
CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Digital Experience Platform
8 Developer Manual

CoreMedia Digital Experience Platform 8 Developer Manual
Copyright CoreMedia AG © 2015

CoreMedia AG

Ludwig-Erhard-Straße 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

iiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

1. Preface .. 1
1.1. Audience .. 2
1.2. Typographic Conventions .. 3
1.3. CoreMedia Services .. 5

1.3.1. Registration .. 5
1.3.2. CoreMedia Releases .. 5
1.3.3. Documentation .. 6
1.3.4. CoreMedia Training .. 8
1.3.5. CoreMedia Support . 9

1.4. Working with CoreMedia DXP 8 .. 12
1.4.1. Getting Started .. 12
1.4.2. Getting an Overview .. 13
1.4.3. Working with the GUI .. 13
1.4.4. Operating the System ... 14
1.4.5. Extending the System ... 14

1.5. Change Chapter . 17
2. Overview of CoreMedia DXP 8 .. 18

2.1. Components and Architecture .. 21
2.1.1. Content Management Environment 22
2.1.2. Content Delivery Environment .. 24
2.1.3. Shared Components .. 24
2.1.4. Technologies .. 27
2.1.5. Communication between the Components 27

2.2. CoreMedia Blueprint Sites .. 29
3. Getting Started .. 31

3.1. Quick Start . 32
3.2. Prerequisites .. 39
3.3. Configuration of the CoreMedia Workspace 44

3.3.1. Removing Optional Components .. 44
3.3.2. Configuring Maven .. 45
3.3.3. Configuring the Workspace .. 46
3.3.4. Configuring Vagrant Based Setup 50
3.3.5. Configuring Local Setup .. 53
3.3.6. In-Memory Replacement for MongoDB-Based
Services .. 54

3.4. Customizing IBM WebSphere Commerce .. 58
3.4.1. Preparing the RAD Workspace .. 60
3.4.2. Copy Libraries .. 60
3.4.3. Configuring the Search .. 60
3.4.4. Extending REST Resources to BOD Map-
ping .. 65

iiiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

3.4.5. Configuring the Cookie Domain .. 65
3.4.6. Multiple Logon for the Same User 66
3.4.7. Configuring REST Handlers . 67
3.4.8. Applying Changes to the Management Cen-
ter . 68
3.4.9. Deploying the CoreMedia Fragment Connect-
or . 68
3.4.10. Customizing IBM WebSphere Commerce
JSPs .. 72
3.4.11. Deploying the CoreMedia Widgets 73
3.4.12. Setting up SEO URLs for CoreMedia
Pages .. 77
3.4.13. Event-based Commerce Cache Invalida-
tion .. 78
3.4.14. Deploying the CoreMedia Catalog Data 79
3.4.15. Troubleshooting .. 80

3.5. Using the CoreMedia Workspace .. 82
3.5.1. Building the Workspace .. 82
3.5.2. Working With the Box .. 83
3.5.3. Locally Starting the Components .. 85
3.5.4. Developing with Apache (optional for e-Com-
merce) . 91
3.5.5. Developing with Components and Boxes 98
3.5.6. Developing Against a Remote Environment 101

4. Blueprint Workspace for Developers .. 103
4.1. Concepts and Architecture .. 104

4.1.1. Maven Concepts .. 104
4.1.2. Blueprint Base Modules .. 107
4.1.3. Application Architecture .. 107
4.1.4. Structure of the Workspace .. 112
4.1.5. Project Extensions .. 114
4.1.6. Virtualization and Provisioning .. 119

4.2. Administration and Operation .. 125
4.2.1. Performing a Release .. 125
4.2.2. Deploying a System ... 127
4.2.3. Upgrade a System ... 137
4.2.4. Rollback a System ... 139
4.2.5. Troubleshooting .. 140

4.3. Development .. 141
4.3.1. Using Blueprint Base Modules .. 141
4.3.2. Developing with Extensions .. 146

ivCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

4.3.3. Extending Content Types .. 155
4.3.4. Developing with Studio .. 157
4.3.5. Developing with the CAE .. 161
4.3.6. Customizing the CAE Feeder .. 165
4.3.7. Adding Common Infrastructure Compon-
ents .. 165
4.3.8. Managing Properties in the Workspace 170
4.3.9. Configure Filtering in the Workspace 171

5. IBM WebSphere Commerce Integration .. 174
5.1. Commerce-led Integration Scenario .. 176

5.1.1. Commerce-led Integration Overview 176
5.1.2. Solutions for Same-Origin Policy Problem 177
5.1.3. Extending the Shop Context in Commerce-led
Integration Scenario .. 181
5.1.4. Extending with Fragments .. 183

5.2. Content-led Integration .. 195
5.2.1. Content-led Integration Overview 195
5.2.2. Status Synchronization in the Content-led Integ-
ration Scenario .. 196
5.2.3. Configuring Protocol-less Links for WCS 202

5.3. Communication .. 204
5.4. Connecting with an IBM WCS Shop .. 207
5.5. Link Building for Fragments .. 213
5.6. Enabling Preview of Commerce Category Pages in Stu-
dio .. 215
5.7. Enabling Contract Based Preview .. 216
5.8. The e-Commerce API .. 219
5.9. Commerce Cache Configuration .. 221
5.10. Studio Integration of the IBM WebSphere Commerce
Content .. 223

5.10.1. Catalog View in CoreMedia Studio Library 223
5.10.2. WCS Management Center Integration in Core-
Media Studio .. 227
5.10.3. WCS Preview Support Features 227
5.10.4. Working with WCS Workspaces 230
5.10.5. Augmenting WCS Content .. 231

6. CoreMedia DXP 8 e-Commerce Blueprint - Functionality for
Websites .. 244

6.1. Overview of e-Commerce Blueprint . 245
6.2. Basic Content Management .. 248

6.2.1. Common Content Types .. 248

vCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

6.2.2. Adaptive Personalization Content Types 253
6.2.3. Tagging and Taxonomies .. 254

6.3. Website Management .. 264
6.3.1. Folder and User Rights Concept 264
6.3.2. Navigation and Contexts . 265
6.3.3. Settings .. 268
6.3.4. Page Assembly .. 269
6.3.5. Overwriting Product Teaser Images 280
6.3.6. Content Lists . 280
6.3.7. View Types .. 282
6.3.8. CMS Catalog .. 283
6.3.9. Teaser Management .. 286
6.3.10. Dynamic Templating .. 288
6.3.11. View Repositories .. 290
6.3.12. Client Code Delivery .. 291
6.3.13. Managing End User Interactions 293
6.3.14. Images .. 298
6.3.15. URLs .. 300
6.3.16. Vanity URLs .. 300
6.3.17. Content Visibility . 301
6.3.18. Content Type Sitemap .. 302
6.3.19. Robots File . 303
6.3.20. Sitemap .. 306
6.3.21. Website Search .. 308
6.3.22. Search Landing Pages .. 309

6.4. Website Development with Themes .. 311
6.4.1. CoreMedia Themes .. 311
6.4.2. Web Development Workflow .. 321

6.5. Localized Content Management .. 332
6.5.1. Concept .. 332
6.5.2. Administration .. 337
6.5.3. Development .. 342

6.6. Workflow Management .. 356
6.6.1. Publication .. 356
6.6.2. Predefined Translation Workflow 362
6.6.3. Deriving Sites .. 369

7. CoreMedia DXP 8 Brand Blueprint - Functionality for Web-
sites .. 370

7.1. Overview .. 371
7.2. Website Features .. 377
7.3. Website Search .. 382

viCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

8. CoreMedia DXP 8 Editorial and Back-end Functionality 386
8.1. Studio Enhancements .. 387

8.1.1. Image Link List Editor . 387
8.1.2. Content Chooser .. 388
8.1.3. Content Query Editor . 390
8.1.4. Call-to-Action Button .. 392
8.1.5. External Date .. 393
8.1.6. Library .. 394
8.1.7. Bookmarks .. 395
8.1.8. External Library .. 395
8.1.9. External Preview .. 398
8.1.10. Settings for Studio .. 399
8.1.11. Content Creation .. 400
8.1.12. Create from Template .. 405
8.1.13. Site-specific configuration of Document
Forms .. 407
8.1.14. Site Selection .. 408
8.1.15. Upload Files . 408
8.1.16. Studio Preview Slider .. 411

8.2. CAE Enhancements .. 414
8.2.1. Using Dynamic Fragments in HTML Re-
sponses .. 414
8.2.2. Image Cropping in CAE .. 416

8.3. Elastic Social . 418
8.3.1. Configuring Elastic Social . 419
8.3.2. Displaying Custom Information in Studio 422
8.3.3. Adding Custom Filters for Moderation
View .. 424
8.3.4. Emailing .. 425
8.3.5. Curated transfer . 426
8.3.6. Elastic Social Demo Data Generator 426

8.4. Adaptive Personalization .. 431
8.4.1. Key Integration Points . 432
8.4.2. Adaptive Personalization Extension Mod-
ules .. 432
8.4.3. CAE Integration .. 433
8.4.4. Studio Integration .. 437

8.5. Third-Party Integration .. 440
8.5.1. Optimizely .. 440
8.5.2. Open Street Map Integration .. 440
8.5.3. Google Analytics Integration .. 441

viiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

8.6. WebDAV Support . 442
8.7. Advanced Asset Management .. 443

8.7.1. Product Asset Widget .. 444
8.7.2. Replaced Product and Category Images 446
8.7.3. Extract Image Data During Upload 449
8.7.4. Configuring Asset Management 451
8.7.5. Using the Adobe Drive Connector 458

9. Appendix .. 462
9.1. Port Reference .. 463
9.2. Typical LiveContext Deployment .. 467
9.3. Linux / Unix Installation Layout .. 468
9.4. IBM WebSphere Commerce REST Services used by Core-
Media .. 470
9.5. Maven Profile Reference .. 475
9.6. Content Type Model . 476
9.7. Link Format .. 478
9.8. Predefined Users .. 484
9.9. Database Users .. 487
9.10. Cookies .. 488

Glossary .. 489
Index .. 496

viiiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

List of Figures
2.1. CoreMedia Studio with content from the IBM WebSphere
Commerce system ... 19
2.2. System Overview .. 22
3.1. URLs of virtualized environment .. 37
4.1. Workspace Structure .. 112
4.2. CoreMedia Extensions Overview .. 115
4.3. Component Mapping .. 116
4.4. The new sample studio plugin .. 159
4.5. The sample studio plugin with plugin class and descriptor 160
5.1. The CoreMedia Perfect Chef site with dynamic price information
from the IBM WebSphere Commerce shop .. 175
5.2. Commerce-led integration scenario .. 176
5.3. The Perfect Chef header as a fragment for the Aurora
shop .. 177
5.4. Cross Domain Scripting with Fragments .. 178
5.5. The CrossDomainEnabler . 179
5.6. Cross Site Scripting with fragments .. 180
5.7. Connection via placement name .. 184
5.8. CoreMedia Widgets in Commerce Composer .. 185
5.9. Content-led integration scenario .. 195
5.10. Content-led integration scenario with cookies 197
5.11. Content-led integration scenario .. 198
5.12. Content-led integration scenario .. 200
5.13. Content-led/Commerce-led scenario communication 204
5.14. Example of a Commerce API Request . 205
5.15. Example of a Fragment Connector Request . 206
5.16. Edit Commerce Contracts in Test Persona .. 216
5.17. Preview Augmented Page no Test Persona .. 217
5.18. Preview Augmented Page with Contracts in Test per-
sona .. 217
5.19. Library with catalog in the tree view .. 224
5.20. Open Product in tab .. 225
5.21. Product in tab preview .. 225
5.22. Open Category in tab .. 226
5.23. Category in tab preview .. 226
5.24. Management Center in Studio .. 227
5.25. Time based preview affects also the IBM WCS preview 228
5.26. Test Persona with Commerce Customer Segments 229

ixCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

5.27. Edit Commerce Segments in Test Persona .. 229
5.28. Workspaces selector in User Preferences Dialog 231
5.29. Catalog structure in the catalog root content item 233
5.30. Choosing a page layout for a shop page .. 234
5.31. Category overview page with CMS content .. 235
5.32. Decision diagram ... 236
5.33. Product detail page with CMS content highlighted by the red
border .. 237
5.34. Page grid for PDPs .. 238
5.35. Product detail page with CMS assets . 239
5.36. Example: Contact Us Pagegrid .. 240
5.37. Example: Navigation Settings for a simple SEO Page 241
5.38. Example: Navigation Settings for a custom non SEO
Form ... 242
5.39. Special Case: Navigation Settings for the Homepage 243
6.1. Aurora category page for different devices: desktop, tablet,
mobile .. 246
6.2. Perfect Chef homepage for different devices: desktop, tablet,
mobile .. 247
6.3. Dynamic list of articles tagged with "Vegetables" 255
6.4. Taxonomy Administration Editor . 257
6.5. Taxonomy Property Editor . 258
6.6. Taxonomy Studio Settings .. 259
6.7. Navigation in the Perfect Chef Site .. 266
6.8. Breadcrumb in the Corporate Blueprint Site .. 266
6.9. The page grid editor . 272
6.10. The main placement of a page .. 272
6.11. An inheriting placement .. 273
6.12. A locked placement .. 273
6.13. The layout chooser combo box .. 274
6.14. Teaser collection with prices .. 281
6.15. Layout Variant selector . 283
6.16. CMS Catalog Settings .. 285
6.17. Default view and teaser view of an Article . 287
6.18. Content Type Sitemap .. 303
6.19. Robots.txt settings .. 304
6.20. Channel settings with configuration for Robots.txt as a linked
setting on a root page .. 305
6.21. Selection of a sitemap setup .. 307
6.22. Themes in the Library .. 312
6.23. CAE flow in detail . 321

xCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

6.24. Workflow in detail . 322
6.25. Linking a theme to site root .. 330
6.26. Multi-Site Interdependence .. 336
6.27. Locales Administration in CoreMedia Studio .. 338
6.28. Derive Site: Setting site manager group .. 341
6.29. Site Indicator: Setting site manager group .. 342
7.1. Corporate detail page for different devices .. 372
7.2. Teasable page with customized call-to-action button 373
7.3. Different teasers on the Brand homepage .. 374
7.4. Define gaps for pages .. 377
7.5. Setting content for collection with gap .. 378
7.6. SearchConfiguration Settings document .. 382
8.1. Image link list . 388
8.2. Content chooser .. 389
8.3. Content Query Editor . 392
8.4. Call-to-Action-Button editor . 392
8.5. Call-to-Action button in teaser view .. 393
8.6. Externally displayed date editor . 393
8.7. Setting an external date .. 393
8.8. Image Gallery Creation Button .. 394
8.9. Image Gallery Creation Dialog .. 394
8.10. Library List View .. 395
8.11. Bookmarks .. 395
8.12. External library showing RSS feed items .. 396
8.13. External Preview Dialog .. 398
8.14. External Preview Login .. 399
8.15. New content menu on the favorites toolbar .. 400
8.16. New content dialog .. 400
8.17. New content dialog for pages .. 401
8.18. New content dialog as button on a link list toolbar 402
8.19. New content dialog menu on a link list toolbar 402
8.20. Create from template dialog .. 406
8.21. The site selector on the preference tab .. 408
8.22. The upload files dialog .. 409
8.23. The slider of the Studio Preview .. 411
8.24. Conditions in Personalized Content and User Segment docu-
ments .. 437
8.25. Defining artificial context properties using Personas 438
8.26. Selecting Personas to test Personalized Content and User
Segment documents .. 439
8.27. Example for a Open Street Map integration in a website 440

xiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

8.28. Overview over asset management part . 444
8.29. Product image gallery delivered by the CMS 445
8.30. Assign a product to a picture .. 446
8.31. Define Product Image URLs in Management Center 447
8.32. Screenshot from Adobe Photoshop for a Picture containing
XMP Data .. 450
8.33. Picture linked to XMP Product Reference .. 450
8.34. Configuration of the download portal . 457
8.35. Taxonomy for assets . 458
9.1. Deployment and communication overview .. 464
9.2. Typical deployment and ports of a LiveContext system 467
9.3. CoreMedia Blueprint Content Type Model - CMLocalized 476
9.4. CoreMedia Blueprint Content Type Model - CMNaviga-
tion .. 477
9.5. CoreMedia Blueprint Content Type Model - CMHasCon-
texts . 477
9.6. CoreMedia Blueprint Content Type Model - CMMedia 477
9.7. CoreMedia Blueprint Content Type Model - CMCollection 477
9.8. A basic absoluteUrlPrefixes Struct . 481
9.9. A complete absoluteUrlPrefixes Struct . 483
9.10. An initial absoluteUrlPrefixes Struct . 483

xiiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

List of Tables
1.1. Typographic conventions .. 3
1.2. Pictographs .. 3
1.3. CoreMedia manuals . 6
1.4. Log files check list . 10
1.5. Changes .. 17
3.1. Overview of minimum/recommended RAM ... 40
3.2. Optional modules and blueprints . 44
3.3. Database Settings .. 54
3.4. Studio Configuration Properties for In-Memory Store 56
3.5. Modules in the Workspace .. 91
3.6. Components of the Apache Development Setup 95
3.7. Environment properties .. 101
4.1. RPM deployment properties .. 126
4.2. node.js configurations .. 131
4.3. Content type model dependencies .. 142
4.4. Parameters of the settings* methods .. 143
4.5. Blueprint Extension Descriptors and Dependencies 151
5.1. CoreMedia Content Widget configuration options 185
5.2. CoreMedia Product Asset Widget configuration options 186
5.3. Attribute of the Include tag .. 187
5.4. Supported usages of the externalRef attribute 189
5.5. Fragment handler usage .. 192
5.6. Properties for WCS connection .. 208
5.7. config.id .. 209
5.8. Currency configuration .. 210
5.9. Currency configuration .. 210
5.10. Properties for B2B contract based personalization 218
5.11. config.id .. 241
6.1. Overview of Content Types for common content 249
6.2. e-Commerce Content Types .. 249
6.3. Overview e-Commerce Content Properties .. 250
6.4. Overview Common Content Properties .. 251
6.5. CMMedia Properties .. 252
6.6. CMTaxonomy Properties .. 256
6.7. Additional CMLocTaxonomy Properties .. 256
6.8. CMLinkable Properties for Tagging .. 257
6.9. CMLinkable Properties for Tagging .. 257
6.10. Properties of CMLinkable for Settings Management 268

xiiiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

6.11. Collection Types in CoreMedia Blueprint . 281
6.12. CMS Catalog: Maven parent modules .. 284
6.13. Properties of CMTeasable . 287
6.14. Properties of CMTemplateSet . 289
6.15. Client Code - Properties of CMAbstractCode . 291
6.16. Client Code - Properties of CMNavigation . 292
6.17. Properties for Visibility Restriction .. 302
6.18. Suggested Users and Groups for multi-site .. 339
6.19. Properties of the Site Model . 343
6.20. Placeholders for Site Model Configuration .. 345
6.21. Example for server export and import for multi-site 350
6.22. XLIFF Properties .. 352
6.23. Publishing documents: actions and effects . 358
6.24. Publishing folders: actions and effects . 359
6.25. Predefined publication workflow definitions 361
6.26. Predefined publication workflow steps .. 361
6.27. User options. 362
6.28. Attributes of GetDerivedContentsAction .. 365
6.29. Attributes of GetSiteManagerGroupAction .. 366
6.30. Attributes of ExtractPerformerAction .. 366
6.31. Attributes of CompleteTranslationAction .. 367
6.32. Attributes of RollbackTranslationAction .. 368
7.1. Brand website search settings .. 382
7.2. Page Grid Indexing Spring Properties .. 384
8.1. Image Thumbnail selection rules .. 387
8.2. Database Settings .. 397
8.3. Upload Settings .. 410
8.4. Root Channel Context Settings .. 419
8.5. Context Settings for Every Channel . 420
8.6. Mail Templates .. 425
8.7. Elastic Social Demo Data Generator operations 428
8.8. Elastic Social Demo Data Generator configuration 428
8.9. Elastic Social Demo Data Generator statistics . 430
8.10. Adaptive Personalization's main Maven module in detail 433
8.11. Adaptive Personalization contexts configured for CoreMedia
Blueprint . 434
8.12. Predefined SearchFunctions in CoreMedia Blueprint 435
8.13. Settings for Open Street Map Integration .. 441
8.14. Path segments in the image URL .. 447
9.1. Component Port Prefix . 465
9.2. Protocol / Service Port Suffix . 465

xivCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

9.3. Third-Party Services .. 465
9.4. Default Package Layout .. 468
9.5. Maven profiles . 475
9.6. CapBlobHandler . 478
9.7. CodeHandler . 478
9.8. ExternalLinkHandler . 478
9.9. PageActionHandler . 478
9.10. PageHandler . 479
9.11. PreviewHandler . 479
9.12. StaticUrlHandler . 479
9.13. TransformedBlobHandler . 479
9.14. Global groups .. 484
9.15. Global users .. 484
9.16. Site specific groups e-Commerce .. 485
9.17. Site specific users e-Commerce .. 485
9.18. Site specific groups Brand web presence .. 485
9.19. Site specific users Brand web presence .. 486
9.20. Database Users . 487

xvCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

List of Examples
3.1. host entries .. 52
3.2. New Solr field .. 63
3.3. New CM_SEO_TOKEN Solr field .. 64
3.4. wc-dataload.xml .. 74
3.5. Default link setting .. 80
3.6. Adding Environments in settings.xml . 102
3.7. Activating Environment in settings.xml . 102
4.1. Dependencies for a CoreMedia application .. 105
4.2. Including logback-common.xml .. 109
4.3. Setting an environment property in web.xml . 110
4.4. Setting an environment property in the context configura-
tion .. 110
4.5. Enabling an Extension .. 117
4.6. Module structure of the extension .. 118
4.7. Define the component .. 118
4.8. Module structure with BOM POM ... 118
4.9. BOM POM with dependencies on submodules 118
4.10. Enabling the extension in the root POM file . 118
4.11. Vagrantfile Example .. 121
4.12. Snapshot Profile . 126
4.13. maven-release-plugin . 126
4.14. An example solo.rb file . 129
4.15. An example node.json file . 129
4.16. base.rb for CentOS 6 .. 132
4.17. management.rb . 133
4.18. replication.rb . 133
4.19. YUM repository .. 134
4.20. upgrading to a specific version .. 137
4.21. Yum info .. 138
4.22. The Spring Bean Definition for the Map of Settings Find-
er . 144
4.23. Adding Custom Settings Finder .. 144
4.24. Business Logic API . 145
4.25. Settings Address Adapter . 145
4.26. Address Proxy .. 145
4.27. Activation of an Extension in the project's root POM 147
4.28. Remove CoreMedia Elastic Social Extension .. 149
4.29. Remove CoreMedia Adaptive Personalization Extension 149

xviCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

4.30. Example for Adaptive Personalization Content in Blue-
print . 150
4.31. Remove CoreMedia Livecontext Extension .. 150
4.32. Remove CoreMedia Corporate Extension .. 150
4.33. Remove CoreMedia Product Asset Management Exten-
sion .. 151
4.34. POM file of a new Studio module .. 158
4.35. Maven Dependency for Logging .. 166
4.36. Logback Configuration .. 166
4.37. Change Log Directory in Tomcat .. 167
4.38. Automatically reload configuration file every 30
seconds .. 167
4.39. Dependency for JMX .. 168
4.40. Register the MBeans .. 168
4.41. Use Tomcat remote connector server .. 169
4.42. Use Tomcat remote connector server with authentica-
tion .. 169
4.43. Adding the Base Component .. 170
5.1. ContextProvider interface method .. 182
5.2. Access the Shop Context in CAE via Context API 183
5.3. Default fragment handler order .. 192
5.4. IBM WCS configuration in application.properties 207
6.1. Pagegrid example definition .. 276
6.2. A robots.txt file . 303
6.3. robots.txt file generated by the example settings 306
6.4. A sitemap file . 306
6.5. A sitemap index file . 306
6.6. File structure of a theme .. 312
6.7. Theme descriptor example .. 313
6.8. CSS code that follows the style guide .. 316
6.9. Folder structure of the Saas files . 317
6.10. Save selector in variable .. 317
6.11. Disable auto-escaping with the cm.unescape plugin 319
6.12. Example of a fallback in Freemarker .. 320
6.13. Difference between JSP and Freemarker type-hinting com-
ment .. 320
6.14. Passing parameters .. 320
6.15. Theme paths in tomcat-context.xml .. 325
6.16. Building the theme with Grunt or Maven .. 327
6.17. Configuration for webresources plugin .. 328
6.18. Multi-Site Folder Structure Example .. 335

xviiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

6.19. Site Folder Structure Example .. 335
6.20. XML of locale Struct . 337
6.21. SiteModel in editor.xml . 347
6.22. Versioned Master Link in editor.xml . 347
6.23. CMLocalized .. 348
6.24. CMTeasable .. 348
6.25. CMSettings .. 349
6.26. XLIFF fragment .. 351
6.27. Usage of GetDerivedContentsAction .. 365
6.28. Usage of GetSiteManagerGroupAction .. 366
6.29. Usage of ExtractPerformerAction .. 367
6.30. Usage of CompleteTranslationAction .. 367
6.31. Usage of RollbackTranslationAction .. 369
8.1. Using the content query editor . 390
8.2. Add content creation dialog to link list with quickCreateLink-

ListMenu . 402
8.3. Predicate Example .. 414
8.4. Predicate Customizer Example .. 415
8.5. Dynamic Include Link Scheme Example .. 415
8.6. Dynamic Include Handler Example .. 416
8.7. Root Channel Context Settings .. 420
8.8. Context Settings for Every Channel . 421
8.9. Rendition Publication Configuration .. 455
8.10. Adding certificates to truststore .. 461
9.1. Configuration of URL prefix type .. 481

xviiiCoreMedia DXP 8

CoreMedia Digital Experience Platform 8 Developer Manual |

1. Preface

This manual contains the basic knowledge you should have when you want to de-
velop with CoreMedia Digital Experience Platform 8. It describes the basic features
and concepts of the development workspace, of the IBM WebSphere Commerce
integration and of the Blueprint features.

