia, is an application that
takes content from several sources, transforms this content and delivers it to a
target. This is a wide definition and comprises the "classical" task of a website de-
livered to a client, but also the editing and storing of content of the content man-
agement system.

The CAE is modularly built and offers components for different use cases. The fol-
lowing table lists the components of the CAE framework.

Table 2.1. Components
of the CAE frameworkDescriptionComponent

The CAE web application offers a MVC model for content applications. It
separates the view from the business logic and has declarative caching.

Content Applica-
tion Engine web
application It caches dependencies and contents in memory. It tracks invalidations

and dependencies.

A simple framework to make a preview website editable.Preview-based
Editing

Highly Dynamic and Personalized Websites

The CAE web application is the basis for all content applications. It offers in-memory
caching for highly dynamic websites. You can simply integrate third-party content
into the web application. An example would be a website with personalized pages
which includes content from an ERP system.

Content Push

The CAE Feeder is an application that calculates values from given objects triggered
by the invalidation of these objects and that delivers these values to a receiver.
The typical use-case of the CAE Feeder is to update a search engine index. However,
it can also be used to push data to other external systems. See Section 5.5, “Integ-
rating a Different Search Engine” in CoreMedia Search Manual for details.

14CoreMedia DXP 8

Overview | Components and Use Cases

search-en.pdf#IntegrateAnotherSearchEngine
search-en.pdf#IntegrateAnotherSearchEngine

2.2 Architecture
The CoreMedia CAE mainly comprises components from four sources:

➞ A servlet container that hosts the application

➞ The Spring Framework controls the application setup and main request control
flow

➞ The CoreMedia CAE Framework provides content access and handles caching
and rendering

➞ The Application is a custom implementation that typically provides custom
request controllers, business logic, data view configuration for caching and
templates that render the content.

The CoreMedia CAE strictly implements the MVC model for web applications:

➞ The controller part accepts a request and – depending on the request URI –
dispatches it to an appropriate handler bean that executes the request using
the model. The result is passed to the view layer for presentation. The Core-
Media CAE comes with a number of basic handler classes that provide out-
of-the-box content display functionality and an easy starting point for cus-
tomizations. Spring MVC 3.1 is fully supported. See Section 4.3.1, “Handling
Requests” [50] for details.

➞ The model part comprises business entities stored in the content repository
enriched with business logic. The CoreMedia CAE provides a framework for
mapping content objects to generated and/or customized classes. Third-
party repositories can be integrated as well. Business objects can be cached
in this layer. See Section 4.1, “Content Beans - Mapping content to ob-
jects” [23] for details.

➞ The view engine is responsible for rendering objects into a presentation
format, typically HTML. The CoreMedia CAE provides a flexible framework
for object oriented template selection through the ViewDispatcher. See
Section 4.3.3, “Views” [65] for details.

15CoreMedia DXP 8

Overview | Architecture

2.3 Caching
The CoreMedia CAE separates caching from business objects. Business objects are
beans for content in the repository for example ContentBean implementations.
They provide access to content properties and business logic computation results.

There are different caching layers that are used in the CoreMedia CAE. The lowest
content caching layer is the Unified API. On top of that layer, DataViews and
CacheKeys are cached. Both of these caching methods are used to cache results
of computations from business related code.

2.3.1 Unified API Cache
All content access is routed through this cache, all content properties and metadata
are cached. Its main purpose is to reduce server round-trips when content properties
are accessed. This cache takes care of all configuration automatically, only cache
sizes must be configured. The bigger the size, the less communication with the
Content Server is needed during the lifetime of the application.

See Section 5.5, “Configuration Property Reference” [132] for more information
about the property that configures the size of this cache: reposit-
ory.heapCacheSize.

2.3.2 Data View Cache
All business objects that implement AssumesIdentity may be cached as data
views by the CAE. Its main purpose is to cache results generated by business code
getters. Data views are configured declaratively without direct modifications to
the business objects. The properties of individual business objects and their aggreg-
ation and other forms of association can be defined. The CoreMedia CAE will auto-
matically generate classes from that definition that are equivalent to your business
objects with an additional cached state. The generation process is almost transpar-
ent and the generated classes comply with the same public interface(s) as the ori-
ginal classes. Although content properties are already cached in the Unified API
caching layer, it is beneficial to additionally cache the relevant getter methods in
the data view layer.

See Section 4.2, “Data Views” [31] for more information.

2.3.3 CacheKey Cache
The Unified API and data view provide a caching layer that is easy to configure but
they both have their limitations. To overcome those limitations, CacheKeys classes
allow caching of arbitrary computation results. Their API enables custom code to
make full use of the Cache.

16CoreMedia DXP 8

Overview | Caching

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/dataviews/DataView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/CacheKey.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/CacheKey.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html

See CacheKey#evaluate in the API for more information.

17CoreMedia DXP 8

Overview | CacheKey Cache

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/CacheKey.html#evaluate(com.coremedia.cache.Cache)

2.4 The Spring Framework
The Spring application framework is the frame that holds the CoreMedia CAE togeth-
er. Much of the application’s architecture is described in a Spring XML application
context definition. Application specific extensions are easily plugged into the
CoreMedia CAE, profiting from Spring's dependency injection features. Furthermore,
the CoreMedia CAE makes use of the Spring MVC framework for its web request
processing.

18CoreMedia DXP 8

Overview | The Spring Framework

3. Administration and Operation

The Content Application Engine (CAE) is a framework for the development of content
applications.

19CoreMedia DXP 8

Administration and Operation |

3.1 Connecting and Caching
This section covers configuration options related to the server communication and
the basic cache configuration.

Connecting to the Content Server

In a CAE application there are a number of properties for setting up the connection
to the Content Server, from which the Content Application Engine reads the content
to be displayed. Configure the properties shown in the table to define the location
of the Content Server and the identity of the user used to log in to the server.

Table 3.1. Connection
propertiesDescriptionProperty

The URL of the Content Serverrepository.url

The domain of the Content Serverrepository.domain

Define the user with which the CAE connects to the Content
Server. Please note that the user must be permitted to use the

repository.user

webserver login service, which is only possible for the web
server user, unless configured otherwise in the jaas.conf
file of the Content Server.

The password of the user.repository.pass-
word

Use this property to disable the connection to the Workflow
Server, because few content application require access to work-
flow data.

repository.work-
flow

Configuring Cache Sizes

You can configure the size of the Unified API cache and of the disk cache for blobs
using the properties defined in the table:

Table 3.2. Properties
for cache size settingsDescriptionProperty

This property indicates the number of bytes used for the main
memory cache of the Unified API embedded in the Content Ap-

reposit-
ory.heapCacheSize

plication Engine. For 64 bit JVMs, the actual memory consumption
may be up to twice the configured value. For 32 bit JVMs, the
byte count is exact. When multiple CAEs run in a single applica-
tion server, the caches are kept separate and the configured
cache sizes add up.

20CoreMedia DXP 8

Administration and Operation | Connecting and Caching

DescriptionProperty

This property defines the size of the disk cache for blobs.repository.blob-
CacheSize

This property defines the location of the blob cache. Multiple
CAEs may share the same directory for the blob cache. Again,

repository.blob-
CachePath

the cache sizes add up. Make sure to provide enough disk space
for caching.

Purging the Disk Cache after Forced Exits

When an application container is forced to shut down without stopping the web
applications first, the CAE might not be able to clear its disk cache in time. This
may happen when a Tomcat is shut down, which will invoke a process kill operation
at system level, if the Tomcat does not shut down within eight seconds.

In order to avoid a buildup of left over cache files, it makes sense to purge the
temporary file directory periodically during a planned downtime or every time at
the start of the content application. Make sure not to purge the directory while it
is in use by a CAE.

21CoreMedia DXP 8

Administration and Operation | Connecting and Caching

4. Development

The CoreMedia CoreMedia CAE Framework is intended for developing content applic-
ations with CoreMedia CMS. Its focus is set on web applications, yet the core
frameworks are usable in other environments such as standalone clients, portal
containers or web service implementations.

22CoreMedia DXP 8

Development |

4.1 Content Beans - Mapping content to
objects
The CoreMedia CAE defines a mapping framework to create application-specific
"business" objects from generic content objects. In order to do that, application
specific classes have to be written and they have to be registered with a factory
that is used throughout the application whenever a content object needs to be
converted into an application bean.

You do not need to write the beans from scratch. The CoreMedia CAE comes with
a source code generator that reads your document type definition file and generates
beans for each document type. The bean interfaces mirror the document properties,
and the class hierarchy mirrors the document type hierarchy. After generating the
code, you can modify and adapt it to your application’s needs.

➞ ContentBeans can be used for other purposes than rendering, for example
for implementing web services, for business logic deployed in the workflow
server or in the CAE Feeder, or for custom standalone applications.

➞ ContentBeans can be cached in DavaViews. See Section 4.2, “Data
Views” [31] for details.

➞ ContentBeans are rendered by the rendering layer. See Section 4.3.3,
“Views” [65] for details.

4.1.1 Generate Content Beans from the Content Type
model
The Content Application Engine comes with a source code generator that reads your
content type definition file and generates beans for each content type. The bean
interfaces mirror the content properties, and the class hierarchy mirrors the content
type hierarchy. After generating the code, you can modify and adapt it to your
application’s needs.

Since you need the code generator only once (or even not at all, if you start over
with CoreMedia Blueprint), there is no need for a dedicated application. Just add a
temporary dependency

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>bean-generator</artifactId>
<scope>runtime</scope>

</dependency>

to the POM file of your CoreMedia CAE module and build it. Then the code generator
can be invoked as follows from within the WEB-INF directory of the CoreMedia
CAE :

23CoreMedia DXP 8

Development | Content Beans - Mapping content to objects

java -jar lib/bean-generator-<version>.jar

This gives you all available options of the generator as shown in Table 4.1, “Para-
meters of the Beangenerator” [24]. You need to pass the location of your content
type definition file(s), a package for the generated classes and a target directory
for the source code. By default, the generator creates code with generics for link
lists as comments in order to be compatible with legacy Java versions. When you
have successfully created your content beans, you should delete the temporary
dependency on bean-generator again so that your actual web application does
not get unnecessarily bloated.

The meaning of the parameters of the Beangenerator is described in the next table.

Table 4.1. Parameters
of the Beangenerator

DescriptionVariableParameter

The URL of the document types file to use.
You need at least one file.

Name of the document
types file to use

-d --docu-
ment-types

Create only the base classes, but no imple-
mentations and no interfaces.

-baseonly

The file into which the bean mapping will be
written (see Section “Spring Configura-
tion” [29]).

Name of a file-beanmap-
ping

Define specific packages for specific docu-
ment types in order to organize your bean

Name of a properties file
that contains the package
information.

-c

files properly. There a three possible configur-
ation types:

One package for all files of a document
type

Example:

doctype.Image.package= com.my
company.image

doctype.Article.package=
com.mycompany.article

Different packages for the different files
of a document type

Example:

doctype.Article.package.base=
com.mycompany.base

doctype.Article.package.imple
mentation= com.mycompany.impl

24CoreMedia DXP 8

Development | Generate Content Beans from the Content Type model

DescriptionVariableParameter

doctype.Article.package.inter
face= com.mycompany

Settings for all document types

Example:

package=com.mycompany

package.base=com.mycompany.base

package.implementation=
com.mycompony.impl

package.interface=com.mycompany

Generate the code for the defined content
type. It must be included in one of the docu-

Document type-document

ment type files defined with the -d paramet-
er.

Exclude these types from generation process.Comma separated list of
document types

-e, --ex-
clude

Encode the output files with the defined en-
coding (default is Cp1252)

One of the defined Java
encodings

-enc, --en-
coding

Overwrite existing files-f

Use Java 1.5 Generics.-generics

Deprecated parameter. Generates code with
public setter methods.

-gensetter

Generate methods with simple (non-list)
parameters and return values for linklist types
that have a maximum cardinality of '1'.

-avoidlist

Document types that should be included in
the generation process (default is all)

Comma separated list of
document types

-i, --in-
clude

Only create base classes and interfaces but
no implementations

-noimpl

The directory where to generate the source
code into. If it does not exist, it will be cre-
ated.

Directory name-o, -out

The package name used for the generated
beans. A setting defined with -c overwrites

Package name-p, --pack-
age

the package defined with-p. To avoid confu-
sion only use -p or -c.

25CoreMedia DXP 8

Development | Generate Content Beans from the Content Type model

Example

If you use the following call from the lib directory of your content application web
application,

java -jar beangenerator.jar
-d /contentserver/config/contentserver/doctypes/menu-doctypes.xml
-o /output/classes
-c /properties/package.properties
-beanmapping /properties/contentbeans.xml
-e Picture
-generics

with the following package.properties file,

doctype.Dish.package=com.menusite.dish
package=com.menusite

this will generate interfaces, base classes and implementation classes for all docu-
ment types of the menu site example except for the Picture document type. The
document types are read from the /contentserver/config/contentserv
er/doctypes/menu-doctypes.xml file and the generated classes are written
to the /output/classes directory.

The Dish document type belongs to the com.menusite.dish package while the
other types are in the com.menusite package, this information is taken from the
/properties/package.properties file. The bean mapping is written to the
/properties/contentbeans.xml file. Generics are used which results in code
like the following:

public List<? extends Dish> getContent() {
List/*<Content>*/ contents = getContent().getLinks("content");
return (List<? extends Dish>) createBeansFor(contents);

}

Structure of the Generated Code

When you inspect the generated classes, you will find that three files per document
type are generated:

➞ An interface with the same name as the document type

➞ An abstract class ending with “Base” and

➞ A concrete class ending with “Impl"

The interface is what you should use in other classes, “*Base” contains the repos-
itory access code and “*Impl” is the actual class that is instantiated. This class is
the place for you to modify. When a document type inherits from another type, its
"*Base" class inherits the "*Impl" class of its parent. This way, it inherits the custom
extensions made for the supertype. For content types that do not have a parent,

26CoreMedia DXP 8

Development | Generate Content Beans from the Content Type model

the "*Base" class inherits from a framework class AbstractContentBean that defines
the underlying content bean, factory, equality and hash code as well as a few
convenience methods.

The generated code may not compile under some circumstances, due to naming
conflicts, for example. A content property named ‘content’ will clash with the
method #getContent inherited from ContentBean. In this case you should re-
name the generated getters in the interface and the *Base class.

The "*Base" class contains property getters for every user-defined property in the
corresponding content type. Getters are not generated for metadata such as name
or creation date. The property types are mapped to Java as follows:

Table 4.2. Document
property to Java prop-
erty mappings

ConversionJava TypeProperty Type

Simply the value from the underlying content
object

intIntProperty

Simply the value from the underlying content
object

StringStringProperty

Simply the value from the underlying content
object

CalendarDateProperty

The parsed Struct value from the underly-
ing content object

StructXmlProperty (with
grammar "coremedia-
struct-2008")

The markup is transformed. Every internal
xlink to a document or blob is transformed

MarkupXmlProperty

into the corresponding content bean id or
blob id.

This is the result of #getBlobRef of the
underlying content object

CapBlobRefBlobProperty

Every content object in the link list is conver-
ted to a bean through the content bean fact-
ory

ListLinkListProp-
erty

You are free to modify the generated code. For example, you can do the following:

➞ Add a new method to both the public interface and the "*Impl" class

➞ Remove a method from the public interface of a bean. It will still be available
for the implementation classes but not for clients.

➞ Combine both to implement a derived property based on the now hidden
content property, possibly with a different result type

27CoreMedia DXP 8

Development | Generate Content Beans from the Content Type model

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/AbstractContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html

➞ Implement additional interfaces that may crosscut the document type hier-
archy

When extending, you should not declare any fields in a content bean except for
read-only, immutable service references.

Patterns For Content Beans

A few important patterns are used by the generated content beans. Keep them in
mind when you extend these classes:

➞ Construction

Content beans are both used to denote content and references (links) to
content. A content bean used as a link must be cheap to construct. Thus, at
construction time, a content bean should only set the information required
to identify itself: its contentBeanFactory and content object (and maybe
other required services like a DAO or a JDBC data source). No content should
be retrieved. The source code generator fulfills this requirement by generating
a default constructor and the two getters defined in the CoreMedia CMS in-
terface.

When extending, you should not modify the default constructor in the
generated beans.

➞ Identity, equality

Two content beans originating from the same factory for the same content
object must be equal. They identify the same business identity. Generated
content beans fulfill this requirement by inheriting #equals and #hashCode
from AbstractContentBean which is defined in terms of the corresponding
content methods.

When extending, you should not override equals or hashCode.

➞ Mutable state

A content bean must not store mutable information. Caching of mutable
state is performed in other layers. All methods of a content bean should al-
ways modify the content object directly. This way, a content bean can never
be invalid when the repository contents change.

When extending, you should not declare any fields in a content bean except
for read-only, immutable service references.

➞ Mutable values

28CoreMedia DXP 8

Development | Generate Content Beans from the Content Type model

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBeanFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/AbstractContentBean.html

The results of getter methods of a content bean must not be modified by
application code. Modification would lead to race conditions and break the
data view framework. Getter methods of content beans should return immut-
able objects in order to prevent errors caused by illegal modification. In
particular, they should not return arrays but immutable collections.

These patterns apply to any object that you design as a representative for data
stored in an external data source and that you want to use within the data view
caching framework. They ensure that the object is lightweight, interchangeable
and always valid. With efficient data retrieval will be dealt at a later stage. Other
designs are also possible, for example, stateful business objects directly loaded
from a DAO, but they require a more complicated interaction with the caching
framework that is not covered in this manual.

Spring Configuration

In order for the CoreMedia CAE to instantiate the right classes at runtime, they
need to be configured with the factory. The engine's default factory implementation
uses the Spring application context to instantiate content beans. This way content
beans can participate in Spring's dependency injection mechanism - for example,
they can receive references to other services without having to resort to service
lookups in JNDI or the servlet context.

The content type to content beans mapping is defined using Spring’s XML notation.
It should contain a prototype definition for each class corresponding to a document
type.

Prototype definitions follow a specific naming scheme. In order to be found by the
factory, they must be given the same name as the factory, followed by a colon ‘:’
and the name of the document type for which they were generated. For example,
a class com.company.Article that represents Article documents is registered
with the factory as follows:

<bean
name="contentBeanFactory:Article"
parent="abstractContentBean"
scope="prototype"
class="com.company.ArticleImpl "/>

This line is a template for the content bean factory; it says:

➞ This is a definition for a content factory bean for the document type Article

➞ The bean might inherit configuration settings from a parent bean. This can
simplify the configuration but is not mandatory.

➞ This definition is a prototype, not a singleton, it must be newly instantiated
for every article document

➞ The implementation class is com.company.ArticleImpl

29CoreMedia DXP 8

Development | Generate Content Beans from the Content Type model

In short this reads as: "for documents of type Article, return a new instance of
class com.company.ArticleImpl".

Important: using scope="prototype" is vital, otherwise Spring would cache
one instance and return the same object every time.

Programmatic Access to Content Beans

In order to "bootstrap" yourself into the world of content beans from the CoreMedia
Unified API, you need to use the content bean factory programmatically, for example
from within a Controller. The factory API is simple, the most relevant method is
ContentBeanFactory#createBeanFor(Content). For example:

Content content = ... // for example through a query
Article article =
(Article)contentBeanFactory.createBeanFor(content);

The controller needs access to the content bean factory. Since the controller itself
typically is a bean defined in the application context, you can inject the factory
reference into the controller object:

<bean id="myController" class="...">
<property name="contentBeanFactory" ref="contentBeanFactory"/>
...

</bean>

This fragment will invoke #setContentBeanFactory on the controller supplying
an instance of the referenced factory.

30CoreMedia DXP 8

Development | Generate Content Beans from the Content Type model

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBeanFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBeanFactory.html

4.2 Data Views
You've learned that the business objects should not store any of the information
they receive from their data source. This task is performed by a dedicated caching
layer.

Caching in the CoreMedia CAE has a number of important properties:

➞ Caching is defined outside the business objects.

➞ Caching is achieved by building a subclass of a business class, materializing
properties into actual fields and storing an instance of this subclass.

➞ Cached objects have the same interface as the non-caching business objects
so that one can develop against non-cached versions first and does not need
to change the code later.

➞ A set of public bean properties of the business object is subject to caching.

➞ Cached objects can be aggregated: one cached object can store a direct object
reference to another cached object. Once retrieved from the cache, this as-
sociation can be navigated without further synchronization or cache lookups.
This is important for fast rendering.

➞ It is possible to cache different sets of properties of the same business object;
"more" or "different" properties of this object can be used in different con-
texts. Often it is not sensible to cache all properties of an object for two
reasons: if one property set is significantly smaller than another or faster to
compute (for example, only the metadata), it may be worth the overhead of
caching two objects. The second – more important – reason is dependencies:
if one representation acquires fewer dependencies than another and provides
all properties needed in a certain context it should be cached separately (for
example, "uses only content properties from the CMS but not the database").
Especially different amounts of aggregation are a concern here (for example,
when the object cached in the parent property in turn depends on a different
content object).

➞ Cache invalidation is dependency-driven, that is, a cache value has associated
dependencies on external values and is invalidated if one of these changes.
This happens automatically for dependencies to the content repository.

The CoreMedia CAE caching layer gives you the option to define several cached
representations for one business object. It is possible to distinguish the following:

➞ The properties of the business object which are cached

➞ For properties that refer to other business objects, which cached represent-
ation, if any, should be aggregated

Such a definition is called a data view of an object.

31CoreMedia DXP 8

Development | Data Views

Do not confuse this term with the term view used in rendering: a data view is an
object that extracts and aggregates source data in the cache. A view is a method
of rendering an object. Of course, data views and views are related: in order to
render a view efficiently, the displayed object should provide its data sufficiently
fast; possibly using a data view from the cache.

For example, you can define

➞ "fully cached" for display, for a data view that contains a page's description,
its content and its parent page "for linking"

➞ "for linking", a data view of a page that only contains its description

4.2.1 Defining Data Views
Data views are defined declaratively using XML according to a schema /META-
INF/dataviews.xsd which is located inside cae-contentbeanservices-
api.jar. Behind the scenes, subclasses of the application classes are generated.
This process is transparent, as the remainder of the application should be written
to the application class interfaces. Looking at a data view object’s class, however,
it becomes obvious that it is actually an instance of a subclass of the original
business class. How these classes behave, will be described later.

A sample XML data view definition using the example from above looks as follows:

<dataview appliesTo=”com.company.PageImpl”>
<property name=”name”/>
<property name=”description”/>
<property name=”content”/>
<property name=”parent” associationType=”composition”>
<dataview appliesTo=”com.company.PageImpl” name=”forLinking”>
<property name=”name”/>

</dataview>
</property>

</dataview>

This definition says: The default (no name attribute) data view of a PageImpl
materializes the properties name, description, content and parent as fields
where the latter is itself a bean of type PageImpl with data view forLinking
(which is defined inline) applied. The association between the two data views is a
composition. That means: the outer object embeds its private parent instance
which is not shared with other beans, that is, the outer element owns the inner
element exclusively. Specifically, no cache lookup is performed to retrieve the inner
element, but it is always created when the outer element is created. The various
association types will be described later.

This data view defines a view on Page documents that makes the following prop-
erties cached and quickly accessible:

32CoreMedia DXP 8

Development | Defining Data Views

➞ page.{name,description,content,parent}

➞ page.parent.name

All other properties are inherited from your *Impl classes and are therefore ac-
cessed dynamically. That does not mean that they are necessarily slow (there is a
document cache after all).

To use the defined data views, the data view factory dynamically constructs two
subclasses of PageImpl, one for each data view definition. When the default data
view is loaded, the data view factory will look into the cache with a key <Page
content bean, null (default)> (Remember that the Page content bean’s equality is
defined in terms of its content id). If the key is not in the cache, the factory will
create an instance of the first subclass and load the properties description, content
and name by invoking the business methods and storing the results. Furthermore,
it will load parent (another lightweight PageImpl) and construct data view
forLinking for it. To do so, it will not do a cache lookup but instantiate the cor-
responding second subclass of PageImpl directly. The result is stored as the ma-
terialized parent property of the result.

The generated code for the definition from above is roughly equivalent to the fol-
lowing:

class PageImpl$$ extends PageImpl {
String name = super.getName();
...
PageImpl parent =
(PageImpl)dataviewFactory.lookupUncached(

super.getParent(), “forLinking”);

...
Page getParent() {
return this.parent;

}
...

}

It is possible to define data views with the same name for different classes. During
the lookup for that name, the class of the object determines which data view
definition is chosen – a dynamic dispatch very much like for content bean creation
or the templates. This way, it is possible to apply a data view to a property value
with a varying runtime class.

The default data view has a special meaning: it is the data view that is loaded at
the beginning of a request when rendering the bean referenced by the URI. So this
data view should correspond to the properties that the default view and its included
fragment views require.

4.2.2 Data View Design
This section describes concepts and guidelines for the design of data views.

33CoreMedia DXP 8

Development | Data View Design

Association Types

There are a number of design trade offs for data views. Consider the forLinking
data view of the page, which is a composition and thus creates a private instance
for each child. This design avoids a cache lookup. Caching has an overhead and
allocating a cache entry for a parent object with only one string property would
cost more than it saves.

On the other hand, since you defined a cacheable default data view of a page
anyway, you could consider reusing the parent’s default data view for the child:

<dataview appliesTo=”com.company.PageImpl”>
<property name=”name”/>
<property name=”description”/>
<property name=”content”/>
<property name=”parent” associationType=”aggregation”/>

</dataview>

An aggregation is different from a composition in that a cache lookup is performed
for this property. All children would therefore share the same parent instance
(provided it is not evicted from the cache). In this definition, a PageImpl would
aggregate its parent which would again recursively aggregate its parent ... until
null is reached (any data view for null is null). Since you expect parents to be
frequently accessed anyway, it is OK to have them pulled into the cache by their
children. The generated code is basically equivalent to the following:

class PageImpl$$ extends PageImpl {
// null is the default data view
PageImpl parent =
(Page)dataviewFactory.lookupCached(super.getParent(), null);

public Page getParent() {
return this.parent;

}
...

}

However, you also have to take the cache’s dependency tracking into consideration.
When a data view reads a content object, a dependency is recorded. When a data
view does a cache lookup for another data view, a dependency is recorded as well.
Given the page definition above, a child page will therefore depend on its content
object and onto its parent which itself has a dependency on its content object and
so on. Thus, if you change the name of the root page, all page objects will be inval-
idated since they have transitively aggregated it.

There is an alternative solution. Instead of embedding the default data view of the
parent, you can do the cache lookup on every access to the parent property. You
avoid the dependency; instead you always read the latest version from the cache.
This lazy lookup is achieved as follows:

<dataview appliesTo=”com.company.PageImpl”>
<property name=”name”/>

34CoreMedia DXP 8

Development | Data View Design

<property name=”description”/>
<property name=”content”/>
<property name=”parent” associationType=”static”/>

</dataview>

Defining a static association will make the caching system store which parent a
page is associated with (the lightweight PageImpl instance that basically only
holds the parent id), in place of its default data view (which contains the parent’s
state). Instead, a cache lookup is done for the default data view whenever the
parent property is retrieved. In Java code, this behavior looks like this:

class PageImpl$$ extends PageImpl {
PageImpl parent = super.getParent();
...
Page getParent() {
return (Page)dataviewFactory.lookupCached(

this.parent, null);
}
...