➞ Chapter 2, Overview of CoreMedia DXP 8 [18] gives you an overview over the
modules, functions and architecture of CoreMedia Digital Experience Platform
8.

➞ Chapter 3, Getting Started [31] shows you step by step how to install and
start the components using the Blueprint workspace.

➞ Chapter 4, Blueprint Workspace for Developers [103] explains in depth the
concepts and patterns of the Blueprint workspace. You will learn how to re-
lease and deploy the system and how to develop in the workspace.

➞ Chapter 5, IBM WebSphere Commerce Integration [174] describes the concepts
and architecture of the integration with IBM WebSphere Commerce. You
will learn how to do the configuration and how to develop with e-Commerce
API.

➞ Chapter 6, CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Web-
sites [244] explains the content types of CoreMedia Digital Experience Platform
8 and the website that builds on top.

➞ Chapter 7, CoreMedia DXP 8 Brand Blueprint - Functionality for Websites [370]
describes the features of the Brand Blueprint.

➞ Chapter 8, CoreMedia DXP 8 Editorial and Back-end Functionality [386] describes
the extensions of CoreMedia Blueprint to the standard system.

➞ Chapter 9, Appendix [462] contains reference information, such as the tag
library, ports, the content type model or Maven profiles.

1CoreMedia DXP 8

Preface |

1.1 Audience
This manual is intended for architects and developers who want to work with
CoreMedia Digital Experience Platform 8 or who want to learn about the concepts
of the product. The reader should be familiar with CoreMedia CMS, IBM WebSphere
Commerce, Spring, Maven and Chef.

2CoreMedia DXP 8

Preface | Audience

1.2 Typographic Conventions
CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:

Table 1.1. Typographic
conventions

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entry

Format|Normal

Bold, linked with |Menu names and entries

Enter in the field Heading

The CoreMedia Component

ItalicField names

CoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed
keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \

-u user

\Code lines in code examples
which continue in the next
line

See the [Studio Developer
Manual] for more information.

Square BracketsMention of other manuals

In addition, these symbols can mark single paragraphs:

Table 1.2. PictographsDescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

3CoreMedia DXP 8

Preface | Typographic Conventions

DescriptionPictograph

Danger: The violation of these rules causes severe damage.

4CoreMedia DXP 8

Preface | Typographic Conventions

1.3 CoreMedia Services
This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.3.1,
“Registration” [5] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

➞ Section 1.3.1, “Registration” [5] describes how to register for the usage of
the services.

➞ Section 1.3.2, “CoreMedia Releases” [5] describes where to find the
download of the software.

➞ Section 1.3.3, “Documentation” [6] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

➞ Section 1.3.4, “CoreMedia Training” [8] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

➞ Section 1.3.5, “CoreMedia Support” [9] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.3.5, “CoreMedia Support” [9]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

5CoreMedia DXP 8

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5]
for details about the registration process. If the problems persist, try clearing
your browser cache and cookies.

Maven artifacts

CoreMedia provides its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual [i].

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [9]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia
manualsContentAudienceManual

This manual lists the third-party software used
by CoreMedia and lists, when required, the li-
cence texts.

Developers, ar-
chitects, admin-
istrators

CoreMedia Utilized Open-
Source Software

This document lists the third-party environ-
ments with which you can use the CoreMedia

Developers, ar-
chitects, admin-
istrators

Supported Environments

system, Java versions or operation systems for
example.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It

EditorsStudio User Manual, Eng-
lish

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

6CoreMedia DXP 8

Preface | Documentation

https://repository.coremedia.com
http://documentation.coremedia.com/dxp8

ContentAudienceManual

This manual gives an overview over the struc-
ture and features of CoreMedia LiveContext.

Developers, ar-
chitects, admin-
istrators

LiveContext for IBM Web-
Sphere Manual

It describes the integration with the IBM
WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

This manual describes some overall concepts
such as the communication between the

Developers, ad-
ministrators

Operations Basics Manual

components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

This manual describes the configuration of and
development with Adaptive Personalization, the

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

CoreMedia module for personalized websites.
You will learn how to configure the GUI used
in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-
sions.

This manual describes how you can connect
your CoreMedia website with external analytic
services, such as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors
Manual

This manual describes concepts and develop-
ment of the Content Application Engine (CAE).

Developers, ar-
chitects

Content Application De-
veloper Manual

You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

This manual describes the concepts and admin-
istration of the main CoreMedia component,

Developers, ar-
chitects, admin-
istrators

Content Server Manual

the Content Server. You will learn about the
content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

7CoreMedia DXP 8

Preface | Documentation

ContentAudienceManual

This manual describes the concepts and admin-
istration of the Elastic Social module and how
you can integrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the structure of the in-
ternal CoreMedia XML format used for storing

Developers, ar-
chitects

Importer Manual

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

This manual describes the configuration and
customization of the CoreMedia Search Engine

Developers, ar-
chitects, admin-
istrators

Search Manual

and the two feeder applications: the Content
Feeder and the CAE Feeder.

This manual describes the configuration and
customization of Site Manager, the Java based

Developers, ar-
chitects, admin-
istrators

Site Manager Developer
Manual

stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

This manual describes the concepts and exten-
sion of CoreMedia Studio. You will learn about

Developers, ar-
chitects

Studio Developer Manual

the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the re-

Developers, ar-
chitects

Unified API Developer
Manual

commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

This manual describes the Workflow Server. This
includes the administration of the server, the

Developers, ar-
chitects, admin-
istrators

Workflow Manual

development of workflows using the XML lan-
guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

8CoreMedia DXP 8

Preface | CoreMedia Training

mailto:documentation@coremedia.com

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the Training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, virtual
machines, class libraries and customized code in many different combinations.
That's why CoreMedia needs detailed information about the environment for a
support case. In order to track down your problem, provide the following informa-
tion:

➞ Which CoreMedia component(s) did the problem occur with (include the
release number)?

➞ Which database is in use (version, drivers)?

➞ Which operating system(s) is/are in use?

➞ Which Java environment is in use?

➞ Which customizations have been implemented?

➞ A full description of the problem (as detailed as possible)

➞ Can the error be reproduced? If yes, give a description please.

➞ How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

9CoreMedia DXP 8

Preface | CoreMedia Support

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of
Java processes and CoreMedia components. They're often the only source of in-
formation for error tracking and solving. All protocolling services should run at the
highest log level that is possible in the system context. For a fast breakdown, you
should be logging at debug level. The location where component log output is
written is specified in its < appName>-logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia.log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do I Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the logs/ directory of the servlet
container.See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files
check list

Log filesProblemComponent

generalCoreMedia Studio CoreMedia-Studio.log
coremedia.log

generalCoreMedia Editor editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre-
view

coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

10CoreMedia DXP 8

Preface | CoreMedia Support

Log filesProblemComponent

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

communication errorsServer and client editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.jpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

not startingServer coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

11CoreMedia DXP 8

Preface | CoreMedia Support

1.4 Working with CoreMedia DXP 8
This chapter guides you to the download area, other manuals and training courses
depending on your skills and the tasks you want to accomplish. CoreMedia docu-
mentation is organized in such a way, that each component manual contains all
required information for the configuration, operation and development of the
component. Only the user manuals for editors and other users are in separate
documents.

Chapters and sections that have only a noun in the title usually contain conceptual
information while a title with an "-ing" indicates an instructional chapter.

1.4.1 Getting Started
To start with CoreMedia DXP 8 you should open the following address in your
browser:

http://releases.coremedia.com/dxp8

Here, you will find a short quick start description and links to all resources for
CoreMedia DXP 8. You can download CoreMedia Blueprint.

Implementing CoreMedia CMS typically means to start a project with configuration
and customization tasks. Therefore, CoreMedia DXP 8 is designed for the developer.
It simply integrates with a common Maven based development environment. By
default, it supports deployment via RPM or ZIP files but it's up to the developers
to decide how to actually deploy CoreMedia DXP 8. With CoreMedia Blueprint,
CoreMedia delivers a blueprint for development and deployment.

➞ Read the Supported Environments document available at https://document-
ation.coremedia.com/dxp8/supported-environments to learn which data-
bases, browsers, operation systems, Java versions, Portal version and servlet
container are supported by CoreMedia DXP 8.

➞ Read the [CoreMedia Digital Experience Platform 8 Developer Manual] to
learn how to install CoreMedia components with CoreMedia Blueprint.

➞ Read the [CoreMedia Digital Experience Platform 8 Developer Manual] to
learn about the Blueprint features.

➞ Read the [CoreMedia Operations Basics] manual to learn basic operation
tasks.

➞ Read the [Third-Party Licenses Manual] if you want to know which open
source software is used by CoreMedia DXP 8.

➞ Attend the "Operations" training at the CoreMedia Training Center, see ht-
tp://www.coremedia.com/training-schedule/ for the current schedule.

12CoreMedia DXP 8

Preface | Working with CoreMedia DXP 8

http://releases.coremedia.com/dxp8
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
http://www.coremedia.com/training-schedule/
http://www.coremedia.com/training-schedule/

1.4.2 Getting an Overview
If you want to get familiar with the concepts and coverage of CoreMedia Digital
Experience Platform 8, then this manual is the starting point. Nevertheless, it only
gives you a rough insight. If you want to learn more about all the components that
comprise CoreMedia DXP 8 you should read the following chapters:

➞ Read the "CoreMedia Content Server" chapter in the [Content Server Manual]
to learn something about the basic component of the CoreMedia system.

➞ Read the "Overview" chapter in the manual of every component you are in-
terested in.

➞ Attend the "Fundamentals" training at the CoreMedia Training Center, see
http://www.coremedia.com/training-schedule/ for the current schedule.

1.4.3 Working with the GUI
CoreMedia DXP 8 comes with different GUIs that support different tasks, such as
managing content and user generated content or personalize the output. Their
usage is described in separate manuals or chapters shown below. All these manuals
are intended for editors and other non-technical staff.

CoreMedia Studio

CoreMedia Studio is the editor tool for all users. It is web based and requires no
installation. Its easy-to-use interface with instant preview and form based editing
makes content creation easier than ever. All other CoreMedia components integrate
their GUI into CoreMedia Studio. Create new content , access your IBM WebSphere
content, manage your website or user generated content or publish new content
to your customers.

➞ Read the [Studio User Manual] for details.

Elastic Social

The Elastic Social GUI is integrated with CoreMedia Studio.

➞ Read the "Working with User Generated Content" chapter of the CoreMedia
Studio User Manual for details

Adaptive Personalization Management

CoreMedia Adaptive Personalization comes with a management GUI that bases on
the same technology as CoreMedia Studio. It lets you define selection rules, test
user profiles and user segments.

13CoreMedia DXP 8

Preface | Getting an Overview

http://www.coremedia.com/training-schedule/

➞ Read the "Using the Adaptive Personalization GUI" chapter of the [CoreMedia
Studio User Manual] for details.

CoreMedia Site Manager

The CoreMedia Site Manager is a management component for power users and ad-
ministrators. Manage rights and users.

➞ Read the [CoreMedia Operations Basics Manual] for details on user manage-
ment.

1.4.4 Operating the System
The components of CoreMedia Digital Experience Platform 8 are configured using
property files and you can use JMX to manage them. In addition, CoreMedia DXP 8
contains tools to monitor the status of its components. The following chapters are
intended for operators and administrators but developers should read the chapters
as well.

➞ Read the [CoreMedia Operations Basics Manual] for some operational con-
cepts and tasks.

➞ Each component manual contains a configuration chapter. Read this chapter
if you want to learn details about a component's configuration.

➞ Attend the CoreMedia Deployment and CoreMedia Operations training.

1.4.5 Extending the System
CoreMedia Digital Experience Platform 8 is a very flexible software system, that you
can adapt to all your needs. It integrates nicely with a Maven based development
environment. CoreMedia is shipped with manuals that cover general development
concepts such as the workspace and the Unified API and with manuals that cover
the development with specific components.

General Concepts

➞ Read the [CoreMedia Digital Experience Platform 8 Developer Manual] to
learn how to develop extensions using Blueprint workspace.

➞ Read the [Unified API Developer Manual] in order to learn how to use the
most fundamental CoreMedia API.

➞ Read the [Content Server Manual] in order to learn how to define your own
content types.

Developing editorial components

If you want to develop components for editorial purpose, you might refer to one
of the following manuals:

14CoreMedia DXP 8

Preface | Operating the System

➞ Read the [Studio Developer Manual] in order to learn how to extend Core-
Media Studio.

➞ Read the [Site Manager Developer Manual] in order to learn how to extend
the Site Manager.

➞ Read the [Unified API Developer Manual] in order to learn how to develop
client applications from the scratch accessing the CoreMedia CMS via the
Unified API.

➞ Attend the CoreMedia Studio Customization training in order to learn how to
extend CoreMedia Studio.

➞ Attend the CoreMedia Site Manager Customization training in order to learn
how to extend the CoreMedia Site Manager.

➞ Attend the Client Development training in order to learn the usage of the
CoreMedia Unified API.

Developing workflows

CoreMedia CMS contains a customizable Workflow Server that you can adapt to your
needs. CoreMedia CMS is delivered with workflows that support publishing tasks,
but the Workflow Server can support much more complicated processes.

➞ Read the [Workflow Manual] in order to learn how to define your own
workflows.

➞ Attend the Workflow Implementation training in order to define your own
workflows. Learn how to use the powerful CoreMedia Workflow XML format
and develop your own classes in order to extend the Workflow Server func-
tionality.

Developing websites

CoreMedia CMS is a web content management system and its main purpose is to
deliver content to various devices. Not only to a PC but to all gadgets such as mobile
phones or tablet PCs.

➞ Read the [Content Application Developer Manual] in order to learn how to
develop fast, dynamic websites that support sophisticated caching. Learn
how to use the CAE.

➞ Read the [Elastic Social Manual] in order to learn how to extend your websites
with user generated content, such as comments or ratings.

➞ Read the [Adaptive Personalization Manual] in order to learn how to deliver
personalized content.

➞ Read the [Search Engine Manual] in order to learn how to make your websites
searchable.

➞ Attend the Web Application Development (WAD) training, in order to get
hands-on experience in the development of CAE applications.

➞ Attend the Advanced Web Application Development (AWAD) training, in order
to get an in-depth look into the workings of the CAE. Learn about controllers,
link schemes, caching and more.

15CoreMedia DXP 8

Preface | Extending the System

➞ Attend the Caching training in order to get familiar with the subtleties of
caching with the CAE.

16CoreMedia DXP 8

Preface | Extending the System

1.5 Change Chapter
In this chapter you will find a table with all major changes made in this manual.

Table 1.5. ChangesDescriptionVersionSection

Reorders chapter7.5.44Chapter 5, IBM WebSphere
Commerce Integration [174]

Adds overview of cookies delivered by the CMS sys-
tem

7.5.44Chapter 9, Appendix [462]

Adds typical LiveContext deployment7.5.43Chapter 9, Appendix [462]

New description of web development with themes7.5.41Section 6.4, “Website De-
velopment with
Themes” [311]

Split subchapters about configuration of IBM Web-
Sphere Commerce and CoreMedia DXP 8 into two
separate chapters.

7.5.41Chapter 3, Getting Star-
ted [31]

Added description of predefined users for brand web
presence.

7.5.41Appendix - Predefined
Users [484]

Added description of Brand Blueprint Website Search,
its configuration and feeding of pages with content
from their page grids.

7.5.32Section 7.3, “Website
Search” [382]

Added chapter about Brand Blueprint.7.5.31Chapter 7, Core-
Media DXP 8 Brand Blue-
print - Functionality for
Websites [370]

Added description of connectionTimeout and
socketTimeout for fragment connector.

7.5.19Section 3.4.9, “Deploying
the CoreMedia Fragment
Connector” [68]

Added description on how to add CMS content to
product detail pages and category overview pages.

7.5.19Section 5.1.4, “Extending
with Fragments” [183]

Added description for supranational locale definition7.5.8Section “Locales Adminis-
tration” [337]

17CoreMedia DXP 8

Preface | Change Chapter

2. Overview of CoreMedia DXP 8

CoreMedia Digital Experience Platform 8 is the next-generation experience manage-
ment platform from CoreMedia that lets you build highly engaging, multi-channel
branded e-Commerce experiences as well as corporate sites for your global custom-
ers.

Now you can easily bridge the gap between a pure e-Commerce system which is
focused on the more transactional aspects of the buying process and content-
driven brand sites that focus on engaging user experiences.

CoreMedia Studio allows your business users to efficiently create and manage en-
gaging digital experiences across the customer journey by enriching the basic
product information with storytelling by adding editorial content and media assets
from the CoreMedia CMS. You can seamlessly blend catalog content and CMS
content to any degree and on any delivery channel - and ensure brand-consistency
through multi-language and multi-site localization tools.

The CoreMedia Digital Experience Platform 8 platform bundles all components to
help you manage every aspect of your blended digital experiences from content
to commerce:

➞ CoreMedia CMS platform

➞ CoreMedia Studio

➞ CoreMedia Blueprints for e-Commerce and corporate sites

➞ CoreMedia e-Commerce Bridge for IBM WebSphere Commerce

➞ CoreMedia Site Manager

➞ CoreMedia Elastic Social

➞ CoreMedia Adaptive Personalization

➞ CoreMedia Advanced Asset Management

CoreMedia Digital Experience Platform 8 was designed to empower your team in
creating and managing highly relevant and engaging experiences for your customers
from a single, easy-to-use business user interface. Customers should always get
the information they need, independent of the device they use or the time they
connect - delivered in an optimized fashion for the current customer's context.

18CoreMedia DXP 8

Overview of CoreMedia DXP 8 |

CoreMedia Studio allows business users to create and manage experiences based
on context and to define and test rules and user segments for personalization in
real-time. Content can be easily mixed with e-Commerce catalog items. Editors
can intuitively select the products and categories from the catalog and place them
on the site just as they are accustomed from other web content.

CoreMedia Digital Experience Platform 8 ships with CoreMedia Blueprints for e-
Commerce and corporate sites that provide a high-level of prefabrication of common
features and use-cases. The source code is provided for easy customization to your
specific needs for competitive differentiation.

Built upon industry-leading best practices with a fully responsive and adaptive
mobile first design plus a wealth of ready-to-use layout modules, your development
team can jump-start on a strong foundation proven in many customer projects
whilst retaining full flexibility. A predefined Maven based development environment
is provided.

Leveraging the CoreMedia CAE technology, you can dynamically and contextually
combine relevant content from CoreMedia CMS, CoreMedia Elastic Social and your
e-Commerce system and deliver the combined experience in real-time on all
channels with utmost performance using the sophisticated caching.

Elastic Social allows your end users to contribute user-generated content such as
product reviews, comments and ratings - whilst providing an intuitive moderation
interface to your business users that also allows for editorial re-purposing of user-
generated content.

CoreMedia Site Manager is the administration console for user and rights manage-
ment.

Figure 2.1. CoreMedia
Studio with content
from the IBM Web-
Sphere Commerce sys-
tem

19CoreMedia DXP 8

Overview of CoreMedia DXP 8 |

Section 2.1, “Components and Architecture” [21] describes CoreMedia DXP 8 in
more detail:

20CoreMedia DXP 8

Overview of CoreMedia DXP 8 |

2.1 Components and Architecture
CoreMedia DXP 8 has been developed to provide a universal solution for the creation
and management of content.

The use of modern development tools and open interfaces enables the system to
be flexibly adapted to enterprise requirements. For this purpose, worldwide
standards for information processing, such as XML, HTML, HTTP, REST, Ajax,
WebDAV, CORBA and the Java Platform are used or supported.

CoreMedia Digital Experience Platform 8 is a distributed system, that consists of
several components for different use cases.

➞ CoreMedia Content Server
➞ Content Management Server

➞ Master Live Server

➞ Replication Live Server

➞ CoreMedia Workflow Server

➞ CoreMedia Content Application Engine

➞ CoreMedia Importer

➞ CoreMedia Search Engine
➞ CoreMedia Content Feeder

➞ CoreMedia CAE Feeder

➞ CoreMedia e-Commerce Bridge for IBM WebSphere Commerce

➞ CoreMedia Studio

➞ CoreMedia User Changes web application

➞ CoreMedia Site Manager

➞ CoreMedia Elastic Social

➞ CoreMedia Adaptive Personalization

➞ CoreMedia Advanced Asset Management

➞ CoreMedia Blueprints

In addition, CoreMedia DXP 8 relies on some third-party systems:

➞ An IBM WebSphere Commerce Server for e-Commerce

➞ A relational database to store the content and user data

➞ A MongoDB NoSQL database to store the user generated content

21CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Components and Architecture

➞ An LDAP server for user management

➞ Servlet containers to run the web applications

Conceptually, a CoreMedia system can be divided into the Content Management
Environment where editors create and manage the content and the Content Delivery
Environment where the content is delivered to the customers. Some components
are used in both environments, mostly to give you a realistic preview of your
websites. Figure 2.2, “System Overview” [22] provides an overview of a Core-
Media DXP 8 system with all components installed:

Figure 2.2. System
Overview

Management Environment

Servlet Container

Workflow Server

CAE Feeder

Content
Management
Server

Content
Feeder

User
Changes

Servlet Container

Studio

Personalization
Management

Elastic Social
Management

Personalization
Management

Elastic Social
Management

Preview Web
Application CAE

CoreMedia Site
Manager

Delivery Environment

Servlet Container

Delivery Web
Application CAE

Personalization
Management

Elastic Social
Management

Servlet Container

Master Live Server

CAE
Feeder

Replication Live
Server

LDAP Server

MongoDB

Relational
Database

Relational
Database

Servlet Container

Search Engine

IBM WebSpere Commerce
Server

Fragment Connector

The following sections describe in short the aim of all components, some main
technologies used in CoreMedia DXP 8 and give a short overview over the commu-
nication between the components.

2.1.1 Content Management Environment
The Content Management Environment is the place where you create and manage
your website with the Content Management Server and Studio at its heart. A freely
adaptable content model allows you to manage and deliver every type of digital
content including text, video, images, music and many more.

The following components are solely located in the Content Management Environ-
ment:

22CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Content Management Environment

CoreMedia Content Management Server

The Content Management Server is a web application that manages the content in
CoreMedia DXP 8.

CoreMedia Studio

Studio is a web application. It integrates the complete workflow used by online
editors from the creation, over management to preview publication of digital ex-
periences with contextual content. Studio is a web application that bases on modern
standards such as Ajax. Therefore, it can be used like a common desktop application;
fast, reliable but without installation. Studio integrates the CoreMedia Adaptive
Personalization and Elastic Social GUI and has an integrated preview window where
you can see your content in its context. You can even see the effects of personaliz-
ation or time-dependent publication.

CoreMedia Studio lets you access the content of the IBM WebSphere Commerce
Server and integrates its management console. Content can be mixed easily with
e-Commerce catalog items. Editors can intuitively select the items from the catalog
and place them on the site just as they are accustomed from other web contents.

CoreMedia User Changes web application

The CoreMedia User Changes web application is a listener, which shows the current
work of the logged-in editor in Studio. This web application supports the function-
ality of Control Room in Studio.

CoreMedia Site Manager

CoreMedia Site Manager is a Java based rich client for administrators. It offers addi-
tional functionality like user and rights management.

CoreMedia Importer

You can use the Importer to import content from external sources into the man-
agement system. A freely adaptable importer framework based on JAXP is used to
build content sets and pipelines and to invoke content transformations, using XSL,
DOM and Streams.

CoreMedia Workflow Server

The CoreMedia Workflow Server is a web application that executes and manages
workflows. CoreMedia DXP 8 comes with predefined workflows for publication and
translation, but you can also define your own workflows.

CoreMedia Content Feeder

The Content Feeder is a web application that collects the content from the Content
Management Server and delivers it to the Search Engine for indexing. Thus, the

23CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Content Management Environment

Content Feeder is necessary to make content searchable in Studio for the editor.
The Content Feeder listens for changes in the content and triggers the indexing of
the changed or newly created content.

2.1.2 Content Delivery Environment
The Content Delivery Environment of CoreMedia CMS may consist of the Master Live
Server, several Replication Live Servers (which are optional), the CoreMedia CAE,
CoreMedia Elastic Social, the Search Engine and Adaptive Personalization. It manages
the approved and published online data and adds user generated content.

CoreMedia Master Live Server

The Master Live Server manages the CoreMedia repository in the Content Delivery
Environment. It receives this content from the Content Management Server during
publication. The Content Application Engine fetches the content from the Master
Live Server or from the Replication Live Servers.