}

A cache lookup is reasonably efficient to make this definition possible. You should,
however, keep an eye on the number of lookups. A cache lookup requires thread
synchronization, and too many synchronization requests might lead to contention.

One last thing needs mentioning: Properties that should not be cached are simply
omitted from the data view definition. But what, if you still want to apply a data
view to the property value? For this case, a “dynamic” association can be defined:

<property name=”randomPage” associationType=”dynamic”/>

With this definition, #getRandomPage() will be generated as follows:

class PageImpl$$ extends PageImpl {
...
Page getRandomPage() {

// invoke original impl, don’t cache
Page p = super.getRandomPage();
// cache lookup
return (Page)dataviewFactory.lookupCached(
p, null);

}
...

}

Figure 4.1, “Phases of a data view lifecycle” [36] shows, how data views are loaded
and evaluated in the lifecycle of an HTTP request.

35CoreMedia DXP 8

Development | Data View Design

Figure 4.1. Phases of a
data view lifecycle

To recapitulate, if a property is an association to another bean, it is possible to
apply a data view to that bean as well. There are four ways to do that:

Table 4.3. Association
types

Implies Cache
dependency to

Cache LookupData view is ap-
plied at ...

Reference is
stored in field

Association
Type

Content Bean
and Data View

nocreation timeyescomposition

Content Bean
and Data View

yescreation timeyesaggregation

Content Beanyesproperty accessyesstatic (default)

noneyesproperty accessnodynamic

Guidelines For Data View Design

This section contains some guidelines or rules of thumb for the proper definition
of data views.

Define the property configuration recursively

You have to ensure that a bean's data view configuration is recursively reachable
from the root bean's data view configuration. For every property returning this
bean, a "bridging" data view configuration entry needs to be added. In order to
prevent the cache to be filled with unnecessary "bridge" properties, the association
type dynamic might be used, for instance.

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="dynamic"/>

</dataview>

Why is this important?

36CoreMedia DXP 8

Development | Data View Design

From a data view's point of view, the process of rendering nested bean takes place
as follows:

1. The controller computes the root bean (containing nested beans) from an in-
coming request

2. The controller invokes DataViewFactory#loadCached(bean, name) for
this bean in order to apply a data view

3. The controller passes the bean to the rendering engine (and therefore to the
view templates) where the bean's properties are accessed and rendered

4. When accessing a bean property which is returning further beans, a data view
will be applied automatically to these sub beans

In other words, the initial appliance of a data view to the root bean leads to a re-
cursive appliance of data views to all sub beans. Unfortunately, this is true in case
that there is a data view configuration (dataviews.xml) for every relevant
bean/property only. Let's say there is no such configuration for the root bean, then
no data views will be applied to the sub beans automatically and these beans will
be returned as they are. As a consequence, the sub beans wouldn't be cached even
if there is a data view configuration available for them.

Example

There is a PageBean having a JSP template:

public interface PageBean {
ArticleBean getContent();

}
<cm:include target="${self.content}"/>

The template includes the rendering of an ArticleBean

public interface ArticleBean {
String getHeadline()

}
<c:out value="${self.headline}"/>

If there is a data view configuration for the (supposed "expensive") property
"headline"

<dataview appliesTo="com.mycompany.Article">
<property name="headline"/>

</dataview>

without defining a configuration for the root bean

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="static"/>

</dataview>

then there won't be any caching of the "headline" property.

37CoreMedia DXP 8

Development | Data View Design

Auto completing the data view configuration

In large projects, a recursive definition of data views might be a difficult and error-
prone task. Unwanted gaps in the transitive closure and thus uncached beans may
be the result. For this reason, there is a feature called "auto completion" which
helps to achieve a complete transitive closure of data views.

Auto completion can be configured in the dataviews.xml like this:

Example 4.1. Auto
completion example<dataviews>

...
<autocomplete>
<class

name="com.coremedia.objectserver.dataviews.AssumesIdentity"/>
<class name="java.util.Map"/>
<class name="java.util.List"/>
</autocomplete>
...
</dataviews>

This configuration causes the DataViewFactory to implicitly use the association
type DYNAMIC for all bean properties whose getter method's return type inherit
from AssumesIdentity, Map or List and which are not already covered by a data
view configuration. Not only properties of configured data views will be automat-
ically completed but also those of beans that do not have a data view configuration
at all.

Please note that only the getter method's return type is taken into account during
auto completion, not the concrete type of an object returned from the getter at
runtime.

As a consequence of this feature, you are able to design a lean data view configur-
ation with only a few purposeful property configurations.

But there are also some drawbacks: If there are only a few data views explicitly
declared, the DataViewFactory will have to create many transient ("uncached")
data view objects in order to provide closure. Thus, lots of additional objects pop-
ulate the java heap temporarily which mean more work for the garbage collector.
In addition, some synchronization is required when accessing properties. This
might reduce the application's performance. Choose the auto-completion types
carefully so that all property return types are covered on the one hand, without
being too generic on the other hand. As a rule of thumb, the super interface of
your content beans (such as AssumesIdentity) together with java.lang.List
and java.lang.Map might be a good starting point.

38CoreMedia DXP 8

Development | Data View Design

Of course, there might be properties which should not be automatically completed.
For this reason, a pseudo association type none can be used to explicitly exclude
a property from being automatically completed.

Example 4.2. Auto
completion exclusion
example

<dataview appliesTo="com.yourcompany.YourBean">
<property name="userInfo" associationType="none"/>
</dataview>

The property userInfo of YourBean won't be ever automatically completed and
will be treated as if there is no automatically completion and no data view config-
uration.

Let the controller apply a data view to its beans

A controller's contract is to compute a ModelAndViewwhich contains one or more
model beans to be passed to the rendering engine. In order to make the model
beans cacheable, it's important to apply a data view to these beans within the
controller.

Example

This example demonstrates a simple controller implementation snippet:

ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) {

// compute the model bean from the request
MyBean modelBean = computeBean(request);
// apply a data view to this bean
MyBean cachedModelBean = (MyBean)
getDataViewFactory().loadCached(modelBean, null);
// construct the controller's result
ModelAndView result = ControllerUtils.viewOf(cachedModelBean);
return result;

}

Use caching only when it is reasonable

Caching with data views is for improving an application's performance: The results
of property computations are stored in the heap memory in order to prevent a re-
peated computation when accessing the property the next time. The values are
removed from the cache when they are becoming invalid or due to evictions.

The process of caching itself is not for free: Each cached entry consumes a bit of
the (limited) heap space on the one hand. On the other hand, each cache read or
write operation is synchronized by the cache which might lead to decreased con-
currency. For this reason data view caching of a single property should be used
purposeful, that is when it results in a better performance. Here are some situations
where data view caching might not be worthwhile

39CoreMedia DXP 8

Development | Data View Design

➞ The computation of a property is cheap.

➞ The property value is already cached elsewhere. For instance, the Unified
API is already caching its content properties: When simply delegating the
content bean's property access to the content objects, the content beans
need not to be cached again. Another example is a property which accesses
another already cached property, for example a property firstSentence
which performs a cheap string operation on a cached property text.

➞ A cached data view will be generally invalidated or evicted immediately after
it is put into the cache without or rarely being accessed in the mean time.

Make sure that it is worthwhile from a performance point of view before enabling
a property to be cached by a data view.

Avoid caching of large objects

Caching with data views is especially suited for properties that consume moderate
memory. In opposite, large objects (such as binary objects) shouldn't be cached
by data views since the heap memory is used disproportionately.

Choose the right association type

Properties can be separated into two groups from the data view's point of view

➞ Associating Properties: Properties which values are beans or collections of
beans where data views can be applied on again.

➞ Simple Properties: All other properties with return values such as String, Int
or other objects

You do not need to define an association type for a simple property. Instead, a
data view configuration such as <property name="propertyname" /> is suf-
ficient. For an associating property you have to choose between the following as-
sociation types which differ in terms of memory consumption, synchronization
behavior and invalidation/eviction behavior.

➞ static

➞ composition

➞ aggregation

➞ dynamic

Despite this different behavior, these aspects doesn't need to be considered
primarily when starting to create the data view configuration. For the beginning
it is sufficient to choose "static" for a cacheable property and "dynamic" for a non-
cacheable property in order to make another property recursively reachable (see
above). As soon as you have finished your initial data view configuration, you can

40CoreMedia DXP 8

Development | Data View Design

do some optimizations by replacing specific association types with "aggregation"
or "composition" in second step.

You can use the CoreMedia Contribution "CAE Console" to tweak your data view
settings.

Do not implement property methods that use context data

In order to make a bean property cacheable you have to implement a public (non
static and non final) getter method without parameters. Make sure that the
method's implementation doesn't use any context data such as "current user",
"current session" or similar stateful data. Otherwise, a property value is related to
an arbitrary context when putting it into the cache. When reading it from the cache
then, it might not fit to the reader's context.

The following example demonstrates a bad implementation where a list of content
objects is filtered according to the current user's rights.

public List<ContentBean> getLinks() {

List<Content> contents = getContent().getLinks("links");
List<ContentBean> result = new ArrayList<ContentBean>();
for (Content content : contents) {
if (mayRead(content, getCurrentUser()) {
// bad use of context data
result.add(createBeanFor(content));

}
}

return result;
}

Assume the property "links" to be cached when accessing it the first time: The
cached result depends on the right of the user which accesses this property for
the first time. Another user accessing this property afterwards will obtain a value
which is not appropriate to the user's rights and therefore might have access to
more or fewer contents than required.

Example Data View Design

This section illustrates the process of defining a data view configuration. For this
example, a simple site with three pages is used. The first page consists of a brief
overview of two articles that are completely shown on two separate pages. These
article instances are shared between the overview page and the detail pages:

41CoreMedia DXP 8

Development | Data View Design

Figure 4.2. Example
site structure

The entities are represented as beans and properties where the properties are as-
sumed to have different costs: Some are expensive to compute while others are
cheap.

Figure 4.3. Entity Mod-
el

Table 4.4. Bean Proper-
ties in the DataView
Example. (*) The com-
putation of property
"abstract" is not ex-
pensive by itself but
the access of property
"text" only.

Expens-
ive

DescriptionPropertyBean

NoThe page's title.TitlePageBean

NoThe page content as a linked OverviewBean or
ArticleBean.

Content

YesAll PageBeans to be rendered as navigation.Naviga-
tion

YesThe PageBean which embeds this bean.PageContent-
Bean

42CoreMedia DXP 8

Development | Data View Design

Expens-
ive

DescriptionPropertyBean

NoA list of ArticleBeans to be rendered as teasers.TeasersOverview-
Bean

NoThe article's headline.HeadlineArticle-
Bean

YesThe article's text.Text

Yes*The article's abstract which is extracted from property
Text automatically.

Abstract

NoAn optional link to an image.Image

YesThe image data's mime type.MimeTypeImage-
Bean

NoThe binary data.Data

The JSP templates for rendering the beans are modeled as follows:

PageBean.jsp

<html>
<head>
<title><c:out value="${self.title}"/></title>

</head>
<body>
<div class="content"><cm:include self="${self.content}"/>
</div>
<div class="navigation">

<c:forEach items="${self.navigation}" var="page">
<a href="<cm:link target='${page}'/>">
<c:out value="${page.title}"/>

</c:forEach>

</div>
</body>
</html>

ArticleBean.jsp

<h1><c:out value="${self.headline}"/></h1>
<div><c:out value="${self.text}"/></div>
<c:if test="${!empty self.image}">
<img src="<cm:link target='${self.image}'/>" alt="image"/>

</c:if>

OverviewBean.jsp

<c:forEach items="${self.teasers}" var="article">
<h2><c:out value="${article.headline}"/></h2>
<p>

43CoreMedia DXP 8

Development | Data View Design

<c:out value="${article.abstract}"/>
[<a href="<cm:link target='${article.page}'/>">more]

</p>
</c:forEach>

Considering the above mentioned settings, the following dataviews.xml file can
be derived:

<?xml version="1.0"?>
<dataviews xmlns=
"http://www.coremedia.com/2004/objectserver/dataviewfactory">

<dataview appliesTo="com.mycompany.PageBean">
<property name="content" associationType="dynamic"/>
<property name="navigation" associationType="static"/>
</dataview>

<dataview appliesTo="com.mycompany.ArticleBean">
<property name="page" associationType="static"/>
<property name="text"/>
</dataview>

<dataview appliesTo="com.mycompany.OverviewBean">
<property name="teasers" associationType="dynamic"/>
</dataview>

<dataview appliesTo="com.mycompany.ImageBean">
<property name="mimeType"/>
</dataview>

</dataviews>

All expensive associations (PageBean#Navigation and ArticleBean#Page)
are declared to be data viewed using the default association type "static". Please
note, that OverviewBean#Page is not marked here since this is not accessed by
the templates. PageBean#Content and OverviewBean#Teasers are marked
with the association type "dynamic" although they are not expensive: Instead they
are used making ArticleBean recursively reachable from the PageBean. Finally,
the non-associating but expensive properties ArticleBean#Text and Image
Bean#MimeType are marked for caching as well. ArticleBean#Abstract is not
marked here because it benefits from the already cached ArticleBean#Text.

Keep in mind that a perfect data view configuration depends on a lot of circum-
stances. Let's say that the underlying contents are updated very rarely on the one
hand but accessed very often on the other hand. In order to reduce the number
of cache read operations, some property associations might be switched to "com-
position". An additional "teaser" data view might be introduced in order to cache
the ArticleBean's different views (overview and detail) with separate objects.

<dataviews xmlns=
"http://www.coremedia.com/2004/objectserver/dataviewfactory">

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.PageBean">
<property name="content" associationType="composition"/>
<property name="navigation" associationType="static"/>

44CoreMedia DXP 8

Development | Data View Design

</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ArticleBean">
<property name="text"/>
</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ArticleBean"
name="teaser">
<property name="abstract"/>
<property name="page" associationType="static"/>
</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.OverviewBean">
<property name="teasers" associationType="composition"
dataview="teaser"/>

</dataview>

<dataview appliesTo=
"com.coremedia.objectserver.dataviews.examples.ImageBean">
<property name="mimeType"/>
</dataview>

</dataviews>

Data Views for Experts

Data view design can be quite tricky. This section documents a very subtle pattern,
injected aggregation, that should be omitted.

This problem occurs when you create beans that link to other beans that could be
data views. Doing so, you will lose data view dependencies, because the data views
are loaded outside of your bean.

Example

Take a Page bean, created in a controller and inject another content bean of type
Linkable, called childBean. The Page bean has a getter method getTitle()
that accesses the Linkable bean. The return value of the getter should be cached.

public class Page implements AssumesIdentity {
private Linkable childBean;

public void setLinkable(Linkable child) {
this.childBean = child;

}

// not cached in dataview
public Linkable getLinkable() {
return this.childBean;

}

// cached in dataview!!!
public String getTitle() {
return this.childBean.getTitle();

}

45CoreMedia DXP 8

Development | Data View Design

public boolean equals(Object o) {...}

public int hashCode() { ... }

public void assumeIdentity(Object bean) {
this.childBean = ((Page) bean).getLinkable();

}
}

When the Page bean is created, it might be that the Linkable bean itself is a
data view. If not, everything is fine. If you call Page#getTitle() a property de-
pendency for Linkable is created. But, if the Linkable is a data view, no depend-
ency is tracked:

The Page bean then acts like a data view that aggregates the Linkable. As a
result, no property dependencies are generated if you call Page#getTitle().
Also, the Linkable is injected into the Page bean and therefore no data view
dependency for the Linkable exists. As a result, the cached Page is not invalidated
if the Linkable changes!

Solution

Do not access cached methods from a cached method or do not store the Linkable
bean but the corresponding content object. Another method would be, to unwrap
the Linkable data view into a normal LinkableImpl. You can use DataViewHelp-
ers methods #isDataView() and #getOriginal() for that.

4.2.3 Configuring Cache Sizes
After defining the data views, make sure to configure the cache correctly, so that
the data view objects are not evicted from the cache immediately. An indicator for
this situation is the message "Unreasonable Cache Size null for java.lang.Object"
in the log file.

To configure the cache, add a <cachesize> element to the data view definition
XML file, using attributes to specify the maximum number of cached instances and
the object type this configuration should apply to. As a minimal solution, you can
insert the line

<cachesize
class="com.coremedia.objectserver.dataviews.AssumesIdentity"
size="10000"/>

This will allow a total of 10000 data view objects to be cached.

A more elaborate method would be to partition the cache according to the type
of the cached objects. The type of an object is defined either by the Java type
hierarchy or, if the object implements the interface com.coremedia.dis

46CoreMedia DXP 8

Development | Configuring Cache Sizes

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/dataviews/DataViewHelper.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/dataviews/DataViewHelper.html

patch.HasCustomType, by the result of the method getCustomType(). For or-
dinary content beans, the Java type hierarchy is used.

You can configure sizes for different types. If multiple types apply for a single
cached object, the most specific type is used. For example

<cachesize class="com.company.cms.SuperType" size="1000"/>
<cachesize class="com.company.cms.SubType" size="100"/>

would allow the caching of up to 1000 direct or indirect instances of SuperType
as long as these are not also direct or indirect instances of SubType. For SubType,
at most 100 instances would be cached. This can make sense if instances of Sub
Type consume a lot of main memory, so that 1000 instances might lead to an
OutOfMemoryError.

Because data views extend their bean class, it is sufficient to configure cache sizes
for the bean classes. You need not reference the class names of the automatically
generated data view classes.

Please note that the configured cache sizes are directly forwarded to the cache of
the Unified API in the CAE. That cache is an instance of the class com.core-
media.cache.Cache. That class does not perform any type hierarchy analysis when
caching objects. This is only done by the data view factory inside the CAE.

Please note that configured values for cache classes for data views may overwrite
configured values for cache classes for cache keys, for example if
java.lang.Object is configured. Make sure to always usecom.coremedia.ob
jectserver.dataviews.AssumesIdentity or classes higher in the class
hierarchy if configuring cache classes for DataViews.

4.2.4 Writing Cacheable Beans
As mentioned above, the DataViewFactory's caching mechanism takes care of
dependencies. Any data view property may define one or more objects (called
"dependencies") on which this property depends on. When caching a property, two
things are stored in the cache: The property's value as well as its dependencies. In
case that any dependent object becomes invalid (by modifications on it, for ex-
ample) the dependent property value becomes invalid as well and will be removed
from the cache automatically.

Example

A data view property "headline" is calculated from a row in a database table and
so this row is defined as a dependency. When caching an instance of this property's
value, the dependency is tracked as well. Changing the table's row causes the
cached value to become invalid and this value to be removed from the cache.

47CoreMedia DXP 8

Development | Writing Cacheable Beans

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html

Defining dependencies for a property value is done during the property's value
computation by invoking the static method com.coremedia.cache.Cache#de
pendencyOn(Object) for each dependency. In order to notify the cache about
a dependency invalidation, the method invalidate(Object) needs to be invoked
on the DataViewFactory's Cache instance. As a result, any cached item depend-
ing on this object is removed from the cache.

Example 4.3. Bean
property with custom
dependency. Value of
"headline" depends on
dependency "myde-
pendency".

public class Bean {
public String getHeadline() {
Cache.dependencyOn(new String("mydependency"));
return getHeadlineFromDatabase();

}
}

Example 4.4. Accessing
getHeadline() causes
the property's value to
be cached together
with the dependency
"mydependency" of
type "String" in case
caching is enabled for
Bean's property "head-
line".

DataViewFactory dataViewFactory = ...
Bean bean = new Bean();
Bean dataView = (Bean) dataViewFactory.loadCached(bean1);
String headline = dataView.getHeadline();

Example 4.5. Trigger-
ing an invalidation of
the dependency
"mydependency"

DataviewFactory dataViewFactory = ...
Cache cache = dataViewFactory.getCache();
cache.invalidate(new String("mydependency"));

Types of dependencies

You may use any object as a dependency which is suitable as a key in a HashMap,
typically by implementing the methods equals(Object) and hashCode()
properly or by using the very same object as a dependency and for invalidation.

The class com.coremedia.cache.Cache already provides support for timed depend-
encies that invalidate automatically at a certain point in time. You may define these
dependencies by invoking Cache#cacheUntil(Date) or Cache#cacheFor(long) during
the evaluation of the cached property method. Have a look at com.core-
media.cache.Cache's Javadoc for further details.

Dependency tracking and Content Beans

When using ContentBeans or (more generally) the Unified API's content repository
as the data source for your beans, you don't need to take care on the content's
dependencies and invalidations: any access on the content repository's content
objects causes appropriate dependencies to be tracked automatically. Further on,
changes on the content objects leads to automatic invalidations. The only prerequis-
ite (which is fulfilled by the default CAE configuration) is that the DataViewFactory
and the Unified API share the same Cache instance.

48CoreMedia DXP 8

Development | Writing Cacheable Beans

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/dataviews/DataViewFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html

Figure 4.4. Dependen-
cies of the Unified API
cache

49CoreMedia DXP 8

Development | Writing Cacheable Beans

4.3 The CAE Web Application
The CAE web application framework provides services for building content based
web applications. It is based on Spring Framework's model-view-controller (MVC)
architecture.

4.3.1 Handling Requests
An incoming request is initially accepted by the DispatcherServlet and then
delegated to a handler (also known as "controller") that is able to deal with the
request. A handler's responsibility is to translate the request into a model and to
provide a ModelAndView instance. This instance is passed to the view dispatching
(or rendering engine respectively) which renders the model into some external
representation such as HTML

Figure 4.5. Processing
chain of DispatcherSer-
vlet, handlers and view
dispatcher

HandlerDispatcherServlet View Dispatcher
Handler

HttpServletRequest HttpServletRequest ModelAndView

There are several ways for implementing a handler, for example by implementing
the interface org.springframework.web.servlet.mvc.Controller or by
annotating a bean's method with @RequestMapping. Although any of these
mechanisms can be used within a CAE web application, CoreMedia suggests using
the @RequestMapping way because currently this is the most sophisticated way
of writing handlers without the need to write reoccurring boilerplate code.

A simple content based handler might look as follows:

package com.mycompany;

import com.coremedia.objectserver.web.HandlerHelper;
import com.coremedia.objectserver.beans.ContentBean;

@RequestMapping
public class MyHandler {

@RequestMapping(value="/content/{id}")
public ModelAndView handleContent(

@PathVariable("id") ContentBean bean) {

if(bean == null) {
return HandlerHelper.notFound();

}
return HandlerHelper.createModel(bean);

}
}

Such a handler can be registered by simply defining it as a bean:

50CoreMedia DXP 8

Development | The CAE Web Application

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html

<beans xmlns="http://www.springframework.org/schema/beans">
<bean id="myHandler" class="com.mycompany.MyHandler"/>

</beans>

In this example, a request with an URI like /context/servlet/content/1234
would be handled by service "myHandler" because the @RequestMapping's URI
pattern /content/{id} matches the full request URI's suffix /content/1234.
The URI variable {id} is automatically bound to the method parameter content
Bean so that the handler code can use it without parsing the request URI by itself
and without converting the URI path segments into business objects manually. As
a consequence, the remaining handler code is quite simple: It wraps the content
bean into a ModelAndView and passes this to the rendering engine.

In order to get a numeric ID to be converted into a ContentBean automatically
(and bound to the method parameter), it is necessary to register an adequate
converter as follows:

<!-- required resources -->
<import
resource="classpath:/com/coremedia/cae/handler-services.xml"/>

<customize:append id="registerIdToContentBeanConverter"
bean="bindingConverters">
<description>
Registers a converter for transforming a
numeric id ("1234", for instance) to a ContentBean

</description>
<set>
<bean

class="com.coremedia.objectserver.web.binding.GenericIdToContentBeanConverter">

<property name="contentBeanFactory" ref="contentBeanFactory"/>

<property name="contentRepository" ref="contentRepository"/>
<property name="dataViewFactory" ref="dataViewFactory"/>

</bean>
</set>

</customize:append>

Alternatively, the id could be passed to the handler method as an Integer object
(for example PathVariable("id") Integer id) that is converted "manually"
into a ContentBean, for example by using a ContentBeanFactory.

See http://static.springsource.org/spring/docs/3.1.x/spring-framework-refer-
ence/html/mvc.html#mvc-ann-methods for a list of possible argument types and
different options of implementing a handler method.

Building the Model

As mentioned above, it's a handler's responsibility to provide a ModelAndView
instance. A typical ModelAndView holds one or more named model beans. It also
contains a view name (such as "rss") or, alternatively, a view implementation (of
type org.springframework.web.servlet.View).

51CoreMedia DXP 8

Development | Handling Requests

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-methods
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-methods

While building the model to be rendered by the CAE view dispatcher (see below)
it is necessary to consider the following: At least a model bean with the name
"self" needs to be added to the ModelAndView. This bean represents the "main"
or "root" object of the model and will be the used for looking up an adequate view.
In addition, no View instance must be added to the ModelAndView because such
an instance will be resolved automatically by the view resolving mechanism based
on the type of the "self" bean in conjunction with the view name.

CoreMedia provides some convenience functions in com.coremedia.object
server.web.HandlerHelper for building an adequate ModelAndView.

➞ HandlerHelper.createModel(Object bean): Creates an instance with
the given bean as the "self" object.

➞ HandlerHelper.createModelWithView(Object bean, String
viewName): Creates an instance with the given bean as the "self" object
and a specific view name.

There are situations where a request must not result in a rendered page but should
be answered with a special HTTP response code. E.g. a "bad request" (Status: 400)
response should be returned in case that the request is malformed or a "not found"
in case that the requested resource does not exist. Instead of sending such re-
sponses directly by using HttpServletResponse, it is also possible to return a
ModelAndView containing a com.coremedia.objectserver.web.HttpError
bean. The advantage of this approach is to let the view rendering decide how to
handle a response like this. One way would be to use the programmed view (see
below) com.coremedia.objectserver.view.HttpErrorView for writing the
HTTP error to the response. Another approach is to render a comprehensive error
page instead by using a template com.coremedia.objectserver.view/Ht
tpError.jsp. The HandlerHelper utility provides helper methods for dealing with
such situations:

➞ HandlerHelper.notFound(): Provides a ModelAndView that contains
an HttpError with code 404.

➞ HandlerHelper.badRequest(): Provides a ModelAndView that contains
an HttpError with code 400.

Finally, a handler might decide not to render a bean directly but send a "temporarily
moved" response (Status: 302) instead. This is a typical use case when dealing with
POST requests: After updating the application state, the user's web browser is re-
directed to a result page. This case is also supported by the HandlerHelper:

➞ HandlerHelper.redirectTo(Object bean): Redirect to a page that is
represented by the given bean. See Section 4.3.2, “Building Links” [59] for
further information.

52CoreMedia DXP 8

Development | Handling Requests

Post Processing the Model

Spring MVC includes a concept for preprocessing and post-processing a handler's
execution. By implementing a HandlerInterceptor it is possible for example
to modify the ModelAndView of all executed handlers.

Example:

import org.springframework.web.servlet.HandlerInterceptor;
public class MyInterceptor implements HandlerInterceptor {
...
void postHandle(HttpServletRequest req, HttpServletResponse res,

Object handler, ModelAndView modelAndView)
throws Exception {

// adds a new model object to the model and view
modelAndView.addObject("message", "Hello World");

}
...

}

A custom interceptor can be associated with all handlers by adding the interceptor
bean to a global list bean named handlerInterceptors that defined by the CAE
framework. A customizer might be used here, for example

<customize:append id="addMyInterceptor" bean="handlerInterceptors">

<list>
<bean class="com.mycompany.MyInterceptor"/>

</list>
</customize:append>

See http://static.springsource.org/spring/docs/3.1.x/spring-framework-refer-
ence/html/mvc.html#mvc-handlermapping for more information about handler
interceptors.

Best Practices

➞ When handler code isn't trivial, then this code should be considered to be
moved to a separate service class. This makes the business code both better
to test and reusable.

This is a simple example:

@RequestMapping(value="/service/{id}/{command}")
public ModelAndView handle(

@PathVariable("id") Integer id,
@PathVariable("command") String command)

{

Object result = getService()
.performComplexComputation(id, command);

return HandlerHelper.createModel(result);
}

53CoreMedia DXP 8

Development | Handling Requests

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-handlermapping
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-handlermapping

➞ It's possible to use Spring's mechanism for an annotation based automatic
instantiation and autowiring of handlers and other beans. This requires the
bean classes to be annotated with @Controller, @Service, @Inject etc.
as well as using a <context:component-scan> declaration.

In contrast to this approach, CoreMedia suggests using the XML based way
for defining and wiring beans. The reason is that in larger projects, using
autowired beans may prove difficult to handle, especially when using external
extensions.

When declaring beans in XML, a developer exerts much more direct control
over the application context.

➞ Several handler methods may exist in the same class for the same URI path
if they handle different request methods (such as GET or POST)

➞ The best practice for handling POST requests can be found here Section
“Handling POST requests” [98]

➞ The best practice for handling redirects can be found here Section “Handling
redirects” [98]

Handling Ajax Requests

Dealing with Ajax requests is quite simple when using the CAE together with Spring
MVC features. The main difference of Ajax in comparison to "standard" request
handling is the format of incoming and outgoing data. While standard requests
typically provide an output format for end users such as HTML, Ajax requests
mainly deal with machine readable formats like JSON and XML. The same applies
to input formats: HTML based application have to deal with form input while Ajax
request again make use of JSON/XML instead.

Spring MVC provides inbuilt converters for translating plain java beans ("POJOs")
from/to XML or JSON. These converters can be easily used from within the CAE.
When implementing an Ajax based handler, then no ModelAndView needs to be
passed to the view engine but it is sufficient to provide the bean itself in conjunction
with the @ResponseBody annotation.

Example

@RequestMapping(value = "/json/{id}", produces="application/json")
@ResponseBody
public MyPojo renderBeanAsJson(@PathVariable("id") String id) {
MyPojo bean = getPojo(id);
return bean;
}

In this example for an Ajax handler, a model bean is computed and simply returned
as a "response body" rather than wrapping it into a ModelAndView. Due to the
produces="application/json" attribute, the rendering engine knows that
this bean should be automatically converted to JSON. This is internally done by
recursively writing a JSON entry for all bean properties. When using pro

54CoreMedia DXP 8

Development | Handling Requests

http://en.wikipedia.org/wiki/Ajax_(programming)

duces="text/xml" instead, then the bean will be converted to XML as long as
the bean's class is annotated with @javax.xml.bind.annotation.XmlRootEle
ment.

The automatic conversion is done by instances of org.springframework.ht
tp.converter.HttpMessageConverters that need to be registered before
usage:

<customize:append id="registerHttpMessageConverters"
bean="httpMessageConverters">
<list>
<!-- converts request/response bodies from/to XML -->
<bean class="org.springframework.http.converter.xml.

Jaxb2RootElementHttpMessageConverter"/>
<!-- converts request/response bodies from/to JSON -->
<bean class="org.springframework.http.converter.json.

MappingJacksonHttpMessageConverter"/>
</list>

</customize:append>

The JSON converter MappingJacksonHttpMessageConverter requires the
library jackson-mapper-asl which can be added to a Maven project like

<dependency>
<groupId>org.codehaus.jackson</groupId>
<artifactId>jackson-mapper-asl</artifactId>

</dependency>

Handling POST Data
Writing a handler that handles incoming data (typically sent with a HTTP POST re-
quest and formatted as JSON or XML) can be implemented nearly the same way.
The only thing that has to be done is to pass an @RequestBody annotated para-
meter to the handler method like

@RequestMapping(value="/json/{id}", method=RequestMethod.POST,
consumes="application/json",
produces="application/json")

@ResponseBody
public MyResultPojo renderBeanAsJson(

@PathVariable("id") String id,
@RequestBody MyIncomingPojo data) {

MyResultPojo bean = processData(id, data);
return bean;

}

Building Links
Implementing and buildings links for Ajax handlers works the same way as for all
other resources. An example link scheme implementation:

@Link(type=MyPojo.class, view="json", uri="/json/{id}")
public UriComponents buildJsonLink(MyPojo bean,

UriComponentsBuilder uri) {

55CoreMedia DXP 8

Development | Handling POST Data

return uri.buildAndExpand(bean.getId());
}

A JavaScript snippet that can be embedded into a JSP might look like

<cm:link target="${myPojo}" view="json" var="pojoUrl"/>
<script type="text/javascript">
var req = new XMLHttpRequest();
req.open('GET', '${pojoUrl}', true);
req.onreadystatechange = function() {
// handle response ...
};
req.send();

</script>

Legacy Controllers

In past versions of the CoreMedia CMS, the preferred way of writing handlers was
to implement an org.springframework.web.servlet.mvc.Controller
rather than using annotations. These kinds of controllers can be still used in a CAE
web application. They can be even coexist in conjunction with annotation based
controllers. Keep in mind that com.coremedia.objectserver.web.Ab
stractViewController was removed in CM8.

Path Matching Details

The Spring documentation (http://static.springsource.org/spring/docs/3.1.x/spring-
framework-reference/html/mvc.html#mvc-ann-requestmapping) describes in detail
the request matching features provided by @RequestMapping. An important, if
not the most important request matching criterion, is matching the request URI
path against the URI templates defined by @RequestMapping annotations, a
process performed by a PathMatcher implementation. There are two differences
between Spring's default AntPathMatcher implementation and the UriTemplate
PathMatcher provided by the CAE:

➞ @RequestMapping supports the use of regular expressions in URI template
variables, specified as {variable:regex}. An URL path will only be con-
sidered a match, if all the extracted URI template variable values match the
corresponding regular expressions. If no regular expression is specified for
a variable, the default is "[^/]+?", that is, any non-empty sequence of any
characters except a slash '/'. In other words, by default, a variable can
match only one non-empty URI path segment. For instance, the URI template
/{segment} would match the URI path /home, but not /news/breaking.

If the regular expression allows for a slash character '/', the CAE path
matcher implementation can match multiple path segments for a single
variable. This would not be possible with Spring's default path matcher. For
instance, the URI template /{segments:.+}/index.html would match
the URI path /one/two/index.html, with variable segment bound to

56CoreMedia DXP 8

Development | Building Links

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/mvc.html#mvc-ann-requestmapping

"one/two". As a convenience and to simplify handler method implementa-
tions, an @PathVariable handler method argument representing a template
variable can be of type List<String>. In this case, the variable value will
be split into a list of path segments separated by slash characters '/'. In
the previous example, the list ["one", "two"] would be passed to the
handler method.

➞ UriTemplatePathMatcher does not support Ant-style globs: *, **, and
?. These characters should not be used in the literal part of URI templates,
but only in regular expressions associated with template variables. Outside
a template variable definition, they will be interpreted literally.

URI path matching behavior is not only influenced by @RequestMapping annota-
tions, but also by some global Spring configuration parameters:

➞ RequestMappingHandlerMapping.useTrailingSlashMatch is true
by default and causes any URI path with a trailing slash to be a match for a
given URI template, if the template does not end with a slash, and the URI
path without the slash would be a match. In effect, URIs will typically match
a template, if they have a trailing slash, even if the template does not have
a trailing slash. For instance, the URI template /{segment} will match both
/home and /home/.

➞ RequestMappingHandlerMapping.useSuffixPatternMatch is true
by default and causes any URI path with an extra .* suffix (dot, plus some
characters) to match a template, if the template does not contain any '.'
characters. In effect, the URI path matching process will typically ignore extra
path suffixes, if the template does not contain any dot characters. For in-
stance, the URI template /{segment}/indexwill match both /home/index
and /home/index.html.

➞ UrlPathHelper.urlDecode is true by default and causes request URI
paths to be percent decoded according to RFC 3986, before they are matched
against any URI template. This is usually the desired behavior and should
not be changed as it relieves the application developer from taking into
consideration percent encoding when defining URI templates. Any template
variable regular expressions should therefore match the decoded form of
reserved characters, if such characters are to be allowed in variable values.
For instance, the URI template /products/{name:[a-zäöü]+}will match
the request URI path /products/m%C3%A4use (assuming a request char-
acter encoding of UTF-8, see below). Note that the percent character '%' is
not a valid name character as defined by the URI template. The matching
process operates on the decoded URI path /products/mäuse.

As a consequence of this behavior, an application cannot differentiate during
matching, whether the client sent a character percent encoded or not. Due
to this ambiguity, an application should not generate URLs with path seg-
ments containing (percent encoded) slash characters '/'. Even though such

57CoreMedia DXP 8

Development | Building Links

http://www.ietf.org/rfc/rfc3986.txt

URLs are valid and can be generated, the matching process acting on the
decoded path would treat such path segment as multiple segments. URLs
with path segments containing encoded slash characters are considered
unsound and should be avoided. Given the same example URI template as
above, if the link scheme expanded the URI template with a name value of
"tablets/laptops", this would result in the valid URI path
/products/tablets%2Flaptops. However, when dispatching a request
for this path, it would be decoded and matched against URI templates as
/products/tablets/laptops, and the template/products/{name:[a-
zäöü]+} would not match.

➞ When percent decoding the request URI path, UrlPathHelper uses the
request encoding (HttpServletRequest#getCharacterEncoding) or
defaults to ISO-8859-1, if no request character encoding is available. Since
this default character encoding is different from the UriComponents default
encoding (UTF-8) during URL generation, it is recommended to force there
request character encoding to UTF-8 by configuring an org.springframe
work.web.filter.CharacterEncodingFilter in the application's
web.xml, with encoding=UTF-8 and forceEncoding=true:

<filter>
<filter-name>Character Encoding Filter</filter-name>
<filter-class>
org.springframework.web.filter.CharacterEncodingFilter

</filter-class>
<init-param>
<param-name>encoding</param-name>
<param-value>UTF-8</param-value>

</init-param>
<init-param>
<param-name>forceEncoding</param-name>
<param-value>true</param-value>

</init-param>
</filter>

HTTP Method Overriding

Using the @RequestMapping annotation, it is straightforward to define REST APIs
using a richer set of HTTP methods to specify the semantics of each operation, for
example GET, POST, PUT, and DELETE.

To maintain compatibility with clients which support only GET and POST such as
older browsers, Spring provides a filter org.springframework.web.filter.HiddenHt-
tpMethodFilter to effectively tunnel any HTTP method through a POST request. If
you intend to make use of HTTP methods other than GET and POST in your handler
mappings, add this filter to your CAE web application's web.xml or web-frag
ment.xml:

<filter>
<filter-name>HTTP Method Filter</filter-name>
<filter-class>

58CoreMedia DXP 8

Development | Building Links

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html

org.springframework.web.filter.HiddenHttpMethodFilter
</filter-class>

</filter>

<filter-mapping>
<filter-name>HTTP Method Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

With this filter in place, to signal the use of a particular HTTP method from the
client, you may send a POST request with an additional parameter indicating the
HTTP method to use. By default, the filter expects a parameter named _method.
Note that only POST requests will be handled by this filter.

<form action="${url}" method="POST">
<input type="hidden" name="_method" value="PUT"/>

...
</form>

Of course, clients supporting the HTTP method PUT, may send a PUT request dir-
ectly, without adding the _method parameter.

4.3.2 Building Links
It has been already stated above that handlers are responsible for providing a
model object named "self" that represents a page (or another resource). This
page might be rendered as HTML or another output format. A typical page consists
of links pointing to other pages that are handled by a handler again when requested
by the client.

Figure 4.6. Processing
chain of handlers and
link schemes

Handler

LinkFormatter

View Dispatcher
Handler

buildLink(bean)

render(model)ModelAndView

Handler
LinkScheme

link

view.jsp

<html>
<cm:link target="${bean}"/>
</html>

In a CAE, links can be represented as model objects that can be translated into a
URI by view technology specific mechanisms such as a JSP tag (<cm:link tar
get="${linkRepresentation}"/>) or a Freemarker function (<#assign im
ageSrc=cm.getLink(self.thumbnail)!""/>). Typically, the bean that is used
for building the link is the same that is provided by the handler as a model. In the
CAE there is a concept called "link scheme" that is used for translating an object
(with an optional view name) into a URI string. A link scheme is logically bound to

59CoreMedia DXP 8

Development | Building Links

a handler that is able to translate the URI back to a model. Link schemes are
automatically collected by the CAE and exposed to the view technology specific
link building facilities mentioned above.

Links created by a "@Link" link scheme are always relative to the servlet path. For
adding servlet and context path, or making links absolute, instances of LinkPost-
Processor should be used. (see below)

Example

Example 4.6. A link
schemepackage com.mycompany;

...
import java.net.URI;
import com.coremedia.objectserver.beans.ContentBean;
import org.springframework.web.util.UriComponents;
import org.springframework.web.util.UriComponentsBuilder;
import com.coremedia.cap.common.IdHelper;

@Link
public class MyLinkScheme {

@Link(type = ContentBean.class, uri="/content/{id}")
public UriComponents buildLink(UriComponentsBuilder uriTemplate,

ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());

return uriTemplate.buildAndExpand(id);
}

}

Example 4.7. Defining
a link scheme<beans xmlns="http://www.springframework.org/schema/beans">

<import resource="classpath:/com/coremedia/cae/link-services.xml"/>

<bean id="myLinkScheme" class="com.mycompany.MyLinkScheme"/>
</beans>

This example demonstrates how to build links that point to the above mentioned
handler. This link scheme is invoked for beans of type ContentBean only and uses
the same URI pattern /content/{id} that is also in use by the handler. The link
is generated by simply applying the value of the path variable id to the URI template.

Lookup

By annotating a bean's method with the @Link annotation, this method is turned
into a link scheme. Typically, an application consists of several link schemes for
different aspects as every handler is likely to have one or more link schemes as a
counterpart. When a link generation is requested, by running, for example,

<cm:link target="${bean}" view="rss">
<cm:param name="maxItems" value="10"/>

</cm:link>

60CoreMedia DXP 8

Development | Building Links

from within a JSP template, the CAE needs to find a link scheme that matches best.
This decision is made based on the information that is provided by the link gener-
ation invocation: The given target bean, the view name, any additional link para-
meters.

The parameters of the @Link annotation are used to determine methods that are
link handler candidates. The parameters are turned into predicates which are
evaluated against the arguments passed to the link generation request. In the fol-
lowing example, the annotated method is a candidate for beans of type Content
Bean with views "rss" or "xml" and link parameter "maxItems":

@Link(type=ContentBean.class,
view={"rss","xml"},
parameter="maxItems",
order=10)

The predicates are evaluated in the following order to determine the ordering of
the link handler candidates.

➞ type: The java class(es), that the given bean needs to match (either by class
equality or by class super type relationship). Several types might be listed
here but only a single type needs to match. If no type is specified, then the
bean method parameter determines the type. Hence a link handler method
with a parameter of type ContentBean would match every instance of
ContentBean if no subclass of ContentBean is given as type parameter.
A link handler method with the same parameters but a more specific type
parameter in its @Link annotation would have a higher precedence, though.

➞ view: A list of supported view names. If this predicate is specified, the given
view name needs to match one of the listed names. Omitting this predicates
matches all view names. A view name "DEFAULT" matches the default
("null") view.

➞ parameter: A list of link parameters that need to be specified. In contrast
to other predicates, all parameter predicates need to match here.

➞ order: A numeric order value to distinguish the precedence in case if more
than one scheme matches all the criteria given above. A higher order value
correlates here with a lower precedence. The default value is set to In
teger.MAX_VALUE.

There might be situations where more than one link scheme matches the current
link generation invocation. In this case, all matching schemes are invoked until
one scheme returns a non-null result. The more specific a link scheme is, the
earlier it is invoked.

Writing Link Schemes

The link scheme's method signature might contain several parameters (such as
bean, view, HttpServletRequest, ...) that will be automatically bound by the

61CoreMedia DXP 8

Development | Building Links

CAE framework on invocation. Furthermore, several classes are supported for the
scheme's return type, for example org.springframework.web.util.UriCom
ponents or even a Map<String,Object> that holds the URI variables only. See
the Javadoc of the annotationcom.coremedia.objectserver.web.links.Link
for more details.

As a consequence, a link scheme can be implemented in several ways, for instance:

@Link(type = ContentBean.class, uri="/content/{id}")
public UriComponents buildLink(UriComponentsBuilder uriTemplate,

ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());
return uriTemplate.buildAndExpand(id);

}

or

@Link(type = ContentBean.class, uri="/content/{id}")
public Map<String, Object> buildLink(ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());
return Collections.singletonMap("id", id);

}

or

@Link(type = ContentBean.class)
public UriComponentsBuilder buildLink(ContentBean bean) {

Integer id = IdHelper.parseContentId(bean.getContent().getId());
return UriComponentsBuilder.newInstance()

.pathSegment("content")

.pathSegment(id.toString());
}

CoreMedia suggests using org.springframework.web.util.UriComponents
Builder for building links since this utility provides convenience functions for
manipulating URI parts as well as functions for substituting URI variables (such as
{id}) by concrete values. In addition, an URI will be encoded (for example
/öffnungszeiten to /%C3%B6ffnungszeiten) properly by using the
UriComponents#encode() function. Moreover, CoreMedia suggests to return
the resulting link as an UriComponents, UriComponentsBuilder or
Map<String,Object> object. Post-processing (see below) of such values is much
more efficient than for objects of type String or URI. As a side effect, it is not
necessary to perform the encoding manually, because this is done by the framework.

Post Processing Links

Similar to handler interceptors, it is also possible to post process generated links.
A common use case is to prepend a prefix (such as context and servlet path) to
the URI when the link schemes are used to generate the link suffixes only.

62CoreMedia DXP 8

Development | Building Links

package com.mycompany;
import com.coremedia.objectserver.view.ViewUtils;
import org.springframework.web.util.UriComponentsBuilder;
import org.springframework.web.util.UriComponents;
import com.coremedia.objectserver.web.links.UriComponentsHelper;
...
@LinkPostProcessor
public class MyLinkPostProcessor {
@LinkPostProcessor
public UriComponentsBuilder prependPrefix(UriComponents

originalUri,
HttpServletRequest

request) {

String baseUri = ViewUtils.getBaseUri(request);
return UriComponentsHelper.prependPath(baseUri, originalUri);

}
}

<beans xmlns="http://www.springframework.org/schema/beans">
<import resource="classpath:/com/coremedia/cae/link-services.xml"/>

<bean id="myLinkPostProcessor"
class="com.mycompany.MyLinkPostProcessor"/>

</beans>

This example demonstrates how the base URI (context path and the servlet path)
is prepended to an URI that has been built by an annotated link scheme. Writing
a post processor is quite similar to writing a link scheme. The main difference is
that the original link needs to be passed to the post processor method as a para-
meter of type UriComponents or UriComponentsBuilder. All other parameters
bindings as well as the possible return types are the same. Just like the @Link an-
notation, the @LinkPostProcessor supports an optional type element which
restricts the post-processor to links for the particular bean types.

Best Practices

It's a good idea to put handler, corresponding link implementations and post-pro-
cessors into the same class since these are strongly related. Also, the URI pattern
used in @RequestMapping and in @Link can be shared by a constant like

private static final String URI = "/content/{0}";

@RequestMapping(value=URI, ...);
public ModelAndView handle(...) { ... }

@Link(uri=URI, type=MyBean.class, ...)
public UriComponents buildLink(MyBean myBean, ...) {...}

@LinkPostProcessor(type=MyBean.class, ...)
public UriComponents prefixLink(UriComponents originalUri, ...)
{...}

The PostProcessorPrecendences class provides some constants to control the
order of post-processors. All the Blueprint's default post-processors are ordered

63CoreMedia DXP 8

Development | Building Links

by these constants. You can use the constants for additional independent post-
processors or use other values in order to apply subsequent post-processors in
between.

Legacy Link Schemes

In past versions of the CoreMedia CMS, the preferred way for writing handlers was
to implement a LinkScheme interface rather than using the @Link annotation.
This kind of link scheme can still be used in a CAE web application. It can even
coexist in conjunction with annotation based link schemes. Keep in mind that
com.coremedia.objectserver.web.links.AbstractLinkScheme was re-
moved in CM8.

External Link Placeholder

It is possible to use placeholder tokens in External Link content and external links
within a Rich Text editor in Studio. For example: an external link that contains a
hostname for the Perfect Chef shop which is linked from the corporate site can be
written as follows:

http://{perfectchef.host}/blueprint/servlet/perfectchef

The tokens are enclosed with curly braces. The TokenReplacingLinkTrans-
former class acts as a LinkTransformer class to replace these tokens in URLs.
A list of token resolvers can be registered and each resolver is called per token.
The first token Resolver that returns a replacement (value != null)wins. After
that no other token resolver will be asked anymore for the current token. The fol-
lowing token resolvers are preconfigured in the given order:

➞ SettingsTokenResolver

This token resolver is used to resolve tokens with values coming from setting
documents.

For example: the following URL

http://localhost?connectionId={livecontext.connectionId}

will be transformed to the URL

http://localhost?connectionId=wcs1

The SettingsTokenResolver resolves the token of the URL to the value
"wcs1" because the property livecontext.connectionId is defined as
wcs1 in a Setting document, which is accessible via the settings service
starting from the current External Link content.

➞ StoreContextTokenResolver

64CoreMedia DXP 8

Development | Building Links

This token resolver is used to resolve tokens with values coming from the
LiveContext Store Context.

For example: the following URL

http://localhost/wcs/resources/store/{storeId}

in the PerfectChef page will be transformed to the URL

http://localhost/wcs/resources/store/10302

The StoreContextTokenResolver is only available if the livecontext ex-
tension is active.

➞ SpringPropertyTokenResolver

This token resolver is used to resolve tokens with values coming from Spring
properties.

The placeholder and their values can be defined by using the prefix "url
Token." in a properties file as follows:

urlToken.perfectchef.host=${blueprint.host.helios}
urlToken.aurora.host=${livecontext.apache.wcs.host}
urlToken.aurorab2b.host=${livecontext.apache.wcs.host}

Within the URL attribute of an External Link content the token will be defined
without the "urlToken." prefix. It will be replaced with the defined value.
For example: the following URL

//{perfectchef.host}/blueprint/servlet/perfectchef

will be transformed to the PerfectChef homepage.

4.3.3 Views
In a Model-View-Controller (MVC) architecture, it is the responsibility of views to
present the model to the end-user. In the CAE context, content beans are the
models and views are typically implemented in one of the supported templating
languages, JavaServer Pages (JSP) or FreeMarker. Views may also be implemented in
Java code, but programmatic views are usually reserved for special cases, such as
XML output. It is important to note, that central view concepts are the same, re-
gardless of how a particular view is implemented: view dispatching, accessing the
model, including other views, and linking back to controllers.

This chapter will demonstrate how to apply these concepts in both of the supported
templating languages. It is not a tutorial or complete reference of either JavaServer
Pages or FreeMarker.

65CoreMedia DXP 8

Development | Views

View Repository

The CAE uses a concept called ViewRepository to organize its views. A ViewRepos-
itory can be understood as a store that contains JSP or FreeMarker templates for
beans of certain types.

Template Views

The default implementation ResourceViewRepository looks up templates for a
given type at a location <package>/<class>.<fileextension> below a con-
figured base location such as /WEB-INF/templates. For instance, a JSP template
for a bean of type com.company.Article is looked up at a location /WEB-
INF/templates/com.company/Article.jsp. A template for the same bean
but with a specific view name asTeaser is looked up at location /WEB-
INF/templates/com.company/Article.asTeaser.jsp.

Note that the type's package name isn't mapped to a template location containing
nested directories (like com/company/) but to a single directory (like
com.company/).

The file extension must match a supported view engine, that is, .jsp for a JSP
template or .ftl for a FreeMarker template.

Programmed Views

Besides templates, a resource view repository might also contain so called "pro-
grammed views". These are view instances implemented in Java rather than in a
template language. To write a programmed view, implement ServletView or Tex-
tView. If a programmed view is added to the predefined Map "programmedViews",
it will be used for rendering.

For example, this is a simplified version of a programmed view implementation
that renders com.coremedia.xml.Markup as plain text:

/**
* Programmed view that renders a given Markup as plain text
*/
public class PlainView implements TextView {

@Override
public void render(Object bean, String view, Writer writer,

HttpServletRequest request, HttpServletResponse response) {

Markup markup = (Markup) bean;
// create serializer instance for scripts
PlainTextSerializer handler = new PlainTextSerializer(writer);

// transform and flush markup
markup.writeOn(handler);

}
}

66CoreMedia DXP 8

Development | Views

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ResourceViewRepository.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ServletView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/TextView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/TextView.html

This is how a programmed view is added to view repositories with a customizer:

<!-- programmed view to render plain markup -->
<bean id="plainView" class="com.company.PlainView"/>

<!-- add programmed views to predefined map "programmedViews" -->
<customize:append id="customProgrammedViews" bean="programmedViews">

<map>
<entry key="com.coremedia.xml.Markup#plain"

value-ref="plainView"/>
</map>

</customize:append>

View Lookup

Looking up a view for a given bean is performed by a service called ViewDispatcher.
It computes the bean's type hierarchy by taking its super types, interfaces, and
even HasCustomType implementations into account. Then it asks the underlying
view repositories to provide a template (or view, respectively) by passing the bean's
type. If a view repository cannot provide such a view, then it will be asked iteratively
for the bean's super type until a matching view can be provided.

Example:

Assume a class com.company.Base that is extended by com.company.Article.
If during a view lookup for a bean of type com.company.Article there is no
template com.company/Article.jsp available, but a template com.com
pany/Base.jsp can be found, then the latter template is used.

The view dispatcher is invoked whenever a bean is rendered. This happens at least
once per request. When a controller has returned with a ModelAndView instance,
then the bean self is extracted and used to find the root view for the request.
While executing a template, it might happen that a child bean is rendered by an-
other template. When passing this bean to <cm:include> another view lookup
and rendering is triggered.

Figure 4.7. View lookup
sequence

Controller
(1) lookup

(3) render

(4) include

ViewRepository #1

ViewDispatcher

View

View Resolving

ViewRepository #1

View
View

View

request

(2) lookup

67CoreMedia DXP 8

Development | Views

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewDispatcher.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/dispatch/HasCustomType.html

Although it is possible for the CAE to look up all types, it is encouraged to write
templates for interfaces only. While View lookups are cached, it may not always
be desirable to cache lookups indefinitely, also caches are not filled every time
a CAE is started. Going through the hierarchy of all types for every view lookup
can be very costly, and a production CAE easily reaches a 6-digit number of View
lookups (100.000+) until all views are cached.