CoreMedia Replication Live Server

The optional Replication Live Servers replicate the content of the Master Live Server
in order to enhance reliability and scalable performance.

2.1.3 Shared Components
Some components of CoreMedia DXP 8 are used in both environments. The e-Com-
merce Bridge, for example, is used in the Management Environment to manage
content from the IBM WebSphere Commerce system in Studio and in the Delivery
Environment to include content from the IBM WebSphere Commerce system in
the pages generated by Content Application Engine. Other components, like the
Content Application Engine, are used to provide the editor with a preview of the
live site.

CoreMedia e-Commerce Bridge for IBM WebSphere Commerce

CoreMedia e-Commerce Bridge for IBM WebSphere Commerce connects the CoreMedia
CMS with the IBM WebSphere Commerce Server (WCS). It provides functionality
to read catalog items, such as products or marketing spots, and to display them
on web pages. You can also display price information and availability of products
on the site. All e-Commerce functions are provided by an e-Commerce Java API
that enables you to extend your shop application.

The e-Commerce bridge also enables you to enrich pages rendered by the IBM
WebSphere Commerce system with content delivered by the CAE of Core-
Media DXP 8. This way, you can enhance your shop pages with more engaging
content.

24CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Content Delivery Environment

Finally, the CoreMedia e-Commerce Bridge for IBM WebSphere Commerce synchronizes
user sessions between the IBM WebSphere Commerce system and the CoreMedia
system, so that users only have to sign in once.

CoreMedia Content Application Engine (CAE)

The CoreMedia Content Application Engine represents a stack for building client ap-
plications with CoreMedia CMS. It is a web application framework which allows fast
development of highly dynamic, supportable and personalizable applications and
websites. Sophisticated caching mechanisms allows for dynamic delivery even in
high-load scenarios with automatic invalidation of changed content.

The CoreMedia Content Application Engine combines content from all CoreMedia
components, from your e-Commerce system and other third-party systems in so-
called content beans and delivers the content to your customers in all formats. The
preview in Studio and the website visited by your customers is delivered by the
CAE

CoreMedia Search Engine

A CoreMedia CMS system comes with Apache Solr as the default search engine,
which can be used from the editors on content management site and from the
applications on content delivery site. The editor, for example, can perform a fast
full text search in the complete repository. The pluggable search engine API allows
you to use other search engines than Apache Solr for the website search.

CoreMedia CAE Feeder

The CAE Feeder makes content beans searchable by sending their data to the Search
Engine for indexing.

CoreMedia Adaptive Personalization

CoreMedia Adaptive Personalization enables enterprises to deliver the most appro-
priate content to users depending on the ‘context’ – the interaction between the
user, the device, the environment and the content itself. CoreMedia Adaptive Per-
sonalization is a powerful personalization tool. Through a series of steps it can
identify relevant content for individuals. It can draw on a user’s profile, IBM Web-
Sphere Commerce segment, preferences and even social network behavior. Use
CoreMedia Adaptive Personalization to deliver highly relevant and personalized
content to users, at any given moment in time.

The GUI is integrated into CoreMedia Studio for easy creation and testing of user
segments and selection rules.

25CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Shared Components

CoreMedia Elastic Social

CoreMedia Elastic Social enables enterprises to engage with users, entering a con-
versation with them and stimulating discussion between them. Use Elastic Social
to enable Web 2.0 functionality for Web pages and start a vibrant community. It
offers all the features it takes to build a community – personal profiles, preferences,
relationships, ratings and comments. CoreMedia Elastic Social is fully customizable
to reflect the environment you want to create, and offers unlimited horizontal
scalability to grow with the community and your business vision. It also integrates
with CoreMedia Studio so you can manage comments and external users right from
your common workplace.

CoreMedia Advanced Asset Management

CoreMedia Advanced Asset Management is a module that adds asset management
functionality to the system. Digital assets, such as images or documents, and their
licences can be managed in CoreMedia Studio. From an asset, you can create
common content items that can be used in the IBM WCS system.

CoreMedia Blueprint

For a quick start, CoreMedia DXP 8 is delivered with two fully customizable blueprint
applications including best practices and example integration of available features.
CoreMedia Blueprint contains a ready-made content model for navigation and multi-
language support. It contains for instance solutions for e-Commerce items, tax-
onomy, rating, integration with web analytics software and user created page lay-
outs. CoreMedia Blueprint comes as a Maven based workspace for development.

The workspace is the result of CoreMedia’s long year experience in customer pro-
jects. As CoreMedia CMS is a highly customizable product adaptable to your specific
needs, the first thing you used to do when you started to work with CoreMedia CMS
was to create a proper development environment on your own. CoreMedia Digital
Experience Platform 8 addresses this challenge with a reference project in a pre-
defined working environment that integrates all CoreMedia components and is
ready for start.

Maven based environ-
ment

CoreMedia Blueprint workspace provides you with an environment which is strictly
based on today’s de facto standard for managing and building Java projects by
using Maven. That way, building your project artifacts is a matter of simply execut-
ing mvn clean install. Developers are able to test all the various CoreMedia
CMS components directly within the same environment by executing mvn tom
cat7:run and mvn tomcat7:run-war respectively. No further deployment is
necessary.

With the introduction of Chef as the provision tool of choice and Vagrant as the
tool to prepare VirtualBox virtualized environments, setting up the server back
end to start developing with Blueprint workspace is now a matter of minutes, rather
than hours. A simple vagrant up will provide you with all databases, content

26CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Shared Components

repository and search services without the need to install and configure any project
specific software on the developer's system.

Using a virtualized de-
velopment infrastruc-
ture

To achieve this simplicity all components within the Blueprint workspace are pre-
configured with hostnames, ports, database schemes, users and passwords such
that you don’t need to worry about configuration while developing within the
Blueprint workspace. Instead, right from the start, you may concentrate on the real
work, on the business logic that creates your company’s value in the first place.

Blueprint workspace creates RPM or Zip artifacts out of the box, which you can use
for deployment. You can preconfigure or post-configure your components that
means at build time or at installation time, respectively.

For details on each component, please refer to the individual manuals. Online
documentation for all these components is available online at http://documenta-
tion.coremedia.com/cm7.

2.1.4 Technologies
The following technologies are featured by CoreMedia DXP 8:

WebDAV

CoreMedia CMS supports WebDAV. This allows you to edit content with WebDAV-
enabled applications such as Photoshop, GoLive, etc.

WebDAV, Web-based Distributed Authoring and Versioning, is an IETF standard
set of platform-independent extensions to HTTP that allows users to collaboratively
edit and manage files on remote Web servers. WebDAV features XML properties
on metadata, locking - which prevents authors from overwriting each other's
changes - namespace manipulation and remote file management.

LDAP

The CoreMedia CMS supports LDAP server for user management.

Lightweight Directory Access Protocol (LDAP) is a set of protocols for accessing
information directories. It is based on the standards within the X.500 standard,
but is significantly simpler. Unlike X.500, LDAP supports TCP/IP, which is necessary
for any type of Internet access. Because it's a simpler version of X.500, LDAP is
sometimes called X.500-lite.

2.1.5 Communication between the Components
Communication between the individual components on both the production side
and the Live Server is performed via CORBA and HTTP. MongoDB uses the Mongo
Wire Protocol. The Production and Live Systems can be secured with a Firewall if

27CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Technologies

http://documentation.coremedia.com/cm7
http://documentation.coremedia.com/cm7

the servers are located on different computers. The servers contact the databases
over a JDBC interface,

CoreMedia DXP 8 and IBM WebSphere communicate over REST interfaces. The
concrete communication differs slightly based on the selected deployment scenario
which are the content-led scenario and the commerce-led scenario. The following
picture shows the communication how fragments of a page are delivered from the
CAE and from the commerce system.

Processing

On the production side of the CoreMedia system, content is created and edited
with CoreMedia Studio, with custom clients or imported by the importers. Once
editing or import of contents is completed, they are approved and published via
the CoreMedia Workflow. During the publication process, the content is put online
onto the Master Live Server. If available, Replication Live Servers get noticed and re-
produce the changes. Then the content is put online by the Replication Live Server.
User generated content is produced via Elastic Social and is stored in MongoDB.
Editors can use the Studio plugin to moderate this content.

Content from the IBM WebSphere Commerce Server is not copied into the Core-
Media system. Instead, references to the content are hold and are resolved when
content is delivered.

The CoreMedia CAE in combination with Adaptive Personalization and Elastic Social
creates dynamic HTML pages or any other format (XML, PDF, etc.) from the internal
and external content and CoreMedia templates.

28CoreMedia DXP 8

Overview of CoreMedia DXP 8 | Communication between the Components

2.2 CoreMedia Blueprint Sites
CoreMedia DXP 8 Experience Platform contains Brand Blueprint and e-Commerce
Blueprint for a quick start. They come with four different sites that support different
use cases.

Aurora Augmentation (en) This site belongs to the e-Commerce Blue-
print. It is intended for a company that
wants to extend their IBM WebSphere
Commerce B2C online shop with engaging
assets and content from the CoreMedia
system, the so called commerce-led scenario
(see Section 5.1, “Commerce-led Integration
Scenario” [176]). Editors can add inspiring
content from the CMS such as images,
videos, articles to the standard WCS pages.
They do not need to enter the WCS, but can
use CoreMedia Studio for their work, taking
advantage of the sophisticated preview of
Studio.

Perfect Chef (en/de) This site belongs to the e-Commerce Blue-
print. It is intended for a company that
wants to create a content-driven e-Com-
merce brand experience in the CoreMedia
CMS, the so-called content-led scenario (see
Section 5.2.1, “Content-led Integration
Overview” [195]). Please note, that product
detail pages and the checkout process are
delivered by the WCS.

Aurora B2B Augmentation (en) This site belongs to the e-Commerce Blue-
print. It is intended for a company that
wants to extend their IBM WebSphere
Commerce B2B online shop with engaging
content from the CoreMedia system, the so
called content-led scenario (see Section 5.1,
“Commerce-led Integration Scenario” [176]).
This site only works with FEP8. The use case
is similar to the one of the Aurora Augment-
ation site for B2C shops. In addition, the
Studio preview supports contracts, so that
a test persona will only see content related
to products from the WCS which is allowed
by their contract.

29CoreMedia DXP 8

Overview of CoreMedia DXP 8 | CoreMedia Blueprint Sites

Chef Corp. Site (en/de) This site belongs to the Brand Blueprint. It
is intended for a company that wants to of-
fer their corporate site as an engaging ex-
perience for its users on all devices with a
fully responsive design. The site contains
no e-Commerce shop, but the company can
use the CoreMedia catalog to manage and
present their products on the web site.

Removing Sites

You can remove sites and features that you do not need from your workspace. To
remove the Perfect Chef and Aurora sites, remove the LiveContext extension as
described in Section “Removing the e-Commerce Blueprint” [150]. To remove the
Brand Site, remove the corporate extension as described in Section “Removing the
Brand Blueprint” [150].

30CoreMedia DXP 8

Overview of CoreMedia DXP 8 | CoreMedia Blueprint Sites

3. Getting Started

This chapter describes the installation, configuration and the start of the compon-
ents of CoreMedia Digital Experience Platform 8.

➞ Section 3.1, “Quick Start” [32] describes the fastest way to get a CoreMedia
system up and running on your local machine using the new flexible deploy-
ment.

➞ Section 3.2, “Prerequisites” [39] describes the software and hardware re-
quirements that you need to fulfill in order to work with CoreMedia Digital
Experience Platform 8.

➞ Section 3.3, “Configuration of the CoreMedia Workspace” [44] describes
how you have to configure the workspace and the virtualized setup in order
to start developing with CoreMedia Digital Experience Platform 8.

➞ Section 3.4, “Customizing IBM WebSphere Commerce” [58] describes how
you have to configure the IBM WebSphere system.

➞ Section 3.5, “Using the CoreMedia Workspace” [82] describes how you can
build the workspace and start the component in order to start developing
with a running system.

The CoreMedia workspace contains two blueprints, the e-Commerce Blueprint and
the Brand Blueprint. Both blueprints can be used together as demonstrated in the
example sites (see Section 2.2, “CoreMedia Blueprint Sites” [29]). However, you
can also use both blueprints separately. Deactivate the not-used blueprint as de-
scribed in Section 4.3.2, “Developing with Extensions” [146]. If you do not want to
use the e-Commerce Blueprint you can skip Section 3.4, “Customizing IBM Web-
Sphere Commerce” [58].

Unless specified otherwise command line examples are given in Unix style. The
path to the root of the Blueprint workspace directory will be referenced by the
variable $CM_BLUEPRINT_HOME.

31CoreMedia DXP 8

Getting Started |

3.1 Quick Start
CoreMedia Digital Experience Platform 8 is a content management system for the
developer. You do not get a program to install and run, but a workspace to develop
within, to build and to deploy artifacts from. The workspace uses Maven for the
build and contains a virtualized environment that makes it easy to build and run
the components on your local machine. See Chapter 2, Overview of Core-
Media DXP 8 [18] for an overview.

This chapter guides you through all steps you have to perform in order to get the
CoreMedia system running on your local machine. No alternative options or ad-
vanced configurations are described. The "Further Reading" section of each step
contains links to additional content, but you do not need to read these chapters
for the purpose of the quickstart.

What do you get?

When you are finished with all steps, you will have a virtualized CoreMedia system
with all components, such as Content Management Server, Master Live Server,
Studio or CAE up and running in VirtualBox on your computer. All the sample
content delivered with the workspace is imported and you can use CoreMedia Studio
to browse through the content. You will have no connection with an IBM WCS e-
Commerce system.

You need Internet access to get everything up and running.

Step 1: Getting a Login for CoreMedia

Goal

You have a login to the CoreMedia software download page, the contributions
Github repository, the documentation and the CoreMedia artifact repository.

Steps

1. Ask your project manager for your company's account details or contact the
CoreMedia support. Keep in mind, that you have to ask explicitly for the access
rights to the CoreMedia Github contributions repository. See CoreMedia's
website for the contact information of the support at http://www.core-
media.com/support.

Check

Got to documentation.coremedia.com/dxp8 and https://github.com/coremedia-
contributions/dxp8-blueprint and enter your credentials. You should be able to
use the online documentation and see the contributions repository.

32CoreMedia DXP 8

Getting Started | Quick Start

http://www.coremedia.com/support
http://www.coremedia.com/support
http://documentation.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint
https://github.com/coremedia-contributions/dxp8-blueprint

Step 2: Getting License Files for the CoreMedia System

Goal

You have licenses for the CoreMedia system.

Steps

Ask your project manager, your key account manager or your partner manager for
the CoreMedia licences.

Check

You have a Zip file that contains three zipped licence files.

Further Reading

➞ See Section 4.6, “CoreMedia Licenses” in CoreMedia Operations Basics for
details about the license file format.

Step 3: Checking the Hardware requirements

Goal

You are sure, that your computer meets the hardware requirements.

Steps

1. Check that your computer has at least a dual-core CPU with >2GHz and at least
12GB of RAM. Otherwise, the build will be very slow and the virtual environment
cannot be started.

Further reading

➞ Section 3.2, “Prerequisites” [39] describes the hardware requirements a bit
more in detail.

Step 4: Check and Install all Required Third-Party Software

Goal

All required third-party software (such as Java, Git, Maven, Chef...) is installed on
your computer and has the right version.

Steps

1. Open the supported environments document at https://documentation.core-
media.com/dxp8/supported-environments-en.pdf and check that you have in-
stalled the right version of Java and that you have the right OS. The JAVA_HOME
variable must be set.

33CoreMedia DXP 8

Getting Started | Quick Start

operation-basics-en.pdf#CoreMediaLicences
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf

2. Check that you have Maven 3.3.3 installed.

3. Check that VirtualBox 5.0.16 and Vagrant 1.8.1 is installed, otherwise install in
this respective order.

4. With chef -v, check that the Chef Development Kit 0.12.0 is installed, otherwise
install ChefDK.

5. Install the vagrant-omnibus, vagrant-ohai, nugrant and vagrant-berkshelf Vagrant
plugins. You will find the required versions in the Vagrantfile file in the main
directory of the CoreMedia Blueprint workspace. Use the following call and replace
<pluginName> and <pluginVersion> with the name as written in this paragraph
and with the version, respectively

vagrant plugin install <pluginName> --plugin-version
"=<pluginVersion>"

Further reading

➞ Section 3.2, “Prerequisites” [39] describes the required software in more
detail.

➞ Section 3.3.4, “Configuring Vagrant Based Setup” [50] gives more details
about the installation of the virtualization components.

Step 5: Cloning the Workspace

Goal

You have the CoreMedia Blueprint workspace on your hard disk.

Steps

1. Got to https://github.com/coremedia-contributions/dxp8-blueprint and get the
GitHub clone URL.

2. On your local machine, clone the repository using Git:

git clone <GitHub Repo URL>

3. In the cloned repository, get a list of all tags:

git tag

4. Create your working branch from the tag you want to use as your starting point:

git checkout -b <yourBranchName> <tagName>

Check

34CoreMedia DXP 8

Getting Started | Quick Start

https://github.com/coremedia-contributions/dxp8-blueprint

The Git clone command has succeeded.

Further reading

➞ Chapter 4, Blueprint Workspace for Developers [103] describes the structure of
the workspace, the concepts behind the workspace and how you can work
with the workspace.

➞ Section 3.3.3, “Configuring the Workspace” [46] describes further configur-
ation of the workspace which is required for development and deployment.

➞ On https://releases.coremedia.com/dxp8/overview/ click the link to the
latest download to find a description on how to download a specific release
tag.

Step 6: Move the Licenses to the Right Location

Goal

The CoreMedia license files are at the right location of your workspace.

Steps

1. Unzip the license file to a temporary folder.

2. Copy and rename the Zip file which contains_CS_ in its name to <Blueprint
Workspace>/modules/server/content-management-server-
webapp/src/main/webapp/WEB-INF/properties/corem/license.zip

3. Copy and rename the Zip file which contains_MLS_ in its name to <Blueprint
W o r k s p a c e > / m o d u l e s / s e r v e r / m a s t e r - l i v e - s e r v e r -
webapp/src/main/webapp/WEB-INF/properties/corem/license.zip

4. Copy and rename the Zip file which contains_RLS_ in its name to <Blueprint
Workspace>/modules/server/replication-live-server-
webapp/src/main/webapp/WEB-INF/properties/corem/license.zip

Check

The files are at the right location. Later, the Content Server in the virtualized envir-
onment runs without problems.

Further reading

➞ Section 3.3.3, “Configuring the Workspace” [46] describes other ways to
provide the license files.

Step 7: Configure the Repository Settings and Check Maven Configuration

Goal

35CoreMedia DXP 8

Getting Started | Quick Start

https://releases.coremedia.com/dxp8/overview/

Your Maven settings.xml file contains the settings required to connect with
the CoreMedia Nexus repository.

Steps

1. Follow the steps described in Section 3.3.2, “Configuring Maven” [45].

Check

When you build the workspace, all artifacts are found.

Step 8: Building the Workspace

Goal

The workspace has been build, so that the development setup can be started. The
build takes some time. On an Intel i7 processor with 16GB RAM around 20 minutes.

Steps

1. In the main directory of the workspace call:

mvn clean install -DskipTests

Check

The Maven build ends with message "Build successfull".

Further reading

➞ Section 3.5.1, “Building the Workspace” [82] describes more options for the
Maven build.

➞ Section 3.3.1, “Removing Optional Components” [44] describes how you
can remove parts of the workspace that you do not need.

➞ Section 3.3.6, “In-Memory Replacement for MongoDB-Based Services” [54]
describes how you can replace MongoDB for Studio services with an in-
memory solution.

Step 9: Starting the Development Environment

Goal

You have a VirtualBox in which all CoreMedia components are running. All Core-
Media sample sites with sample content can be used. However, since no WCS system
is connected you will see no e-Commerce content.

The first start takes some time, because a lot of data will be downloaded. On an
Intel i7 processor with 16GB RAM and a fast Internet connection around 20 minutes.

36CoreMedia DXP 8

Getting Started | Quick Start

Steps

1. In the main directory of the workspace call vagrant up.

2. Confirm the dialogs that open up.

Check

You see a list of URLs in the console where you called vagrant up.

Figure 3.1. URLs of
virtualized environ-
ment

Further reading

➞ Section 2.2, “CoreMedia Blueprint Sites” [29] gives a short overview over
the sample sites.

➞ Section 3.5.2, “Working With the Box” [83] describes in more detail how
you can work with VirtualBox and vagrant.

➞ Section 4.1.6, “Virtualization and Provisioning” [119] describes the concepts
of virtualization in CoreMedia DXP 8.

Step 10: Logging into the Virtualized Studio

Goal

You are logged into Studio and you can edit content.

Steps

1. Enter the following URL into your browser:

https://studio-helios.192.168.252.100.xip.io

2. You get a message, that the connection is not secure. Add an exception and
proceed.

3. Log in with user "Rick" and password "Rick".

You will get an error message, because no WCS system is connected with the
CoreMedia system. However, you can use Studio with CoreMedia content.

37CoreMedia DXP 8

Getting Started | Quick Start

Check

You see the Studio UI and can edit content.

Further reading

➞ Appendix - Predefined Users [484] shows the predefined users of CoreMedia
Blueprint.

➞ Read CoreMedia Studio User Manual to learn how to work with CoreMedia
Studio.

Step 11: Starting a Local Studio

Goal

You have a locally running Studio that is connected with the Content Server in the
virtualized environment.

Steps

1. In the CoreMedia Blueprint workspace go to modules/studio/studio-webapp

2. Enter the following Maven command:

mvn tomcat7:run -Pvagrant

Check

You can log in at http://localhost:40080 as user "Rick" with password "Rick".

Further reading

➞ Section 3.5.3, “Locally Starting the Components” [85] describes how you
can start all components directly on your local machine.

38CoreMedia DXP 8

Getting Started | Quick Start

studio-user-en.pdf#StudioUserManualEn

3.2 Prerequisites
In order to work with the Blueprint workspace you need to meet some requirements.

Path length limitation in Windows

The CoreMedia Blueprint workspace contains long paths and deeply nested folders.
If you install the CoreMedia Blueprint workspace in a Windows environment, keep
the installation path shorter than 25 characters. Otherwise, unzipping the
workspace might fail or might lead to missing files due to the 260 bytes path
limit of Windows.

Account

In order to get access to the download page, to the CoreMedia contributions repos-
itory and to CoreMedia's Maven repository (https://repository.coremedia.com),
you need to have a CoreMedia account. You can obtain an account from CoreMedia
Support.

Getting the CoreMedia Workspace

You can use Git to clone the CoreMedia DXP 8 workspace via:

➞ https://github.com/coremedia-contributions/dxp8-blueprint

Or you can download a Zip file of a specific tag:

➞ https://github.com/coremedia-contributions/dxp8-blueprint/releases

Find the current online documentation at:

➞ http://documentation.coremedia.com/dxp8

You will also find the download links at the CoreMedia release page at http://re-
leases.coremedia.com/dxp8.

Hardware

➞ At least a dual-core CPU with 2GHz, a quad-core CPU is recommended, be-
cause CoreMedia CMS code makes heavy use of multithreading.

➞ The minimum RAM you need is 8GB which is enough if your locally tested
components are connected to remote test environments. If the system is
started by vagrant locally you will need at least 12GB of RAM. In both scen-
arios 16 GB are recommended.

39CoreMedia DXP 8

Getting Started | Prerequisites

https://repository.coremedia.com
http://support.coremedia.com
http://support.coremedia.com
https://github.com/coremedia-contributions/dxp8-blueprint
https://github.com/coremedia-contributions/dxp8-blueprint/releases
http://documentation.coremedia.com/dxp8
http://releases.coremedia.com/dxp8
http://releases.coremedia.com/dxp8

➞ The operating system must provide adequate resources to the components.
At least 5000 processes and 25000 file handles should be available initially.
You should then monitor the system to tune these settings, because the
number and the types of deployed components vary greatly. In Unix envir-
onments the ulimit command can be used to configure resource limits for
individual users.

Table 3.1. Overview of
minimum/recommen-
ded RAM

RecommendedMinimumDevelopment Scenario

16GB8GBUsing Remote System

16GB12GBUsing CMS Components star-
ted in Vagrant

Required Software

➞ A supported Java SDK (see Supported Environments). The variable JAVA_HOME
must be set.

➞ A supported browser (see Supported Environments)

➞ Maven 3.3.3

➞ An IDE. CoreMedia suggests IntelliJ Idea because it has the best support for
CoreMedia Studio development.

➞ If you want to build the workspace with tests, you need a PhantomJS 2.1.1
installation on your computer that is added to your path.

➞ CoreMedia license files for starting the various Content Servers. If you do not
already have the files, request your licenses from the CoreMedia support.

Security-Enhanced Linux (SELinux)

By default, the preconfigured CoreMedia test system deployment does not
support SELinux. If you want to use SELinux, you have to adapt the setup on
your own as part of further hardening efforts for your production environment.

Developer Setup

In the developer setup, all components are running in VirtualBox, including the
required databases, but not the WCS.

CentOS / Redhat Enterprise Linux 6 only

40CoreMedia DXP 8

Getting Started | Prerequisites

https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
http://maven.apache.org
http://support.coremedia.com

The original vagrant based setup deployment approach is supported on CentOS
/ Redhat Enterprise Linux 6.7 only. Thus all related configuration files in the
Blueprint workspace are suitable for Apache 2.2 and SysV init by default.