To limit CAE lookups to certain types, set the Spring property filter.viewlook
up.by.predicate to true. Types ending on "Impl", "Base" and a few technical
types will be removed from the type hierarchy before doing the View lookup.
This reduces the number of lookups dramatically (up to 80%).

If you cannot adhere to the CoreMedia naming conventions and need a view
lookup, for example for a class that ends on "Impl", you can add exceptions to
this rule to the viewlookupPredicate property includes.

This is an example on how to add class names that should be included in the View
lookup in addition to all interfaces.

<customize:append id="addMyViewlookupIncludes"
bean="viewlookupPredicate" property="includes"

enabled="${filter.viewlookup.by.predicate}">
<description>
Overrule the predicate's exclusion patterns for these classes.

</description>
<list>
<value>my.package.MyViewRelevantBeanImpl</value>

</list>
</customize:append>

Using Multiple View Repositories

In a smaller project it might be sufficient to use a single view repository only.

When hosting several sites with different template sets in a single CAE, multiple
view repositories may be used. The CAE provides a mechanism for choosing a set
of view repositories dynamically per request.

This mechanism is separated into two services that are implementations of
ViewRepositoryNameProvider and ViewRepositoryProvider respectively.

ViewRepositoryNameProvider

The ViewRepositoryNameProvider is responsible for providing the names of the
view repositories to be used for resolving templates for the current request. For
instance, if a page is requested that is located in a "sports" subsite within a larger
site, a list [sports,site] might be returned where "site" refers to a common
template sets that is used when the more special set "sports" does not provide a
matching template. If another request is sent for a "politics" page, then a list

68CoreMedia DXP 8

Development | Views

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html

[politics,site] might be returned so that the output is rendered differently
due to the use of different templates.

A default implementation StaticViewRepositoryNameProvider returns a list of
predefined view repository names. Another default implementation Compound-
ViewRepositoryNameProvider returns the view repository names from several
view repository name providers. Applications that require more flexibility must
implement the interface ViewRepositoryNameProvider to return a project
specific list of view repository names.

ViewRepositoryProvider

The ViewRepositoryProvider is responsible for providing a ViewRepository
instance for a given name. A default implementation TemplateViewRepositoryPro-
vider is included. It inserts the repository name into a configured base path format
pattern, for example, a name "sports" with a format /WEB-INF/templates/%s
provides a ViewRepository instance with a base path /WEB-INF/tem
plates/sports.

The following example configuration registers a custom ViewRepositoryNamePro
vider and a TemplateViewRepositoryProvider to locate view repositories
using the pattern /WEB-INF/templates/sites/<viewRepositoryName>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:customize="...">

<!--
Instance of the project specific viewRepositoryNameProvider

-->
<bean id="customViewRepositoryNameProvider"

class="com.company.CustomViewRepositoryNameProvider">
...

</bean>

<!--
Register the view repository name provider
-->
<customize:append id="addCustomViewRepositoryNameProvider"

bean="viewRepositoryNameProviders">
<list>
<ref bean="customViewRepositoryNameProvider"/>

</list>
</customize:append>

<!--
Create an instance of TemplateViewRepositoryProvider
-->
<bean id="customViewRepositoryProvider"

class="com.coremedia.objectserver.view.resolver.TemplateViewRepositoryProvider">

<property name="templatesLocationFormat"
value="/WEB-INF/templates/sites/%s"/>

<!-- configure predefined beans -->
<property name="viewDecorators" ref="viewDecorators"/>
<property name="viewEngines" ref="viewEngines"/>
<property name="loader" ref="templatesResourceLoader"/>
<property name="programmedViews" ref="programmedViews"/>

69CoreMedia DXP 8

Development | Views

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/StaticViewRepositoryNameProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/CompundViewRepositoryNameProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/CompundViewRepositoryNameProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html

</bean>

<!--
Register the view repository provider
-->
<customize:append id="addCustomViewRepositoryProvider"

bean="viewRepositoryProviders">
<list>
<ref bean="customViewRepositoryProvider"/>

</list>
</customize:append>

</beans>

Loading Templates from the Content Repository

Templates can be loaded by the TemplateViewRepositoryProvider from a
blob property in the content repository instead of a folder in the file system. This
may be useful if for example a small campaign site should be launched or a template
needs patching but there isn't time to redeploy all CAEs.

This feature only works with FreeMarker templates.

In order to store templates in the content repository, sets of templates must be
put into a JAR container. The templates in the JAR must have the same directory
structure as if the templates were located in the file system, for example tem
plates.jar/com.company/Base.ftlbut may be stored in an arbitrary subfolder
if the path is specified in the pattern as described below. The JAR can then be up-
loaded to an arbitrary content type with a blob property.

A specially formatted value for the properties templateLocations or template
LocationPatterns must be used. The value must start with the prefix
"jar:id:contentproperty:", add the absolute path to the content containing the
templates JAR (ending with the name of the property), and add "!/" to separate
the content path from the path within the JAR.

For instance, to use a JAR in the "data" blob property of content "/Sites/tem-
plates/<repository name>" as the base for a view repository, set the following
format string: jar:id:contentproperty:/Sites/templates/%s/data!/.

<customize:replace id="customizeTemplateLocationPatterns"
bean="templateLocationPatterns">
<list>

<value>jar:id:contentproperty:/path/to/document/%s/blobPropertyName!/</value>

</list>
</customize:replace>

70CoreMedia DXP 8

Development | Views

It is recommended to use a dedicated document type for storing the template
JAR. The document type(s) may be added to the list of viewLookupTypeTrig
gers provided in classpath:/com/coremedia/cae/view-services.xml.
The CAE will automatically invalidate internal view caches when a document of
one of the types is added, modified, or a property is changed. (On live servers,
publication and deletion of such a document leads to the cache invalidation)

Loading Templates from an Arbitrary Directory

When working on a new version of templates that have not yet been uploaded to
the content repository, the templates location for this view repository can be
overwritten in a local CAE configuration using a customizer:

<customize:replace id="overrideTemplateLocation"
bean="templateLocations">

<map>
<!-- the key is the logical name of the view repository -->
<entry key="customViewRepository"

value="file:///C:/path/to/template-module/src/main/webapp/WEB-INF/templates"/>

</map>
</customize:replace>

Loading Templates from a JAR in Classpath

When using Servlet 3.0, resources may be stored in JARs, and so can Templates. In
order for that to work, templates must be stored under the path /META-INF/re
sources/WEB-INF/templates. The application container will automatically re-
solve that path as if it were in the file system.

The same JAR may be used inside a web application and from the content repository
if the configured path matches the path inside the JAR. Following the example
above, the format would have to be: jar:id:contentproperty:/Sites/tem
plates/%s/data!/META-INF/resources/WEB-INF/templates/

Debugging

If you observe an error on a page, it is sometimes not obvious which view has
rendered the particular fragment of the page. In order to ease debugging, you can
set the flag view.debug.enabled=true in the application.properties file
of your preview web application. If this flag is set, the CAE renders comments with
meta information about the content bean and the view before and behind each
fragment of a page. The output looks like this:

<li class="titlestory first" >
<!--
BEGIN

71CoreMedia DXP 8

Development | Views

com.coremedia.blueprint.cae.contentbeans.CMArticleImpl$$[id=454]
asTitleStory webapp resource

view[/WEB-INF/templates/sites/media/com.coremedia.blueprint.common.contentbeans/CMTeasable.asTitleStory.jsp]
-->

<div class="img-box">
<!--
BEGIN
com.coremedia.blueprint.cae.contentbeans.CMPictureImpl$$[id=446]
null webapp resource

view[/WEB-INF/templates/sites/media/com.corcom.coremedia.blueprint.common.contentbeans.Picture.jsp]

-->
<script type="text/javascript">
com_coremedia_createContextInfo('PBE4',446,null,'mouse',true,null);

</script>

<!--
END
com.coremedia.blueprint.cae.contentbeans.CMPictureImpl$$[id=446]
null webapp resource

view[/WEB-INF/templates/sites/media/com.coremedia.com.coremedia.blueprint.common.contentbeans]

-->
</div>
<h4>Scuba diving the underwater adventure</h4>

<!--
END
com.coremedia.blueprint.cae.contentbeans.CMArticleImpl$$[id=454]
asTitleStory webapp resource

view[/WEB-INF/templates/sites/media/com.coremedia.blueprint.common.contentbeans/CMTeasable.asTitleStory.jsp]
-->

View Decorators

With a ViewDecorator you can wrap your Views in order to modify the behavior.
ViewDecorators are useful for conditional aspects.

In the last section you learned how to enhance the generated HTML pages with
debugging comments by simply setting a flag. Implementing these comments dir-
ectly in the templates would be hard to maintain, hard to understand and distract
from the actual functionality of the template. A ViewDecorator solves the problem
much more effective. It can be switched on and off in the preview and live CAE,
respectively, and it has no impact on template development.

Configuration

ViewDecorators are declared as Spring beans and appended to the viewDecor
ators list in the CAE's view-services. E.g. the configuration for the DebugView
Decorator looks like this:

<bean id="debugDecorator"
class="com.coremedia.objectserver.view.DebugViewDecorator">
<description>
Decorates view fragments with debug comments

72CoreMedia DXP 8

Development | Views

</description>
</bean>

<customize:append id="addCAEDebugDecorator" bean="viewDecorators"
enabled="${view.debug.enabled}">
<description>
Registers debug decorator

</description>
<list>
<ref bean="debugDecorator"/>

</list>
</customize:append>

The activation of a ViewDecorator is controlled by the enabled flag of the cus-
tomizer. For the DebugViewDecorator the view.debug.enabled flag is by
default set to true in the preview web application and to false in the live web ap-
plication.

Implementation

The actual ViewDecorator interface consists of a single method

View decorate(View view)

While this interface is very flexible, it would be cumbersome to implement a dec-
orating view from scratch. You would have to deal with ServletView, TextView
and XmlView arguments and preserve the particular types for your decorating
result view. In order to simplify this, the CAE provides the abstract ViewDecorat
orBasewhich handles these type issues. If you extend the ViewDecoratorBase,
you only have to implement getDecorator and return a custom Decorator. A
Decorator consists of three decorate methods for the View interfaces Ser
vletView, TextView andXmlView. The default implementations simply delegate
to the render methods of the original views. Custom overriding can enhance or
replace this behavior. For example, a decoratemethod for ServletViewsmight
look like this:

@Override
public void decorate(ServletView view, Object self, String viewName,
HttpServletRequest request, HttpServletResponse response) {
try {
Writer out = response.getWriter();
out.write("<!-- Decoration before rendering -->");
view.render(self, viewName, request, response);
out.write("<!-- Decoration after rendering -->");

} catch (IOException e) {
throw new RuntimeException("Cannot decorate", e);

}
}

View Hooks

View Hooks provide a means to define extension points in JSP and FreeMarker
templates. Project Extensions can make use of these extension points to add their

73CoreMedia DXP 8

Development | Views

own functionality at the respective locations in the resulting website without having
to change the core templates.

In the past you either directly implemented the functions in your content beans
and templates or you implemented a plugin by means of an Section 5.2, “As-
pects” [125] to achieve this. Both solutions are feasible however content beans and
Aspects should only accomplish basic tasks based on the content defined by the
editor and View Hooks are more loosely coupled and as such improve your project's
code quality.

Required Configuration

View Hooks are not enabled by default. In order to use them in your templates you
have to append the Spring bean viewHookEventView to the list of existing Section
“View Repository” [66].

<customize:append id="customProgrammedViews" bean="programmedViews">

<map>
<entry key="com.coremedia.objectserver.view.events.ViewHookEvent"

value-ref="viewHookEventView"/>
</map>

</customize:append>

Instead of using a customizer you can also add the viewHookEventView to the
existing map of programmedViews.

Example Implementation

Assuming there is a content bean CMArticlewhich represents an editorial article
and a corresponding template called CMArticle.detail.jsp. The template
defines an extension point with the id articleEnd.

<div class="detailView">

<h1><c:out value="${self.title}"/></h1>
<cm:include self="${self.text}" view="detailText"/>

<cm:hook id="articleEnd "self="${self}"/>

</div>

A project extension now wants to add a list of user generated comments at the
end of the article. Instead of changing the CMArticle.detail.jsp in the core
modules directly, you only need to add an implementation of the com.coremedia.ob-
jectserver.view.events.ViewHookEventListener to the Spring application context.

An implementation of this interface could look as follows:

@Named
public class CommentsViewHookEventListener implements
ViewHookEventListener<CMArticle> {

74CoreMedia DXP 8

Development | Views

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/events/ViewHookEventListener.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/events/ViewHookEventListener.html

@Inject
private CommentsService commentsService;

@Override
public RenderNode onViewHook(ViewHookEvent<CMArticle> event) {
if("articleEnd".equals(event.getId())) {
CommentsResult commentsResult =

commentsService.getCommentsResult(event.getBean());
return new RenderNode(commentsResult);

}

return null;
}

@Override
public int getOrder() {
return DEFAULT_ORDER;

}
}

The resulting com.coremedia.objectserver.view.RenderNode contains the object
and the view name that will finally be passed to the Section “View Lookup” [67].
The view lookup is responsible for identifying and rendering the corresponding
template or programmed view. Returning null tells the application to skip this
listener.

4.3.4 Writing Templates
A template accesses variables in its current environment that have been provided
by the controller. In a CoreMedia Content Application Engine template, the property
self has a special meaning: it denotes the target object on which the template
was invoked. It is the equivalent of the this object reference in Java methods. A
simple FreeMarker template to display the title property of a target object of
type com.company.Article and set the Content-Type HTTP response header
looks as follows:

<@cm.responseHeader name="Content-Type" value="text/html;
charset=UTF-8"/>
<#-- @ftlvariable name="self" type="com.company.Article" -->
${self.title}

While the @ftlvariable comment is not necessary, it serves as a hint for the
IntelliJ IDEA development environment to support code completion for the self
variable.

Template Output Escaping for HTML

To prevent output that allows cross-site scripting (XSS) attacks, the CAE switches
on HTML escaping for all FreeMarker templates by default. More precisely, each
FreeMarker template is automatically wrapped in an #escape directive:

75CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/RenderNode.html

<#escape x as x?html>
...

</#escape>

This #escape directive leads to all FreeMarker "interpolations" (${...} expres-
sions) being HTML-escaped when written to the output stream. All literal output
of the template is of course not escaped. See FreeMarker online documentation
for details.

In special cases, it might be necessary to disable escaping. For this purpose, Free-
Marker provides the directive #noescape. However, this directive is only allowed
nested inside an #escape directive, so because the outer #escape directive is
implicit, an IDE could regard this an error.

To always have valid templates and to also be able to change the escaping type to
something other than HTML, the CAE only wraps templates that do not contain
any #escape directives themselves. Thus, to switch off escaping, you have to make
the outer escaping explicit:

<#escape x as x?html>
...
<#noescape>...</#noescape>
...

</#escape>

Note that disabling HTML escaping can lead to cross-site scripting (XSS) vulner-
abilities if a templates outputs unchecked data like user input that may contain
scripts.

The same applies to the use case of changing the escaping type to something
other than HTML:

<#escape x as x?xml>
...

</#escape>

Like said above, specifying any #escape directive in your template completely
disables any automatic escaping normally added by the CAE. Otherwise, specifying
custom escaping would have lead to double escaping, which is not desired.

Template Inclusion

Other templates can be included via FreeMarker's <#include> directive. However,
in this case the view dispatcher is not involved in determining the included file. In
order to involve the view dispatcher, you need to use the include macro from
the Content Application Engine's FreeMarker library cae.ftl. This library is auto-
imported under the namespace cm. In FreeMarker, custom macros are invoked
using <@namespace.macro>. The macro @cm.include requires an attribute

76CoreMedia DXP 8

Development | Writing Templates

self to determine the target object for the view. The following code will find the
appropriate template named "teaser" for anObject and include its output into
the current page. Inside that template, self is temporarily bound to anObject:

<@cm.include self=anObject view="teaser"/>

Assuming that anObject is of type Article, the template Article.teaser.ftl
will be included. The view attribute is optional; the default template (in this example,
Article.ftl) will be chosen in case it is omitted. When no template for the view
name "teaser" is found, the search will end with a failure - the default template is
not used as a fallback! Also, the include will fail if anObject is null (unless you
specify a default value of cm.UNDEFINED for self, see reference).

A template including the teaser views of all objects in its articles property would
look as follows. Within each teaser template, self will be bound to the respective
article object. Note the use of FreeMarker's built-in #list directive:

<#list self.articles as article>
<@cm.include self=article view="teaser"/>

</#list>

When looking for the appropriate template, the Content Application Engine performs
the same steps as in an object-oriented language. If no template is defined for a
target bean type, it will be inherited from its super type: the CAE will look for the
template upwards in the inheritance hierarchy. It also considers interfaces, so you
can register templates for interfaces, too.

Rendering Markup

Markup properties are also rendered by including them. Assuming self has a
method getText returning a com.coremedia.xml.Markup, this template snippet
will render the text value using the default markup view.

<@cm.include self=self.text/>

The CoreMedia CAE defines a default view for objects of type com.core-
media.xml.Markup that converts CoreMedia richtext to XHTML. See Section “Ren-
dering Markup” [78] for details.

Template Parameters

CAE includes allow handing over parameters from the calling template to the in-
cluded one. This is implemented by temporarily setting a request scope attribute
and resetting it to its old value after the included fragment returns.

In a FreeMarker template, the include macro and the getLink function support
such parameters by using a hash-valued parameter named params. Macro include
also allows adding parameters as additional attribute-value pairs to the macro itself.
These two includes are equivalent:

77CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/xml/Markup.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/xml/Markup.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/xml/Markup.html

<@cm.include self=article view="teaser"
params={ "images": false }/>

<@cm.include self=article view="teaser" images=false/>

Within the "teaser" template, the variable images will be set to false and will
revert to its original value (if any) afterwards.

Linking

Like include, linking also works with objects. To compute a URL to an object and
a view, you can use the CAE FreeMarker library function getLink():

more

This function consults the LinkFormatter strategy to compute a URL and hands in
its first parameter as the target object and its second parameter as the (optional)
view identifier. The link formatter strategy requires a link scheme that is able to
handle the class of the object. All generated content beans implement the Content-
Bean interface for which a link scheme exists; so there is no need to implement
another one. It is necessary for beans that originate from other sources.

Using the function in an expression (FreeMarker: "interpolation"), the formatted
URL is written directly to the page. If the URL is used several times within the
template or if you feel that the actual template code looks cleaner when separating
URL computation and usage, use FreeMarker's #assign directive to assign the
resulting URL to a variable:

<#assign teaserLink><@cae.link target=article
view="teaser"/></#assign>
more

You can hand over parameters to the LinkFormatter as an optional third para-
meter of the getLink() function, specified as a FreeMarker hash of name-value
pairs. If you do not want to specify a view, you can also hand over parameters as
the second parameter. Do not forget to quote the keys and not quote the values
(unless they are strings, of course).

Rendering Markup

Render objects of type com.coremedia.xml.Markup by including them from a
FreeMarker template using:

<@cm.include self=self.text/>

This uses the class XmlMarkupView as a default view, which converts richtext to
XHTML applying the following transformations:

78CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/links/LinkFormatter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/xml/Markup.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/XmlMarkupView.html

➞ internal links are converted to URIs pointing back into the CoreMedia CAE

➞ links (href attributes in the xlink namespace) without protocol and server
are URL encoded

➞ anchor and image elements with xlink href attributes are converted to
XHTML a href and img src.

➞ the CoreMedia richtext namespace is dropped from the elements

If you want to use your own transformations you have to proceed as follows:

1. Define your own view, plain for example, using a Customizer:

<customize:append id="addMarkupView"
bean="programmedViews">

<map>
<entry key="com.coremedia.xml.Markup#plain">
<bean/>

</entry>
</map>

</customize:append>

2. Use XmlMarkupView as the implementation of the view, but apply a custom
filter factory which creates a SAX filter chain per output. Proceed as follows:

➞ Let your filter factory extend RichtextToHtmlFilterFactory.

➞ Overwrite #createFilters and append your own transformations before
super.createFilters.

public List createFilters(HttpServletRequest req,
HttpServletResponse res, Markup markup, String view) {

List result = new ArrayList();
result.add(new MyFilterForRichtext());
result.addAll(super.createFilters(req, res, markup, view));

}

3. Configure your filter factory in cae-views.xml as follows:

<entry key="com.coremedia.xml.Markup#plain">
<bean class="com.coremedia.objectserver.web.XmlMarkupView">
<property name="xmlFilterFactory">
<bean class="com.coremedia.objectserver.web.
MyRichtextToHtmlFilterFactory">
<property name="idProvider" ref="idProvider"/>
<property name="linkFormatter" ref="linkFormatter"/>

</bean>
</property>

</bean>
</entry>

79CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/XmlMarkupView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/RichtextToHtmlFilterFactory.html

Advanced Patterns for FreeMarker Templates

Working with Maps in FreeMarker Templates

FreeMarker supports variables of type hash, which are unordered mappings of
strings to other models, and provide the built-in ?keys and ?values to expose
the key and value sets as sequences. In order to support maps with key types other
than strings, the CAE FreeMarker view engine does not map Java objects of type
java.util.Map to FreeMarker hashes. Instead, java.util.Map methods will
be available on such models. In order to access the entry, key, or value sets, call
the respective methods on the model object. Any such set is a FreeMarker sequence
and thus compatible with the #list directive.

Example 4.8. Iterating
over java.util.Map
entries in FreeMarker
templates

<#list map.entrySet() as entry>
${entry.key} is mapped to ${entry.value}

</#list>

Using JSP Tag Libraries in FreeMarker Templates

FreeMarker templates can access functionality provided by a JSP tag library, assum-
ing that the tag library is deployed in the web application as specified in JavaServer
Pages 2.2 and up. Import the tags exposed by a JSP tag library into a named hash
by using its URI as a key into the implicit JspTaglibs map. The imported tags
will be available as custom directives in the named hash.

<#assign fmt=JspTaglibs["http://java.sun.com/jsp/jstl/fmt"]>
<@fmt.formatNumber value=self.someValue/>

JspTaglibs only exposes tags, not static methods exposed by a JSP tag library
as functions.

Accessing Static Methods in Freemarker Templates

To give a FreeMarker template access to public static methods of a Java class, you
have to implement a "facade" Java singleton that provides non-static methods that
delegate to the static methods.

public final class FreemarkerFacaceExample {

public static final FreemarkerFacaceExample INSTANCE = new
FreemarkerFacaceExample();

private FreemarkerFacaceExample() {
}

/**
* Provides non-static access to static method.
*/
public String nonStaticDefaultString(String text) {
return StringUtils.defaultString(text);

}

80CoreMedia DXP 8

Development | Writing Templates

}

Then, add this singleton as a shared variable to the CAE's FreeMarker configuration,
and access the methods using the singleton in any CAE FreeMarker template.

The following listing shows an example Spring configuration to add a custom shared
FreeMarker variable, assuming the facade singleton class is called com.com
pany.cae.MyFreemarkerFacade and the variable should be exposed as myFree
markerFacade.

<import
resource="classpath:/com/coremedia/cae/view-freemarker-services.xml"/>

<customize:append id="myFreemarkerSharedVariablesCustomizer"
bean="freemarkerSharedVariables">

<map>
<entry key="myFreemarkerFacade">
<bean class="com.company.cae.MyFreemarkerFacade">
<!-- inject services etc. here! -->

</bean>
</entry>

</map>
</customize:append>

Auto-Import of Freemarker Functions and Macros

In order to expose functions, macros, or common configuration to all templates,
you need to add the corresponding Freemarker file to the freemarkerConfigurer
bean's property autoImports. The following listing shows an example Spring
configuration that exposes all functions of custom-functions.ftl with the
name cufu.

<import
resource="classpath:/com/coremedia/cae/view-freemarker-services.xml"/>

<customize:append id="myFreemarkerAutoImportsCustomizer"
bean="freemarkerConfigurer" property="autoImports">

<map>
<entry key="cufu"

value="/lib/custom/freemarker/custom-functions.ftl"/>
</map>

</customize:append>

All functions are now available to your Freemarker templates. However, the IDE
will most likely not recognize these functions and the name defined in your Spring
configuration. Adding a freemarker_implict.ftl as shown in Example 4.9,
“Code for Idea auto-completion” [82] to src/main/resources/META-INF/re
sources/ within your Maven module's directory will add auto-completion to the
IntelliJ IDEA development environment.

81CoreMedia DXP 8

Development | Writing Templates

Example 4.9. Code for
Idea auto-completion[#ftl]

[#-- @implicitly included --]
[#import "/lib/custom/freemarker/custom-functions.ftl" as cufu]

Error Handling

The views rendered for a particular page can be thought of as a tree of views, with
the outermost (top-level) at the root of the tree, and each include operation adding
another "child". In this nested hierarchy of views, exceptions may be thrown at
any time: either because one of the templates has a syntax error and cannot be
compiled, because of an I/O error when loading content from the content repository,
or for any other reason which may cause exceptions at runtime. By default, excep-
tions thrown while rendering views are passed all the way "up" the inclusion stack.
Exceptions not handled at any level will eventually be handled by the servlet con-
tainer by forwarding the request to the appropriate error page, if configured ap-
propriately.

In addition to this default exception processing, the CoreMedia CAE provides an
ExceptionHandlingViewDecorator to handle exceptions at different levels of the
view hierarchy. Using this feature, view exception messages may be shown in the
context of the page on which they occurred which is useful to find and fix issues
in a development or preview environment. In production environments, the same
decorator can simply remove the output of the view causing the error, thus leading
to fewer error pages presented to end users at the price of not showing some
content on the page.

Activating View Exception Handling

The view exception handling decorator is activated by default. To deactivate it, set

view.errorhandler.enabled=false

Determining How to Handle a View Exception

By default, "handling an exception" means that the output of the view subtree
producing the error will be discarded. Note that this mechanism will use additional
output buffering, so as - always - it is a good idea to watch out for potential negative
effects on temporary heap usage or garbage collection times. However, in most
cases this should not be an issue. To render the error message and the exception
stack trace on the page (replacing the output of the view subtree producing the
error), set the following property in preview or development environments:

view.errorhandler.output=true

The output can be styled using an appropriate CSS style sheet to match the visual
appearance of the surrounding page. For instance, a minimal style sheet could

82CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html

show a red box containing the error message while hiding the stack trace, which
may become very long:

table.cae-rendererror {
border: #FF0000 solid 3px;
color: #000000;

}

table.cae-rendererror .cae-rendererror-stacktrace {
display: none;

}

To render view exceptions on a page, a fallback view is provided in the fallback-
ViewRepository. To use a custom exception rendering template rather than the
fallback view, add your own view - such as a FreeMarker template - for
com.coremedia.objectserver.view.ViewException.

Choosing Where to Handle Exceptions

Regardless of whether you suppress output in a production environment or show
an error message in a preview or development environment, it is necessary to
control where on the page exceptions will be handled. A page usually consists of
many nested inline and block elements, all rendered by views in the view tree. It
usually makes sense to handle an exception at a certain block level, where it is
semantically acceptable to discard erroneous view output or replace it with an error
message.