Please refer to deployment/chef/README.md for more information regarding
the new flexible deployment approach supporting CentOS / Redhat Enterprise
Linux 7.2 as well (including Apache 2.4 and systemd init).

See also https://atlas.hashicorp.com/coremedia.

➞ VirtualBox 5.0.16

➞ Vagrant 1.8.1

➞ Chef Development Kit 0.12.0

The ChefDK is the easiest way to get started with Chef. It defines a common
workflow for cookbook development, including dedicated tooling like Kitchen
and Berkshelf.

$ chef -v
Chef Development Kit Version: 0.12.0
chef-client version: 12.8.1
berks version: 4.3.0
kitchen version: 1.6.0

Please note that the preconfigured Chef Client in our Vagrant test setup is
12.8.1.

A dedicated Chef Server 12.6.0 is recommended for production deployments.
Especially to handle sensitive secrets like database passwords, SSL certificates
or API tokens. Please refer to, for example, chef-vault as a solid option beyond
Encrypted Data Bags via a shared secret.

A dedicated private Chef Supermarket server 2.5.2 or higher is recommended
to improve your Chef Cookbook release process (optional).

Further installation and configuration requirements for Vagrant and VirtualBox
can be found in Section 3.3.4, “Configuring Vagrant Based Setup” [50].

Non-Virtualized Setup

In the non-virtualized setup, you have to install the required databases locally and
also start all CoreMedia components on your computer.

➞ A supported local database listening on the default port (see Supported En-
vironments).

➞ A local MongoDB database listening on the default port (see Supported En-
vironments).

41CoreMedia DXP 8

Getting Started | Prerequisites

https://atlas.hashicorp.com/coremedia
https://www.virtualbox.org/
http://www.vagrantup.com/
https://downloads.chef.io/chef-dk/
https://docs.chef.io/kitchen.html
https://docs.chef.io/berkshelf.html
https://docs.chef.io/client/
https://docs.chef.io/server/
https://docs.chef.io/chef_vault.html
https://docs.chef.io/data_bags.html
https://docs.chef.io/supermarket.html
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf

Additional Software for e-Commerce Blueprint only

➞
An IBM WebSphere Commerce 7.0 Feature Pack 7 / Fix Pack 9 system
with installed Interim Fixes (IFixes) for the following Authorized Program
Analysis Reports (APAR)
➞ JR55049.fp ("Cumulative Interim Fix for WebSphere Commerce

Version 7 Fix Pack 9")
➞ JR52306.fep (Mandatory cumulative interim fix for WebSphere

Commerce Version 7 Feature Pack 7")

➞
An IBM WebSphere Commerce 7.0 Feature Pack 8 / Fix Pack 9 system
with installed Interim Fixes (IFixes) for the following Authorized Program
Analysis Reports (APAR)
➞ JR56287.fp and JR56287.fep ("Cumulative Interim Fix for

WebSphere Commerce Version 7")
➞ JR56662 ("JR56217 regression issue")

➞ JR57043 ("BCS error due to token created for Store 0")

Additional Software

➞ A repository manager such as Nexus or JFrog Artifactory. For evaluation
purposes you can build the Blueprint workspace against the original reposit-
ories, but if you start your real project with multiple developers you will
need a repository manager.

For an overview of exact versions of the supported software environments please
refer to the Supported Environments document at CoreMedia Online Documenta-
tion.

Internet access

CoreMedia provides the CoreMedia Digital Experience Platform 8 components as
Maven artifacts. These components in turn depend on many third-party components.
If your operator has not yet set up and populated a local repository manager, you
need Internet access so that Maven can download the artifacts.

Maven and Internet access

The CoreMedia Blueprint workspace relies heavily on Maven as a build tool. That
is, Maven will download CoreMedia artifacts, third-party components and Maven
plugins from the private CoreMedia repository and other, public repositories.
This might interfere with your company's internet policy. Moreover, if a big
project accesses public repositories too frequently, the repository operator might

42CoreMedia DXP 8

Getting Started | Prerequisites

http://nexus.sonatype.org/downloads/
http://www.jfrog.com/
http://documentation.coremedia.com/dxp8
http://documentation.coremedia.com/dxp8

block your domain in order to prevent overload. The best way to circumvent
both problems is to use a repository manager like Sonatype Nexus, that decouples
the development computers from direct Internet access.

43CoreMedia DXP 8

Getting Started | Prerequisites

http://nexus.sonatype.org

3.3 Configuration of the CoreMedia Workspace
Before you can start with development, you have to do some configurations, in
part, depending on the Blueprint you want to work with.

➞ Remove the blueprints and modules that you do not want to use as described
in Section 3.3.1, “Removing Optional Components” [44] .

➞ Adapt your Maven settings to the required repositories as described in Sec-
tion 3.3.2, “Configuring Maven” [45].

➞ Adapt the workspace to your own project as described in Section 3.3.3,
“Configuring the Workspace” [46]. Configure, for example, groupId, version,
deployment repositories and CoreMedia licenses.

➞ If you want to develop with the virtualized server environment, which is the
recommended way, then you have to do some network configuration as
described in Section 3.3.4, “Configuring Vagrant Based Setup” [50].

➞ If you do not want to use the virtualized environment, then you have to do
some database configuration and host mapping as described in Section 3.3.5,
“Configuring Local Setup” [53].

3.3.1 Removing Optional Components
The CoreMedia Digital Experience Platform 8 workspace contains a complete Core-
Media system with all the core components and optional modules which have to
be licensed separately. See Section 2.1, “Components and Architecture” [21] for
an overview of all components. Before you start with development, remove all
modules that you do not need.

Table 3.2. Optional
modules and blue-
prints

RemovalDescriptionName

See Section “Removing the
Adaptive Personalization Exten-
sion” [149]

Module for the work with
personalized content and
personas.

CoreMedia Adaptive Personal-
ization

See Section “Removing the
Elastic Social Extension” [149]

Module for the work with ex-
ternal users and user gener-

CoreMedia Elastic Social

ated content, such as ratings
or comments.

See Section “Removing the
Advanced Asset Management
Extensions” [151]

Module for the work with as-
sets, such as images or docu-
ments.

Advanced Asset Management

See Section “Removing the e-
Commerce Blueprint” [150]

Blueprint for the integration
with an IBM WebSphere
Commerce system.

e-Commerce Blueprint

44CoreMedia DXP 8

Getting Started | Configuration of the CoreMedia Workspace

RemovalDescriptionName

See Section “Removing the
Brand Blueprint” [150]

Blueprint for a brand website
with responsive templates.

Brand Blueprint

3.3.2 Configuring Maven
CoreMedia strongly recommends to use a repository manager to mirror CoreMedia's
Maven repository, for example Sonatype Nexus. Alternatively, if a repository
manager is not available, configure your credentials for the CoreMedia Maven re-
positories in your ~/.m2/settings.xml file as shown below. Simply replace
USERNAME and PASSWORD with your CoreMedia user name and password. It is
strongly recommended, that you do not enter the password in plaintext in the
settings.xml file but encrypt the password. To do so, follow the instructions at
http://maven.apache.org/guides/mini/guide-encryption.html or any other available
Maven documentation.

<settings>
<mirrors>
<!--
| <mirror>
| <id>central-mirror</id>
| <mirrorOf>central</mirrorOf>
| <name>mirror of maven central</name>
| <url>http://my.repository.com/repo/path</url>
| </mirror>
| <mirror>
| <id>coremedia-releases-mirror</id>
| <mirrorOf>coremedia.external.releases</mirrorOf>
| <name>coremedia external releases mirror</name>
| <url>http://my.repository.com/repo/path</url>
| </mirror>
-->

</mirrors>

<servers>
<server>
<id>coremedia.external.releases</id>
<username>USERNAME</username>
<password>PASSWORD</password>

</server>
<server>
<id>coremedia.external.livecontext.releases</id>
<username>USERNAME</username>
<password>PASSWORD</password>

</server>
</servers>

<pluginGroups>
<pluginGroup>com.coremedia.maven</pluginGroup>
<pluginGroup>org.sonatype.plugins</pluginGroup>

</pluginGroups>
</settings>

45CoreMedia DXP 8

Getting Started | Configuring Maven

http://nexus.sonatype.org
http://maven.apache.org/guides/mini/guide-encryption.html

MAVEN_OPTS

Maven requires the following minimal memory settings:

MAVEN_OPTS=-Xmx2048m -XX:MaxPermSize=512m

The MaxPermSize JVM option is only required when using Java 7. Omit it when
using Java 8.

3.3.3 Configuring the Workspace
The Blueprint workspace comes ready to use. However, there are some environment
specific configurations to be adjusted at the very beginning of a project. You may
skip these steps only if you are just going to explore the workspace, you will neither
share your work with others nor release it, and you will start over from scratch
again with your actual project.

Changing the groupIds

The groupId of the CoreMedia Blueprint workspace is com.coremedia.blueprint.
While this works from the technical point of view, you have to change it to a project
specific groupId, because CoreMedia reserves the possibility to provide versioned
artifacts of this groupId.

Since the groupId is needed to denote the parent POM file, it cannot be inherited
but occurs in every pom.xml file. You can simply globally replace all occurrences
of <groupId>com.coremedia.blueprint</groupId> in Blueprint workspace
pom.xml files with your project groupId.

Selecting deployment repositories

Only the artifacts below the $CM8_BLUEPRINT_HOME/modules hierarchy will be
deployed to a Maven repository. See Section 4.2.1, “Performing a Release” [125]
for a deeper introduction in releasing and deploying artifacts.

To configure the repository URL to deploy the artifacts to, you need to adapt the
distributionManagement section of the root pom.xml and all BOM pom.xml files
of the extensions, for example:

➞ $CM8_BLUEPRINT_HOME/modules/extensions/alx/alx-bom/pom.xml

➞ $CM8_BLUEPRINT_HOME/modules/extensions/es/es-bom/pom.xml

➞ $CM8_BLUEPRINT_HOME/modules/extensions/es-p13n/es-p13n-
bom/pom.xml

➞ $CM8_BLUEPRINT_HOME/modules/extensions/*/*-bom/pom.xml

CoreMedia strongly advises you to use a repository manager.

46CoreMedia DXP 8

Getting Started | Configuring the Workspace

Using a Version Control System

The CoreMedia Blueprint workspace is developed and maintained in a Git repository,
therefore the root pom.xml contains references to a CoreMedia internal repository
in the scm tag. You need to replace this setting with your own source control URL
in order to perform a release. Please refer to existing Maven documentation for
details.

When you do not use a distributed VCS such as Git, for example Subversion, you
have to disable local checkout in the maven-release-plugin (see Release Plugin).
Open the root POM file of the workspace and set the localCheckout property
to "false".

Change line endings (optional)

The Blueprint workspace is delivered in UNIX format (line breaks). Depending on
your local setup it might be required to change the line endings to DOS format
(carriage return and line break).

Configuring the licenses

Currently, there are several ways to configure license files in the workspace required
for the Content Servers:

➞ Copy the license files to the server modules source tree.

➞ Provide license artifacts and use a license profile to add the license as a de-
pendency.

➞ Use one of the approaches above for development licenses and configure
an absolute path for deployment using either preconfiguration or post-con-
figuration filtering.

These approaches are described in the next sections. The license files are delivered
in a Zip file. Unpack the file to get three further Zip files. The name of the files
follows this scheme:

<Version>_CoreMedia_AG_<ServerType>_DATA_<UniqueCode>_license.zip

The server type abbreviation has the following meaning:

➞ CS: Content Management Server

➞ MLS: Master Live Server

➞ RLS: Replication Live Server

47CoreMedia DXP 8

Getting Started | Configuring the Workspace

http://maven.apache.org/maven-release/maven-release-plugin/perform-mojo.html

Copying license files to source tree

Copying the license files to your source tree is the simplest and most straightforward
approach. It can be achieved by simply copying the Zip files to the appropriate
locations and rename them to license.zip:

➞ Content Management Server license to modules/server/content-manage
ment-server-webapp/src/main/webapp/WEB-INF/properties/cor
em/license.zip.

➞ Master Live Server license to modules/server/master-live-server-
webapp/src/main/webapp/WEB-INF/properties/corem/li
cense.zip.

➞ Replication Live Server license to modules/server/replication-live-
server-webapp/src/main/webapp/WEB-INF/properties/corem/li
cense.zip.

Using a license profile

If you want to use the profile approach, you need a repository manager (see section
“Additional Software” [42]) for your project to provide the license artifacts via a
secured internal repository.

The license artifacts must be of type war and the license should be packaged at
WEB-INF/properties/corem/license.zip within the artifact. You should
deploy the artifact with a custom groupId and custom release version (not a
snapshot version) and should not use the values predefined in the workspace. The
classifiers production, publication and replication refer to the type of the
license and you can either keep it this way or use different GAV (GroupId, ArtifactId,
Version) coordinates to distinguish the license type.

The default workspace profiles internal-licenses are defined in the files:

➞ modules/server/content-management-server-webapp/pom.xml

➞ modules/server/master-live-server-webapp/pom.xml

➞ modules/server/replication-live-server-webapp/pom.xml

and look like the following snippet:

<profile>
<id>internal-licenses</id>
<dependencies>
<dependency>
<groupId>YOUR PROJECTS GROUP ID</groupId>
<artifactId>development-license</artifactId>
<version>A RELEASE VERSION</version>
<type>war</type>
<classifier>production</classifier>
<scope>runtime</scope>

</dependency>

48CoreMedia DXP 8

Getting Started | Configuring the Workspace

</dependencies>
</profile>

The profile approach has the advantage that you can define two profile types, one
for development licenses and one for production licenses, if you want to deploy
the license together with the artifact.

Configuring licenses for deployment

You can use different approaches for providing development and production li-
censes. It would be sensible, for instance to provide your production license files
only as file system resources on production servers while you still provide develop-
ment licenses with both approaches described before.

For production licenses as file system resources, you can configure the license
location using one of the filtering approaches described in Section 4.3.9, “Configure
Filtering in the Workspace” [171].

Using the preconfiguration approach, you need to configure CMS_LICENSE,
MLS_LICENSE and RLS_LICENSE in the packages/src/main/filters/pre
configure.properties

Using the post-configuration approach, you need to configure the properties in
the files on the target machine, for instance

➞ configure.CMS_LICENSE in the /etc/coremedia/cm7-cms-tom
cat.properties

➞ configure.MLS_LICENSE in the /etc/coremedia/cm7-mls-tom
cat.properties

➞ configure.RLS_LICENSE in the /etc/coremedia/cm7-rls-tom
cat.properties

Chef configuration

To configure the license locations for the Chef provisioning run, you need to override
the default attribute. For a chef only setup, this can be done in the role executing
the server recipe, for example in the file boxes/chef/vagrant-chef-
repo/roles/management.rb you need to add an entry to the override_at
tributes map :

"override_attributes" => {
"coremedia" => {
"configuration" => {
"configure.CMS_LICENSE" => "/opt/coremedia/cms-license.zip"

}
}

}

For development purposes with Vagrant, you can provide the license via one of
the shared folders for example boxes/target/rpm-repo and set the configura-

49CoreMedia DXP 8

Getting Started | Configuring the Workspace

tion attribute in the chef.json hash in the Vagrantfile. Simply apply to it the
same coremedia hash shown in the listing above.

3.3.4 Configuring Vagrant Based Setup
To install Vagrant and VirtualBox, download the installers with the versions de-
scribed in section “Developer Setup” [40]. Afterwards install VirtualBox first and
then Vagrant.

Make sure that a HOME environment variable is pointing to your users home
directory and that the path to Virtualbox is in your PATH variable.

Vagrant Plugins

By default, the CoreMedia configuration depends on the following plugins that
you have to install:

➞ The vagrant-omnibus plugin will install the specified Chef Client version. The
plugins documentation can be found here.

➞ The vagrant-ohai plugin will install ohai and set node[ipaddress] to the
IP of the correct network adapter, that is 192.168.252.100. The plugins
documentation can be found here.

➞ The nugrant plugin provides simple configuration overrides on machine,
user or project level. The plugins documentation can be found here.

➞ The vagrant-berkshelf plugin provides dependency management for cook-
books. Like with Maven, cookbook dependencies are being resolved and
downloaded from a central repository. For further details visit the official
Berkshelf documentation here. The plugins documentation can be found
here. In general, please make sure that the Berkshelf version shipped with
your Chef Development Kit installation is supported (refer to known issues
and related workarounds at https://github.com/berkshelf/vagrant-
berkshelf/issues before contacting CoreMedia Support).

To install the Vagrant plugins, simply call vagrant plugin install PLUGIN-
NAME. For example, to prepare your virtualized environment, you need to run the
following command:

vagrant plugin install vagrant-omnibus --plugin-version "= 1.4.1"

Please refer to the Vagrantfile for the required plugin versions.

More pluginsTo further improve your development experience with Vagrant, you can choose
from the many vagrant plugins, available in the Vagrant ecosystem.

50CoreMedia DXP 8

Getting Started | Configuring Vagrant Based Setup

https://www.virtualbox.org/
https://www.vagrantup.com/
https://github.com/opscode/vagrant-omnibus
https://github.com/avishai-ish-shalom/vagrant-ohai
https://github.com/maoueh/nugrant
http://berkshelf.com/
https://github.com/berkshelf/vagrant-berkshelf
https://github.com/berkshelf/vagrant-berkshelf/issues
https://github.com/berkshelf/vagrant-berkshelf/issues

A list of some of the most popular plugins is maintained here. To reduce the turn-
around time for provisioning, CoreMedia recommends one of the plugins to manage
snapshots, that is, the sahara or the vagrant-vbox-snapshot plugin. With snapshot
capabilities, you can reset to the last working state of a complete setup within
seconds and rerun the provisioning step.

Networking

The virtual box configured with the Vagrantfile from this workspace is connected
by a VirtualBox host-only adapter with the IP 192.168.252.1 and the subnet
255.255.255.0. The box itself has the IP address 192.168.252.100.

Windows and VirtualBox have issues with the creation and removal of host-only
adapters. Under some circumstances, Windows tends to ignore the IP/Subnet
configuration, given to the adapter. When that happens, Windows gives the ad-
apter an APIPA (Automatic Private IP Address) address of the form 169.254.x.x
with the subnet 255.255.0.0. This makes any box unreachable from your host
machine.

To workaround this issue, you need to create a correct adapter only once and
prevent Vagrant from destroying and recreating it all the time which might cause
possible errors. To achieve that, create a virtual box definition, and register it
with the correct adapter. Vagrant will then skip the removal of that adapter and
the recreation of a new one. As a nice side effect, you won't need to click away
the UAC pop-ups and do not need administrator rights anymore. The box itself
neither requires any additional hard disk space, RAM or OS nor will it ever be
started, it just blocks the adapter.

Host Mappings

Host mappings are required to use CoreMedia Elastic Social. The CoreMedia docu-
mentation provides further information about concepts and technologies of Elastic
Social. CoreMedia Elastic Social's multi-tenancy concept is bound to the domain of
the particular application.

By default, the Vagrant setup uses XIP IO, a free generic DNS service, provided by
37Signals, the founders of Ruby on Rails. By encoding the IP of the box within the
URLs, XIP IO maps every request to the encoded IP, relieving you from modifying
your etc/host mapping. When you start the box with vagrant up, you will get
a list of all the URIs. The format is:

<name>.192.168.252.100.xip.io

for example

corporate.19.168.252.100.xip.io for the Live CAE with the
corporate site

51CoreMedia DXP 8

Getting Started | Configuring Vagrant Based Setup

https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins
http://www.xip.io

If you don't want to use XIP IO, you need to adapt the configuration in the Vagrant
file and add IP mappings to fake the two domains corporate and helios:

➞ On Linux add them to /etc/hosts.

➞ On Windows add them to C:\Windows\System32\drivers\etc\hosts.

Example 3.1. host
entries192.168.252.100 blueprint-box

192.168.252.100 studio-helios.blueprint-box
192.168.252.100 studio-corporate.blueprint-box
192.168.252.100 preview-helios.blueprint-box
192.168.252.100 preview-corporate.blueprint-box
192.168.252.100 editor.blueprint-box
192.168.252.100 webdav.blueprint-box
192.168.252.100 helios.blueprint-box corporate.blueprint-box
192.168.252.100 shop-helios.blueprint-box
192.168.252.100 shop-preview-helios.blueprint-box
192.168.252.100 shop-preview-production-helios.blueprint.box

Proxy Settings

When you are working behind a proxy you need to configure it for your virtualized
environments. This is necessary, because Chef and Yum need to access artifacts
from remote locations such as RPMs in case of Yum and Gems in case of Chef.

Proxy Setup with Vagrant and Chef

To set up the proxy for the virtualized Vagrant environment, you need to configure
the proxy URL and optionally its authentication credentials in the Vagrantfile
or in one of the override locations provided by the nugrant plugin.

To configure the proxy settings in the Vagrantfile, you need to adapt the proxy
properties of the config.user.defaults hash. To configure a proxy externally,
that is on a user-based level, you need to add a ~/.vagrantuser file and add the
following content:

proxy:
url: "http://myproxy"
username: "my username"
password: "mypassword"

Proxy Setup with Chef only

When you trigger the provisioning with Chef, either using chef-solo or a chef-
client together with Chef Server, you need to configure your proxy settings sep-
arately for Chef and Yum.

For the Yum proxy settings you need to configure the proxy attributes of the yum
cookbook. The documentation of the cookbook can be found in the
boxes/chef/chef-repo/cookbooks/yum/README.md. You can configure the

52CoreMedia DXP 8

Getting Started | Configuring Vagrant Based Setup

proxy settings either in a recipe, a role or as recommended in an environment.
In case you are using chef-solo you can use the node.json file.

To configure the proxy for Chef itself, you need to configure the proxy properties
in the corresponding Chef configuration files. For chef-solo, this would be the
solo.rb file and for a chef-client the client.rb. The properties you need
to configure are:

➞ http_proxy

➞ https_proxy

➞ http_proxy_user

➞ http_proxy_pass

For a complete reference, visit the official Chef Documentation.

3.3.5 Configuring Local Setup

Database Setup

If you don't want to use the virtualized setup, you need to create different databases
and users used by the various CoreMedia CMS components (see Section 3.2, “Pre-
requisites” [39]). At the root level of the Blueprint workspace you will find SQL
scripts for creating and dropping all database entities needed for the relational
database. A default MongoDB installation requires no further configuration, because
the CoreMedia components connect through the default port with no user creden-
tials, by default. If required, see Section 4.5, “Collaborative Components” in Core-
Media Operations Basics for more MongoDB configuration.

The scripts are suitable for a local MySQL instance in a developer environment.
You can easily adapt them for other databases or remote users. There are also Bash
scripts and Windows batch files to apply the SQL scripts. If the MySQL server is
running and the mysql command line client is executable via the PATH variable,
you only need to execute the following in order to prepare the databases for
CoreMedia DXP 8.

Windows:

> cd $CM_BLUEPRINT_HOME\workspace-configuration\database\mysql\
createDB.bat

Linux:

$ cd $CM_BLUEPRINT_HOME/workspace-configuration/database/mysql
./createDB.sh

53CoreMedia DXP 8

Getting Started | Configuring Local Setup

https://docs.chef.io/config.html
operation-basics-en.pdf#CollaborativeComponents

The command was successful if the following databases have been created:
Table 3.3. Database
SettingsDescriptionPasswordUserDatabase

Database for the Content Manage-
ment Server

cm7manage-
ment

cm7manage-
ment

cm7manage-
ment

Database for the Master Live Servercm7mastercm7mastercm7master

Database for the Replication Live
Server

cm7replicationcm7replicationcm7replication

Database for the CAE Feeder connec-
ted to the Content Management
Server

cm7mcaefeedercm7mcaefeedercm7mcaefeeder

Database for the CAE Feeder connec-
ted to the Master Live Server

cm7caefeedercm7caefeedercm7caefeeder

Host Mappings

In order to run Blueprint locally, you have to add the following mappings to the
etc/hosts file:

127.0.0.1 studio-helios.localhost
127.0.0.1 preview-helios.localhost
127.0.0.1 helios.localhost
127.0.0.1 studio.corporate.localhost
127.0.0.1 preview.corporate.localhost
127.0.0.1 corporate.localhost
127.0.0.1 editor.localhost
127.0.0.1 shop-preview-helios.localhost
127.0.0.1 shop-helios.localhost
127.0.0.1 shop-preview-production-helios.localhost

3.3.6 In-Memory Replacement for MongoDB-Based
Services
Several CoreMedia core features like CapLists, notifications and projects/to-dos use
MongoDB as a persistence layer. Although not recommended it is possible to sub-
stitute MongoDB with an in-memory persistence layer.

There is no in-memory replacement for the persistence layer of the Elastic Social
extension. MongoDB is required for that.

Besides not supporting Elastic Social there are other functional limitations to the
in-memory approach. Collaboration based on projects/to-dos will not work
properly with more than one Studio server.

54CoreMedia DXP 8

Getting Started | In-Memory Replacement for MongoDB-Based Services

In order to activate the in-memory persistence for Studio and the Workflow
server, update Blueprint extensions, using the Maven profile controlroom-
memory. It will add all necessary Maven dependencies to Studio and Workflow
Server, in order to persist Control Room data in-memory. For more information
how to update Blueprint extensions, see Section “Adding, Disabling or Removing
an Extension” [147]

mvn com.coremedia.maven:\
coremedia-blueprint-maven-plugin:\
update-extensions -Pcontrolroom-memory

In-Memory configuration for the Studio

You need to configure the Studio not only to use the in-memory persistence layer
but also to be the only User Changes web application.

The following Maven dependencies have to be available in the studio-webapp
module.

<dependency>
<groupId>com.coremedia.ui</groupId>
<artifactId>collaboration-memory-rest-component</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>controlroom-memory-plugin</artifactId>
<version>${project.version}</version>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-client-list-memory</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>notification-elastic</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>project-elastic</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.ui.collaboration</groupId>
<artifactId>user-changes-component</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.ui.collaboration</groupId>
<artifactId>workflow-notifications-component</artifactId>
<scope>runtime</scope>

</dependency>

55CoreMedia DXP 8

Getting Started | In-Memory Replacement for MongoDB-Based Services

Add the following property to Studio's application.properties.

models.createIndexes=false

Add the following customizer to the beans section of the application.xml of
the studio-webapp module.

<customize:append id="uapiMemoryCapListConnector"
bean="connectionParameters">
<map>
<entry key="usecaplist" value="true"/>
<entry key="caplist"

value="com.coremedia.cotopaxi.list.memory.MemoryCapListConnectorFactory"/>

</map>
</customize:append>

Also, configure your Studio server with the following properties, so that the in-
memory store is read / written from the given file upon application context startup
/ shutdown of Studio. To limit memory usage of the in-memory store, the size per
collection map is configured. To be robust against data loss, the in-memory store
can be persisted periodically in a given interval.

Table 3.4. Studio Con-
figuration Properties
for In-Memory Store

DescriptionDefaultProperty

In-memory store persistence file name.nullmemory.collection.serializa-
tion.file

Number of in-memory map entries per collec-
tion.

5000memory.collection.size

Interval in ms in which the in-memory store
is persisted periodically to the configured file.
If 0, periodic persistence is disabled.

360000memory.collection.serializa-
tion.interval

A comma separated list of collection names,
which will be periodically deleted and re-cre-

notificationsmemory.collection.selfclear-
ing.names

ated, when memory.collection.size is reached.
Fast growing collections, which do not contain
critical data should be configured as self-
clearing collections, e.g. notifications.

In-Memory configuration for the Workflow Server

In the in-memory deployment after starting and finishing workflows, the Workflow
Server sends the collected data for pending and finished processes to the Studio
server, where it is persisted in Studio's in-memory persistence layer. In order to
connect to Studio, the Workflow Server needs an authorized user. Therefore, configure
the Workflow Server to use the following properties. Additionally, disable CapLists
for the Workflow Server.

56CoreMedia DXP 8

Getting Started | In-Memory Replacement for MongoDB-Based Services

studio.url=http://<host>:<port>/<context>
studio.user=<username>
studio.password=<userpassword>

workflow.usecaplist=false

You also have to exclude all Elastic dependencies from the Workflow Server, in order
to prevent that MongoDB is used and not available. The following dependency has
to be available in the Workflow Server web application.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-workflow-archive-memory</artifactId>
<scope>runtime</scope>

</dependency>

57CoreMedia DXP 8

Getting Started | In-Memory Replacement for MongoDB-Based Services

3.4 Customizing IBM WebSphere Commerce

Only required when you want to use the e-Commerce Blueprint

This section describes how you have to adapt your IBM Rational Application De-
veloper (RAD) environment in order to integrate with CoreMedia Digital Experience
Platform 8.

In general, certain configuration files need to be adapted in the IBM WebSphere
Commerce workspace. Depending on your degree of already applied customization,
you might need to merge the provided configuration snippets with your custom
code.

This chapter also contains small configurations in the CoreMedia system. These
tasks are highlighted in the margin.

Deployment to IBM WebSphere Commerce servers, including Staging, Production
and Development, is not part of this manual. Please refer to appropriate IBM
documentation in the info center at http://pic.dhe.ibm.com/infocen-
ter/wchelp/v7r0m0/index.jsp

The configuration should be performed by an experienced RAD developer.

Scope of delivery

In order to connect CoreMedia DXP 8 with your IBM WebSphere Commerce server
you will get the following artifacts from CoreMedia:

➞ The CoreMedia LiveContext 2.0 WebSphere Commerce Project Workspace archive
(Workspace archive, for short). It contains the required resources to customize
the IBM WebSphere Commerce Server and JAR files with extensions for
CoreMedia DXP 8 to be added to the classpath of your IBM WebSphere
Commerce workspace and deployment packages. These files include the
configuration described in the following chapters.

➞ The CoreMedia LiveContext 2.0 WebSphere Commerce Project Sample Data
archive (Sample Data archive, for short). The archive contains sample data
for the WCS system, which corresponds with the test data for the CoreMedia
system in CoreMedia Blueprint.

You will find both files on the CoreMedia releases download page at http://re-
leases.coremedia.com/dxp8

Installation stepsThe customization involves the following aspects:

58CoreMedia DXP 8

Getting Started | Customizing IBM WebSphere Commerce

http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/index.jsp
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/index.jsp
http://releases.coremedia.com/dxp8
http://releases.coremedia.com/dxp8

1. Section 3.4.1, “Preparing the RAD Workspace” [60] describes how to apply the
required customization to your IBM WebSphere Commerce workspace

2. Section 3.4.2, “Copy Libraries” [60] describes how to copy required libraries
into the WCS.

3. Section 3.4.3, “Configuring the Search” [60] describes how you have to extend
the IBM search profile and the Solr index. This enables the CoreMedia system
to get additional information necessary for the integration.

4. Section 3.4.4, “Extending REST Resources to BOD Mapping” [65] describes how
you have to configure the mapping of REST resources to the Business Object
Document nouns.

5. Section 3.4.5, “Configuring the Cookie Domain” [65] describes how you enable
session synchronization between the CoreMedia and IBM system for content-
led scenario.

6. Section 3.4.6, “Multiple Logon for the Same User” [66] describes how you
configure the IBM WCS system to accept multiple logins with the same user.

7. Section 3.4.7, “Configuring REST Handlers” [67] describes which REST handlers
you have to add and configure.

8. Section 3.4.8, “Applying Changes to the Management Center” [68] describes
the deployment of the Management Center customization.

9. Section 3.4.9, “Deploying the CoreMedia Fragment Connector” [68] describes
the deployment of the fragment connector, which renders content from Core-
Media DXP 8 as fragments to IBM WebSphere Commerce pages.

10. Section 3.4.10, “Customizing IBM WebSphere Commerce JSPs” [72] describes
how to apply customizations to IBM WebSphere Commerce JSPs.

11. Section 3.4.11, “Deploying the CoreMedia Widgets” [73] describes the deploy-
ment of the CoreMedia widgets, which can be used to add content or assets
from CoreMedia DXP 8 to IBM WebSphere Commerce pages using the fragment
connector.

12. Section 3.4.12, “Setting up SEO URLs for CoreMedia Pages” [77] describes how
to set up SEO URLs for CoreMedia Pages.

13. Section 3.4.13, “Event-based Commerce Cache Invalidation” [78] describes
how to enable event based commerce cache invalidation.

14. Section 3.4.14, “Deploying the CoreMedia Catalog Data” [79] describes how to
import the CoreMedia catalog content from the Sample archive into the WCS.

In the following sections WCDE-INSTALL stands for the installation directory of
your IBM WebSphere Commerce RAD installation.

59CoreMedia DXP 8

Getting Started | Customizing IBM WebSphere Commerce

3.4.1 Preparing the RAD Workspace
REST modulesCoreMedia Digital Experience Platform 8 integrates with IBM WCS using the Web-

Sphere Commerce REST API, therefore you have to deploy/enable all the REST
modules in the WCS workspace for CoreMedia DXP 8 to function properly. These
modules include: Rest and Search-Rest modules.

Content of the ZIP fileThe CoreMedia LiveContext 2.0 WebSphere Commerce Project Workspace archive
(download at http://releases.coremedia.com/dxp8 contains all new and extended
files required to install CoreMedia DXP 8 in the IBM WebSphere Commerce RAD
workspace. In principle, you can copy the workspace on top of a fresh Aurora RAD
workspace, but only when you do not already have customizations. Make sure you
download the Zip archive that matches your WebSphere Commerce version.

If you have already customized the Aurora RAD workspace, you cannot copy the
CoreMedia Zip content above it, because this would overwrite the former
changes. In this case, unzip the file and add and merge the files manually as
described in the subsequent sections.

3.4.2 Copy Libraries
Copy the content of the workspace/WC/lib/ folder of the CoreMedia LiveContext
2.0 WebSphere Commerce Project Workspace archive file into the IBM RAD workspace
folder workspace/WC/lib/

Make sure that the following files from the CoreMedia workspace archive are in
the corresponding locations of the WCS workspace:

➞ workspace/Stores/WebContent/WEB-INF/lib/coremedia-livecon
text-wcs-<version>.jar

➞ workspace/Rest/WebContent/WEB-INF/lib/coremedia-livecon
text-wcs-<version>.jar

➞ workspace/Search-Rest/WebContent/WEB-INF/lib/coremedia-
livecontext-wcs-<version>.jar

3.4.3 Configuring the Search
WebSphere Commerce search provides enhanced search functionality to a store
and also influences the search results by using search term association and search-
based merchandising rules. In this section you will adapt WebSphere Commerce
search to allow CoreMedia DXP 8 to leverage these search features. This includes
browsing and searching of all catalog assets in CoreMedia Studio which is the edit-
orial interface of CoreMedia DXP 8. The configuration consists of two tasks:

60CoreMedia DXP 8

Getting Started | Preparing the RAD Workspace

http://releases.coremedia.com/dxp8

1. Extend the search profiles

2. Add a new field to the Solr index

Extending Search Profiles

In WebSphere Commerce Search, search profiles (defined in the wc-search.xml
configuration file) are used to control the storefront search experience at a page
level by grouping sets of search runtime parameters. The search runtime parameters
set needs to be extended to support the feature set introduced by CoreMedia DXP 8.

Additional information
for LiveContext

CoreMedia DXP 8 requires additional information like SEO identifier or pricing which
the WebSphere Commerce REST API does not provide by default. Providing this
information via REST API is achieved by extending the wc-search.xml configur-
ation file to include the new search profiles definition that extends the existing
profiles.

To change/add the value of an existing property in the WebSphere Commerce
search configuration file, you have to create a customized version of this file con-
taining only the changed properties. Follow the steps below to extend the search
profiles:

1. Add search profiles:

Open the file WCDE-INSTALL/workspace/Search/xml/con
fig/com.ibm.commerce.catalog-ext/wc-search.xml in the CoreMedia
LiveContext 2.0 WebSphere Commerce Project Workspace and copy all the con
fig:profile definitions with a name starting with CoreMedia to the corres-
ponding file in your WCS RAD workspace.

2. You have to extend the existing REST API search handlers to provide the addi-
tional information now exposed by the search profiles.

Change the search profile for existing search based REST handlers by creating/up-
dating the fileWCDE-INSTALL/workspace/Search-Rest/WebContent/WEB-
INF/config/com.ibm.commerce.rest-ext/wc-rest-resourcecon
fig.xml with the corresponding changes from the CoreMedia LiveContext 2.0
WebSphere Commerce Project Workspace archive.

Enabling Dynamic Pricing

Dynamic Pricing supports different prices for different B2B contracts. By default,
the feature is disabled.

You activate dynamic pricing by an update of the STORECONF table. Set the
wc.search.priceMode property in the STORECONF table to value "2". See also
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.com-
merce.developer.doc/tasks/tsdsearchstoreconf.htm?lang=en

61CoreMedia DXP 8

Getting Started | Configuring the Search

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/tasks/tsdsearchstoreconf.htm?lang=en
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/tasks/tsdsearchstoreconf.htm?lang=en
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/tasks/tsdsearchstoreconf.htm?lang=en

Customizing the IBM WCS Solr Index

CoreMedia DXP 8 comes with Solr schema customizations to be applied to the IBM
WCS Solr schema definition.

The schema customization can be found in the WCS RAD workspace zip file below
WCDE-ZIP/components/foundation/subcomponents/search/solr/cm-
schema-customizations/CatalogEntry/schema.xml and WCDE-ZIP/com
ponents/foundation/subcomponents/search/solr/cm-schema-custom
izations/CatalogGroup/schema.xml.

Add the additional fields and fieldTypes to the corresponding schema.xml files
below WCDE-INSTALL\components\foundation\subcompon
ents\search\solr\home\template\andWCDE-INSTALL\components\found
ation\subcomponents\search\solr\home\template-update\ (if existing)
to your CoreMedia LiveContext 2.0 WebSphere Commerce Project Workspace.

The file WCDE-ZIP/components/foundation/subcompon
ents/search/solr/cm-schema-customizations/merge.xsl can be used
to add the CoreMedia Solr customization to your existing Solr schema files in your
WCS deployment automation.

Read Section “Adding New PARENT_PARTNUMBER Field to the Solr Index” [62]
and Section “Adding New CM_SEO_TOKEN Field to the Solr Index ” [63] to learn
more about the specific fields in detail.

Adding New PARENT_PARTNUMBER Field to the Solr Index

Searching IBM WCS catalog assets in CoreMedia Studio is part of the seamless integ-
ration experience that CoreMedia DXP 8 brings to the table. Almost all the catalog
assets are searchable in CoreMedia DXP 8 without any need of customization except
for the catalog product asset which acts as a template for a group of items (or
SKUs) that exhibit the same attributes.

This needs an extra property to explicitly define the hierarchical relationship
between the product and its variants in order to make the variants also searchable
in Studio. This subsection describes all the steps required to introduce the custom
CoreMedia Digital Experience Platform 8 parent part number field which establishes
the relationship between product and variant in WebSphere Commerce.

1. Preprocessing data involves querying WebSphere commerce tables and creating
a set of temporary tables to hold the data. The file WCDE-INSTALL\compon
ents\foundation\samples\dataimport\catalog\oracle\wc-
dataimport-preprocess-parent-partnumber.xml in the CoreMedia
LiveContext 2.0 WebSphere Commerce Project Workspace defines a custom
preprocessing task for this. The file contains the new temporary table definition,
database schema metadata, and a reference to the Java class used in the pre-
processing steps for an Oracle database.

62CoreMedia DXP 8

Getting Started | Configuring the Search

Simply copy the file to the corresponding location in your IBM WCS RAD system.
The workspace contains files for other databases which you can use similarly.

2. Add the following new field to the Solr schema in the file WCDE-INSTALL\com
ponents\foundation\subcomponents\search\solr\home\tem
plate\CatalogEntry\conf\locale\en_US\schema.xml and in the cor-
responding files for other languages:

Example 3.2. New Solr
field<field name="parent_partNumber_ntk"

type="wc_keywordTextLowerCase" indexed="true"
stored="true" multiValued="false"/>

3. Now, you have to configure data extraction from the relational table. The Data
extraction is handled by the data import handler, containing configuration files
with predefined SQL query lines that extract WebSphere Commerce data. You
have to extend the extraction scope by including parent part number into the
SQL statements.

In the file WCDE-INSTALL\components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\database\or
acle\wc-data-config.xml (and corresponding files for other databases)
you have to adapt some lines. To do so, proceed as follows:

a. Open the file components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\data
base\oracle\wc-data-config.xml in the CoreMedia LiveContext 2.0
WebSphere Commerce Project Workspace.

b. In the file, search for all entries that contain the string TI_PARENTCHILDCAT-
ENTRY. Copy these lines to the corresponding positions in the wc-data-
config.xml file of your WCS RAD workspace.

c. In the file, search for comments that contain the string CoreMedia and copy
the lines surrounded by these comments to the corresponding positions in
the wc-data-config.xml file of your WCS RAD workspace.

4. Rebuild the index as described in the IBM documentation at ht-
tp://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.de-
veloper.doc/concepts/csdmanagesearchpopbuild.htm

WebSphere Commerce search contains a scheduler job (UpdateSearchIndex) to
synchronice the catalog changes with the search indes. The default update interval
is 5 minutes. You can change this default value according to your needs in the
WebSphere Commerce Administration Console.

Adding New CM_SEO_TOKEN Field to the Solr Index

Per default IBM behaviour, you cannot distinguish the SEO keyword overridden
by a store. If you have overridden the SEO keyword in the store, then you will get

63CoreMedia DXP 8

Getting Started | Configuring the Search

http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.htm

multiple SEO keywords in the response, without knowing which SEO keyword be-
longs to which store. To be able to distinguish the SEO keyword you need to extend
the Solr field by adding the custom CM_SEO_TOKEN field in the Solr index. This
custom CM_SEO_TOKEN field concatenates the store ID and the SEO keyword.

1. Add a preprocessing file for CM_SEO_TOKEN field. The file WCDE-INSTALL\com
ponents\foundation\samples\dataimport\catalog\oracle\wc-
dataimport-preprocess-cm-seo-token.xml in the CoreMedia LiveCon-
text 2.0 WebSphere Commerce Project Workspace defines a custom prepro-
cessing task for this. The file contains the new temporary table definition,
database schema metadata and a reference to the Java class used in the prepro-
cessing steps for an Oracle database.

Copy the file to the corresponding location in your IBM WCS RAD system. The
workspace contains files for other databases which you can use similarly.

2. Add a new field to the Solr schema for the CatalogEntry and for the CatalogGroup
as shown in WCDE-INSTALL\components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\loc
ale\en_US\schema.xml and in the corresponding files for other languages:

Example 3.3. New
CM_SEO_TOKEN Solr
field

<field name="cm_seo_token_ntk" type="wc_cmKeywordTextLowerCase"
indexed="true" stored="true" multiValued="false" />

3. Configure data extraction from the relational table. Data extraction is handled
by the data import handler, containing configuration files with predefined SQL
query lines that extract WebSphere Commerce data. You have to extend the
extraction scope by including CM_SEO_TOKEN into the SQL statements.

In the file WCDE-INSTALL\components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\database\or
acle\wc-data-config.xml (and corresponding files for other databases)
you have to adapt some lines. To do so, proceed as follows:

a. Open the file components\foundation\subcompon
ents\search\solr\home\template\CatalogEntry\conf\data
base\oracle\wc-data-config.xml in the CoreMedia LiveContext 2.0
WebSphere Commerce Project Workspace.

b. In the file, search for all entries that contain the string TI_CM_SEOURL. Copy
these lines to the corresponding positions in the wc-data-config.xml file
of your WCS RAD workspace.

c. In the file, search for comments that contain the string CoreMedia and copy
the lines surrounded by these comments to the corresponding positions in
the wc-data-config.xml file of your WCS RAD workspace.

64CoreMedia DXP 8

Getting Started | Configuring the Search

4. Rebuild the index as described in the IBM documentation at ht-
tp://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.de-
veloper.doc/concepts/csdmanagesearchpopbuild.htm

WebSphere Commerce search contains a scheduler job (UpdateSearchIndex) that
synchronizes catalog changes with the search index. The default update interval
is 5 minutes. You can change the default value in the WebSphere Commerce Ad-
ministration Console.

3.4.4 Extending REST Resources to BOD Mapping

The BOD Mapping only needs to be extended if you do not make use of the
search based REST handlers. Per default search based REST handlers are active
and there is no need to apply the following.

In order to retrieve more detailed information from the REST handlers, the mapping
of the REST resources to the Business Object Document (BOD) nouns has to be
extended.

1. To retrieve the SEO identifier of a product, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/bodMapping-
ext/rest-productview-clientobjects.xml accordingly to the CoreMedia
LiveContext 2.0 WebSphere Commerce Project Workspace archive.

2. To retrieve the SEO identifier of a category, create and edit the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/bodMapping-
ext/rest-categoryview-clientobjects.xml accordingly to the CoreMedia
LiveContext 2.0 WebSphere Commerce Project Workspace archive.

3.4.5 Configuring the Cookie Domain

This is only necessary in the content-led scenario or when you use AJAX calls
(for Elastic Social, for example) in the commerce-led scenario.

Since the CAE must know about generated commerce cookies and vice versa, it is
necessary to configure specific cookie domains for both, the CAE and the commerce
system, so that cookies are exposed to both systems.

The CoreMedia system must be hosted on servers belonging to the same domain.
Example: If the domain given here is .xyz.com, then the CoreMedia CAE must be
accessed from the WCS via a (logical) server name servername.xyz.com.

In order to enable session synchronization between the CoreMedia and IBM system
do the following steps:

65CoreMedia DXP 8

Getting Started | Extending REST Resources to BOD Mapping

http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.htm
http://pic.dhe.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerce.developer.doc/concepts/csdmanagesearchpopbuild.htm

1. Enable the com.coremedia.livecontext.hybrid.CookieLevelerwithin
the web.xml of your commerce store front(WCDE-INSTALL/work
space/Stores/WebContent/WEB-INF/web.xml) and preview(WCDE-IN
STALL/workspace/Preview/WebContent/WEB-INF/web.xml) webapp.
Put its filter mapping in front of all other filter mappings and set the cookie
domain to the shared domain of your CAE and WCS.

<filter>
<filter-name>Cookie Leveler</filter-name>

<filter-class>com.coremedia.livecontext.hybrid.CookieLeveler</filter-class>
</filter>
<filter-mapping>
<filter-name>Cookie Leveler</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<context-param>

<param-name>com.coremedia.fragmentConnector.cookieDomain</param-name>

<param-value>.blueprint-box.vagrant</param-value>
</context-param>

2. If you want to rewrite additional cookies of your own commerce customizations,
you can configure a list of all cookies to be rewritten via a comma separated
list.

<filter>
<filter-name>Cookie Leveler</filter-name>

<filter-class>com.coremedia.livecontext.hybrid.CookieLeveler</filter-class>

<init-param>
<param-name>cookieFilter</param-name>
<param-value>WC_,WCP_,myCustomCookie</param-value>

</init-param>
</filter>

Per default commerce cookies starting WC_ and WCP_ are mapped.

3. Set the cookie domain for the JSESSION cookie on the commerce server, for
example via the IBM console.

Configure in the
CoreMedia system

For the CAE the cookie domain is configurable in the Tomcat configuration file
context.xml. The cookie domain can be set here by setting the attribute ses-
sionCookieDomain for the Context element. The cookie domain must be con-
figured with a leading "." so that the CAE session cookie is readable from commerce
system that run with the same subdomain, for example .myDomain.com.

3.4.6 Multiple Logon for the Same User
Since all CAE and Studio instances must authenticate against IBM WebSphere Com-
merce Server for protected REST requests, and by default all instances use the same
technical username, it is required to configure your IBM WebSphere Commerce

66CoreMedia DXP 8

Getting Started | Multiple Logon for the Same User

Server to allow multiple logins per user at the same time using the AllowMultipleL
ogonForSameUser property.

Otherwise, multiple clients (CAE and Studio, for instance) will terminate each
others session and need to re-login frequently, causing long delays on the REST
communication layer.

Please refer to IBM Knowledge Center for details on how to set the AllowMul
tipleLogonForSameUser property.

3.4.7 Configuring REST Handlers
CoreMedia DXP 8 requires additional REST handlers and some configuration of ex-
isting handlers.

Adding New REST Handlers

CoreMedia LiveContext API comes with additional REST handlers in order to make
more data accessible and to provide additional data processing capabilities. The
handler classes reside in the WebSphereCommerceServerExtensionsLogic
module.

You have to add the following handlers:

LanguageMapHandler The LanguageMapHandler returns a list
of all available languages of the WebSphere
Commerce Server with its mapping on the
internal language identifier which is used
for certain REST calls.

StoreInfoHandler The StoreInfoHandler returns the stor-
eId and the catalog information of all avail-
able stores in the WebSphere Commerce
Server.

CacheInvalidationHandler TheCacheInvalidationHandler returns
invalidation events from the CACHEIVL table
(see also Section 3.4.13, “Event-based
Commerce Cache Invalidation” [78]).

WorkspacesHandler TheWorkspacesHandler is used to display
available commerce workspaces in studio.

The following handler is only necessary for content-led integration.

ResetPasswordHandler The ResetPasswordHandler is used to update
the users passwords. This handler is only neces-

67CoreMedia DXP 8

Getting Started | Configuring REST Handlers

https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tsemultilogonsessions.htm

sary for content-led integration with IBM WCS
(FEP7)

In order to add the handlers proceed as follows:

1. Add the CoreMedia LiveContext library package to the Rest module in your
commerce development workspace.

2. Add the following fully qualified names of the handlers to the file WCDE-IN
STALL/workspace/Rest/WebContent/WEB-INF/config/resources-
ext.properties accordingly to the CoreMedia LiveContext 2.0 WebSphere
Commerce Project Workspace archive.

3. Add a resource element for each handler to the file WCDE-INSTALL/work
space/Rest/WebContent/WEB-INF/config/com.ibm.commerce.rest-
ext/wc-rest-resourceconfig.xml accordingly to the CoreMedia LiveContext
2.0 WebSphere Commerce Project Workspace archive.

4. For the CacheInvalidationHandler add the file WCDE-INSTALL/work
space/WC/xml/config/com.ibm.commerce.catalog-ext/wc-query-
CoreMedia-LiveContext.tpl from the the CoreMedia LiveContext 2.0 Web-
Sphere Commerce Project Workspace archive. The file contains a database template
to access IBM WCS CACHEIVL table.