As an example, assume a page with a side bar rendering each item in a collection
of content beans using the view name "teaser". The same "teaser" views may also
be used in other areas of the page, and each such view again includes many
smaller views to include images, video previews, text, metadata and so on. For
such application, it is useful to handle exceptions at the "teaser" level, which means
that any exception thrown in any of the views making up that teaser view, will be
passed up to the "teaser" level for exception handling. In this case, if the "metaData"
view included from within the "teaser" threw an exception, the output of the
"teaser" view would be discarded completely or replaced completely with an error
message, instead of just the "metaData" output.

To control which views should handle exceptions thrown by themselves or views
they include, the ExceptionHandlingViewDecorator is configurable with accept and
reject lists for bean types as well as view names. Each list may be configured by an
appropriate customizer. To continue with the above example, assume you decide
to handle exceptions at the "teaser" level for any com.example.content
beans.base.CMObject:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:customize="http://www.coremedia.com/2007/coremedia-spring-beans-customization">

<customize:append id="addCustomExceptionDecoratorAcceptBeanClasses"

83CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewException.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewException.html

bean="exceptionDecoratorAcceptBeanClasses">
<list value-type="java.lang.Class">
<value>com.company.contentbeans.base.CMObject</value>

</list>
</customize:append>
<customize:append id="addCustomExceptionDecoratorRejectBeanClasses"

bean="exceptionDecoratorRejectBeanClasses">
<list value-type="java.lang.Class">

<!-- do not add anything -->
</list>

</customize:append>
<customize:append id="addCustomExceptionDecoratorAcceptViews"

bean="exceptionDecoratorAcceptViews">
<list value-type="java.util.regex.Pattern">
<value>teaser</value>

</list>
</customize:append>
<customize:append id="addCustomExceptionDecoratorRejectViews"

bean="exceptionDecoratorRejectViews">
<list value-type="java.util.regex.Pattern">

<!-- do not add anything -->
</list>

</customize:append>
</beans>

In this example, any exceptions thrown will be passed up the view hierarchy to a
view "teaser" rendered for a bean of type com.example.content-
beans.base.CMObject, where it will be handled. The reject lists may be used as
a restriction: a view will only handle an exception, if both accept conditions and
no reject conditions match.

You might instead add java.lang.Object to exceptionDecoratorAccept
BeanClasses and .* to exceptionDecoratorAcceptViews, if you wanted
any view to handle an exception. In that case, you should reject beans of type
com.coremedia.cap.common.Blob, to avoid breaking binary content.

Reference for FreeMarker Templates

The macros, functions and variables described in this section as well as any request,
session, and servlet context scope attributes are implicitly available in any Free-
Marker template view rendered by the CAE.

Table 4.5. Implicit
macros, functions and
variables in FreeMarker
templates

DescriptionParametersMacro / Function

Render the object passed as "self" in the given
view at this position in the output. Requires
a template/view to be defined for such an
object.

self: Object
(required),
view: String
(optional),

@cm.include

Examples:params: Hash
(optional)

84CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/common/Blob.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/common/Blob.html

DescriptionParametersMacro / Function

<@cm.include self=self.navigation/>

<@cm.include self=self view="frame"/>

<@cm.include self=self
view="overview" params={"details":
false}/>

Renders the results of all com.coremedia.ob-
jectserver.view.events.ViewHookEventListener

id: String (re-
quired), self: Ob-

@cm.hook

implementations that match the given typeject (optional, de-
of self and that support the given id and the
parameters.

faults to self object
from template con-

Examples:text),params:Hash
(optional)

<@cm.hook id="htmlHead"/>

<@cm.hook id="pictureSubHeadline"
self=self.picture/>

<@cm.hook id="teaserContainer"
self=containerItem
params={"isFirstInList": true}/>

Create a link to the object passed as "target"
in the given view and return the URL as a

target: Object
(required), view:

cm.getLink()

string. Requires a link scheme to be definedString (optional, de-
for the target object. If the target object is
cm.UNDEFINED, an empty string is returned.

faults to cm.UN
DEFINED),params:

Examples:
Hash (optional): addi-
tional parameters giv-
en as a hash ${cm.getLink(article, {"foo": 1})}

${cm.getLink(self, "asTeaser")}

${cm.getLink(article, "asTeaser",
{"foo": 1})}

Determine this object's id through the IdPro-
vider and return the id as a string.

self: Object (re-
quired)

cm.getId()

Examples:

85CoreMedia DXP 8

Development | Writing Templates

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/events/ViewHookEventListener.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/events/ViewHookEventListener.html

DescriptionParametersMacro / Function

<input name="teaser" type="hidden"
value="${cm.getId(teaser)}"/>

Set an HTTP response header. If the response
is already committed, the macro will fail.

name: String (re-
quired), value:
String (required)

@cm.response-
Header

Provided as part of the CAE library because
this feature is missing in the standard Free-
Marker Web integration.

Example:

<@cm.responseHeader
name="Content-Type" value="text/html;
charset=UTF-8"/>

Get an HTTP request header. Provided as part
of the CAE library because this feature is

name: String (re-
quired)

cm.getRe-
questHeader()

missing in the standard FreeMarker Web in-
tegration.

Example:

<#if
cm.getRequestHeader("Accept")?contains("application/xml")>...

Create a metadata attribute with a value
containing a serialization of the given data.

data: * (required)@cm.metadata

This function in covered in depth in section
Section “Metadata Support in FreeMarker
Templates” [89].

Example:

<div class="foo"<@cm.metadata
self.content/>>...

Enables the usage of the @cm.metadata
macro and has to be included in the template

@cm.pre-
viewScripts

once, before @cm.metadata can be used.
For details see Section “Metadata Support in
FreeMarker Templates” [89].

Supported Standards and Template Language Versions

FreeMarker templates are expected to comply with the FreeMarker 2.3.x syntax.
See the FreeMarker documentation (http://freemarker.sourceforge.net/docs/in-
dex.html) for details.

86CoreMedia DXP 8

Development | Writing Templates

http://freemarker.sourceforge.net/docs/index.html
http://freemarker.sourceforge.net/docs/index.html

The CoreMedia CAE web application and tag library support the Servlet 2.5/JavaS-
erver Pages 2.2 standards.

4.3.5 Adding Document Metadata
In order to hand over information rendered by the CAE to Studio you can include
metadata in your HTML documents. To allow attaching metadata to a specific DOM
element, it is added as a custom HTML 5 data attribute called data-cm-metadata.
For each DOM element, metadata may consist of complex data structures in terms
of (nested) maps and lists that hold primitive data objects like strings or integers
but also application objects if corresponding serializers are available. Several seri-
alizers are predefined, in particular one for Content objects.

Metadata nodes are assumed to be nested corresponding to the DOM hierarchy
of the elements they are attached to. From all metadata nodes found in the HTML
document, a metadata tree is built according to the following rules:

➞ There is an artificial metadata tree root node.

➞ For a metadata node m found in a DOM node d, look for the first parent
DOM node that also has a metadata node assigned (say m') and add m as a
child of m'. If no such parent node is found, add m as a child of the root
node.

➞ If a DOM node has a list of metadata nodes assigned, these are interpreted
as hierarchical nodes in the metadata tree, that is, children are assigned to
the last node of the list and the first node of the list is assigned as a child to
the metadata parent node.

Example 4.10, “ A DOM with Metadata and Generated Metadata Tree ” [87] shows
an example DOM tree with metadata attached to its elements (->). Note that the
list of metadata at the topmost div element is mapped to a hierarchy of metadata
nodes in the metadata tree.

Example 4.10. A DOM
with Metadata and
Generated Metadata
Tree

S: slider metadata
A, B, C: content objects
x, y: properties

Metadata TreeDOM with Metadata

root
|

slider metadata "S"
|

content "A"
|

property "x"

<html>
|

<body> -> "S"
|

<div> -> ["A", "x"]
|
|-- <div> -> "B"

|| |
|-- content "B"| <div>
| || |
| property "y"| -> "y"
||
`-- content "C"`-- -> "C"

87CoreMedia DXP 8

Development | Adding Document Metadata

When the preview page is shown inside Studio, the resulting metadata tree is
serialized and sent to the containing Studio, where it is deserialized and used by
the built-in preview integration.

Supported Metadata:Supported Metadata

Content ObjectsIf metadata refers to a Content object, Studio shows a context menu that allows
the editor to interact with this document (open it in a document tab, for instance)
when the editor right-clicks inside the preview panel on the corresponding DOM
element to which the metadata has been attached.

Property PathsSimilarly, string metadata is interpreted as a property path starting at the document
specified by the parent metadata node. If this document is the same as the one
shown in the document form, right-clicking the DOM element to which the property
metadata has been attached (or any of its subelements) focuses the corresponding
property field in the document form. This even works for link list properties. If the
property belongs to another document, right-clicking on the property DOM element
delegates to the parent node, that is, it opens a context menu that offers actions
for that document.

Since Preview Shortcuts refer to Content, not content beans, note that all custom
properties have to be specified with a properties. prefix. Only Content meta
properties like modificationDate are specified without this prefix.

Slider MetadataThe third kind of metadata which is supported in Studio is device slider metadata,
which is used to render a device slider for responsive websites that can be used
to switch between different target resolutions of the site. The device slider metadata
is a structured object consisting of two properties: cm_responsiveDevices
which is basically a map from device name to resolution and cm_preferredWidth
which tells the width for the full-width mode of the Studio preview.

Example 4.11. Respons-
ive Device Slider
Metadata

{
"cm_preferredWidth": 1280,
"cm_responsiveDevices": {
"mobile": {"width": "320", "height": "480", "order": "1",

"isDefault": true},
"tablet": {"width": "600", "height": "800", "order": "2"},
"notebook": {"width": "1024", "height": "768", "order": "3"}

}
}

Studio Specific CSS and
JavaScript

Due to the tight integration of CoreMedia Studio and the embedded preview it might
be preferable to block animations or certain behavior inside the embedded preview.
In order to do so a previewed documents can provide metadata with additional
style sheet and JavaScript URLs. These URLs are only loaded when the document
is displayed in the context of the embedded preview. The metadata specifying
these URLs has to be attached to the head element of the previewed document.

88CoreMedia DXP 8

Development | Adding Document Metadata

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/Content.html

Example 4.12. Studio
Specific CSS and JavaS-
cript Metadata

{
"cm_studioPreviewCss": ["css-url-1", "css-url-2"],
"cm_studioPreviewJs": ["js-url-1", "<js></js>-url-2"]

}

Controlling the high-
light border rendering
strategy

The built-in Studio preview integration renders borders around highlighted preview
DOM elements to indicate where metadata is available (gray border on mouse
hover) and which DOM elements carrying metadata have been focused (blue border
on right-click or focus). Usually, these borders are rendered by absolutely positioned
line overlays. Occasionally, these lines interfere with the web page's mouse hover
behavior, for example when the web page uses pop-up menus for navigation.

For such cases, you can tell Studio to use an alternative highlight border rendering
strategy by adding the metadata property cm_highlightStrategy with a value
of "CSS" to a DOM element. Then, for all metadata of this DOM element or any
transitive child elements, highlight borders are rendered by adding a generated
style class that sets an inner border (more precisely, an inset box shadow). This
rendering strategy does not interfere with mouse hover events, but its visibility
on different kinds of DOM elements (images, for instance) is less reliable.

If you have to combine standard metadata and cm_highlightStrategy, consider
Section “Advanced Metadata Usage” [92] about using the default property "_"
(underscore).

Custom MetadataIt is also possible to attach custom metadata to the preview and implement a Studio
plugin that accesses the metadata tree. For details, see Section “Advanced Metadata
Usage” [92].

Enabling Metadata Support

In order to include metadata in your documents, you have to explicitly enable it
globally. Metadata is usually only enabled in a preview CAE, not in a live (production)
CAE.

To enable metadata inclusion globally, you have to set the metadata.enabled
property in the WEB-INF/application.properties file of your CAE application.

...
metadata.enabled=true
...

Metadata Support in FreeMarker Templates

If you want to add metadata to an HTML document from within a FreeMarker
template, make sure the FreeMarker macro @cm.previewScripts is called in a
template rendered once anywhere on the generated HTML page. You can then call
the macro @cm.metadata with the metadata that is to be assigned to an HTML
DOM node. To allow assigning multiple metadata nodes to the same DOM node,

89CoreMedia DXP 8

Development | Adding Document Metadata

you can call @cm.metadata with an array, where each array element generates a
metadata node.

The macro call <@cm.metadata ...> renders an HTML fragment, namely a custom
HTML 5 attribute named data-cm-metadata (all custom HTML 5 attributes have
to start with data-) with the serialized metadata as its value.

There are essentially two ways to attach metadata to an HTML element: directly
or through a local variable.

The inline metadata macro call looks like so:

<div class="page"<@cm.metadata data=self.content/>>Hello world!</div>

Since data is the only parameter of the @cm.metadatamacro, FreeMarker allows
omitting its name and the equal sign, resulting in this even shorter variant:

<div class="page"<@cm.metadata self.content/>>Hello world!</div>

Note that macro @cm.metadata outputs a complete HTML attribute name and
value, including a leading space. When metadata output is disabled, nothing is
written, so leaving out the leading space leads to a bit less readable template, but
to cleaner output - your choice.

You can use FreeMarker's object literal notation to specify more complex metadata.
If the metadata expression is more extensive, if metadata is reused for multiple
DOM nodes, or if you just want a very clear separation of metadata and HTML
output, it is recommended to assign metadata to a variable using FreeMarker's
#assign directive and hand over the variable to @cm.metadata inside the HTML
tag:

<#assign sliderMetadata={
"cm_preferredWidth": 1280,
"cm_responsiveDevices": {
"mobile_portrait": {
"width": 320,
"height": 480,
"order": 1,
"isDefault": true

},
...

}
}/>
...
<body id="top"<@cm.metadata sliderMetadata />>

In a normal CAE FreeMarker template, self refers to the current content bean.
Each content bean has a property content that refers to the underlying Content,
so typical Preview Shortcut metadata looks like so:

<div<@cm.metadata self.content/>>...</div>

90CoreMedia DXP 8

Development | Adding Document Metadata

As an example, assume the current content bean provides the content properties
title and text, these properties are written by the template as heading and
block text, and you want to add metadata to tell Studio about the used content
properties. Here is an example of a FreeMarker template fragment that adds the
correct metadata:

<div<@cm.metadata self.content/>>
<h1<@cm.metadata "properties.title"/>>${self.title}</h1>
<div<@cm.metadata "properties.text"/>>${self.text}</div>

</div>

Note how the containing document is only attached once to a surrounding DOM
element. If this is not possible because of the given DOM structure (which you
usually do not want to change to avoid layout problems), you can use
@cm.metadata with an array parameter specifying multiple metadata nodes:

<h1<@cm.metadata [self.content,
"properties.title"]/>>${self.title}</h1>
<div<@cm.metadata [self.content,
"properties.text"]/>>${self.text}</div>

Adding Metadata for
Studio Specific CSS and
JavaScript

As mentioned above, you can define CSS and JavaScript that is to be loaded in a
preview inside Studio only. In a FreeMarker template the corresponding metadata
object can be created via the convenience function cm.getStudioAdditional
FilesMetadata() that takes two list parameters. The first list provides additional
style sheets, the second one additional JavaScripts. Each list can either contain
content beans of an appropriate type or URL strings.

<#assign studioMetadata=
cm.getStudioAdditionalFilesMetadata(CSS_LIST, JS_LIST)/>
<head <@cm.metadata studioMetadata/>>

Metadata Support in JSP Templates

If you want to add metadata to an HTML document from within a JSP template,
include the JSP tag cm:previewScripts in a template that is called once for each
HTML page. You can then use the tag cm:metadata each time metadata is to be
assigned to an HTML DOM node.

The tag cm:metadata checks whether metadata rendering is enabled (either
globally or locally for this tag occurrence). If enabled, the given metadata is serial-
ized as a JSON string. In the rendered document, this string is escaped accordingly
and output as the value of the custom HTML attribute data-cm-metadata of the
HTML element that the metadata is attached to.

Example:

<cm:metadata value="${self.content}" />

91CoreMedia DXP 8

Development | Adding Document Metadata

To allow assigning multiple metadata nodes to the same DOM node, multiple
nested cm:object tags have to be used instead of the value attribute. cm:object
has only a value attribute and is used for list elements.

Example 4.13. Content
With Property<cm:metadata>

<cm:object value="${self.content}"/>
<cm:object value="properties.title"/>

</cm:metadata>

The tag cm:property can be nested into cm:metadata, cm:object or
cm:property to create a name-value pair. Again, the value can be specified either
as an attribute or through nested tags.

Example 4.14. Respons-
ive Device Slider
Metadata

<cm:metadata>
<cm:property name="cm_preferredWidth" value="1280"/>
<cm:property name="cm_responsiveDevices">
...
<cm:property name="mobile_portrait">
<cm:property name="width" value="320"/>
<cm:property name="height" value="480"/>
<cm:property name="isDefault" value="${true}"/>
<cm:property name="order" value="1"/>

</cm:property>
</cm:property>

</cm:metadata>

Advanced Metadata Usage

For Studio preview integration, you usually use content and property paths as
metadata to specify the source of generated HTML output. As convenience, the
metadata macro / tag automatically converts object and string parameters to
metadata nodes with a single "default" property named "_" (underscore), contain-
ing the given data. You only need to specify this default property explicitly if you
want to add custom metadata to the same metadata node.

The Studio preview integration only evaluates content objects and properties in
the_ property, the propertiescm_preferredWidth andcm_responsiveDevices
which are used for the device slider, and additionally the property cm_highlight
Strategy to control the highlight border rendering strategy.

Adding custom
metadata

All metadata using other property names will be handed through to Studio, but is
not interpreted by the built-in preview integration. To take advantage of such
custom metadata, you have to implement a Studio plugin that accesses and inter-
prets this metadata. For details, see Chapter 1, Introduction in CoreMedia Studio
Manual.

Here is an example of the same combination of preview metadata and custom
metadata in both template languages, FreeMarker and JSP.

92CoreMedia DXP 8

Development | Adding Document Metadata

studio-developer-en.pdf#Introduction

Example 4.15. Mixed
preview and custom
metadata in FreeMark-
er

<@cm.metadata [self.content, {"_": "properties.title",
"custom-key": "custom-value"}]/>

Example 4.16. Mixed
preview and custom
metadata in JSP

<cm:metadata>
<cm:object value="${self.content}"/>
<cm:object>
<cm:property name="_" value="properties.title"/>
<cm:property name="custom-key" value="custom-value"/>

</cm:object>
</cm:metadata>

4.3.6 Working with Forms
Often times, users need to interact with a website. Be it searching, editing a profile
or signing up for a newsletter. These use cases are commonly implemented using
a form based solution. Since the CAE integrates deeply with the Spring Framework,
this description focuses on using Spring Forms and using a Spring Web MVC 3.x
handler.

Form rendering

In order to render a form with Spring Forms, several things must be done:

1. A simple model Java bean (POJO) with properties for each form field is used as
a back end and to represent the form.

This is a simple example for such a backing bean:

public class MyForm {

private String email;
private String emailRepeat;

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public String getEmailRepeat() {
return emailRepeat;

}

public void setEmailRepeat(String emailRepeat) {
this.emailRepeat = emailRepeat;

}
}

2. The form backing bean must be added to the model that is rendered.

To add the form backing bean to the model, add a method to the handler class,
annotated with @ModelAttribute

93CoreMedia DXP 8

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/bind/annotation/ModelAttribute.html

@ModelAttribute("nameOfForm")
public MyForm createMyForm() {
return new MyForm();

}

3. To render the front end, Spring provides a tag library to create HTML forms in
JSPs, accessing the form bean in the model.

This is a simple example for such a form, see Spring form tag library document-
ation for details on how the form taglib may be used.

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form" %>

<form:form method="POST"
action="handlerUri"
commandName="nameOfForm">

<%-- render form fields --%>
<form:input path="email"/>
<form:input path="emailRepeat"/>

<input type="submit" value="Subscribe"/>

</form:form>

Using Ids for Encoding Objects in Form Fields

Under some circumstances, you will need to write down a string representation
of the identity of a bean, for example "the content bean for content 22". This is
typically necessary in intermediary XML documents or when you want to refer to
a bean in an HTML hidden input field.

For this purpose, the CoreMedia CAE contains a generic ID facility that allows you
to convert selected bean types to a string and back. The ID API basically consists
of two methods #getId and #parseId in the class com.coremedia.id.IdProvider.
Note that this is not an object serialization. This facility is only useful to capture
an id of a stateless object that represents an external business entity, as outlined
in Section “Patterns For Content Beans” [28]. The default implementation comes
with id support for content beans and blob properties. Other bean types can be
supported by writing a new implementation of com.coremedia.id.IdScheme and
plugging it into the id resolver using a Customizer.

In order to encode an object id into a form field in a template, as well as to decode
it back on a form submission, the CoreMedia CAE comes with a custom tag <cm:id>
as well as an implementation of the java.beans.PropertyEditor interface
that you can use in Spring to parse form fields back into bean references.

The following example shows how to encode the id of a bean feature into an
HTML form:

94CoreMedia DXP 8

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/view.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/view.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/id/IdProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/id/IdScheme.html

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form" %>

<cm:id self="${feature}" var="id"/>
<form:form method="POST"

action="handlerUri"
commandName="nameOfForm">

<%-- render form fields --%>
<input name="feature" value="${id}" type="hidden" />
<form:input path="email"/>
<form:input path="emailRepeat"/>

<input type="submit" value="Subscribe"/>
</form:form>

In this example, a regular <input> field was used to render the id. Because of
this, the id will not be bound to the backing bean, but the value can be retrieved
by the controller using the command request.getParameter("feature")

Form submission

A form submission can be handled with Spring MVC means. The form backing bean
is automatically filled with the posted values of the form. When a responsible
handler is found for a request, the form bean is passed as a method argument to
the handler method if a method parameter is annotated with @ModelAttribute.

public ModelAndView handleFormSubmit(
@ModelAttribute("nameOfForm") MyForm form, ...)

Form validation

Spring provides a general concept for form/bean validation in the back end.

Validators

In order to validate a form, an org.springframework.validation.Validator can be
implemented for arbitrary form backing beans. The validation method populates
an org.springframework.validation.Errors object with error messages, see MyForm-
Validator Example [96] for a complete example.

if(form.getEmail() == null) {
errors.rejectValue(

"email",
"error-email-missing",
"The email address is missing."
);

}

The first argument passed to Errors#rejectValue() denotes the form bean
property (here: “email”) that is invalid. The following arguments are an error code
(to be defined in a resource bundle) and a default message.

95CoreMedia DXP 8

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/bind/annotation/ModelAttribute.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/validation/Validator.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/validation/Errors.html

Global errors affecting the entire form instead of a single property are supported,
too.

Associate a validator with a form bean

To validate a form bean with a validator in the context of a handler, add an @Init-
Binder annotated method to the handler:

@InitBinder("nameOfForm")
protected void initBinder(WebDataBinder binder) {
binder.setValidator(new MyFormValidator());

}

Do not forget the form name, otherwise the validator will be applied to any
@ModelAttribute or @PathVariable arguments.

To actually validate the form bean, annotate the method parameter with @Valid.

public ModelAndView handleFormSubmit(
@ModelAttribute("nameOfForm") @Valid MyForm form, ...)

This is an example validator that implements all necessary methods for the example
use case of validating the MyForm example shown before:

import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;

import java.util.regex.Pattern;

/**
* Validator for {@link MyForm}
*/
public class MyFormValidator implements Validator {

/**
* this pattern matches an email address such as "test@test.com"
*/
private static final Pattern EMAILADDRESS_PATTERN =

Pattern.compile("\\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,4}\\b");

@Override
public boolean supports(Class<?> clazz) {
return MyForm.class.isAssignableFrom(clazz);

}

@Override
public void validate(Object target, Errors errors) {

MyForm form = (MyForm) target;

//use Spring Utility to validate if form field is empty
ValidationUtils.rejectIfEmptyOrWhitespace(

errors,
"email",

96CoreMedia DXP 8

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/bind/annotation/InitBinder.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/bind/annotation/InitBinder.html
http://docs.oracle.com/javaee/6/api/javax/validation/Valid.html

"error-email-missing",
"Email is missing");

//if form field has content, validate if format matches email
pattern

if (!errors.hasErrors()) {

if (!isValidEmail(form.getEmail())) {
errors.rejectValue(

"email",
"error-email-format",
"Not a valid email address");

}
//and if form field contents match each other.
else if (!form.getEmail().equals(form.getEmailRepeat())) {
errors.reject(

"error-email-no-match",
"Emails are not equal");

}
}

}

/**
* @return true if email matches the pattern
*/
protected boolean isValidEmail(String email) {
return EMAILADDRESS_PATTERN.matcher(email).matches();

}

}

Error handling in the handler method

When errors during binding should be handled within a handler method, an optional
BindingResult method parameter must be added to the handler method to be able
to access any validator errors added during binding.

The method parameter BindingResult MUST follow the validated parameter
immediately!

public ModelAndView handleFormSubmit(
@ModelAttribute("nameOfForm") @Valid MyForm form,
BindingResult formBindingResult,
...)

BindingResult#hasErrors() can be used to check for errors in the handler
method.

BindingResult#reject() can be used to add errors (as a result of a business
transaction, for example) in the handler method.

Presenting form errors

The Spring form tag lib contains tags to display global or field specific error mes-
sages:

97CoreMedia DXP 8

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/validation/BindingResult.html

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form" %>

<form:form method="POST"
action="handlerUri"
commandName="nameOfForm">

<%-- render global error message if available --%>
<form:errors cssClass="notification error"/>

<%-- render form fields with
specific error messages, if available. --%>

<form:input path="email"/>
<form:errors path="email" cssClass="notification error"/>

<form:input path="emailRepeat"/>
<form:errors path="emailRepeat" cssClass="notification error"/>

<input type="submit" value="Subscribe"/>
</form:form>

See <form:errors> tag documentation.

Handling POST requests

When handling POST requests, these steps should be done in the handler method:

1. Consume POST data
2. Update application state (for example update external database, send data to

external service, ...)
3. Send a 302 "moved temporarily" response and redirect to the page the request

came from so that a page reload won't change the application state again. See
Section “Handling redirects” [98]

4. If needed, status information can be transferred from the handler to the follow-
ing (redirected) request using flash attributes, see Section “Preserving attributes
in a redirect” [99]

Handling redirects

Sometimes it's necessary to return a redirect from a handler method. The CoreMedia
CAE supplements Spring MVC in order to support this use case.