5. Adapt all dbtype properties to your target database.

3.4.8 Applying Changes to the Management Center
Studio integrates the Management Center into its GUI. For the integration do as
follows:

1. Add the file WCDE-INSTALL/workspace/LOBTools/WebContent/Core
MediaManagementCenterWrapper.html from the CoreMedia LiveContext 2.0
WebSphere Commerce Project Workspace archive to the LOBTools module.

This file is used from CoreMedia Studio for displaying products, categories and e-
Marketing Spots in the IBM WebSphere Commerce Management Center. The
wrapper uses the original IBM Management Center JSP files embedded and deleg-
ates deep links to the appropriate IBM functions.

3.4.9 Deploying the CoreMedia Fragment Connector
The CoreMedia Fragment Connector is the component that connects with CoreMedia
CAE in order to integrate CoreMedia content fragments in store pages. In order to
perform a fragment request, the LiveContextEnvironment has to be configured
in theWCDE_installdir/workspace/Stores/WebContent/WEBINF/web.xml
configuration file, as described below.

68CoreMedia DXP 8

Getting Started | Applying Changes to the Management Center

Changing the web.xml file

There are different approaches to configure the loading mechanism for properties
for the fragment connector. The LiveContextEnvironment can load its config-
uration directly from web.xml, from a properties file and from the STORECONF
table. The default implementation is PropertiesBasedIBMLiveContextEnvir-
onmentFactory.

The PropertiesBasedIBMLiveContextEnvironmentFactory extends the
IBMLiveContextEnvironmentFactory and in addition loads properties from
a resource file on the classpath. If the resource file cannot be found - or the resource
cannot be loaded, it will throw RuntimeExceptions. The location of the properties
resource must be given in a servlet context parameter named livecontext.prop
erties.location In the first place this factory tries to get a parameter from
STORECONF table, in the second place from the properties file and if not found as
fallback from web.xml.

Other approaches are the following:

➞ The DefaultLiveContextEnvironmentFactory reads the connector
properties directly as context parameters directly from the web.xml.

➞ The IBMLiveContextEnvironmentFactory extends the DefaultLive
ContextEnvironmentFactory and can be configured via the STORECONF
table. If properties are not available in the STORECONF table the factory
reads directly from the web.xml configuration.

The fragment connector is the central component in the commerce-led integration
scenario (see Section 5.1, “Commerce-led Integration Scenario” [176]). Configure
the fragment connector for example as follows:

1. Add the LiveContextEnvironment configuration as shown in WCDE-IN
STALL/workspace/Stores/WebContent/WEB-INF/web.xml to the corres-
ponding file in the WCS RAD workspace.

2. In the file WCDE-INSTALL/workspace/Stores/WebContent/WEB-
INF/coremedia-connector.properties configure at least the parameter
com.coremedia.fragmentConnector.liveCaeHost with the host URL of
your Content Application Engine (CAE). If you use a single WCS that should be
able to connect to both, preview and production CAE, you also need to set
com.coremedia.fragmentConnector.previewCaeHostwith the host URL
of the preview CAE. In case you have a dedicated Staging WCS with separate
Production System, you only need to configure one CAE host, each. Find the
meaning of all parameters in the list below.

com.coremedia.fragmentCon-
nector.cookieDomain

The cookieDomain is used when a frag-
ment request is created. All accessible
cookies are copied and added to this re-

69CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Fragment Connector

quest using the specified cookie domain.
This way it is ensured that the CAE session
cookie is detected by the CAE and fragments
can be rendered depending on the logged
on user. The cookieDomain can contain
multiple cookieDomains separated by
comma.

com.coremedia.fragmentCon-
nector.environment

The optional parameter is used to identify
the WCS that is requesting a fragment from
a CAE. It may be used to serve different sites
for each WCS that is connected to a single
CMS. The strategy for resolving this paramet-
er is implemented in the class LiveCon-
textSiteResolver. The method find-
SiteFor(@Nonnull FragmentParamet-
ers fragmentParameters) checks if the
environment parameters has been passed
as request matrix parameter. If set (for ex-
ample:site:PerfectChef), a lookup is
made if a site with a matching name and
locale exists. If no site is found with the
given name, the default lookup strategy,
implemented in findSiteFor(@Nonnull
String storeId, @Nonnull Locale
locale) is used.

com.coremedia.fragmentCon-
nector.liveCaeHost

The liveCaeHost identifies the Live CAE,
to be precise, the Varnish, Apache or any
other proxy in front of the Live CAE. Each
request made by the fragment connector
will be prefixed with the urlPrefix.

com.coremedia.fragmentCon-
nector.previewCaeHost

The previewCaeHost identifies the Pre-
view CAE, to be precise, the Varnish, Apache
or any other proxy in front of the Preview
CAE. Each request made by the fragment
connector will be prefixed with the urlPre
fix. The previewCaeHost is only required
if you want a single WCS instance being able
to access the preview CAE in case of WCS
preview and the live CAE in all other cases.
Additionally, the preview mode can be in-
voked through an HTTP header as described
in Section 3.5.4, “Developing with Apache
(optional for e-Commerce)” [91]. If you
have a dedicated WCS instance for staging

70CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Fragment Connector

and separate production WCS, you do not
need to set this property. If this parameter
is not set, the parameter liveCaeHostwill
be used instead.

com.coremedia.fragmentCon-
nector.urlPrefix

This prefix identifies the web application,
the servlet context and the fragment hand-
ler to handle fragment requests. The default
request mapping of all the handlers within
CoreMedia Blueprint that are able to handle
fragment requests start with ser
vice/fragment.

com.coremedia.widget.tem-
plates

Configures the template lookup path that
is used when rendering CoreMedia Widget
includes. Default is /Widgets-Core
M e d i a / c o m . c o r e m e d i a . c o m
merce.store.widgets.CoreMediaCon
tentWidget/impl/templates/

com.coremedia.fragmentCon-
nector.defaultLocale

Every fragment request needs to contain
the tuple (storeId, locale) because it
is needed to map a request to the correct
site. Using defaultLocale you can set a
default that is used for every request that
does not contain a custom locale. You will
see how it is used later, when you see the
IncludeTag in action.

com.coremedia.fragmentCon-
nector.contextProvidersCSV

Every fragment request can be enriched
with shop context specific data. It will be
most likely user session related info, that is
available in the IBM WCS and can be
provided to the back-end CAE via a Contex-
tProvider implementation. See Section
5.1.3, “Extending the Shop Context in
Commerce-led Integration Scenario” [181]
for details.

com.coremedia.fragmentCon-
nector.isDevelopment

The fragment connector will return error
messages that occur in the CAE while ren-
dering a fragment if the isDevelopment
parameter is set to true. For production
environments you should set this option to
false. Errors are logged than but do not
appear on the commerce page so that the
end user will not recognize the errors.

71CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Fragment Connector

com.coremedia.fragmentCon-
nector.disabled

Turn this flag to true if you want to disable
the fragment connector. Disabled means
that the fragment connector always delivers
an empty fragment. This property is not
mandatory. If this property is not set the
default is false.

com.coremedia.fragmentCon-
nector.connectionTimeout

The connection timeout in milliseconds used
by the fragment connector; that is the time
to establish a connection. A value of "0"
means "infinite". Default is "10000".

com.coremedia.fragmentCon-
nector.socketTimeout

The socket read timeout in milliseconds
used by the fragment connector; that is the
time to wait for a response after a connec-
tion has successfully been established. A
value of "0" means "infinite". Default is
"30000".

com.coremedia.fragmentCon-
nector.connectionPoolSize

Maximum number of connections used by
the fragment connector. Default is 200.

3.4.10 Customizing IBM WebSphere Commerce JSPs
When theCoreMedia Fragment Connector has been installed, thelc:include
tag can be used in any JSPs of the Commerce Workspace to include content from
the CoreMedia CMS. See Section “The CoreMedia Include Tag” [186] for more details.

The CoreMedia LiveContext 2.0 WebSphere Commerce Project Workspace contains web
content like JSP and JavaScript files in the Stores/<STORE_NAME> folder. These
files are mostly adapted versions of the JSP files of an original IBM RAD workspace.
The CoreMedia customizations are highlighted with the following comment lines:

<!-- Begin CoreMedia XXX -->
CoreMedia snippet data
<!-- END CoreMedia XXX -->

The corresponding files in the IBM RAD workspace are in the work
space/Stores/WebContent/<STORE_NAME> folder.

How to adapt the filesIf you have an Aurora RAD workspace without any customizations, you can copy
the CoreMedia LiveContext 2.0 WebSphere Commerce Project Workspace archive content
above it. Otherwise, you have to unzip the file and check for each file if you can
copy the CoreMedia change into the corresponding file of your IBM RAD workspace.

72CoreMedia DXP 8

Getting Started | Customizing IBM WebSphere Commerce JSPs

Example

The CoreMedia archive contains custom Header.jsp and Footer.jsp files. These
JSPs contain some include tags, highlighted with comments, to replace the default
Aurora store header and footer with CoreMedia page grid placements. The place-
ments contain the navigation and footer elements of the CAE. The original files
are located in the folder workspace/Stores/WebContent/<STORE_NAME>/Wid
gets of the RAD workspace.

In addition CoreMedia JavaScript and CSS that is used by the CAE must be included
in the store front. To do so adapt the CoreMedia specific changes in WebCon
tent/<STORE_NAME>/Common/CommonJSToInclude.jspf.

3.4.11 Deploying the CoreMedia Widgets
The CoreMedia widgets are IBM Commerce Composer Widgets. You can use the
CoreMedia Content Widget to add CoreMedia content fragments to your IBM Web-
Sphere pages and the CoreMedia Asset Widget to add product images to product
detail pages.

The Asset Widget is part of CoreMedia Advanced Asset Management which requires
separate licensing.

Prerequisites

In order to use the CoreMedia widgets to embed CoreMedia fragments, the Frag-
ment Connector needs to be deployed before executing these steps.

Register the Widget definition and subscribe your Store to it

See the IBM documentation at https://www.ibm.com/support/knowledgecen-
ter/SSZLC2_7.0.0/com.ibm.commerce.data.doc/concepts/cmlbatchoverview.htm:
for more details about dataload.

1. Stop the IBM WebSphere Commerce server in the IBM RAD environment.

2. Adapt the database settings in the Data Load environment configuration file
(SAMPLEDATA-ZIP\workspace\DataLoad\dataload\common\wc-data
load-env.xml) from the CoreMedia LiveContext 2.0 WebSphere Commerce Project
Sample Data Zip file to the settings of your WebSphere database.

You can retrieve your database settings from the IBM RAD environment config-
uration file WC/xml/config/wc-server.xml, at the following XML element:

<InstanceProperties>
<Database>
<DB>

73CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Widgets

https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.data.doc/concepts/cmlbatchoverview.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.data.doc/concepts/cmlbatchoverview.htm

For a DB2 database, the attribute schema in wc-dataload-env.xml corres-
ponds to the attribute DBNode in wc-server-xml.

Find your store identifier in the IBM Management Center in Store Management.
If you use the default IBM shop, the value is "Aurora".

3. Use the Data Load business object configuration files from the CoreMedia Live-
Context 2.0 WebSphere Commerce Project Sample Data ZIP file for registering the
widget definition (workspace\DataLoad\dataload\com
mon\[store_name]\Widget\wc-loader-registerWidgetdef.xml) and
for subscribing the widget definition (workspace\DataLoad\dataload\com
mon\[store_name]\Widget\wc-loader-subscribeWidgetdef.xml)
where store_name is the store identifier of your store ("AuroraESite", for in-
stance).

4. Use the CSV input files from the CoreMedia LiveContext 2.0 WebSphere Commerce
Project Sample Data ZIP file for registering the widget definition (work
space\DataLoad\dataload\common\[store_name]\Widget\register
Widgetdef.csv) and for subscribing the widget definition (workspace\Data
Load\dataload\common\[store_name]\Widget\subscribeWidget
def.csv).

5. Configure the Data Load order configuration file (wc-dataload.xml). The Data
Load file has pointers to the environment settings file, the business object
configuration file and the input file.

Example 3.4. wc-data-
load.xml<?xml version="1.0" encoding="UTF-8"?>

<_config:DataLoadConfiguration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config
../../../../xml/config/xsd/wc-dataload.xsd"

xmlns:_config=
"http://www.ibm.com/xmlns/prod/commerce/foundation/config">

<_config:DataLoadEnvironment configFile="wc-dataload-env.xml"/>

<_config:LoadOrder commitCount="100"
batchSize="1"
dataLoadMode="Replace">

<_config:property name="firstTwoLinesAreHeader" value="true"/>

<_config:property name="loadSEO" value="true"/>

<!-- Configuration for the file to register a widget -->
<_config:LoadItem

name="RegisterWidgetDef"
businessObjectConfigFile=
"wc-loader-registerWidgetdef.xml">

<_config:DataSourceLocation
location="registerWidgetdef.csv"/>

</_config:LoadItem>

<!-- Configuration for the file to subscribe a store to a

74CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Widgets

widget -->
<_config:LoadItem

name="SubscribeWidgetDef"
businessObjectConfigFile=
"wc-loader-subscribeWidgetdef.xml">

<_config:DataSourceLocation
location="subscribeWidgetdef.csv"/>

</_config:LoadItem>
</_config:LoadOrder>

</_config:DataLoadConfiguration>

6. Run the Data Load utility command syntax with the dataload.bat tool which is
located in workspace\bin of the RAD environment. Give the absolute path to
the wc-dataload.xml file. The call might look as follows:

..\bin\dataload.bat [path_to_your_dataload]\wc-dataload.xml

Load the custom access control policies for the CoreMedia Widget

1. Stop the IBM WebSphere Commerce server in the IBM RAD environment.

2. Copy the custom access control policies files workspace/DataLoad/acp/com
mon/CoreMediaContentDisplay.xml andworkspace/DataLoad/acp/com
mon/CoreMediaMicroSite.xml to the access control policies directory which
is located in xml\policies\xml of the RAD environment.

3. Run the ACP Load utility with the acpload.bat tool which is located in work
space\bin of the RAD environment. Give the absolute path to the acp-file
name.xml file. The call might look as follows:

..\bin\acpload.bat [path_to_your_acp_dir]\acp-filename.xml

The acpload documentation can be found here: https://www.ibm.com/sup-
port/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rax-
acpload.htm.

The acpload tool itself does not report any problems. So, check if the tool
created 2 new XML files with the suffixes _xmltrans.xml and _idres.xml
in ..\xml\policies\xml for each policy file. Also look into
..\logs\acpload.log and ..\logs\messages.txt for errors.

Add the Widget UI to the Management Center app

1. Merge the content of the file PageLayoutExtensionsLibrary.lzx from
the WEBDEV/workspace/LOBTools/WebContent/WEB-
INF/src/lzx/commerce/pagelayout folder into the corresponding file

75CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Widgets

https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/raxacpload.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/raxacpload.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/raxacpload.htm

PageLayoutExtensionsLibrary.lzx in the WCS workspace. It is only one
line of XML code.

2. Remove the file PageLayoutExtensionsLibrary.lzx from the Workspace
archive and copy the LOBTools folder content into the LOBTools folder of the
IBM RAD workspace.

Copy the Stores Folder and Apply JSP Customizations

Copy and merge the content of the Stores/ folder of the CoreMedia LiveContext
2.0 WebSphere Commerce Project Workspace archive into the IBM RAD workspace
folder Stores/ as described in Section 3.4.10, “Customizing IBM WebSphere
Commerce JSPs” [72]

Using Placeholder Resolution for Asset URLs

If you have licensed CoreMedia Advanced Asset Management you can use placeholders
for the CMS host and the store ID in your image URLs. Section “Placeholder Resol-
ution for Asset URLs” [452] describes further details and how you enable placeholder
resolution.

Refresh and Rebuild the workspace in Eclipse (RAD)

Now you have to refresh and rebuild the IBM workspace in the IBM RAD environ-
ment.

1. Refresh the projects in the IBM RAD system so that the new files are recognized:

a. Select the Stores project and press F5

b. Select the WebSphereCommerceServerExtensionsLogic project and
press F5

c. Select the LOBTools project and press F5

2. Rebuild the LOBTools:

a. Rebuild the LOBTools in order to apply the changes to the management
Center application.

b. Right-click the LOBTools project and select Build OpenLazlo Project from
the context menu.

This steps might take some time.

3. Republish the WCS Server workspace in order to apply the changes to the shop
web application. In the server view (bottom left corner) right click on the server
instance and select Publish from the context menu.

You have updated the Management Center tools and the development workspace
and the WCS server has been restarted.

76CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Widgets

3.4.12 Setting up SEO URLs for CoreMedia Pages
IBM WCS contains a default SEO-URL configuration for its shopping pages, such as
product detail pages or category landing page. For a seamless integration of
CoreMedia content pages like CoreMedia article pages or microsites the SEO-URL
configuration needs to be extended. The CoreMedia LiveContext 2.0 WebSphere
Commerce Project Workspace archive comes with a SEO-URL configuration, which
you can apply to your project WCS workspace.

The CoreMedia SEO-URL configuration is required for the usage of CoreMedia
Microsites and CoreMedia Content Display in your WCS environment.

As a prerequisite, SEO URLs require the custom access control policies, installed
in Section 3.4.11, “Deploying the CoreMedia Widgets” [73].

In order to enable the CoreMedia SEO URLs do the following steps:

1. Define the SEO pattern and its mapping for a given StoreName (Aurora or Au-
roraEsite, for instance). See the IBM documentation at https://www.ibm.com/sup-
port/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.seositemap.doc/con-
cepts/csdSEOpatternfiles.htm for more details about SEO configuration.

To do so, copy the SEO pattern file workspace/Stores/WebContent/WEB-
INF/xml/seo/stores/{StoreName}/SEOURLPatterns-CoreMedia.xml
to your project workspace.

For development, create a file .reload (text file) in the same directory and
add this line: reloadinterval = 30. This will reload the SEO patterns file
every 30 seconds.

2. Configure the handling of SEO Requests as follows:

Apply the Struts configuration from workspace/Stores/WebContent/WEB-
INF/struts-config-lc2.xml from the CoreMedia archive to your project
workspace. Do not forget to change storeIDs to your needs. The storeID is the
number at the end of the values of the name attributes.

Check, that the Struts configuration is already referenced from the init-param
with name "config" in your IBM WCS web.xml file. Otherwise, copy the config-
uration from the workspace/Stores/WebContent/WEB-INF/web.xml file.

3. Check if the copied JSP files already contain the parameter externalSeoSeg-
ment:

The SEO pattern specifies that the path segment after /cm/ or /microsite/
will be mapped to a JSP parameter externalSeoSegment. Make sure the
parameter is actually recognized and prepared to be passed to the lc-include
tag as lc_externalRef parameter.

77CoreMedia DXP 8

Getting Started | Setting up SEO URLs for CoreMedia Pages

https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.seositemap.doc/concepts/csdSEOpatternfiles.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.seositemap.doc/concepts/csdSEOpatternfiles.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.seositemap.doc/concepts/csdSEOpatternfiles.htm

<c:if test="${not empty param.externalSeoSegment}">
<c:set var="lc_externalRef"

value="cm-seosegment:${param.externalSeoSegment}"/>
</c:if>

Otherwise, check the JSP files in the CoreMedia archive file and copy the settings
to the JSPs in the IBM workspace.

4. Check SEO links

As defined in SEOURLPatterns-CoreMedia.xml the URL pattern CoreMedi-
aContentURL and CoreMediaMicroSiteURL can be used from within the
IBM wcf:url tag. You can find the implementation of URL generation for
CoreMedia content with this tag in the JSP file WCDE-ZIP/work
space/Stores/WebContent/Widgets-CoreMedia/com.coremedia.com
merce.store.widgets.CoreMediaContentWidget/impl/templates/Con
tent.url.jsp. Check that this file is already included in your IBM workspace.
Otherwise, copy it.

3.4.13 Event-based Commerce Cache Invalidation
CoreMedia DXP 8 integrates with IBM WCS without importing catalog data into the
CMS. Since all catalog data is requested dynamically from the IBM WCS system,
CoreMedia DXP 8 comes with its own caching layer to provide fast access to IBM
WCS data. In order to promptly reflect any changes of IBM WCS data, CoreMedia DXP 8
supports event based cache invalidation. Apply the following changes to enable
event based cache invalidation:

1. Add the CacheInvalidationHandler as described in Section 3.4.7, “Config-
uring REST Handlers” [67]

2. Add database triggers for cache invalidation of segments and marketing spots.
In order to create corresponding entries in IBM WCS CACHEIVL table (where
Dynacache Invalidation events are stored), several database triggers are needed.
These are database specific but IBM WCS already provides correct working ex-
amples in the WCS workspace. You do not need all the sample triggers but only
those for Segments and Marketing Spots.

Copy the triggers for the INSERT, UPDATE and DELETE cases for the following
tables:

➞ EMSPOT

➞ MBRGRP

and add them to your database (for example, by using ht
tp://HOST/webapp/wcs/admin/servlet/db.jsp)

The sample files are located in the following directories:

78CoreMedia DXP 8

Getting Started | Event-based Commerce Cache Invalidation

➞ Oracle:
WCDE-ZIP\schema\oracle\cm.wcs.cacheivl.trigger.sql

➞ IBM DB2:
WCDE-ZIP\schema\db2\cm.wcs.cacheivl.trigger.sql

➞ Cloudscape/Derby:
WCDE-ZIP\schema\clouscape\cm.wcs.cacheivl.trigger.sql

If enabled IBM workspaces in your environment setup, you need to create these
triggers for each workspace. If you enabled 5 workspaces for example, you need
to create these triggers 5 times. Examples are given in the mentioned example
files.

3.4.14 Deploying the CoreMedia Catalog Data
The Sample archive file contains CoreMedia store data that can be used together
with the CoreMedia CMS Blueprint demo data. Part of the data can be imported
via SAR files, the other via data load.

Publishing SAR Files
This content can be found in the following folders below the sar/ folder:

➞ esite-base

➞ esite-base-ws

➞ esite-marketing

➞ CMSites

You have to publish these data into the WCS as described below. See the IBM
documentation at https://www.ibm.com/support/knowledgecen-
ter/SSZLC2_8.0.0/com.ibm.commerce.admin.doc/tasks/tpbpbst.htm for more de-
tails.

1. Start the WCS server.

2. Pack the SAR-INF and WEB-INF subfolders of CMSites into a Zip file cms
ites.sar. Change the file extension of the Zip file to ".sar".

3. Publish the cmsite.sar file to the WCS, following the IBM documentation.

4. Adapt the database settings in the environment configuration files wc-data
load-env.xml and wc-dataload-env-ws.xml of each esite (not for cmsite)
to the values of your database. You will find the files below: sar/<site
Name>/WEB-INF/stores/PerfectChef_Catalog[_WS]/data/dataload.

79CoreMedia DXP 8

Getting Started | Deploying the CoreMedia Catalog Data

https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tpbpbst.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tpbpbst.htm

5. In the files sar/esite-base/WEB-INF/stores/PerfectChef_Cata
log/data/ibm-wc-load.xml and sar/esite-base-ws/WEB-
INF/stores/PerfectChef_Catalog_WS/data/ibm-wc-load.xml adapt
the links to the location of the other SAR files in the task element with name
"sarFileDeploy".

Example 3.5. Default
link setting<task name="sarFileDeploy">

<param name="storeArchiveFilename"
value="/home/wcuser/sars/esite-marketing.sar"/>

6. Pack the SAR-INF and WEB-INF subfolders of each esite folder into a Zip file
named after the esite folder. For example, esite-base.zip. Change the file
extension of the three Zip files to ".sar".

7. Publish the esite-base.sar into the WCS, using the publishstore tool. The
other two files are automatically imported.

Importing Data via Data Load

See the IBM WebSphere Commerce documentation https://www.ibm.com/sup-
port/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.data.doc/concepts/cm-
lbatchoverview.htm for more details about data load.

1. Stop the IBM WebSphere Commerce server in the IBM RAD environment.

2. Adapt the database settings in the Data Load environment configuration files
(SAMPLEDATA-ZIP\workspace\DataLoad\dataload\common\wc-data
load-env[-<siteName>].xml) from the Sample archive Zip file to the settings
of your WebSphere database.

You can retrieve your database settings from the IBM RAD environment config-
uration file WC/xml/config/wc-server.xml, at the following XML element:

<InstanceProperties>
<Database>
<DB>

3. Use the Data Load utility to load the data for all sites. Give the absolute path to
thewc-dataload.xml file, for examplec:\lc-demo-data\workspace\Data
Load\dataload\common\AuroraESite\wc-dataload.xml.

3.4.15 Troubleshooting
Problem

You get an errorcom.ibm.commerce.catalog.facade.client.CatalogNav-
igationViewException on the Commerce server or the following error on the
Solr server:

80CoreMedia DXP 8

Getting Started | Troubleshooting

https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.data.doc/concepts/cmlbatchoverview.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.data.doc/concepts/cmlbatchoverview.htm
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.data.doc/concepts/cmlbatchoverview.htm

SolrCore E org.apache.solr.common.SolrException log
org.apache.solr.common.SolrException:

org.apache.lucene.queryParser.ParseException:
Cannot parse 'catentry_id:("123456")': too many boolean

clauses

Possible cause

You have a large number of SKUs per product during product entitlement.