Redirecting to a (content) bean

The API provides a convenience method for redirecting to a page that is represented
by a model bean: HandlerHelper#redirectTo(bean)

Redirecting to an external URL

When redirecting to an (external) URL, a RedirectView may be used for the Mod-
elAndView that is returned from the handler method, for example:

98CoreMedia DXP 8

Development | Working with Forms

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/view.html#view-jsp-formtaglib-errorstag
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/HandlerHelper.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/servlet/view/RedirectView.html

RedirectView redirectView = new
RedirectView("http://www.my-website.com/");
redirectView.setStatusCode(HttpStatus.MOVED_PERMANENTLY);

return new ModelAndView(redirectView);

Preserving attributes in a redirect

Sometimes it is necessary to display status information (a confirmation message,
for instance) as result of a POST handler. Spring MVC provides the concept of "Flash
Attributes": Attributes that can be passed to the handler receiving a redirected
request, for example:

public ModelAndView handleRequest(..., RedirectAttributes
redirectAttributes) {

// handle request

redirectAttributes.addFlashAttribute(
"status",
"Everything is fine.");

// send redirect using
// HandlerHelper#redirectTo() or
// a org.springframework.web.servlet.view.RedirectView

}

Also, see this post on Tikal.com.

Because of SPR-10516 any beans added as objects to ModelAndView are con-
verted to Strings (and might require to add a converter to bindingConverters
bean (see Section 4.3.1, “Handling Requests” [50]) as soon as request handler
specifies RedirectAttributes as parameter (and only then). This might pre-
vent link handlers to be found by bean type. In order to work around this issue
it is recommended to use HandlerHelper#redirectBuilder(bean) and specify the
redirectAttributes which as a result when building the model and view
will receive the model bean in addition to ModelAndView.

Protecting against Cross Site Request Forgery

Cross-site request forgery (CSRF) is a trivial attack on a web application, which -
if vulnerable to this attack - allows an attacker to perform a state-modifying oper-
ation on behalf of an authenticated, honest user. Depending on the nature of the
web application and the operations an authenticated user may perform, the poten-
tial damage may be significant. For instance, a vulnerable application may allow
an attacker to take over an honest user's account by changing that user's email
address to his own.

A variation on CSRF is "login CSRF", which is an attack tricking an honest user to
log into a vulnerable application with an account owned by the attacker. An unsus-

99CoreMedia DXP 8

Development | Working with Forms

http://www.tikalk.com/redirectattributes-new-feature-spring-mvc-31
https://jira.spring.io/browse/SPR-10516
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/HandlerHelper.html

pecting user who fell victim to this attack may add valuable information, such as
his address or payment information to the account, resulting in a leak of sensitive
user data to the attacker.

More information on cross-site request forgery can be found at the Open Web
Application Security Project: CSRF.

To reduce a CAE application's risk of vulnerability to CSRF attacks, the CAE provides
a blanket protection against CSRF and login CSRF. As long as the application adheres
to a set of conventions, this protection is mostly transparent. If enabled in an ap-
plication which does not comply with the necessary conventions, the protection
may be ineffective or state-modifying operations (for example POST requests made
by authenticated users) may incorrectly be treated as attacks and rejected.

Enabling CSRF protection

To enable the CSRF protection mechanism, set the following property to true in
your CAE application (default is false):

security.csrf-prevention.enabled=true

By enabling this feature, a random token will be stored in each non-anonymous
user session. The client is expected to send the user's token value with every "un-
safe" HTTP request (POST, PUT, DELETE). Any such "unsafe" request without a
matching token will be treated as unauthorized and rejected.

To be effective, the anti-CSRF token must be kept as secret as the HTTP session
ID.

In particular, mind the following:

➞ A secure, random anti-CSRF token will be created for a user session,
whenever a non-anonymous user authenticates with the application. The
token value can be trusted for embedding in HTML attributes or text nodes
without HTML escaping.

➞ The token is made available as a model attribute _CSRFToken and can be
used from a view.

➞ A hidden input field named _CSRFTokenwill be added automatically to any
HTML form created using the Spring Form tag library. In future releases, this
behavior may be changed to add the token only to forms with "unsafe"
methods (such as POST).

➞ An interceptor will validate an anti-CSRF token sent with a request against
the one stored in the user session. This validation only applies to "unsafe"
request methods (POST, PUT, DELETE). If no request token is sent or the two
token values do not match, an org.springframework.security.access.Access-

100CoreMedia DXP 8

Development | Working with Forms

https://www.owasp.org/index.php/CSRF
https://www.owasp.org/index.php/CSRF
http://static.springsource.org/spring-security/site/docs/3.1.x/apidocs/org/springframework/security/access/AccessDeniedException.html

DeniedException will be thrown. To support Ajax requests, the request token
will be taken from the custom HTTP request header "X-CSRF-Token", if
available. Otherwise, the request token will be taken from the request
parameter _CSRFToken.

In order for this mostly transparent protection to work properly, an application
must fulfill these simple requirements:

➞ As recommended by RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1,
the application must use "unsafe" HTTP methods (POST, PUT, DELETE) for
any state-modifying HTTP requests.

➞ Spring Security must be used for authentication.

➞ The application must create a new HTTP session after successful authentica-
tion. This prerequisite is implemented by Spring Security's SessionFixation-
ProtectionStrategy and is necessary to protect against session fixation attacks
anyway.

➞ Spring Security's AuthenticationTrustResolver is used to recognize anonymous
users, so if an application implements custom Authentication objects to
represent anonymous users, they should be compatible with the application's
AuthenticationTrustResolver.

➞ Spring's Form tag library should be used to create HTML forms, in order to
add the anti-CSRF token automatically. Otherwise, forms to be sent via an
unsafe HTTP method such as POST need to specify this field explicitly:

<input type="hidden" name="_CSRFToken" value="${_CSRFToken}"/>

➞ Ajax XmlHttpRequests sent with an unsafe HTTP method such as POST, PUT,
or DELETE, must include the token value: either as a _CSRFToken request
parameter (when the request is built from form values, for instance) or as
a custom request header "X-CSRF-Token". For instance, an application which
makes heavy use of XmlHttpRequest via POST, could add the token value in
a global HTML5 data attribute (or hidden form field or any other hidden
DOM element):

<html data-csrf-token="${_CSRFToken}"> ... </html>

Example 4.17. Adding
the anti-CSRF header
to jQuery Ajax requests

When using jQuery, the token can be added to every POST Ajax request by
registering an appropriate global beforeSend handler:

$.ajaxSetup({
beforeSend: function (xhr, settings) {
settings.headers["X-CSRF-Token"] =
$("html").data("csrfToken");

}
});

101CoreMedia DXP 8

Development | Working with Forms

http://static.springsource.org/spring-security/site/docs/3.1.x/apidocs/org/springframework/security/access/AccessDeniedException.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1
http://static.springsource.org/spring-security/site/docs/3.1.x/apidocs/org/springframework/security/web/authentication/session/SessionFixationProtectionStrategy.html
http://static.springsource.org/spring-security/site/docs/3.1.x/apidocs/org/springframework/security/web/authentication/session/SessionFixationProtectionStrategy.html
http://static.springsource.org/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationTrustResolver.html
http://static.springsource.org/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/Authentication.html
http://static.springsource.org/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationTrustResolver.html

➞ The application should be prepared to handle the org.springframework.se-
curity.access.AccessDeniedException thrown by an interceptor, for instance
by mapping it to an appropriate error code such as 403 (FORBIDDEN). See
Section 4.3.9, “Dealing with Errors” [107] for details.

Login CSRF prevention requires special treatment, because no (non-anonymous)
user is authenticated when showing the login form.

To protect the login process, an application should force the creation of an anti-
CSRF token before rendering the login form by calling com.coremedia.secur-
ity.web.csrf.CsrfPreventionManagement#forceToken(HttpServletRequest). The
bean implementing this interface is available in a CAE application context as csrf-
TokenManagement. Method forceToken has no effect, if no HTTP session exists
or it already contains a token, so the application must make sure that a session
has been created before calling this method.

Note that upon successful authentication, a new user session and a new token
value will be created, as explained above.

Example 4.18. Forcing
token creation from a
login web flow

If the login process is implemented as a Spring Webflow, the web flow framework
will typically take care of creating a HTTP session to manage web flow state. Since
all application context beans are available to expressions in a web flow definition,
token creation may be forced in the <on-entry> phase of a <view-state>
rendering the login form:

<on-entry>
<evaluate expression="csrfTokenManagement.forceToken(
flowRequestContext.externalContext.nativeRequest)"/>

</on-entry>

4.3.7 Integrating with Spring Web Flows
Spring Web Flow is a framework for building complex form based web applications.
Since it is based on Spring MVC, it can be easily integrated into any existing CAE
web application.

CoreMedia provides an integration for merging Web Flows into a content based
CAE application: a typical page that is delivered by a CAE application is composed
of several hierarchical structured content beans, each of them representing a certain
fragment of the page. Typically, a (Web Flow) form application should be embedded
in a page as a fragment only.

In other words: Spring Web Flow result beans need to be merged into the CAE
bean model.

102CoreMedia DXP 8

Development | Integrating with Spring Web Flows

http://static.springsource.org/spring-security/site/docs/3.1.x/apidocs/org/springframework/security/access/AccessDeniedException.html
http://static.springsource.org/spring-security/site/docs/3.1.x/apidocs/org/springframework/security/access/AccessDeniedException.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/security/web/csrf/CsrfPreventionManagement.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/security/web/csrf/CsrfPreventionManagement.html
http://www.springsource.org/spring-web-flow

Embedding Web Flows

First of all, creating web flows for the CAE does not differ from creating "standard"
web flows: writing flow definitions, form beans etc. is exactly the same in the CAE.

The main difference lies in the way the flow execution is controlled: The standard
org.springframework.webflow.mvc.servlet.FlowController takes over the control
of the request including the rendering of the model. It uses an org.springframe-
work.webflow.context.servlet.FlowUrlHandler for building and parsing adequate
URLs pointing to this controller.

The CAE integration works in a slightly different way: the request can be still con-
trolled by a custom controller which builds its ModelAndView traditionally. After
that, it temporarily delegates the request to the Web Flow engine (by invoking
FlowRunner#run). This runner executes the Web Flow logic and returns an enriched
model consisting of the original model merged with the Web Flow model, a form
and binding results, for instance. This merged model can be passed to the view
rendering process (for instance the templates) that render the entire page contain-
ing the fragment with the flow results.

Example

A typical handler/controller method may look like this:

// step#1: build content model
ModelAndView modelAndView = ...;

// step#2: fetch flow id similar to
// FlowUrlHandler#getFlowId(HttpServletRequest)
String flowId = ...;

// step#3: run flow and enrich model
ModelAndView mergedModelAndView = flowRunner.run(

flowId,
modelAndView,
request,
response);

// step#4: pass merged model to rendering engine.
// Note, that it might be null in case that webflow has handled
// the response directly, e.g. by sending a 302 redirect
return mergedModelAndView;

Configuration

In order to use the Web Flow integration, the artifact dependency coremedia-
webflow as well as a Spring bean configuration <import re
source="classpath:/com/coremedia/cae/webflow/webflow-ser
vices.xml"/> must be added to the application. The latter contains CAE specific
web flow infrastructure setup as well as the bean flowRunner. This bean can be
used by custom handler in the way described above.

Finally, custom flow definitions still need to be registered:

103CoreMedia DXP 8

Development | Integrating with Spring Web Flows

http://docs.spring.io/spring-webflow/docs/2.3.x/api/org/springframework/webflow/mvc/servlet/FlowController.html
http://docs.spring.io/spring-webflow/docs/2.3.x/api/org/springframework/webflow/context/portlet/FlowUrlHandler.html
http://docs.spring.io/spring-webflow/docs/2.3.x/api/org/springframework/webflow/context/portlet/FlowUrlHandler.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/webflow/FlowRunner.html#run

<webflow:flow-registry id="flowRegistry"
flow-builder-services="flowBuilderServices">

<webflow:flow-location-pattern
value="classpath:/com/mycompany/**/*-flow.xml" />

</webflow:flow-registry>

4.3.8 Unit Testing a CAE Application
In order to promote a test-driven approach for development and to make testing
of services implemented with the CAE application framework easier, CoreMedia
ships an ease to use test add-on to be used in your tests based on Spring Testing.

Differing from the unit testing approach, it doesn't focus on testing single classes
only but helps to test services in a larger context and therefore brings the tests
closer to the real world.

This approach enables to develop system tests at unit test level as there is no need
for running external systems such as a content server or a servlet engine. The basic
idea is to use a Spring application context that is composed from the same Spring
bean declaration files that are used in the project.

Note that this requires the project Spring bean declaration in general to be self-
contained and independent from each other. Otherwise, the application context
could become too unhandy for testing when too many declarations have to be
included recursively.

The add-on provided by CoreMedia supports an easy and convenient setup of an
application context providing especially an in-memory content repository for your
tests.

Below you will find two examples. For more examples, usage information and
templates you might want to use in your IDE have a look at XmlRepoConfiguration.

Examples

Testing Link Schemes

This example demonstrates how to set up an infrastructure that can be used for
testing project link schemes. In the project's bean declaration myproject-link
schemes-beans.xml several link schemes are defined, as well as some CAE basic
infrastructure such as the LinkFormatter bean. It is very useful to load exactly this
file into a test application context, in order to...

1. test the contents of the file itself, for example detect whether there a syntactical
or wiring problems

104CoreMedia DXP 8

Development | Unit Testing a CAE Application

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html

2. test the service instances with a configuration that is (nearly) equal to the con-
figuration used in the project

3. test the service (in this example: the links scheme) in interaction with similar
services, for example make sure that a certain link scheme is addressed for
certain parameters and not a different link scheme instance.

Use the configuration pattern to construct the application context with the desired
configuration:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = MyTest.LocalConfig.class)
@ActiveProfiles(MyTest.LocalConfig.PROFILE)
public class MyTest {
@Configuration
@ImportResource(

value = {
XmlRepoResources.LINK_FORMATTER,
"classpath:/com/mycompany" +
"/myproject/myproject-linkschemes-beans.xml"

},
reader = ResourceAwareXmlBeanDefinitionReader.class

)
@Import(XmlRepoConfiguration.class)
@Profile(PROFILE)
public static class LocalConfig {
public static final String PROFILE = "MyTest";

}

// ...
}

Using a local test-only profile is recommended if you are using component scan
to find your beans. If not using the ActiveProfile, Profile annotation pair
LocalConfig classes of other tests might be found through component scan.

Now you can just inject the LinkFormatter and use it as in production code:

@Inject
LinkFormatter linkFormatter;

String link = linkFormatter.formatLink(
new MyPage(123),
"myView",
new MockHttpServletRequest(),
new MockHttpServletResponse(),
false);

Assert.assertEquals("/123?view=myView", link);

Testing Handlers

A controller/handler's behavior strongly depends on the concrete setup of the ap-
plication context. For instance, the registered Converters or PropertyEditors
might have an influence on its behavior as well as the currently used HandlerMap
ping. Thus, it might be useful to take this environment into account when testing
a handler. Spring provides MockMvc for emulating servlet requests and by capturing
a handler's ModelAndView result. See corresponding JavaDoc for details.

105CoreMedia DXP 8

Development | Unit Testing a CAE Application

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/test/web/servlet/MockMvc.html

@RunWith(SpringJUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration(classes = MyTest.LocalConfig.class)
@ActiveProfiles(MyTest.LocalConfig.PROFILE)
public class MyTest {
@Configuration
@ImportResource(

value = {
XmlRepoResources.HANDLERS,
"classpath:/com/mycompany" +
"/myproject/myproject-handlers-beans.xml"

},
reader = ResourceAwareXmlBeanDefinitionReader.class

)
@Import(XmlRepoConfiguration.class)
@Profile(LocalConfig.PROFILE)
public static class LocalConfig {
public static final String PROFILE = "MyTest";

@Bean
@Scope(SCOPE_SINGLETON)
MockMvc mockMvc(WebApplicationContext wac) {
return MockMvcBuilders.webAppContextSetup(wac).build();

}
}

@Inject
private MockMvc mockMvc;

@Test
public void test() throws Exception {
Object expectedModelBean =...;
mockMvc

.perform(
MockMvcRequestBuilders

.get("/context/servlet/123")

.servletPath("/servlet")

.contextPath("/context")
)
.andExpect(MockMvcResultMatchers.status().isOk())
.andExpect(MockMvcResultMatchers

.model()

.attribute(
HandlerHelper.MODEL_ROOT,
Matchers.equalTo(expectedModelBean)

)
);

}
}

Mind the test annotation @WebAppConfiguration which is required to have a
WebApplicationContext available to build the MockMvc object.

MockMvcResultMatchers provides several matchers for validating the response.
For more sophisticated analysis you can end the validation with andReturn()
and get for example the ModelAndView from the returned MvcResult.

More information

Take a look at the Javadoc of XmlRepoConfiguration for getting more examples
and how to use for example a custom in memory content repository.

106CoreMedia DXP 8

Development | Unit Testing a CAE Application

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/test/xmlrepo/XmlRepoConfiguration.html

4.3.9 Dealing with Errors
In any application, error handling is an important part of a consistent user experi-
ence. In a web application the goal is to return a useful response to the client in
the case of an error condition, including an appropriate HTTP status code, an in-
formative error page, a redirection, and often a combination of these.

Although the details of how particular errors are dealt with may differ from case
to case, this section gives an overview of the different application components
involved and best practices on how to implement error handling strategies.

Errors during request processing usually arise in one of two forms: expected and
unexpected errors.

➞ Expected errors are often the outcome of validating input sent with the request
such as the URL path, parameters or cookies. Request input is typically inter-
preted by a controller to construct a model and determine the view, so this
is where such errors should be handled.

➞ Unexpected errors can - by definition - occur at any time during request pro-
cessing. In addition to explicit error handling in controllers, it is therefore
necessary to implement uncaught exception handling in an application.

Explicit error handling in controllers

Spring's DispatcherServlet is responsible for finding and executing a handler
and rendering the view. A handler is first located by matching the request proper-
ties. Then the request will be bound to a handler method, including locating and
calling appropriate type converters. Then the handler itself will be called to construct
a ModelAndView. As mentioned above, the handler is the place for the application
to decide whether a request is valid or should be answered with an error response.

To keep controllers and views separate, it is good practice to return a model rep-
resenting the error case instead of generating the error response in the controller
itself. For this purpose the CAE provides the HttpError class and utility methods
in HandlerHelper to create error models. A default view for HttpError will set an
appropriate HTTP status code and can be overwritten to generate more sophisticated
error pages. See Section “Building the Model” [51] for details.

Uncaught exceptions while executing a handler

The DispatcherServlet will catch any unhandled exception thrown while ex-
ecuting handlers or handler interceptors and delegate them to HandlerException-
Resolvers to map the unhandled exception to a ModelAndView. Spring throws
different unchecked exceptions when the DispatcherServlet is unable to resolve
a request to a controller or fails to bind the request to it, for example because no
matching type converter is defined. The default HandlerExceptionResolver
simply maps these exception types to HTTP status codes such as 404 (NOT FOUND)

107CoreMedia DXP 8

Development | Dealing with Errors

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/HandlerHelper.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/HttpError.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-exceptionhandlers
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-exceptionhandlers

or 400 (BAD REQUEST). A list of the default status code mappings is included in the
Spring documentation. For consistent error pages, it is recommended to define a
custom exception resolver and map unhandled exceptions to HttpError models to
share error views with explicit exception handling.

Uncaught exceptions while rendering a view

During this last stage of request processing the response may already have been
committed and the status code set. Falling back to an error page is therefore not
always possible. The CAE can react to unhandled exceptions during view rendering
by dropping parts of the view or rendering an error message as part of the gener-
ated page. See Section “Error Handling” [82] for details.

Fallback error pages

So far it is assumed that a request will be handled by the DispatcherServlet
and error handling can be implemented as part of the application. This is not always
true, either because the web server forwards requests to the servlet container
which do not map to the application or the DispatcherServlet, or because any
of the components in the request processing chain becomes unavailable, or cannot
communicate with the next component.

As a fallback for these cases, static error pages should be installed in all components
in the request processing chain for a consistent user experience:

➞ Static default error pages can be configured in the application's deployment
descriptor itself as described in Java Servlet Specification 3.0. For instance,
these will respond to otherwise unhandled error conditions or requests to
unmapped URLs. Tomcat will only fallback to these defaults error pages, if
the application does not handle an exception or sets an error HTTP status
code with an empty body in the response.

➞ A web server configured as a reverse proxy to forward requests to a servlet
container should at least be configured to return static error pages for cases
when a request cannot be forwarded, the servlet container is not available,
or there is a timeout. Apache HTTP Server provides the ErrorDocument dir-
ective for this purpose.

➞ In a more elaborate setup with load balancers, HTTP accelerators, or content
delivery networks, each such stage should be able to deliver static error
pages should the downstream stage become unavailable.

Best practices for error pages

➞ Error pages should set an appropriate HTTP status code: 4xx for client errors
such as invalid requests and 5xx for server errors.

108CoreMedia DXP 8

Development | Dealing with Errors

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-exceptionhandlers
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/HttpError.html
http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html
http://httpd.apache.org/docs/current/mod/core.html#errordocument

➞ HTTP error codes will prevent upstream components from caching the re-
sponse. Heavyweight error pages which rely on upstream response caching
should therefore be avoided.

➞ Invalid requests should be detected early and be rejected quickly, without
spending much CPU resources on them.

➞ For security reasons, error messages and error pages should not reveal in-
formation about the application or its infrastructure. For instance, avoid
sending stack traces to untrusted users.

109CoreMedia DXP 8

Development | Dealing with Errors

4.4 Multi-Site and Localization Management
CoreMedia provides a concept to handle multi-site and multi-language in a stand-
ardized way.

Configuration

The CoreMedia site model is defined via the bean siteModel. Refer to the Section
6.5, “Localized Content Management” in CoreMedia Digital Experience Platform 8
Developer Manual to know, how CoreMedia has designed multi-site and multi-lan-
guage.

SitesService

To access all the features of multi-site and multi-language, you can use the
SiteService defined as siteService Bean via the bpbase-multisite-
services.xml Spring Bean Declaration.

With this, you have access to all available Sites and their properties - the root folder,
the site indicator, etc. Furthermore, you have access to the SiteModel specifications
like the properties for master relations or of which document type the Site Indicator
is. For a detailed understanding, you are asked to read the API documentation as
well.

110CoreMedia DXP 8

Development | Multi-Site and Localization Management

livecontext-en.pdf#LocalizedContentManagement
livecontext-en.pdf#LocalizedContentManagement

4.5 CAE Developer Toolbox
The CAE Developer Toolbox is a web based set of tools that can help developers
when working with CAE web applications. It connects to a CAE's remote (or local)
MBean server, gathers and aggregates data and provides this via a user interface.
The toolbox comes in two flavors: As a CoreMedia Studio plugin and as a standalone
variant that can be integrated into any CAE web application.

The Toolbox GUI uses Studio UI components and therefore provides the same user
experience. For example, detailed information is displayed in tooltips, columns
can be added, removed or sorted. The Toolbox contains two tabs, Cache Statistics
and Cache Browser.

Cache Statistics

Cache Statistics provides an overview of the current state of the memory cache.

There are several measurements that report the current state and behavior of the
cache keys. For instance, the cache utilization and the hit rate is displayed. Displayed
values are reloaded periodically. If the CAE monitored by the tool serves requests
while the Toolbox is open, a developer can watch the memory cache utilization in
order to determine if the application works correctly.

Figure 4.8. Cache Stat-
istics

Cache Browser

A tool for browsing through the memory cache.

Starting with list of all cache key classes currently present in the memory cache,
you can look into single cache entries and analyze the cached contents as well as
the dependencies and dependents. The view is split up into three areas, a list of

111CoreMedia DXP 8

Development | CAE Developer Toolbox

all CacheKeys on the left, a list of instances of a particular CacheKey class (if
selected in the list of all CacheKeys) in the upper right and the detailed view of
one CacheKey (if selected in the list of CacheKeys in the upper right) in the lower
right portion of the screen. Values displayed in the three areas are not reloaded
automatically so that you can spend more time looking at a snapshot of the memory
cache. If one of the areas is reloaded (or loaded for the first time), the contents
are requested new from the memory cache, so value counts may vary. All content
can be reloaded by clicking the reload button in the upper right corner.

Figure 4.9. Cache
Browser

Installation

This section describes the two ways the Toolbox can be installed.

Studio Web Application Plugin

Follow these installation steps to run the Toolbox as a plugin within a Studio web
application:

1. Add this dependency to your Studio web application

<dependency>
<groupId>com.coremedia.cae</groupId>
<artifactId>cae-toolbox-studio-component</artifactId>
<scope>runtime</scope>

</dependency>

2. Configure the JMX URL of the CAE web application to be connected to. Add a
property toolbox.jmx.url=service:jmx:the-jmx-url to the application,
to WEB-INF/application.properties, for instance. If your JMX connector

112CoreMedia DXP 8

Development | CAE Developer Toolbox

is password protected, you will also need to configure the properties tool
box.jmx.user and toolbox.jmx.password.

After login to CoreMedia Studio with administrator privileges, there is a new button
"CAE Toolbox" available in the Favorites Bar that opens the toolbox.

CAE web application Integration

In order to run the Toolbox within a CAE web application (without the need of a
running Studio web application) you simply need to add this dependency to your
CAE web application.

<dependency>
<groupId>com.coremedia.cae</groupId>
<artifactId>cae-toolbox-component</artifactId>
<scope>runtime</scope>

</dependency>

After starting the CAE web application, the Toolbox connects to the local MBean
server which is available at:

http://<host>:<port>/<context>/<servlet>/toolbox (for example
http://localhost:8001/webappname/servlet/toolbox)

Working with the Toolbox

The following two examples show how the Toolbox can be used.

Example: How to find cache capacity problems

Problem:

➞ When the capacity configured for a cache class is too low relative to the
working set, then even frequently used cache entries will be evicted (high
eviction rate). This will also result in a high cache miss rate, as frequently
used values do not remain in the cache for very long.

➞ If the cache key evaluation is sufficiently "expensive", this inefficient use of
the cache may result in a poor performance.

Finding the cause:

➞ In the Cache Statistics tool check the utilization for all entries.

➞ An entry that has a red circle (means a utilization >= 90%) needs to be ob-
served in more detail. Note that a high utilization isn't a problem per se.

➞ Check the eviction rate of the suspicious entry: If it has a high value (> 20%)
over a longer period then you should consider increasing the capacity. A
value of 20% for "Eviction rate" means that roughly 20% of the values
(measured by their weight, not by their number) are removed per minute.

113CoreMedia DXP 8

Development | CAE Developer Toolbox

➞ Increasing the capacity can be easily done by double-clicking into the capacity
field and enter the new value. Note that this change is not made persistent:
After a restart, the old value will be used.

➞ You can copy the fully qualified cache class name into the system clipboard
for further examination in other tools like IDEs, say. Simply select the corres-
ponding row and press CTRL-C.

Example: How to find cache entries with many dependents

Problem:

➞ A cache entry (such as a cached piece of content) having many dependents
(such as many data views) can cause a high invalidation rate that requires
lots of potentially expensive evaluations.

➞ This might happen when this cache entry is invalidated frequently and thus
triggers transitive invalidation of its dependents.

Finding the cause:

➞ In the Cache Statistics tool check the "Removal Rate". An entry having a high
value (> 10%) over a longer period should be analyzed, because this is a sign
for continuous invalidation activity. If those cache entries are continuously
evaluated to insert them into the cache again, you will also see a relatively
high "Miss Rate" (number of cache misses divided by lookups) and "Insertion
Rate" (approx. amount of cache values computed and inserted into the cache,
relative to the capacity, per minute).