Possible solution

Increase the MaxBooleanClause property in solrconfig.xml to 8192. Keep
in mind, that each index has its own solrconfig.xml file with the maxBoolean-
Clauses setting.

81CoreMedia DXP 8

Getting Started | Troubleshooting

3.5 Using the CoreMedia Workspace
This section describes how you can use the workspace:

➞ Section 3.5.1, “Building the Workspace” [82] describes how you can build
the workspace for the first time.

➞ Section 3.5.2, “Working With the Box” [83] describes how you start and
manage the virtualized CoreMedia environment based on VirtualBox, which
is the recommended way.

➞ Section 3.5.3, “Locally Starting the Components” [85] describes how you
start the CoreMedia components directly on your developer machine.

➞ Section 3.5.5, “Developing with Components and Boxes” [98] describes how
you combine a virtualized environment with local components for develop-
ment.

➞ Section 3.5.6, “Developing Against a Remote Environment” [101] describes
how all of your developers can develop against a common remote environ-
ment.

3.5.1 Building the Workspace
The CoreMedia Blueprint workspace contains a complete CoreMedia CMS system.
The first step is to build the system and to start all components or boxes. This en-
ables you to test your changes and new features locally, which is a convenient
setup for a new project.

In this manual $CM8_BLUEPRINT_HOME will refer to the root directory of the
Blueprint workspace. If you set it as an environment variable, you can simply copy
and paste the command line snippets. Otherwise, you have to substitute paths
accordingly.

Go to the Blueprint workspace and build the system with the following commands:

$ cd $CM_BLUEPRINT_HOME
$ mvn clean install

If you want to build without tests, add the -DskipTests option to the Maven call.

If you want to prepare your build environment to be independent of any network
resources, you can achieve this by calling mvn dependency:go-offline.
After this call has succeeded you can build offline by adding the option -o or
--offline to your Maven calls.

82CoreMedia DXP 8

Getting Started | Using the CoreMedia Workspace

Maven offers many command line options to improve efficiency by building only
the required subset of modules. Especially the -pl, the -am, the -amd and the
-rf options are interesting for your daily work. If, for example, you want to
build all modules affected by your change in module X, you simply need to call
mvn -pl ":X" -amd clean install from the root directory of the Blueprint
workspace. If you don't want the dependent packages to be build, simply execute
that call from within the modules directory.

If your build was successful, you can proceed with the next section. For a reference
about all Maven build profiles, see Section 9.5, “Maven Profile Reference” [475]

3.5.2 Working With the Box
In this section you will learn how to start virtual machines based on CentOS in
Virtual Box and install the CoreMedia Blueprint services and applications onto these
machines using the RPM artifacts being built by the modules below packages.

Starting the Box

During the build of the workspace, you have prepared an RPM repository below
$CM8_BLUEPRINT_HOME/boxes/target/shared/rpm-repo. All files below
the shared folder are accessible from the box.

Start the box with the following command:

$ cd $CM_BLUEPRINT_HOME
$ vagrant up

Download of the base
box takes time

If you do this the first time, you will notice a lengthy download of a large file. This
is the download of the base box, a bare CentOS 6 system with only Java being in-
stalled. This download will only be done once as Vagrant is caching the base boxes.

After the box has been downloaded Vagrant imports the box, configures it, for
example sets the number of CPUs or the RAM and the network configuration. The
latter step requires you to add a network adapter to the host system, so you have
to confirm some dialogues if you are using Windows.

After configuring the hardware, Vagrant boots up the box. When the system is
running the vagrant-vbguest and the vagrant-omnibus Vagrant plugins will now
outfit the box with the matching Virtual Box Guest Additions and the configured
version of Chef. These steps may take a couple of minutes but guarantee you a
proper host to guest communication and eases the maintenance of the base boxes.

Now the box is ready for provisioning and Vagrant will start Chef to install and
configure CoreMedia services. Some minutes later your blueprint box will be online

83CoreMedia DXP 8

Getting Started | Working With the Box

with all services running, all content imported and published and ready to develop
against.

Installed applicationsFor an overview of the installed applications and services and their links, see the
README.md markdown file, in the root directory of the workspace. To see an
overview of all ports see Section 9.1, “Port Reference” [463].

Check system statusIf you want some insight on the state of your system, you can open up the PSDash
web interface at http://localhost:8999 to monitor available log files. This interface
is only available on the box started with Vagrant and is intended for development
support only. To log into the box simply execute

$ cd $CM_BLUEPRINT_HOME
$ vagrant shh

If you don't have ssh on your PATH, you can call

$ cd $CM_BLUEPRINT_HOME
$ vagrant ssh-config

and use the configuration with the ssh tool of your choice.

Depending on the performance of the host machine, the process of starting up
and provisioning the management box can take some time. To avoid this overhead,
you can pause the system until you need it again. From the moment the system is
up and running, its not Vagrant running the system anymore, its Virtual Box and
you may use all features of Virtual Box to control your box, for instance export it,
pause it or resume it. Vagrant is nothing more than a configuration and bootstrap-
ping tool.

WebDAVTo connect to the WebDAV web application as a network drive a necessary certific-
ate will be generated automatically during the provisioning. How to install such a
certificate is described in Section 8.6, “WebDAV Support” [442].

By default, the delivery Blueprint CAE will be connected with the Master Live Server
not the Replication Live Server.

Update your Box

If you have developed a feature in module X and you want to deploy and test it in
your isolated box environment, all you have to do is the following:

1. Build the changed module and all affected artifacts, for the contentserver-
blueprint-component, for example, execute:

$ cd $CM_BLUEPRINT_HOME/modules
$ mvn -pl ":contentserver-blueprint-component" clean install -amd

2. Update the RPMs in the boxes module:

84CoreMedia DXP 8

Getting Started | Working With the Box

http://localhost:8999

$ cd $CM_BLUEPRINT_HOME/boxes
$ mvn antrun:run

3. Reprovision the box containing the change, for example vagrant provision,
to update the RPMs. You can also use the provision call without new RPMs, just
to apply any configuration changes. Only the services for which Chef detects
changes, will be restarted.

$ cd $CM_BLUEPRINT_HOME
$ vagrant provision

Suspend your Box

When you want to suspend you work for some reasons for example your daily job
is done, you can simply suspend the box calling the suspend command on a box
for instance vagrant suspend.

$ cd $CM_BLUEPRINT_HOME
$ vagrant suspend

Resume your Box

To resume your work, simply call the resume command on a box for example
vagrant resume.

$ cd $CM_BLUEPRINT_HOME
$ vagrant resume

Destroy your Box

When you have finished your work or you want to start on from scratch, simply
call the destroy command on a box, for example vagrant destroy.

$ cd $CM_BLUEPRINT_HOME
$ vagrant destroy

3.5.3 Locally Starting the Components
Section 3.5.2, “Working With the Box” [83] describes how you start the virtualized
environment. This section will show you how to start the underlying components
directly on your developer machine and how to import the demo content. To achieve
this you need to configure the databases as described in Section 3.3.5, “Configuring
Local Setup” [53]. This section will provide you with the command line snippets
to start the components, but you can also run Maven commands from your IDE, if
you don't like switching between applications.

85CoreMedia DXP 8

Getting Started | Locally Starting the Components

For the very initial development purposes or for debugging, the server compon-
ents can be started using the way described in this section, but the recommended
way to start server components is to use the virtualized setup provided with the
management box. It provides you with a far more reproducible state and prevents
you from polluting your developer machine with project specific infrastructure
and state.

Furthermore, some basic knowledge about the CoreMedia CMS architecture and
components, especially the Content Server, the CAE and CoreMedia Studio would
be helpful to cope with this section.

If you want to start developing right away, you should continue with Section 3.5.5,
“Developing with Components and Boxes” [98].

Starting Management Components

Starting the Search Engine

The Content Management Server needs the Search Engine to index all documents for
full text search within CoreMedia Studio.

$ cd $CM_BLUEPRINT_HOME/modules/search/solr-webapp
$ mvn tomcat7:run-war

When you read the message that Tomcat server is up and running, simply test the
Search Engine by browsing to its administration page at http://localhost:44080/solr.
If you can see the administration page, everything is fine.

Starting the Content Servers

Now you start the Content Management Server, the backbone of a CoreMedia CMS.

$ cd
$CM_BLUEPRINT_HOME/modules/server/content-management-server-webapp
$ mvn tomcat7:run-war

When you read the message that Tomcat server is up and running, check the IOR
URL at http://localhost:41080/coremedia/ior. When you get an IOR like the follow-
ing,

IOR:000000000000003849444c3a686f782f636f72656d2f636f7262612f4c6f676
96e536572766963655769746850726f746f636f6c56657273696f6e3a312e3000
000000010000000000000082000102000000000a3132372e302e302e3100be2b00
000031afabcb00000000207ba1b4de00000001000000000000000100000008526f
6f74504f4100000000080000000300000000140000000000000200000001000000
200000000000010001000000020501000100010020000101090000000100010100
00000026000000020002

the Content Management Server is running.

86CoreMedia DXP 8

Getting Started | Locally Starting the Components

http://localhost:44080/solr
http://localhost:41080/coremedia/ior

If the Content Management Server fails to start up, you probably did not provide
a valid license or you haven't configured it yet. See section “Configuring the li-
censes” [47] and apply the necessary configuration.

You can start the Master Live Server the same way and check its IOR at port 42080.
(However, this is no prerequisite for the Preview CAE, and you can also do it later.)

$ cd $CM_BLUEPRINT_HOME/modules/server/master-live-server-webapp
$ mvn tomcat7:run-war

Importing the Blueprint contents

In order to be able to explore the Blueprint features, CoreMedia provides sample
content, which you can import into the Content Management Server. During the
build of the workspace the sample content and the users of all activated extensions
are collected into one Zip file. Take the file boxes/target/shared/content/con
tent-users.zip and unzip it into a folder. Now, import the content with the
following command, replace $PATH_TO_CONTENT with the path to the unzipped
content <PathToUnzippedFile>/content:

$ cd
$CM_BLUEPRINT_HOME/modules/cmd-tools/cms-tools-application/target/cms-tools
$./bin/cm serverimport -u admin -p admin -r $PATH_TO_CONTENT

or, when you are using a 64-bit Windows

$./bin/cm64 serverimport -u admin -p admin -r $PATH_TO_CONTENT

This will import all the XML files you can find under the content folder.

Importing the Blueprint users

CoreMedia provides users for the demo content, which you can import to the
Content Management Server. The users are also part of the Zip file content-
users.zip for the demo content. You might find several XML files for several
extensions. Replace $PATH_TO_CONTENTwith the path to the demo user file, that
is <PathToUnzippedFile>/users/<filename>.xml:

$ cd
$CM_BLUEPRINT_HOME/modules/cmd-tools/cms-tools-application/target/cms-tools
$./bin/cm restoreusers -u admin -p admin -f $PATH_TO_USERS

or, when you are using a 64-bit Windows

$./bin/cm64 restoreusers -u admin -p admin -f $PATH_TO_USERS

This will import all the users defined in the XML file. Import the other user files in
the users folder similarly.

87CoreMedia DXP 8

Getting Started | Locally Starting the Components

Starting the Content Feeder

Now that the Content Management Server and the Search Engine are up and running,
you can start the Content Feeder.

$ cd $CM_BLUEPRINT_HOME/modules/search/content-feeder-webapp
$ mvn tomcat7:run

Afterwards you can check the Content Feeder's administration page at http://local-
host:39080/feeder/admin. The Content Feeder feeds content (documents) to the
Search Engine and will immediately start feeding. To check it, browse to the Solr
administration page at http://localhost:44080/solr and search for id:coremedia*.
This query searches for all index entries whose id starts with coremedia. If Solr
finds some, the Content Feeder works properly.

Starting the Preview CAE Feeder

Like the Content Feeder the CAE Feeder depends on the Content Management Server
and the Search Engine to be running. The CAE Feeder feeds content beans to the
Search Engine.

$ cd $CM_BLUEPRINT_HOME/modules/search/caefeeder-preview-webapp
$ mvn tomcat7:run

Afterwards take a look into the CAE Feeder's logfile at caefeeder-preview-
webapp/target/logs/caefeeder.log. The CAE Feeder should start feeding all
the content beans based upon the content you have just imported into the Content
Management Server. To check it, browse to the Solr administration page at http://loc-
alhost:44080/solr and search for id:contentbean*. This query searches for all
index entries whose id starts with contentbean. If Solr finds some, the CAE
Feeder works properly

Starting the Workflow Server

The next component to start is the Workflow Server.

$ cd $CM_BLUEPRINT_HOME/modules/server/workflow-server-webapp
$ mvn tomcat7:run-war

When Tomcat is running, look into workflow-server-webapp/tar
get/logs/workflow.log. If the logfile shows no errors and ends with

Server - Server: started (Workflow Server Starter)

the Workflow Server is running.

88CoreMedia DXP 8

Getting Started | Locally Starting the Components

http://localhost:39080/feeder/admin
http://localhost:39080/feeder/admin
http://localhost:44080/solr
http://localhost:44080/solr
http://localhost:44080/solr

Starting the Editorial Components

Starting the Preview CAE

Next, you can start the preview CAE. That is the CAE which will be used by the ed-
itors for checking their written content.

$ cd $CM_BLUEPRINT_HOME/modules/cae/cae-preview-webapp
$ mvn tomcat7:run -Pdevelopment-ports

When the web application is up and running browse to http://preview-corporate.loc-
alhost:40081/ to see the Blueprint demo web application. If the URL cannot be
resolved, you have probably not added the fake domains to your /etc/hosts file,
see Section 3.3.4, “Configuring Vagrant Based Setup” [50] for the list of required
host mappings. If the page looks broken, your browser is possibly configured too
restrictive with an anti-scripting plugin. Trust CoreMedia, and grant the Blueprint
web application all required permissions. You should be able to click through the
whole web application, register yourself, login to rate and comment on various
content.

In a production deployment the Preview CAE and Studio run in the same Tomcat
instance and thus have the same AJP and HTTP ports. If you use the tomcat7 Maven
plugin however, each web application runs in a separate Tomcat instance, so you
would encounter a port clash between the Preview CAE and Studio. The develop
ment-ports profile overrides the ports for the preview CAE and prevents a port
clash.

Starting CoreMedia User Changes Web Application

After the Content Management Server is running, you can start the User Changes
web application.

Start CoreMedia User Changes web application with the Tomcat plugin:

$ cd $CM_BLUEPRINT_HOME/modules/server/user-changes-webapp
$ mvn tomcat7:run

When Tomcat is running, look intouser-changes-webapp/target/logs/user-
changes.log. If the logfile shows no errors and it contains

Initializing user-change-listener
Attach user-change-listener to content repository with timestamp

the User Changes web application is running.

Starting CoreMedia Studio

Now, the Content Management Server, the Workflow Server and the Preview CAE are
running.

89CoreMedia DXP 8

Getting Started | Locally Starting the Components

http://preview-corporate.localhost:40081/
http://preview-corporate.localhost:40081/

If you skipped the Master Live Server before, you should start it now, because the
next application to start is CoreMedia Studio, and without the Master Live Server you
would not be able to publish content.

Start CoreMedia Studio with the Tomcat plugin:

$ cd $CM_BLUEPRINT_HOME/modules/studio/studio-webapp
$ mvn tomcat7:run -Pdevelopment-ports

After the Tomcat server started up, you can browse to http://localhost:40080/ to
open CoreMedia Studio. Login as user "admin" with password "admin".

Starting the WebDAV Server

The WebDAV Server is an optional web application for editing content via the Web-
DAV protocol. You can start it using the Tomcat plugin as follows:

$ cd $CM_BLUEPRINT_HOME/modules/editor-components/webdav-webapp
$ mvn tomcat7:run-war

WebDAV clients can now connect to https://localhost:8086/webdav. Open the
URL with your browser, login as admin/admin, and you can browse through the
repository and find some documents, especially pictures. With Microsoft Windows
7 enter the following command to create a network drive that is connected to the
WebDAV Server:

$ net use * https://localhost:8086/webdav/ * /user:admin
/persistent:no

Starting the Site Manager

For user management and special content editing tasks which are not yet covered
by CoreMedia Studio you can use the Site Manager (formerly known as CoreMedia
Editor).

Note, that the Site Manager is only supported with a 32bit Java. You can set the
used Java in the bin/pre-config.jpif file with the JAVA_HOME property.
By default, it is set to your local JAVA_HOME environment variable.

$ cd
$CM_BLUEPRINT_HOME/modules/editor-components/editor/target/editor
$ bin/cm editor

Starting the other Components

Some components from the Delivery Environment are left out, but they are not
handled differently than the components started before. Table 3.5, “Modules in
the Workspace” [91] lists those components. If you want to use the Delivery Envir-
onment, you have to publish the demo content from the Management Environment

90CoreMedia DXP 8

Getting Started | Locally Starting the Components

http://localhost:40080/
https://localhost:8086/webdav

to the Delivery Environment. Otherwise, you will not see any content in the live CAE.
You can use the bulkpublish tool.

$ cd
$CM_BLUEPRINT_HOME/modules/cmd-tools/cms-tools-application/target/cms-tools
$./bin/cm bulkpublish -u admin -p admin -a -b -c

or, when you are using a 64-bit Windows

$./bin/cm64 bulkpublish -u admin -p admin -a -b -c

Table 3.5. Modules in
the Workspace

DescriptionLocationComponent

The Master Live Server is started ex-
actly the same way as the Content
Management Server

modules/server/master-
live-server-webapp

Master Live Serv-
er

See the Master Live Server and the
Content Management Server

modules/server/replica
tion-live-server-webapp

Replication Live
Server

The CAE Feeder for the live CAEs,
started the same way as the preview
CAE Feeder.

modules/feeder/caefeed
er-live-webapp

Live CAE Feeder

The live CAE is started the same way
as any other web application within
the development workspace.

modules/cae/cae-live-
webapp

Live CAE

3.5.4 Developing with Apache (optional for
e-Commerce)
For some PerfectChef features CoreMedia makes use of the Apache HTTP server
(see Section 5.4, “Connecting with an IBM WCS Shop” [207] for details) , especially
rewrite rules and handling of HTTPS requests (which is why Login does not work
with a standalone Tomcat). The triangular communication between CAE, WCS and
the client raises some more low level technical constraints concerning the cookie
domain and cross domain Ajax requests. Without going into detail here, the easiest
way to solve all such problems flexibly during development is to hide the CAE and
the WCS behind a common Apache proxy. Moreover, according to the production
setup you should test your development with Apache anyway to make sure that
your features work correctly. Since Apache configuration is a tedious task, Core-
Media provides a virtual machine with a preconfigured Apache server, which you
can easily use and maintain.

Since CAE and WCS invoke each other mutually, there must be a 1:1 relationship
between them, otherwise some LiveContext features will not work correctly. This
means you would need two WCS instances for your Preview and Live CAE. However,
a WCS instance needs quite some resources, and for most development use cases
it is feasible to dispense a fully featured system and work with a shared WCS in-

91CoreMedia DXP 8

Getting Started | Developing with Apache (optional for e-Commerce)

stance for the Preview and the Live CAE. Therefore, this setup refers to a single
WCS instance.

Prerequisites

You need to have installed Vagrant and VirtualBox as described in section “De-
veloper Setup” [40]. You also need a local instance of IBM WebSphere Commerce
as described in Section 3.4, “Customizing IBM WebSphere Commerce” [58].

The Apache server on the Vagrant virtual machine connects via the following ports:

➞ 49009 - via AJP to the Live CAE on your local host

➞ 40010 - to the Preview CAE

➞ 40009 - to Studio

Open these ports in your firewall, that is for requests from 192.168.252.100 to
local host.

Switch off blocker plugins in your browser for CoreMedia Blueprint applications.
Otherwise, some JavaScript code might not be executed, and the pages will be in-
complete.

Building the Web Applications

1. You need two Maven profiles to build the Blueprint web applications according
to the Apache setup. This concerns mainly the domains for absolute URLs. Add
the profiles to your .m2/settings.xml file:

<profile>
<id>localEnvironment</id>
<properties>
<cae.is.standalone>false</cae.is.standalone>
<livecontext.ibm.wcs.host>shop-ref.ecommerce.mycompany.com</livecontext.ibm.wcs.host>
<livecontext.apache.wcs.redirect.host>shop-helios.blueprint-box.vagrant</livecontext.apache.wcs.redirect.host>
<blueprint.site.mapping.helios>//helios.blueprint-box.vagrant</blueprint.site.mapping.helios>
<livecontext.cookie.domain>.blueprint-box.vagrant</livecontext.cookie.domain>
<livecontext.ibm.wcs.store.id.perfectchef>10851</livecontext.ibm.wcs.store.id.perfectchef>
<livecontext.ibm.wcs.store.id.aurora>10202</livecontext.ibm.wcs.store.id.aurora>

</properties>
</profile>
<profile>
<id>localPreviewEnvironment</id>
<properties>
<cae.is.standalone>true</cae.is.standalone>
<livecontext.ibm.wcs.host>shop-ref.ecommerce.mycompany.com</livecontext.ibm.wcs.host>
<livecontext.apache.wcs.redirect.host>shop-preview-helios.blueprint-box.vagrant</livecontext.apache.wcs.redirect.host>
<studio.previewUrlPrefix>/blueprint/servlet</studio.previewUrlPrefix>
<blueprint.site.mapping.helios>//preview-helios.blueprint-box.vagrant</blueprint.site.mapping.helios>
<STUDIO_WEBAPP_NAME></STUDIO_WEBAPP_NAME>
<STUDIO_ENVIRONMENT>development</STUDIO_ENVIRONMENT>
<livecontext.cookie.domain>.blueprint-box.vagrant</livecontext.cookie.domain>
<livecontext.ibm.wcs.store.id.perfectchef>10851</livecontext.ibm.wcs.store.id.perfectchef>
<livecontext.ibm.wcs.store.id.aurora>10202</livecontext.ibm.wcs.store.id.aurora>

<!-- copied from profile development-ports in the blueprint pom -->
<PREVIEW_AJP_PORT_SUFFIX>010</PREVIEW_AJP_PORT_SUFFIX>
<PREVIEW_HTTP_PORT_SUFFIX>081</PREVIEW_HTTP_PORT_SUFFIX>

</properties>
</profile>

2. Build the web applications (Studio, Preview CAE and Live CAE) and the RPMs for
Apache as follows:

cd blueprint
mvn clean install -DskipTests -am -pl :cae-preview-webapp,:studio-webapp -PlocalPreviewEnvironment
mvn clean install -DskipTests -am -pl :cae-live-webapp -PlocalEnvironment
mvn clean install -am -pl :studio-apache -PlocalPreviewEnvironment

92CoreMedia DXP 8

Getting Started | Developing with Apache (optional for e-Commerce)

mvn clean install -am -pl :delivery-apache -PlocalEnvironment
cd boxes
mvn clean install -DskipTests
cd ..

3. Create a .vagrantuser file in $CM_BLUEPRINT_HOME with the following
content:

yum:
remi_repository_mirrorlist: "http://centos-mirror/rpms.famillecollet.com/enterprise/6/remi/mirror"

vm:
memory: "1024"
cpu: "1"
tld: "blueprint-box.vagrant"

chef:
run_list: "role[apache-only]"

4. Install and start the vagrant box with the following call. This will take a few
minutes if you do it for the first time.

cd blueprint
vagrant up

Configuring the Network

Connect the following machines as described below:

➞ The Vagrant box running the Apache server

➞ The VMware clone of an IBM WCS RAD

➞ Your local Studio and CAE

VMware Clone of an IBM WCS RAD

1. Set the network connection of your VMware image to NAT mode. By default, it
is configured to Bridged mode.

2. Open C:\Windows\System32\drivers\etc\hosts and define a mapping
for the fragment suppliers as follows:

192.168.252.100 fragment.supplier.blueprint-box.vagrant
preview-fragment.supplier.blueprint-box.vagrant

The fragment suppliers are the hosts from which the Commerce Server tries to
fetch CoreMedia fragments. By default, these are server aliases for virtual hosts
of the Live and Preview CAE.