➞ Switch to the Cache Browser and click the "Dependents" tab in the upper
right corner so that this area's entries are sorted by highest "dependents"
values.

➞ Walk through all entries in column "Cache key class" (left area) and check
the "Dependents" column (upper right area) for high values.

➞ Cache entries with large numbers of dependents are potential candidates
for optimization.

114CoreMedia DXP 8

Development | CAE Developer Toolbox

4.6 Image Transformation API
Both the CAE and CoreMedia Studio support the specification and rendering of
named variants of images. These variants are specified by a string which describes
the transformation steps necessary to compute the variant. This feature is used
extensively for rendering images, obviating the need to store image variants and
renditions as distinct blobs within the CMS.

The transformation strings are stored in a map-like data structure within the image
document settings. For example, an image document may contain the following
variants:

Table 4.6. Example of
image transformation
strings

Transformation StringVariant Name

"crop;x=0;y=0;width=2285;height=1714""landscape_ratio4x3"

"crop;x=478;y=581;width=1807;height=725""landscape_ratio5x2"

"crop;x=570;y=0;width=1715;height=1714""portrait_ratio1x1"

A transformation is specified by a string with a syntax conforming to the hierarch-
ical part of URIs (see RFC 3986: URI Generic Syntax). It is basically a sequence of
path segments separated by slashes ('/'), each defining a single transformation
operation. Each operation is applied to the binary data step by step, from left to
right. The segment path denotes the name of the operation, and optional path
parameters denote operation parameters.

An operation has a name, an optional alias, and an optional set of parameters.
Each parameter may have a default value associated with it. Parameters are iden-
tified by name rather than ordinal position in the argument list.

For example, a;x=1;y=2/b/c;r=q is interpreted as the operation sequence
a(x="1",y="2"), b(), c(r="q").

Here is a slightly more complex example of an image transformation string:

rotate;angle=23/brightness;amount=70/box;width=121;height=121;upscale=false

Transformation operators and parameters may have shorter alias names, and
parameters may have default values. Exploiting these, the example above might
be rewritten as:

r;a=23/b;a=70/bo;w=121;h=121

115CoreMedia DXP 8

Development | Image Transformation API

Image Operations

Image transformations are implemented in the package com.coremedia.trans-
form.image and subpackages. com.coremedia.transform.image.ImageOperations
specifies a set of frequently needed image manipulation operations. These operate
on an image representation specified by the type parameter Image. The package
com.coremedia.transform.image.java2d contains an implementation of these op-
erations based on the javax.imageio package which is part of the Java runtime
environment.

The following operations are currently implemented. For details, see com.core-
media.transform.image.ImageOperations.

➞ scale(alias: s): Scales the image.

➞ fit (f): Fits the image into a rectangle.

➞ box (bo): Scales the image to the target size, preserving the aspect ratio.
An empty area on the sides will be filled with the background color, specified
in the AARRGGBB (alpha red green blue) format. The default (0) is fully
transparent.

➞ crop (c): Uses only a specified area of the image, altering its dimensions.

➞ flip (m): Mirrors the image horizontally or vertically.

➞ rotate (r): Rotates the image around its geometrical center. A background
color can be specified to fill the corners (see "box" operation).

➞ gamma (g): Applies gamma correction.

➞ brightness (b): Changes the brightness.

➞ convert: Produces an output image in the specified format.

➞ gif, png and jpeg: shortcuts for convert with the respective format.
jpeg accepts a quality parameter in the range 0.0 to 1.0, where 0.0 repres-
ents the lowest and 1.0 the highest quality.

➞ defaultJpegQuality (djq): Sets the JPEG compression quality to be
used should the output image be a JPEG and no explicit quality parameter
has been given. There is a configuration parameter defaultJpegCompres-
sionQuality that allows you to specify this value if this operation is not
executed.

➞ removeMetadata (rm): Removes any metadata that might be associated
with the image, such as EXIF or IPTC information. There is a configuration

116CoreMedia DXP 8

Development | Image Transformation API

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/package-summary.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/package-summary.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/ImageOperations.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/java2d/package-summary.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/java2d/package-summary.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/ImageOperations.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/ImageOperations.html

parameter preserveMetadata that allows you to specify whether metadata
should be kept if this operation is not executed.

➞ progressiveMode (p): Sets the threshold (image size in pixel) at which
the image should be encoded in progressive (JPEG) resp. interlaced (GIF,
PNG) mode for faster perceived image display. There is a configuration
parameter defaultProgressiveThreshold that allows you to specify
this value if this operation is not executed.

➞ unsharpMask (usm): Sharpen the image using an unsharp mask.

CMYK Images

JPEG images using the CMYK color model are converted to sRGB before further
processing. The conversion utilizes a ICC color profile in order to map the CMYK
colors to the sRGB color space as accurate as possible. When there is a suitable
color profile embedded within the source image, that color profile is used for
conversion. It his highly recommended to save a CMYK JPEG image with an embed-
ded color profile before uploading it into the CMS.

If there is no embedded color profile, conversion falls back to a platform specific
"generic" CMYK color profile. If the resulting colors are not acceptable there is the
possibility to specify a custom ICC color profile for converting CMYK images w/o
embedded color profile. All that is needed is to put a properties file

com/twelvemonkeys/imageio/color/icc_profiles.properties

into the classpath and define the key "GENERIC_CMYK" with the path to your
profile, e.g.

GENERIC_CMYK=/usr/share/color/icc/MyGenericCMYKProfile.icc

Writing CMYK images is not supported. Moreover, writing image metadata is not
supported for images originating from CMYK source images. Any metadata is re-
moved before writing the image, as if the removeMetadata (rm) operation has
been applied. This is done in the Blueprint CAE anyway in order to generate small
and compact images.

A General Blob Transformation Framework

Image transformations make use of a more general binary object transformation
framework. Within this framework, it is possible to implement any transformation
on blobs you may think of. Transforming images is just a special case, albeit an
important one.

The transformation framework resides within the package com.coremedia.transform
and subpackages which define the framework API and contain an implementation

117CoreMedia DXP 8

Development | Image Transformation API

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/package-summary.html

for image transformations. The central interface is the BlobTransformer with the
transformBlob method:

public interface BlobTransformer {
TransformedBlob transformBlob(Blob blob, String operations)
throws IOException;

boolean accepts(MimeType mimeType);
}

CAE Component Beans

Within the CAE Spring application context, a bean implementing the BlobTrans
former interface is defined with the id blobTransformer. It is capable of
transforming image blobs with the operations defined within the ImageOperations
interface. This is done with the help of a DispatchingBlobTransformer bean with
the id imageTransformer. This is the place where you can add your own image
operations as described in the next section.

The blobTransformer also caches the transformed images on disk using a
CachingBlobTransformer. Moreover, it performs some load control so that many
concurrent image transformation requests do not blow up the heap (see Throt-
tlingBlobTransformer). Please refer to the Bean Definition Reference for some
more information.

Extending the Set of available Image Operations

The DispatchingBlobTransformer class is an implementation of the BlobTransformer
interface. It consists of an InputAdapter, a list of so called processor objects, and
an OutputAdapter. The InputAdapter converts the input blob into an internal rep-
resentation (type parameter State) that is suitable for performing the desired
transformations. The processors operate on this representation to perform their
tasks. Finally, the OutputAdapter renders the internal representation back into an
object implementing the Blob interface. This blob is then wrapped with a Trans-
formedBlob which also remembers the original blob and the transformation string.

Processors are objects that perform the transformation operations. Processors
implement one or more interfaces. Within these interfaces, methods providing the
transformation operations are marked with the @Operation annotation.

By convention, the first parameter of methods implementing operations is the
transformation state object (created by the InputAdapter). Operation methods
manipulate this state object to perform their transformation task.

Any parameters of an operation are specified as additional method parameters
and must be annotated with the @Param annotation. This annotation tells the
DispatchingBlobTransformer about the name of the parameter (recall that operation
parameters are specified by name rather than position). Furthermore, it allows you
to specify a default value for the parameter, making it optional, and an alias as a

118CoreMedia DXP 8

Development | Image Transformation API

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/BlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/ImageOperations.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/impl/CachingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/impl/ThrottlingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/impl/ThrottlingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/BlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/processing/InputAdapter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/processing/OutputAdapter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/processing/InputAdapter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/processing/OutputAdapter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/common/Blob.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/TransformedBlob.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/TransformedBlob.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/processing/Alias.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/processing/Param.html

shorthand name. The @Operation annotation may optionally specify an alias for
the operation.

For each operation within the transformation string, a DispatchingBlobTransformer
tries each of its processors in turn and invokes the first one in the list that imple-
ments the operation. This way it's easy to extend the set of operations understood
by a DispatchingBlobTransformer by simply adding another processor to the list
that implements some new operations. And it is also possible to override some
specific operation with a custom implementation by adding a custom processor
at an earlier position in the list.

Let's assume you would like to extend the set of predefined image operations with
a sharpen operation. You would start implementing the processor interface as
follows:

package com.mycompany.transform;

import com.coremedia.transform.image.ImageTransformerState;
import com.coremedia.transform.dispatch.Operation;
import javax.imageio.IIOImage;

public interface SharpenerOperations {

@Operation(alias="sh")
void sharpen(ImageTransformerState<IIOImage> state,
@Param(name="centerWeight", alias="cw", defaultValue = "1.0")
float cw,

@Param(name="neighbourWeight", alias="nw", defaultValue = "0.0")
float nw

);
}

Then you would implement this interface using the javax.imageio library:

package com.mycompany.transform;

import com.coremedia.transform.image.ImageTransformerState;
import javax.imageio.IIOImage;
import java.awt.image.BufferedImage;
import java.awt.image.ConvolveOp;
import java.awt.image.Kernel;
import java.util.Map;

public class Sharpener implements SharpenerOperations {

@Override
public void sharpen(ImageTransformerState<IIOImage> state,

float cw,
float nw) {

BufferedImage img = (BufferedImage)
state.getImage().getRenderedImage();

float data[] = {
nw, nw, nw,
nw, cw, nw,
nw, nw, nw

};
Kernel kernel = new Kernel(3, 3, data);
ConvolveOp convolve = new ConvolveOp(kernel,
ConvolveOp.EDGE_NO_OP, null);

img = convolve.filter(img, null);

119CoreMedia DXP 8

Development | Image Transformation API

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/processing/Alias.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html

state.getImage().setRenderedImage(img);
}

}

The final step is to add this processor to the list of processors in the Spring config-
uration:

<customize:append id="imageProcessorCustomizer"
bean="imageProcessors">

<list>
<bean class="com.mycompany.transform.SharpenerImpl" />

</list>
</customize:append>

Now you may use the sharpen operation within a transformation string:

r;a=23/g;a=2/b;a=70/sharpen;centerWeight=3.0;neighbourWeight=-0.25"/png

Exploiting operation and parameter aliases, the same transformation would read:

r;a=23/g;a=2/b;a=70/sh;cw=3.0;nw=-0.25"/png

120CoreMedia DXP 8

Development | Image Transformation API

5. Appendix

121CoreMedia DXP 8

Appendix |

5.1 Customizer
A Customizer is a mechanism, which enables you to change an existing bean
definition without touching the actual configuration file of the bean. Technically
speaking, a Customizer is a BeanPostProcessor bean, which adjusts the bean
during creation of the ApplicationContext. The declaration of a Customizer
uses the "Extensible XML Authoring" (see http://docs.spring.io/spring/docs/cur-
rent/spring-framework-reference/html/extensible-xml.html for details) which en-
ables you to write compact bean definitions.

Examples:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:customize="http://www.coremedia.com/2007/

coremedia-spring-beans-customization
xsi:schemaLocation="

http://www.coremedia.com/2007/
coremedia-spring-beans-customization
http://www.coremedia.com/2007/
coremedia-spring-beans-customization.xsd">

<bean id="someService" class="com.mycompany.Service">
<property name="enable" value="false"/>
</bean>
<customize:replace id="enableSomeService" bean="someService"

property="enable"
custom-value="true"/>

</beans>

Here, the property enable of the bean someService is set to "true".

…
<customize:append id="addEntriesToSomeMap" bean="someMap">
<map>
<entry key="key1" value="value1"/>
<entry key="key2" value="value2"/>

</map>
</customize:append>
…

Here, two more entries key1 and key2 are added to a bean from the type Map.

<bean id="myLoginInterceptor"
class="my.interceptors.MyLoginInterceptor/>

...
<customize:replace id="registerMyLoginInterceptor"

bean="loginInterceptor"
custom-ref="myLoginInterceptor"/>

Here, a predefined bean loginInterceptor is replaced with the bean myLogin
Interceptor.

Syntax

The syntax to define a Customizer are as follows (id attribute omitted):

122CoreMedia DXP 8

Appendix | Customizer

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/extensible-xml.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/extensible-xml.html

<customize:operation
bean="beanname" [property="propertyname"]
custom-value="value"/>

or

<customize:operation
bean="beanname" [property="propertyname"]
custom-ref="custom-beanname"/>

or

<customize:operation bean="beanname" [property="propertyname"]>
<bean, map, set, list or properties>

</customize:operation>

Basically, an operation (<customize:operation>) is performed on a bean
(bean="...") or on a property of a bean (bean=".." property="..."). As a
parameter of an operation, you can use a value (custom-value="...") or a
reference to a bean (custom-ref="..."). Instead of a bean reference, you can
also use an element <map>, <list>, <set>, <properties> or <bean> as a
parameter. The customizer can be disabled by an attribute enabled="false".

The following operations are supported:

➞ Replace - Depending on the context, a bean will be replaced by another
bean with the same name or a bean property will be set to another value.

➞ Append/Prepend - This operation works on beans or properties which are
comprised of multiple elements, thus are of type List, Set, Map, String array
and the like. The elements you add must be wrapped with the type of the
property or bean that you modify (such as list, map or set). As you can see
in the listing beneath you can not add an element directly, but instead, even
if it is only one element that you wish to add, you have to wrap it. You can
add elements to the start ("prepend") or end ("append").

<customize:append id="registerMyService" bean="myServices"
property="serviceList">

<list>
<ref bean="myServiceBeanId">

</list>
</customize:append>

➞ Wrap - This operation wraps a bean by another bean: It replaces a bean and
injects the original bean into the new bean. The following example replaces
the bean "service" by an instance of WrapperService and injects the ori-
ginal "service" bean as a property "delegate" into WrapperService.:

<customize:wrap id="wrapService" bean="service"
wrapper-property="delegate">

123CoreMedia DXP 8

Appendix | Customizer

<bean class="com.mycompany.WrapperService"/>
</customize:wrap>

If different customizers work on the same bean or property, conflicts may arise.
Therefore, you can use the attribute order to define the order of execution of the
customizers.

<customize:replace id="registerMyService-1" bean="myService"
property="name"
custom-value="myService-1"
order="10"/>

<customize:replace id="registerMyService-2" bean="myService"
property="name"
custom-value="myService-2"
order="20"/>

The example shows two customizers, both working on the property name of the
bean myService. Due to the lower order value (10), the first customizer has a
higher priority and is executed first. Afterwards, the second customizer overwrites
this setting again.

124CoreMedia DXP 8

Appendix | Customizer

5.2 Aspects
Aspects are a feature that allows you to add new functionality to existing content
beans without modifying the content bean source code itself, either because the
content bean source code is not available, or to create a reusable extension. When
access to the content bean source code is available, using aspects is usually not
necessary.

Terminology

Beans designed for extension by aspects are called aspect aggregators and imple-
ment the com.coremedia.cae.aspect.AspectAggregator interface. Typically, these
will be content beans, extending com.coremedia.cae.aspect.contentbean.Ab-
stractAspectAggregatorContentBean, but this is not a requirement. In the sections
to follow, it is assumed your aspect aggregators are content beans.

An aspect is a bean to be "attached" to or associated with an aspect aggregator.
Aspects have a name, and an aspect aggregator instance can have at most one
aspect bean with a given name associated with it.

Setting up the Aspect Infrastructure

Aspect aggregators must implement the com.coremedia.cae.aspect.AspectAggreg-
ator interface. To make existing content beans aspect aware, make sure that they
inherit from AbstractAspectAggregatorContentBean (rather than AbstractContent-
Bean) and adjust your parent content bean definitions. Also, aspect aggregators
need an AspectsProvider. The CompoundAspectsProvider in this example serves
as a registry for plugins adding aspects to your content beans.

Example 5.1. Add as-
pect support to content
beans

<bean id="aspectsProviders"
class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourceList">
<list

value-type="com.coremedia.cae.aspect.provider.AspectsProvider"/>
</property>

</bean>

<bean id="aspectsProvider"
class="com.coremedia.cae.aspect.provider.CompoundAspectsProvider">
<property name="aspectsProviders" ref="aspectsProviders"/>

</bean>

<bean id="contentBeanBase" abstract="true"
class="AbstractAspectAggregatorContentBean">
<property name="aspectsProvider" ref="aspectsProvider"/>

</bean>

<bean id="contentBeanFactory:YourType"
class="com.yourcompany.YourTypeContentBean" parent="contentBeanBase">

...
</bean>

125CoreMedia DXP 8

Appendix | Aspects

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/AspectAggregator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/AspectAggregator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/AspectAggregator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/contentbean/AbstractAspectAggregatorContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/AbstractContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/AbstractContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/provider/AspectsProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/provider/CompoundAspectsProvider.html

Registering Aspects

To create a new aspect, implement the Aspect interface and add the new behavior
to this class, by adding bean properties, for instance. Choose an adequate Aspect
sProvider to provide instances of these beans. For instance, for an aspect to be
added to content beans, choose the ContentBeanAspectsProvider. This provider
needs its own content bean factory instance whose configuration will determine
which content types the aspect should apply to.

Example 5.2. Register-
ing an aspects provider
for content beans

<!-- factory to create aspect bean instances -->
<bean id="myAspectContentBeanFactory"

class="com.coremedia.objectserver.beans.SpringContentBeanFactory"/>

<!-- configuration to map MyDoctype to MyDoctypeAspectContentBean
-->
<bean name="myAspectContentBeanFactory:MyDoctype"

class="com.mycompany.MyDoctypeAspectContentBean"
scope="prototype">

<property name="aggregatorContentBeanFactory"
ref="contentBeanFactory"/>

</bean>

<!-- aspects provider for the new aspect -->
<bean id="myAspectsProvider"

class="com.coremedia.cae.aspect.provider.ContentBeanAspectsProvider">

<property name="contentBeanFactory"
ref="myAspectContentBeanFactory"/>

</bean>

<!-- register the aspects provider -->
<customize:append id="addMyAspectProvider" bean="aspectsProviders">

<list>
<ref bean="myAspectsProvider"/>

</list>
</customize>

On the other hand, to add aspects to arbitrary Java beans which are not content
beans, use a BeanFactoryAspectProvider instead. The aspect implementation class
should also implement the AspectAggregatorAware interface to have access to the
aspect aggregator. Define your aspect bean as a prototype bean with name like
beanNameOfAspectProvider:classNameOfAggregatorBean where "class-
NameOfAggregatorBean" is the fully qualified class name of the bean the aspect
will be applied to. You might use super classes or interfaces here as well.

Example 5.3. Definition
of an aspects provider
for arbitrary Java beans

<bean id="myAspectsProvider"

class="com.coremedia.cae.aspect.provider.BeanFactoryAspectsProvider"/>

<bean name="myAspectContentBeanFactory:com.mycompany.MyBean"
class="com.mycompany.MyBeanAspectImpl" scope="prototype">

126CoreMedia DXP 8

Appendix | Aspects

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/Aspect.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/provider/ContentBeanAspectsProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/provider/BeanFactoryAspectProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cae/aspect/AspectAggregatorAware.html

...
</bean>

Working with Aspects

Aspects added to aggregator beans by an aspects provider are available in code
by calling the getAspects or getAspectsByName methods:

Collection<? extends Aspect> aspects = contentBean.getAspects();

Map<String, ? extends Aspect> aspectsByName =
contentBean.getAspectsByName();

In templates, use the map returned by getAspectsByName to access an aspect
of the aggregator by its name:

self.aspectByName['myAspect'].myProperty

127CoreMedia DXP 8

Appendix | Aspects

5.3 Entity Resolver
Documents, such as templates, document type definitions or other XML files, need
to address third-party DTDs, Schemas or Entities (in the following summarized as
entities). In order to prevent problems with slow websites and to enhance offline
functionality, CoreMedia XML utility classes in the com.coremedia.xml package
(see the API documentation for details) support proxies in the classpath for such
entities.

That is, you can simply use the original URL of an entity in your XML data, for ex-
ample http://www.w3.org/1999/xlink, but the CoreMedia utilities will try
to resolve against the classpath first. Proxies have to be stored with their original
path, /www.w3.org/1999/xlink.xsd, in this example. CoreMedia provides
some third-party proxies in the cap-schema-bundle.jar file. CoreMedia entities
on the other hand are stored directly in cap-schema-bundle.jar!/xml due to
backwards compatibility.

To keep it short, follow the following rules for entity resolving:

➞ Provide classpath proxies for external entities with a path mapping as de-
scribed above.

➞ Provide your own entities via classpath.

➞ Use the CoreMedia XML utilities (especially MarkupFactory and XMLUtil5)
because they offer out-of-the-box entity proxy support for third-party entities
and class path support for project entities.

128CoreMedia DXP 8

Appendix | Entity Resolver

5.4 Content Placeholders
The pages of a typical CAE based website are composed of several content objects
where each page fragment corresponds to one or more contents. For example, a
teaser area on a page may be modeled from teaser documents that are placed in
a link list property. When rendering the page, then the entire content structure is
rendered by recursively applying the content beans to matching templates, for
example a content of type Teaser is translated to a content bean Teaser.class
that is rendered by a template Teaser.jsp.

There are situations where it may not be adequate to add a new content type for
every piece of functionality that should be used on a website. This may be true
when there is only one or a very few content instances of this type.

Example: Consider a website function "Current Weather" that displays the weather
forecast for the user's current location. Another example would be a "Login" form
that enables the user to login to or log out from the website. In order to enable an
editor to add, remove or replace such functionality in a page, it is necessary to
represent it as a content item. On the other hand it would be a huge overhead to
add a content type "Weather" and a content type "Login".

Such functionality can be easily added to an application using the Substitution API.
The basic idea behind the API is, that there is a generic content type that serves
as a kind of placeholder. Content of this type must have a string property containing
an identifier (for example com.mycompany.weather) that is internally used to
render the real information that is represented by the document. This identifier is
an arbitrary string, linking the content object to the substitution implementing the
intended behavior. To avoid name clashes of logical identifiers, for instances with
future project extensions, it is recommended to adopt the naming convention
known from Java packages as shown here.

Example: Let's say that there is placeholder content type called Action

<DocType Name="Action">
<StringProperty Name="id" Length="128"/>

</DocType>

with a corresponding content bean implementing this interface:

public interface Action {
String getId();

}

Instead of rendering the Action bean using a template Action.jsp, a more special
bean Weather could be rendered using a matching template Weather.jsp. This
kind of substitution (for example an Action with an id com.mycompany.weather
is substituted by an instance of bean Weather) is supported by the Substitution

129CoreMedia DXP 8

Appendix | Content Placeholders

API. Note that the bean resulting from the substitution can be of an arbitrary type,
and does not need to implement any particular interface.

In order to define such substitution, simply add an @Substitution annotated
method to any bean in the application context:

Example 5.4. Annotat-
ing a Substitution
method

package com.mycompany.weather.handlers;

import com.coremedia.objectserver.view.substitution.*;

public class WeatherHandler {

// ...

// Substitution ID "com.mycompany.weather" is arbitrary,
// but uses package naming conventions to avoid name
// clashes.
// It must match the property value in the
// corresponding content object, whose content bean will
// be substituted with this Weather bean during rendering
// by the ${cm:substitute} function.

@Substitution("com.mycompany.weather")
public Weather createWeatherBean(Action original,

HttpServletRequest request) {
return new Weather(original,
getCurrentWeather(request.getSession()));

}
}

The (generic) template Action.jsp can perform this substitution by calling the
JSP Expression Language function cm:substitute and dispatching the substitution
result to its responsible template (for example Weather.jsp).

Example 5.5. Use of
cm:substitute in CMAc-
tion.jsp

<%@ taglib prefix="cm"
uri="http://www.coremedia.com/2004/objectserver-1.0-2.0"

%>
<%--@elvariable id="self" type="com.mycompany.Action"--%>
<cm:include self="${cm:substitute(self.id, self,
pageContext.request)}"/>

Using the @Substitution annotation isn't the only way to register a substitution.
Consider a login example that requires a handler to perform the login action:

Example 5.6. Register-
ing a substitution pro-
grammatically

import com.coremedia.objectserver.view.substitution.*;

public LoginHandler {

// ...

@RequestMapping("/{id}/login")
public ModelAndView handleLogin(
@PathVariable("id")Page page,
@RequestParam("user")String user,
@RequestParam("password")String password,
HttpServletRequest request){

130CoreMedia DXP 8

Appendix | Content Placeholders

LoginState state=processLogin(user, password,
request.getSession());

ModelAndView result=HandlerHelper.createModel(page);
SubstitutionRegistry.register("com.mycompany.login",

state, result);
return result;

}
}

This example demonstrates the substitution from within a handler. The advantage
in comparison to the annotation based approach is the fact that form data can be
handled conveniently using the binding of Spring MVC.

In fact, the different approaches can be used in conjunction. An explicitly registered
substitution (using the SubstitutionRegistry service) has precedence over
the annotation approach. Thus, @Substitution can be used as a fallback in case
that there hasn't been a registration by a handler.

Spring Forms

When using the Spring Form tag library, then it is necessary to have the form beans
stored under certain names (other than self) in the request scope. For this reason,
an optional modelAttribute can be specified in the @Substitution annotation.
When this is done, then the substituted bean is stored under this name in the re-
quest. Example: An annotation@Substitution(value="com.mycompany.weath
er", modelAttribute="weatherBean") will cause the substituted bean to
be stored in the request as an attribute weatherBean.

131CoreMedia DXP 8

Appendix | Content Placeholders

5.5 Configuration Property Reference
Table 5.1. Configura-
tion PropertiesDescriptionDefaultValueProperty

This property determines where to
get the IOR of the Content Server

stringreposit-
ory.url

(format: http://<serv
er>:<port>/core
media/ior).<server>must be
the name of the Content Server host.
For <port> you have to set the
server's web server HTTP port.

The user in whose name the connec-
tion to the Content Server is estab-

stringreposit-
ory.user

lished. By default, only the user
webserver is allowed to use the
webserver login service required
for a Content Application Engine.

The domain of the user indicated
above

stringreposit-
ory.domain

The password of the user indicated
above

stringreposit-
ory.pass-
word

Defines if a connection with the
Workflow Server should be estab-

falsetrue/falsereposit-
ory.work-
flow lished. For most content application,

this is not necessary.

This property specifies the IOR of
the Workflow Server, if the IOR con-

stringreposit-
ory.work-
flow.url figured at the Content Server should

not be used (format: ht
tp://<serv
er>:<port>/workflow/ior).

The total number of bytes used by
the main memory cache of the Con-

20000000numberreposit-
ory.heapCacheS-
ize tent Application Engine. For 32 bit

JVMs this value is exact, for 64 bit
JVMs, the actual memory consump-
tion may be up to 2 times the con-
figured value.

The total number of bytes used by
the disk cache of the Content Applic-

32000000numberreposit-
ory.blob-
CacheSize ation Engine. This cache is used for

132CoreMedia DXP 8

Appendix | Configuration Property Reference

DescriptionDefaultValueProperty

storing blobs downloaded from the
Content Server. The default size is 32
MB. The configured directory for the
blob cache must be large enough to
hold all cached blobs and potentially
leftover files from earlier forced
shutdowns of the Content Application
Engine web application.

The minimum size of streamed blobs
in bytes. blobs less than or equal to

131072numberreposit-
ory.blob-

this size will be downloaded com-StreamingS-
pletely to disk before the first byteiz-

eThreshold can be read. Larger blobs will be
downloaded in the background.

The number of threads reserved for
streaming blob.

2numberreposit-
ory.blob-
Streaming-
Threads

The maximum size of blobs that are
cached on the local disk. Larger

numberreposit-
ory.max-

blobs are downloaded from the
Content Server on every request.

CachedBlob-
Size

The directory in which cached blobs
are stored. Make sure that the file

the Java tempor-
ary directory

stringreposit-
ory.blob-
CachePath system for this directory is large

enough. Note that forced shutdowns
of the Content Application Engine
web application may result in
leftover files in this directory, which
should be cleared while the CAE is
down. The configured directory may
be shared with other CAEs, because
the actual cache content is placed
in dynamically allocated subdirector-
ies.

Defines if the caching of view look-
ups is enabled. Disabling might be
useful when developing templates.

truetrue/falseviewdis-
patch-
er.cache.en-
abled

Enables protection against cross-site
request forgery attacks by generat-

falsetrue/falsesecur-
ity.csrf-

ing anti-CSRF tokens for authentic-preven-
ated users, adding such tokens to

133CoreMedia DXP 8

Appendix | Configuration Property Reference

DescriptionDefaultValueProperty

all forms created with the Spring
Form tag library, and validating
tokens for unsafe requests.

tion.en-
abled

134CoreMedia DXP 8

Appendix | Configuration Property Reference

5.6 Bean Definition Reference
All following files are loaded into the application context automatically with cae-
component, except for controller-services.xml, which is provided for
backwards compatibility.

CAE Component Configuration
Table 5.2. META-
INF/coremedia/com-
ponent-cae.xml in arti-
fact cae-component

TypeService or Extension Point
Definition

XmlMarkupViewrichtextMarkupView

MultiRangeBlobViewblobView

ViewHookEventViewviewHookEventView

Map<String, View>

Extension point to register programmed views, initialized
to (Markup := richtextMarkupView, Blob := blob-

programmedViews

View, ViewHookEvent := viewHookEventView) by a
customizer with order 100.

Default ViewRepository implementation, loading templates
from /WEB-INF/templates-fallback and using

fallbackViewReposit
ory

richtextMarkupView, blobView, errorView,
viewExceptionRenderer, and viewEngines.

Map<String, String>

Extension point to register additional template locations
with templateViewRepositoryProvider, initial-
ized to "default" := /WEB-INF/templates.

templateLocations

List<String>

Extension point to register additional template location
path patterns with templateViewRepositoryPro-

templateLocationPat
terns

vider. In each pattern, "%s" will be replaced with the view
repository name to resolve a location.

Default ViewRepositoryProvider implementation, initialized
with programmedViews, viewDecorators, and

templateViewReposit
oryProvider

viewEngines. It will lookup view repositories using
templateLocationsandtemplateLocationPat-
terns. View repository name "fallback" will be resolved
to the fallbackViewRepository.

viewRepositoryProviders are initialized to try view
repository names "default" and "fallback", if no view is
found.

135CoreMedia DXP 8

Appendix | Bean Definition Reference

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/XmlMarkupView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/MultiRangeBlobView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/events/ViewHookEventView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/View.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/xml/Markup.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/common/Blob.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/common/Blob.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewRepository.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/TemplateViewRepositoryProvider.html

Views
Table 5.3. com/core-
media/cae/view-ser-
vices.xml in artifact
cae-viewservices-impl

TypeService or Extension Point
Definition

Map<String, ViewEngine>

Extension point to register custom view engines for tem-
plate file extensions, initialized to ("jsp" := WebappRe-

viewEngines

sourceViewEngine, "ftl" := freemarkerViewEngine)
by a customizer with order 100.

List<ViewDecorator>

Extension point to register custom view decorators, initial-
ized to exceptionDecorator, if view.errorhand

viewDecorators

ler.enabled=true, and debugDecorator, if
view.debug.enabled=true.

List<ViewRepositoryNameProvider>

Extension point to register custom view repository name
providers, initialized to an implementation returning "de-
fault" and "fallback".

viewRepositoryNamePro-
viders

List<ViewRepositoryProvider>

Extension point to register custom view repository pro-
viders, initialized totemplateViewRepositoryPro-
vider.

viewRepositoryPro-
viders

List<RenderNodeDecoratorProvider>

Extension point to register custom render node decorator
providers.

renderNodeDecorator-
Providers

Map<String, Object>

Extension point to register custom view resolver attributes,
which will be copied into the request attributes for each
request, before rendering a view.

viewResolverAttrib-
utes

ModelAwareViewResolverviewResolver

Table 5.4. com/core-
media/cae/view-error-
services.xml in artifact
cae-viewservices-impl

TypeService or Extension Point
Definition

ViewingHandlerExceptionResolverviewingHandlerExcep-
tionResolver

ErrorViewerrorView

136CoreMedia DXP 8

Appendix | Bean Definition Reference

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewEngine.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/WebappResourceViewEngine.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/WebappResourceViewEngine.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewDecorator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/ViewRepositoryNameProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/resolver/ViewRepositoryProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/RenderNodeDecoratorProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ModelAwareViewResolver.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/ViewingHandlerExceptionResolver.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ErrorView.html

TypeService or Extension Point
Definition

ViewExceptionRendererviewExceptionRenderer

HttpErrorViewhttpErrorView

ExceptionHandlingViewDecorator, will only be registered
withviewDecorators, if propertyview.errorhand
ler.enabled=true.

exceptionDecorator

List<Class>

Configuration for exceptionDecorator, empty by
default.

exceptionDecoratorAc-
ceptBeanClasses

List<Class>

Configuration for exceptionDecorator, empty by
default.

exceptionDecoratorRe-
jectBeanClasses

List<java.util.regex.Pattern>

Configuration for exceptionDecorator, empty by
default.

exceptionDecoratorAc-
ceptViews

List<java.util.regex.Pattern>

Configuration for exceptionDecorator, empty by
default.

exceptionDecoratorRe-
jectViews

Table 5.5. com/core-
media/cae/view-devel-
opment-services.xml in
artifact cae-viewser-
vices-impl

TypeService or Extension Point
Definition

DebugViewDecorator, will only be registered with view-
Decorators, if property view.debug.en
abled=true.

debugDecorator

List<Class>

Configuration for debugDecorator, empty by default.

debugDecoratorAccept-
BeanClasses

List<Class>

Configuration for debugDecorator, empty by default.

debugDecoratorReject-
BeanClasses

List<java.util.regex.Pattern>

Configuration for debugDecorator, empty by default.

debugDecoratorAc-
ceptViews

List<java.util.regex.Pattern>

Configuration for debugDecorator, empty by default.

debugDecoratorRe-
jectViews

137CoreMedia DXP 8

Appendix | Bean Definition Reference

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewExceptionRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/HttpErrorView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ExceptionHandlingViewDecorator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/DebugViewDecorator.html

Table 5.6. com/core-
media/cae/view-free-
marker-services.xml in
artifact cae-viewser-
vices-impl

TypeService or Extension Point
Definition

ViewEngine to render FreeMarker templates.freemarkerViewEngine

Map<String, Class>

Extension point to register additional TemplateModel
implementations, which will be made available to FreeMark-
er templates. Initialized to the set of CAE-defined directives.

freemarkerModels

Unified API
Table 5.7. com/core-
media/cap/com-
mon/uapi-services.xml
in artifact cap-unified-
api

TypeService or Extension Point
Definition

Map<String, Object>

Configuration for the connection bean.

connectionParameters

CapConnectionconnection

ContentRepositorycontentRepository

UserRepositoryuserRepository

WorkflowRepositoryworkflowRepository

WorklistServiceworklistService

Table 5.8. com/core-
media/cae/uapi-ser-
vices.xml in artifact
cae-util

TypeService or Extension Point
Definition

ContentIdSchemecontentIdScheme

ContentBlobIdSchemecontentBlobIdScheme

MemberIdSchemememberIdScheme

ContentTypeIdSchemecontentTypeIdScheme

ContentPropertyIdSchemecontentPropertyIdS-
cheme

138CoreMedia DXP 8

Appendix | Bean Definition Reference

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/view/ViewEngine.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/common/CapConnection.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/ContentRepository.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/user/UserRepository.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/workflow/WorkflowRepository.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/workflow/WorklistService.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/ContentIdScheme.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/common/ContentBlobIdScheme.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/user/MemberIdScheme.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/ContentTypeIdScheme.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/util/ContentPropertyIdScheme.html

Data Views
Table 5.9. com/core-
media/cae/dataview-
services.xml in artifact
cae-contentbeanser-
vices-impl

TypeService or Extension Point
Definition

ConfigurableDataViewFactory implementation, loading its
data view definitions fromdataViewDefinitionLoca-
tions

dataViewFactory

List<String>

Extension point to register data view factory configuration
file patterns, initialized to classpath:/frame

dataViewDefinition-
Locations

work/dataviews/**/*.xml, /WEB-
INF/dataviews/**/*.xml.

Content Beans
Table 5.10. com/core-
media/cae/content-
bean-services.xml in
artifact cae-content-
beanservices-impl

TypeService or Extension Point
Definition

ContentBeanFactory, creating content beans from prototype
beans with name "contentBeanFactory:<content_type>".

contentBeanFactory

ContentBeanIdSchemecontentBeanIdScheme

Caching
Table 5.11. com/core-
media/cache/cache-
services.xml in artifact
coremedia-cache

TypeService or Extension Point
Definition

Cache instance created for connectioncache

Link Generation
Table 5.12. com/core-
media/cae/link-ser-
vices.xml in artifact
cae-linkservices-impl

TypeService or Extension Point
Definition

List<LinkScheme>

Extension point to register link schemes withlinkFormat-
ter.

linkSchemes

139CoreMedia DXP 8

Appendix | Bean Definition Reference

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/dataviews/ConfigurableDataViewFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBeanFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBeanIdScheme.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/links/LinkScheme.html

TypeService or Extension Point
Definition

List<LinkTransformer>linkTransformers

Extension point to register link transformers with link-
Formatter.

LinkFormatterlinkFormatter

IDs
Table 5.13. com/core-
media/id/id-ser-
vices.xml in artifact
coremedia-id

TypeService or Extension Point
Definition

IdProvider, initialized with the registered idSchemes.idProvider

List<IdScheme>

Extension point to register ID schemes withidProvider.
Initialized tocontentIdScheme,contentBeanIdS-

idSchemes

cheme,contentBlobIdScheme,memberIdScheme,
contentTypeIdScheme, andcontentPropertyId-
Scheme by a customizer with order 100.

Handlers
Table 5.14. com/core-
media/cae/handler-
services.xml in artifact
cae-handlerservices-
impl

TypeService or Extension Point
Definition

Set<?> (Converter or GenericConverter)

Extension point to register custom converters to bind re-
quest path variables to handler method parameters.

bindingConverters

List<HttpMessageConverter>

Extension point to register custom HTTP message converters
to parse HTTP request body content or generate HTTP re-
sponse body content.

httpMessageConverters

List<PropertyEditorRegistrar>

Extension point to register custom property editor registrars
(which in turn will register property editors) to bind form
fields to bean properties.

bindingPropertyEditor-
Registrars

140CoreMedia DXP 8

Appendix | Bean Definition Reference

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/links/LinkTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/web/links/LinkFormatter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/id/IdProvider.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/id/IdScheme.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/core/convert/converter/Converter.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/core/convert/converter/GenericConverter.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/http/converter/HttpMessageConverter.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/beans/PropertyEditorRegistrar.html

TypeService or Extension Point
Definition

List<HandlerInterceptor>handlerInterceptors

Extension point to register handler interceptors, which will
be applied to all handlers.

Converter to convert numeric IDs to method parameters of
type ContentBean. An application must register this bean
with bindingConverters explicitly, in order to use it.

idContentBeanConvert-
er

GenericConverter to convert between numeric IDs and
subtypes of ContentBean. This converter subsumes the

idGenericContent-
BeanConverter

functionality provided byidContentBeanConverter.
An application must register this bean withbindingCon-
verters explicitly, in order to use it.

java.beans.PropertyEditor to convert between
numeric IDs and ContentBeans. An application must register

idContentBeanProper-
tyEditor

this bean with bindingPropertyEditorRegis-
trars explicitly using a PropertyEditorRegistrar, in order
to use it.

MIME Type Mappings
Table 5.15. com/core-
media/mimetype/mime-
type-service.xml in arti-
fact coremedia-com-
mon

TypeService or Extension Point
Definition

MimeTypeService, providing methods related to MIME types
and file extensions. Note: The implementation class of this
bean is deprecated and will be replaced by TikaMime
TypeService

mimeTypeService

List<Resource>

Extension point to register locations of property files con-
taining MIME type mappings.

mimePropertiesFileLo-
cations

classpath:/com/coremedia/mimetype/mime-
default.properties and /WEB-
INF/mime.properties.

This bean is deprecated and will be removed in a future
release.

TikaMimeTypeService, providing methods related to MIME
type detection and mapping to file extensions. The imple-

tikaMimeTypeService

mentation is based on Apache Tika. Configured with the
following properties:

141CoreMedia DXP 8

Appendix | Bean Definition Reference

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/servlet/HandlerInterceptor.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/core/convert/converter/Converter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/core/convert/converter/GenericConverter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/beans/PropertyEditorRegistrar.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/mimetype/DefaultMimeTypeService.html
http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/core/io/Resource.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/mimetype/TikaMimeTypeService.html

TypeService or Extension Point
Definition

mimeTypeResourceNames A comma-separated list of
resource names of Tika Mime-Info configuration files. Set
this property by Spring Environment property mime
TypeService.mimeTypesResourceNames.

tikaConfig An optional custom Tika configuration. Set
this property by Spring Environment property mime
TypeService.tikaConfig. The value of this property
must be a Spring Resource location (e.g. file:/path/to/loc-
al/file), or null. If a custom Tika configuration is set, the
mimeInfoResourceNames configuration has no effect.

Security
Table 5.16. com/core-
media/cae/security-
services.xml in artifact
cae-util

TypeService or Extension Point
Definition

CsrfPreventionManagement, providing methods handling
anti-CSRF tokens.

csrfTokenManagement

Image Transformations
Table 5.17. com/core-
media/transform/blob-
transformer.xml in arti-
fact coremedia-trans-
form

TypeService or Extension Point
Definition

CachingBlobTransformer, handling concurrent image
transformation requests, caching image transformation
results. Delegates cache misses to the bean thrott-
lingTransformer.

blobTransformer

ThrottlingBlobTransformer, handling concurrent image
transformation requests, performing some basic load con-

throttlingBlobTrans-
former

trol. Delegates the actual transformation work to the bean
imageTransformer.

DispatchingBlobTransformer, the blob transformer actually
performing image transformations. Holds a list of processor
objects, initialized with the list bean imageProcessors.

imageTransformer

List<?>, extension point to register your own image pro-
cessors, implementing additional image operations. Initial-
ized with a single processor, imageOperations.

imageProcessors

142CoreMedia DXP 8

Appendix | Bean Definition Reference

http://docs.spring.io/spring/docs/4.0.9.RELEASE/javadoc-api/org/springframework/core/env/Environment.html
http://docs.spring.io/spring/docs/4.0.9.RELEASE/javadoc-api/org/springframework/core/env/Environment.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/security/web/csrf/CsrfPreventionManagement.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/impl/CachingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/impl/ThrottlingBlobTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/dispatch/DispatchingBlobTransformer.html

TypeService or Extension Point
Definition

Java2DImageOperations, implementing the ImageOpera-
tions interface using the javax.imageio library. You

imageOperations

may reuse this bean and its operations when implementing
your own image operations.

Java2DInputAdapter, input adapter used by imageTrans-
former.

Since the reading and decoding of an image consumes a
significant amount of processing time, this input adapter

imageTransformerIn-
putAdapter

caches loaded images in memory. When another variant is
then requested for the same image, this variant can be
computed much faster.

Configured with the following properties:

cache the cache instance to use, configured with 100MB
heap capacity for the configured cache class. You may
overwrite this with the property com.core
media.transform.loadedImageCacheCapacity
within your application.properties.

cacheClass="com.coremedia.transform.im-
age.java2d.LoadedImageCacheKey"

Java2DOutputAdapter, output adapter used by imageTrans-
former. Configured with the following properties:

preserveMetadata=false

imageTransformerOut-
putAdapter

defaultProgressiveThreshold=10000

defaultJpegCompressionQuality=0.75

org.springframework.core.convert.Conver-
sionService, conversion service used by the imageTrans-

imageTransformerCon-
versionService

former to convert operation arguments to the required
method parameter type. Extension point to register your
own type converters.

Controllers

controller-services.xml is not imported automatically and is only provided
for backwards compatibility with existing controller implementations.

Table 5.18. com/core-
media/cae/controller-
services.xml in artifact
cae-handlerservices-
impl

143CoreMedia DXP 8

Appendix | Bean Definition Reference

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/java2d/Java2DImageOperations.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/ImageOperations.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/ImageOperations.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/java2d/Java2DInputAdapter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/transform/image/java2d/Java2DOutputAdapter.html

TypeService or Extension Point
Definition

Map<String, Controller>controllerMappings

Extension point to register controllers handling requests
with the given path prefix.

Alias forhandlerInterceptors, which will be applied
to all controllers in controllerMappings.

controllerIntercept-
ors

144CoreMedia DXP 8

Appendix | Bean Definition Reference

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/web/servlet/mvc/Controller.html

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in
other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content, that
is managed in CoreMedia CMS and third-party systems. Technically, a content
bean is a Java object that encapsulates access to any content, either to Core-
Media CMS content items or to any other kind of third-party systems. Various
CoreMedia components like the CAE Feeder or the data view cache are built
on this layer. For these components the content beans act as a facade that
hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is
delivered to the end-user.

It may contain any of the following modules:

➞ CoreMedia Master Live Server

➞ CoreMedia Replication Live Server

➞ CoreMedia Content Application Engine

➞ CoreMedia Search Engine

➞ Elastic Social

145CoreMedia DXP 8

Glossary |

➞ CoreMedia Adaptive Personalization

Content Feeder The Content Feeder is a separate web application that feeds content items of
the CoreMedia repository into the CoreMedia Search Engine. Editors can use
the Search Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following modules:

➞ CoreMedia Content Management Server

➞ CoreMedia Workflow Server

➞ CoreMedia Importer

➞ CoreMedia Site Manager

➞ CoreMedia Studio

➞ CoreMedia Search Engine

➞ CoreMedia Adaptive Personalization

➞ CoreMedia CMS for SAP Netweaver ® Portal

➞ CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is
stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

➞ Content Management Server

➞ Master Live Server

➞ Replication Live Server

146CoreMedia DXP 8

Glossary |

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it clients,
partners or CoreMedia employees. CoreMedia contributions are hosted on
Github at https://github.com/coremedia-contributions.

Controm Room Controm Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed
object standard which enables interoperation between heterogenous applic-
ations over a network. It was created and is currently controlled by the Object
Management Group (OMG), a standards consortium for distributed object-
oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all of the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exists.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the docu-
ment prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier.
The System Identifier is just that: a URL to the DTD. The Public Identifier is
an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can
moderate user generated content from their common workplace. Elastic Social
bases on NoSQL technology and offers nearly unlimited scalability.

147CoreMedia DXP 8

Glossary |

https://github.com/coremedia-contributions

EXML EXML is an XML dialect supporting the declarative development of complex
Ext JS components. EXML is Jangaroo's equivalent to Adobe Flex MXML and
compiles down to Actions Script.

Folder A folder is a resource in the CoreMedia system which can contain other re-
sources. Conceptually, a folder corresponds to a directory in a file system.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for all
subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engin-
eering Task Force (IETF). It includes the definition of IETF language tags, which
are an abbreviated language code such as en for English, pt-BR for Brazilian
Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using
traditional Han characters.

Importer Component of the CoreMedia system for importing external content of
varying format.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with which
a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
ActionScript as an input language which is compiled down to JavaScript. You
will find detailed descriptions on the Jangaroo webpage ht-
tp://www.jangaroo.net.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification are
already integrated with Java 5. JMX provides a tiered architecture with the
instrumentation level, the agent level and the manager level. On the instru-
mentation level, MBeans are used as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It re-
ceives the published content from the Content Management Server and makes
it available to the CAE. If you are using the CoreMedia Multi-Site Management
Extension you may use multiple Master Live Server in a CoreMedia system.

148CoreMedia DXP 8

Glossary |

http://www.jangaroo.net
http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part,
multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects A project is a collection of content items in CoreMedia CMS created by a
specific user. A project can be managed as a unit, published or put in a
workflow, for example.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content items depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers
and to improve the robustness of the Content Delivery Environment. The Rep-
lication Live Server is a complete Content Server installation. Its content is an
replicated image of the content of a Master Live Server. The Replication Live
Server updates its database due to change events from the Master Live Server.
You can connect an arbitrary number of Replication Live Servers to the Master
Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number of
key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes re-
ferred to as localized site. In CoreMedia CMS a site especially consists of a site
folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

149CoreMedia DXP 8

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a
site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users
and workflows.

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site and
that they accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined
by typically an administrative user a content editor can use this template to
quickly create a complete new page including, for example, navigation, pre-
defined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in
the Control Room, as a part of projects and workflows.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can
be declared with the weak attribute, so that they are not checked during
publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

WebDAV WebDAV stands for World Wide Web Distributed Authoring and Versioning
Protocol. It is an extension of the Hypertext Transfer Protocol (HTTP), which
offers a standardised method for the distributed work on different data via
the internet. This adds the possibility to the CoreMedia system to easily access
CoreMedia resources via external programs. A WebDAV enabled application
like Microsoft Word is thus able to open Word documents stored in the
CoreMedia system. For further information, see http://www.webdav.org.

150CoreMedia DXP 8

Glossary |

http://www.webdav.org

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the work-
flow software ensures that the individuals responsible for the next task are
notified and receive the data they need to execute their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environ-
ment. It comes with predefined workflows for publication and global-search-
and-replace but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated but
also metadata about the text. For example, the source and target language.
CoreMedia Studio allows you to export content items in the XLIFF format and
to import the files again after translation.

151CoreMedia DXP 8

Glossary |

Index

A
architecture, 15
aspects, 125

register, 126
setup, 125

association types, 36

B
Beangenerator, 23

structure of generated code, 26
blob transformation, 117
blobTransformer, 118

C
cache, 16
cache sizes, 46
caching

overview, 16
CAE, 19

architecture, 15
components, 14
connecting with Content Server, 20
MVC model, 15
purging disk cache, 21
use cases, 14

CAE Developer Toolbox, 111
CAE web application

Ajax requests, 54
cache browser, 111
cache statistics, 111
error pages, 108
errors, 107
link schemes, 61
links, 59
multiple view repositories, 68

properties, 132
request handling, 50
template inclusion, 76
template output escaping, 75
uncaught exceptions, 107
unit testing, 104
views, 65
writing templates, 75

CMYK, 117
content bean, 23, 94

equality, 28
content beans, 23

dependencies, 48
generation, 23
pattern, 28

customizer, 122
append bean, 123
replace bean, 123

D
data view, 16, 31
data view cache, 16
data views, 31

association types, 36
auto completion, 38
definition, 32
design guidelines, 36
lifecycle, 35

E
entity resolver, 128

H
handler, 50

I
image transformation, 115

adding own operations, 118
format, 115
supported operations, 116

include, 76

L
link, 59

152CoreMedia DXP 8

Index |

LinkListProperty, 27

M
MVC model, 15

P
placeholders, 129

S
Spring configuration, 29
Spring framework, 18, 29
Substitution API, 129

T
test framework, 104

U
Unified API cache, 16
using data views, 34

153CoreMedia DXP 8

Index |

	CoreMedia Content Application Developer Manual
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Change Chapter

	2. Overview
	2.1 Components and Use Cases
	2.2 Architecture
	2.3 Caching
	2.3.1 Unified API Cache
	2.3.2 Data View Cache
	2.3.3 CacheKey Cache

	2.4 The Spring Framework

	3. Administration and Operation
	3.1 Connecting and Caching

	4. Development
	4.1 Content Beans - Mapping content to objects
	4.1.1 Generate Content Beans from the Content Type model
	Patterns For Content Beans
	Spring Configuration
	Programmatic Access to Content Beans

	4.2 Data Views
	4.2.1 Defining Data Views
	4.2.2 Data View Design
	Association Types
	Guidelines For Data View Design
	Example Data View Design
	Data Views for Experts

	4.2.3 Configuring Cache Sizes
	4.2.4 Writing Cacheable Beans

	4.3 The CAE Web Application
	4.3.1 Handling Requests
	Building the Model
	Post Processing the Model
	Best Practices
	Handling Ajax Requests
	Legacy Controllers
	Path Matching Details
	HTTP Method Overriding

	4.3.2 Building Links
	Lookup
	Writing Link Schemes
	Post Processing Links
	Best Practices
	Legacy Link Schemes
	External Link Placeholder

	4.3.3 Views
	View Repository
	View Lookup
	Using Multiple View Repositories
	Loading Templates from the Content Repository
	Loading Templates from an Arbitrary Directory
	Loading Templates from a JAR in Classpath
	Debugging
	View Decorators
	View Hooks

	4.3.4 Writing Templates
	Rendering Markup
	Advanced Patterns for FreeMarker Templates
	Error Handling
	Reference for FreeMarker Templates
	Supported Standards and Template Language Versions

	4.3.5 Adding Document Metadata
	Enabling Metadata Support
	Metadata Support in FreeMarker Templates
	Metadata Support in JSP Templates
	Advanced Metadata Usage

	4.3.6 Working with Forms
	Form rendering
	Form submission
	Form validation
	Validators
	Associate a validator with a form bean
	Error handling in the handler method
	Presenting form errors

	Handling POST requests
	Handling redirects
	Redirecting to a (content) bean
	Redirecting to an external URL
	Preserving attributes in a redirect

	Protecting against Cross Site Request Forgery
	Enabling CSRF protection

	4.3.7 Integrating with Spring Web Flows
	4.3.8 Unit Testing a CAE Application
	4.3.9 Dealing with Errors
	Explicit error handling in controllers
	Uncaught exceptions while executing a handler
	Uncaught exceptions while rendering a view
	Fallback error pages
	Best practices for error pages

	4.4 Multi-Site and Localization Management
	4.5 CAE Developer Toolbox
	4.6 Image Transformation API

	5. Appendix
	5.1 Customizer
	5.2 Aspects
	5.3 Entity Resolver
	5.4 Content Placeholders
	5.5 Configuration Property Reference
	5.6 Bean Definition Reference

	Glossary
	Index