3. Open C:\IBM\WCDE_ENT70\workspace\Stores\WebContent\WEB-
INF\web.xml and

a. change the cookie domain ofcom.coremedia.fragmentConnector.cook
ieDomain to .blueprint-box.vagrant

93CoreMedia DXP 8

Getting Started | Developing with Apache (optional for e-Commerce)

b. change the value ofcom.coremedia.fragmentConnector.liveCaeHost
to http://fragment.supplier.blueprint-box.vagrant and the
value of com.coremedia.fragmentConnector.previewCaeHost to
http://preview-fragment.supplier.blueprint-box.vagrant

4. Start the Commerce Server.

Vagrant Box containing the Apache Server

You have already started the Vagrant VM. Now you must add an entry to its
/etc/hosts file and restart the Apache server. Just apply the following steps, re-
placing <your-commerce-vm-ip> by the IP address of your IBM Commerce VM.
The exact shop-ref domain must be the same as the value of the livecon
text.ibm.wcs.host property in the localEnvironment Maven profile which
you have already configured.

cd blueprint
vagrant ssh
sudo su -
echo "<your-commerce-vm-ip> shop-ref.ecommerce.mycompany.com" >> /etc/hosts
service httpd restart

Your Development Computer

You must add the Apache Vagrant VM and the IBM Commerce VM to your local
/etc/hosts file, so that your browser can resolve the links of the Blueprint applic-
ation.

sudo su -
echo "192.168.252.100 blueprint-box.vagrant helios.blueprint-box.vagrant
studio-helios.blueprint-box.vagrant \
preview-helios.blueprint-box.vagrant shop-helios.blueprint-box.vagrant
shop-preview-helios.blueprint-box.vagrant \
shop-preview-production-helios.blueprint-box.vagrant" >> /etc/hosts
echo "<your-commerce-vm-ip> shop-ref.ecommerce.mycompany.com" >> /etc/hosts

On a Windows machine the hosts file is C:\Windows\Sys
tem32\drivers\etc\hosts

Now you can start the three Tomcat instances for Studio, Preview CAE and Delivery
CAE:

cd blueprint/modules/cae/cae-preview-webapp
mvn tomcat7:run -PlocalPreviewEnvironment,<profile-to-your-content-server>

cd blueprint/modules/cae/cae-live-webapp
mvn tomcat7:run -PlocalEnvironment,<profile-to-your-content-server>

cd blueprint/modules/studio/studio-webapp
mvn tomcat7:run -PlocalPreviewEnvironment,<profile-to-your-content-server>

If all systems are up and running, you should visit each of the following URLs in
order to install the SSL certificates into your browser. Otherwise, you will be
bothered with the pop-ups later, and the Studio preview will not work properly at
all.

➞ https://helios.blueprint-box.vagrant/

➞ https://studio-helios.blueprint-box.vagrant/

94CoreMedia DXP 8

Getting Started | Developing with Apache (optional for e-Commerce)

➞ https://preview-helios.blueprint-box.vagrant/

➞ https://shop-preview-helios.blueprint-box.vagrant/webapp/wcs/stores/ser-
vlet/en/perfectchefesite

➞ https://shop-helios.blueprint-box.vagrant/webapp/wcs/stores/servlet/en/per-
fectchefesite

Checklist

If you followed the instructions so far, all components and virtual machines are
wired correctly. However, throughout the project lifecycle you possibly adapt the
setup to your specific needs, invent some shortcuts for redeployment or modify
the configuration of a component temporarily or permanently. Tracking down the
indirections of machines referencing each other can be tedious, so here is a list of
the relevant host configurations which you should check first in case of problems.
The following table shows the involved machines with their default addresses as
provided by the setup and the symbolic names used to reference the machines.

Table 3.6. Components
of the Apache Develop-
ment Setup

ScopeVirtual Host NamesIP, PortComponent

CAE,
Apache

shop-ref.ecommerce.coremedia.com[The IP of your WCS
host]

WCS

Apache192.168.252.1:40010Preview CAE

Apache192.168.252.1:49009Live CAE

public

public

helios.blueprint-box.vagrant

shop-helios.blueprint-box.vagrant

192.168.252.100Apache

editorpreview-helios.blueprint-box.vagrant

editorshop-preview-helios.blueprint-box.vagrant

WCSfragment.supplier.blueprint-box.vagrant

The concrete values may be adapted to your particular environment. Just make
sure that you change it consistently at all of the following checkpoints. The Preview
CAE and the Live CAE are supposed to run on your local machine. They do not need
fancy symbolic names, because they are not exposed to user agents but only ac-
cessed internally by Apache. The network adapter with the mapping for
192.168.252.1 is set up by Vagrant. The IP address 192.168.252.100 of the Vagrant
machine which hosts the Apache server is configured in the blueprint/Vagrant
file. The symbolic names are Apache virtual hosts and server aliases. You find
their configurations in the various .conf files under /etc/httpd/conf.d. Once
the machines are up and running, you should check their connections as follows.
The wiring of the machines includes some entries in their /etc/hosts files, be-

95CoreMedia DXP 8

Getting Started | Developing with Apache (optional for e-Commerce)

cause the names of development machines are usually not resolved by a DNS
server.

WebSphere Commerce System

The WCS needs entries for fragment.supplier.blueprint-box.vagrant
and preview-fragment.supplier.blueprint-box.vagrant in its C:\Win
dows\System32\drivers\etc\hosts file. The URL prefix of the CAE to fetch
the fragments from is configured in Stores\WebContent\WEB-INF\web.xml:

<context-param>
<description>
This is the base for all fragment URLs for the preview site. It must point to a CoreMedia

Preview-CAE. An empty value is allowed.
In this case the liveCaeHost will be used instead and all fragments will be received from the

Live-CAE.
</description>
<param-name>com.coremedia.fragmentConnector.previewCaeHost</param-name>
<param-value>http://preview-fragment.supplier.blueprint-box.vagrant/</param-value>

</context-param>
<context-param>
<description>
This is the base for all fragment URLs for the live site. It must point to a CoreMedia Live-CAE.
This parameter is mandatory.

</description>
<param-name>com.coremedia.fragmentConnector.liveCaeHost</param-name>
<param-value>http://fragment.supplier.blueprint-box.vagrant/</param-value>

</context-param>

CAE

The CAE references the WCS via the livecontext.ibm.wcs.host property.
Therefore, the CAE machine (that is, your local machine) needs a hosts entry for
shop-ref.ecommerce.coremedia.com.

User Agent

You probably want to check the results of your development work in a browser,
so your local machine does not only serve as CAE host but also as a user agent. In
order to access the CoreMedia DXP 8 applications, you must configure the Apache
virtual host names helios.blueprint-box.vagrant and shop-helios.blue
print-box.vagrant for the Live application and the respective virtual hosts for
the Preview application in your hosts file.

Apache

shop-ref.ecommerce.coremedia.com is referenced in various Apache config-
uration files, thus the Apache machine needs a hosts entry for it. The CAEs are
referenced by their IP addresses.

The Apache configuration files, which are located under /etc/httpd/conf.d,
declare virtual hosts for the names mentioned in Table 3.6, “Components of the
Apache Development Setup” [95] and map them to the CAEs and the WCS. For
example, the virtual host shop-preview-helios.blueprint-box.vagrant
is configured in commerce-shop-preview/commerce-shop-preview.conf
and looks like this:

<VirtualHost *:80>
ServerName shop-preview-helios.blueprint-box.vagrant
RequestHeader set X-FragmentHost preview

96CoreMedia DXP 8

Getting Started | Developing with Apache (optional for e-Commerce)

<Proxy balancer://commerce-shop-cluster>
BalancerMember http://shop-ref.ecommerce.coremedia.com route=shopWorker loadfactor=1 ttl=300

</Proxy>
<Proxy balancer://cae-cluster>

BalancerMember ajp://192.168.252.1:40010 route=studioWorker loadfactor=1 ttl=300
</Proxy>
...

</VirtualHost>

<VirtualHost *:443>
ServerName shop-preview-helios.blueprint-box.vagrant
RequestHeader set X-FragmentHost preview

...
</VirtualHost>

There are two virtual host declarations for each name, one for HTTP and one for
HTTPS. The RequestHeader defines a context to identify from which CAE (Live
or Preview) the fragments will be received.

Since this development setup uses a shared WCS for the Preview and Live CAEs, a
request header is used to identify which CAE will be used to receive fragments. If
the request header X-FragmentHost is set to preview, the fragments will be
received from preview-fragment.supplier.blueprint-box.vagrant. If
this request header is set to live or is not set, all fragments will be received from
fragment.supplier.blueprint-box.vagrant. For catalog image delivery
in a shared WCS environment see Section “Placeholder Resolution for Asset
URLs” [452]

Developing New Apache Configurations

If you have successfully built your local development system as described above,
you can change the Apache configuration.

cd blueprint
vagrant up # or vagrant resume if you suspended it
mvn clean install -am -pl :studio-apache -PlocalPreviewEnvironment
mvn clean install -am -pl :delivery-apache -PlocalEnvironment
cd boxes
mvn antrun:run
cd ..
vagrant provision

For Linux Blueprint provides a script for this task: workspace-configura
tion/apache/updateApaches.sh. There are two more scripts which update
only the Preview Apache or the Delivery Apache, respectively. You can also apply
these scripts from IntelliJ Idea as follows:

1. Install the Bash Support Plugin

2. Create a new run configuration

3. Select the Bash Support Plugin

4. Reference the script you like and change name of the run configuration

5. Run it

97CoreMedia DXP 8

Getting Started | Developing with Apache (optional for e-Commerce)

3.5.5 Developing with Components and Boxes
By now, you should have learned how to build the workspace, start the box and
optionally how to start the components directly from the workspace. In this section
you will learn how to combine both for a nice reproducible development round-
trip.

Overview of the Development Infrastructure

The required stack of services and components you need to start before you can
start developing with CoreMedia Studio and the Blueprint CAE is considerably large.
By using either a common remote development system or the virtualized box, you
are being relieved from setting up and maintain those services.

Both options provide their advantages and disadvantages. The common remote
environment is saving your developer machines hardware but since it is shared by
all developers, it must be highly available and you have to be cautious on updates.
The virtualized solution requires a large amount of RAM to be available on your
developer machine but it keeps you isolated from other developers and gives you
full control to deploy upgrades or control the services.

Development Round-trip using Virtualization

Virtualize intelligently

Before you start your virtualized environment, you should consider, what services
you need in order to start your development applications from within your IDE. By
default, the virtualized environment will not only contain those requirements, but
also the applications you might want to change, such as CoreMedia Studio or CAE.
This increases the startup time, the memory and the CPU footprint on your host
machine. To decrease these factors, you can decrease the number of services
started by choosing a different Chef role to run and then decrease the amount of
memory reserved for the box.

To set a different Chef role and reduce the memory footprint, simply add a .vag
rantuser file beside the Vagrantfile and apply the following YAML configura-
tion to it:

vm:
memory: "2048"

chef:
run_list:
- "role[base]"
- "role[storage]"
- "role[management]"

This will start the box with only 2048mb RAM and provision it only with the services
required by CoreMedia Studio and the CAE. With

98CoreMedia DXP 8

Getting Started | Developing with Components and Boxes

$ cd $CM_BLUEPRINT_HOME
$ vagrant user parameters

you can print out all active configuration settings done with the nugrant plugin.

Build artifacts and fire up the box

Follow the steps below to set up your local isolated development system.

1. Build the complete workspace by executing a post-configured build. Since this
should be the default, the required Maven call is:

$ cd $CM_BLUEPRINT_HOME
$ mvn clean install

2. Start the box by executing:

$ cd $CM_BLUEPRINT_HOME
$ vagrant up

3. Start your Studio either from the command-line or from within your IDE. You
can open Studio in your browser with http://localhost:40080. Make sure that
in both cases, the Maven profile vagrant is being activated. Starting the web
application from the command-line can be achieved by executing:

$ cd $CM_BLUEPRINT_HOME/modules/studio/studio-webapp
$ mvn tomcat7:run -Pvagrant

4. Start your preview CAE either from the command-line or from within your IDE.
Make sure that in both cases, the Maven profile vagrant is being activated.
Starting the web application from the command-line can be achieved by execut-
ing:

$ cd $CM_BLUEPRINT_HOME/modules/cae/cae-preview-webapp
$ mvn tomcat7:run -Pvagrant

Rebuild intelligently

If you have executed the above commands you are in the initial state to develop
code for either Studio or CAE. You can minimize your round trip by using the appro-
priate Maven commands. Preferably you should make use of the reactor options
of Maven to reduce the set of affected modules to be build.

-pl :<Maven artifactId> (pro-
ject list)

Build a specific module from the work-
space's root directory.

-am (also make) Enforce Maven to build in advance all
modules on which your current module de-
pends.

99CoreMedia DXP 8

Getting Started | Developing with Components and Boxes

-rf :<Maven artifactId> (re-
start from)

Enforce Maven to start the build with the
module given by artifactId.

-amd (also make dependencies) Enforce Maven to also build all modules that
depend directly or indirectly on your current
module.

By combining the above parameters, you can minimize the set of required modules
to build and therefore reduce the build time dramatically. The most common use
case would be to use the parameters -pl in combination together with -rf.

If, for example, you have added some code to the cae-base-libmodule and you
want to restart the preview-cae-webap with the new code, all you need to do is,
stop the tomcat7-maven-plugin and execute:

$ cd $CM_BLUEPRINT_HOME/modules
$ mvn -pl :cae-preview-webapp -rf :cae-base-lib clean install

If the build succeeded, you can simply restart the web application and your addi-
tional code will be active.

Reprovisioning Server Components intelligently

The initial provisioning of the box takes a lot of time and should therefore only be
done rarely. Instead, you can reprovision your box only with those RPMs that
contain your changes. To achieve this, the same Maven optimizations as shown
above should be applied.

1. If for example you have added a new content type or altered an existing one
and the schema migration can be done without resetting the database, you
simply need to rebuild all affected modules and reprovision them to the box.
To achieve this, you first need to rebuild the necessary Maven modules.

$ cd $CM_BLUEPRINT_HOME
$ mvn -pl :cms-tomcat,:mls-tomcat -rf
:contentserver-blueprint-component clean install

In a second step you need to update the RPM repository folder at $CM_BLUE
PRINT_HOME/boxes/target/shared/rpm-repo provided to your box by
using the shared folder mechanism of Virtual Box. To achieve this you need to
execute the following call:

$ cd $CM_BLUEPRINT_HOME/boxes
$ mvn antrun:run

This step copies all found RPM packages. So, building only what has changed
is essential for minimal turnaround times.

2. To reprovision the changed RPMs to the box, you need to execute:

100CoreMedia DXP 8

Getting Started | Developing with Components and Boxes

$ cd $CM_BLUEPRINT_HOME
$ vagrant provision

3. Now, you can restart your web applications or clients running on your developer
machine to use the new features of your server components.

To prevent you from starting your boxes from scratch each time you start devel-
oping, you should get familiar with the additional Vagrant commands to suspend
and resume boxes as described in Section 3.5.2, “Working With the Box” [83];
Another interesting approach is to use the sahara plugin for Vagrant, it provides
you with a sandbox functionality that allows you to either commit all happened
changes or rollback to the last committed state. This is especially usefully, when
you are developing features that alter the content repository and you want to
rerun the feature on a constant repository state. In that case you can start a
sandbox, provision your upgrades, run the test or tools, rollback and your round-
trip is closed.

3.5.6 Developing Against a Remote Environment
Although the workspace is configured to use localhost everywhere, it is easy to
develop against a remote environment. Either by changing localhost globally with
the property installation.host in the project’s root POM file or by customizing
some or all of the values listed in the table below. The property installa-
tion.host itself is just a convenience and should only be used within these spe-
cialized properties.

Table 3.7. Environment
propertiesHost of componentProperty

Content Management Servercms.host

Master Live Servermls.host

Replication Live Serverrls.host

Solr search enginesolr.host

CAE Feeder (preview)caefeeder-preview.host

CAE Feeder (live)caefeeder-live.host

Studiostudio.host

Mongo databasemongo.db.host

SQL databasedatabase.host

101CoreMedia DXP 8

Getting Started | Developing Against a Remote Environment

If you want to manage multiple environments, you can manage them in your
settings.xml file:

Example 3.6. Adding
Environments in set
tings.xml

<profile>
<id>dev</id>
<properties>
<cms.host>cms.dev.host.com</cms.host>
<mls.host>cms.dev.host.com</mls.host>
<solr.host>cms.dev.host.com</solr.host>
<database.host>db.dev.host.com</database.host>
<mongo.db.host>mdb.dev.host.com</mongo.db.host>

</properties>
</profile>
<profile>
<id>retest</id>
<properties>
<cms.host>cms.retest.host.com</cms.host>
<mls.host>cms.retest.host.com</mls.host>
<solr.host>cms.retest.host.com</solr.host>
<database.host>db.retest.host.com</database.host>
<mongo.db.host>mdb.retest.host.com</mongo.db.host>

</properties>
</profile>
<profile>
<id>vagrant</id>
<properties>
<cms.host>blueprint</cms.host>
<mls.host>blueprint</mls.host>
<solr.host>blueprint</solr.host>
<database.host>blueprint</database.host>
<mongo.db.host>blueprint</mongo.db.host>

</properties>
</profile>

You can choose now to connect to different environments by either manually
adding a profile to your Maven call (such as -Pdev) or by setting the profile perman-
ently in your settings.xml file.

Example 3.7. Activat-
ing Environment in
settings.xml

<activeProfile>dev</activeProfile>

By default, a vagrant profile is provided for you, to develop against the virtu-
alized Vagrant box.

102CoreMedia DXP 8

Getting Started | Developing Against a Remote Environment

4. Blueprint Workspace for
Developers

CoreMedia Blueprint workspace is the result of CoreMedia’s long year experience
in customer projects. As CoreMedia CMS is a highly customizable product that you
can adapt to your specific needs, the first thing you used to do when you started
to work with CoreMedia CMS was to create a proper development environment on
your own. CoreMedia Blueprint workspace addresses this challenge with a reference
project in a predefined working environment that integrates all CoreMedia com-
ponents and is ready for start.

Maven based environ-
ment

CoreMedia Blueprint workspace provides you with an environment which is strictly
based on today’s de facto standard for managing and building Java projects by
using Maven. That way, building your project artifacts is a matter of simply execut-
ing mvn clean install. Developers are able to test all the various CoreMedia
CMS components directly within the same environment by executing mvn tom
cat7:run and mvn tomcat7:run-war respectively. No further deployment is
necessary.

With the introduction of Chef as the provision tool of choice and Vagrant as the
tool to prepare VirtualBox virtualized environments, setting up the server back-
end to start developing with CoreMedia Blueprint workspace is now a matter of
minutes, rather than hours. A simple vagrant up management will provide you
with all databases, content repository and search services without the need to install
and configure any project specific software on the developer's system.

Using a virtualized de-
velopment infrastruc-
ture

To achieve this simplicity all components within the CoreMedia Blueprint workspace
are preconfigured with hostnames, ports, database schemes, users and passwords
such that you don’t need to worry about configuration while developing within
the CoreMedia Blueprint workspace. Instead, right from the start, you may concen-
trate on the real work, on the business logic that creates your company’s value in
the first place.

CoreMedia Blueprint workspace creates RPM or Zip artifacts out of the box, which
you can use for deployment. You can preconfigure or post-configure your compon-
ents that means at build time or at installation time, respectively.

103CoreMedia DXP 8

Blueprint Workspace for Developers |

4.1 Concepts and Architecture
This chapter describes concepts and architecture of CoreMedia Digital Experience
Platform 8.

➞ Section 4.1.1, “Maven Concepts” [104] describes how the Maven concepts
are implemented within the CoreMedia Blueprint workspace.

➞ Section 4.1.3, “Application Architecture” [107] describes how CoreMedia
applications are build from library and component artifacts and how deploy-
able artifacts are build with package artifacts.

➞ Section 4.1.4, “Structure of the Workspace” [112] describes the folder struc-
ture of the CoreMedia Blueprint workspace.

➞ Section 4.1.5, “Project Extensions” [114] describes the extensions mechanism
which lets you enable and disable extensions in one single location.

➞ Section 4.1.6, “Virtualization and Provisioning” [119] describes the virtualiz-
ation and provisioning infrastructure based on Chef and Vagrant.

4.1.1 Maven Concepts
The Maven build and dependency system is the foundation of the CoreMedia Blue-
print workspace. This section will introduce you into the concepts CoreMedia used
with Maven to provide you with the best development experience as possible.

Packaging Types

By default, Maven provides you with several packaging types. The most important
ones are the pom, jar and the war type. They should be sufficient for the most
common kinds of development modules but whenever you try to either support
proprietary formats or try to break whole new ground, those three packaging types
aren't sufficient. Using only the pom packaging type together with custom execu-
tions of arbitrary plugins, gives you flexibility but adding and maintaining your
pom.xml files is going to be a complex and costly process.

To reduce complexity, but even more important to enforce standards, CoreMedia
came up with two custom tailored packaging types for the CoreMedia Blueprint
workspace. The coremedia-application and the jangaroo packaging type.
The coremedia-application type provides a build lifecycle and dependency
profile for a proprietary application format, whereas the jangaroo type provides
both for the JavaScript tool chain to build sophisticated and compelling user inter-
faces like CoreMedia Studio.

104CoreMedia DXP 8

Blueprint Workspace for Developers | Concepts and Architecture

coremedia-application

The coremedia-application packaging type is provided by the coremedia-
application-maven-plugin. When you take a look at the root pom.xml and
search for this plugin, you will find two occurrences, one in the pluginManagement
section and one in the build section. The latter definition contains the line <ex
tensions>true</extensions> within its plugin body, telling Maven that it ex-
tends Maven functionality. In this case, Maven will register the custom lifecycle
bound to the custom packaging type.

<plugin>
<groupId>com.coremedia.maven</groupId>
<artifactId>coremedia-application-maven-plugin</artifactId>
<extensions>true</extensions>

</plugin>

Besides lifecycle, a custom packaging type can also influence if Maven dependencies
of this type have transitive dependencies or not. Because CoreMedia wanted to
keep the coremedia-application packaging type to be the pendant of the war
packaging type, it does not have transitive dependencies either. For your modules
to depend on other coremedia-application modules and their dependencies
as well, this means, that you need to define an additional dependency to the same
GAV (groupId, artifactId, version) coordinates but with packaging type pom.

Example 4.1. Depend-
encies for a CoreMedia
application

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>probedog-application</artifactId>
<type>coremedia-application</type>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>probedog-application</artifactId>
<type>pom</type>
<scope>runtime</scope>

</dependency>

You may know this pattern from working with war overlays if they are skinny too,
which means that they contain no further versioned artifacts.

For further information about the coremedia-application-maven-plugin,
you should visit the plugins documentation site at CoreMedia Application Plugin.

Jangaroo

Like the coremedia-application-maven-plugin, the jangaroo-maven-
plugin defines a Maven extension with a custom packaging type jangaroo, which
introduces a custom lifecycle. This lifecycle binds the standard phases known from
the jar packaging type to the corresponding goals for compiling ActionScript to
JavaScript, running JooUnit tests and packaging the compilation result. Because
Jangaroo artifacts and dependencies are of type jar, transitive dependencies are

105CoreMedia DXP 8

Blueprint Workspace for Developers | Maven Concepts

https://documentation.coremedia.com/utilities/coremedia-application-maven-plugin/2.7.9/index.html

automatically added to the compile scope, making it easy to create and maintain
modularity throughout your project.

For further information on the Jangaroo Maven build process, visit the corresponding
documentation in the Jangaroo Tools Wiki.

BOM files

BOM stands for "bill of material" and defines an easy way to manage your depend-
ency versions. The BOM concept depends on the import scope introduced with
Maven 2.0.9, that allows you to merge or include the dependencyManagement
of a foreign POM artifact in your POMs dependencyManagement section without
inheriting from it.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>core-bom</artifactId>
<version>5.4.23</version>
<type>pom</type>
<scope>import</scope>

</dependency>

The inclusion or merge is done before the actual dependency resolution of your
project is done. By the time the actual resolution starts Maven does not see any
BOM imports but only the merged or included dependencies.

For projects using a framework that provides many artifacts like CoreMedia does,
this means, that you can fix the versions for all dependencies that are part of that
BOM, by simply declaring one dependency.

Of course there are pitfalls when using BOMs and the import scope, but the be-
nefits of using BOMs overcome any disadvantages. To prevent you from falling
into one of the pitfalls, the following paragraphs will show you how to use the
BOM approach correctly.

Chaining BOMs and artifact procurement

Artifact procurement is a feature that some repository management tools like
Nexus or Artifactory offer you to allow your project to use only explicitly configured
versions of their dependencies. In addition to the local dependency management
in your POM files, artifact procurement is done remotely in your artifact repository.
Because of this fact, artifact procurement is much stricter and most commonly
only applied in organizations, where securing build infrastructure has the highest
priority.

When you chain BOM files, which means that the BOM you import, imports another
BOM and so forth, you cannot achieve complete artifact procurement if any POM
enforces a different version of a BOM than the version that is used within that
chain of its predecessors. This problem stems from the fact that all import scoped
dependencies must be resolved in any case, even if your topmost project enforces

106CoreMedia DXP 8

Blueprint Workspace for Developers | Maven Concepts

https://github.com/CoreMedia/jangaroo-tools/wiki/Maven-Build-Process

a different version. Luckily this only affects POM artifacts, you cannot compile
against or which have no effect when deployed to the classpath.

BOM import order

Because the import scope is more likely an xinclude on XML basis, ordering of
these imports is crucial if the BOMs content is not disjoint, which is most likely the
case in presence of chained BOMs.

As a result, it is important to list the BOM imports in reverse order of the BOM
import chain. To make sure your update is correct you should therefore always
create the effective POM and check the resulting dependencyManagement section.
To do so execute:

$mvn help:effective-pom -Doutput=effective-pom.xml

4.1.2 Blueprint Base Modules
CoreMedia Digital Experience Platform 8 introduces a new way of providing default
features for CoreMedia Blueprint, Blueprint Base Modules. Step by step CoreMedia
will move features from the Blueprint workspace to the Blueprint Base Modules. All
features of the Blueprint Base Modules will be described by a public API. The reasons
why CoreMedia decided to do so are:

➞ Less source code means faster Maven builds.

➞ Less source code in Blueprint workspace leads to easier migration paths when
updating to new versions.

As its name implies, this new module contains Blueprint logic and thus depends
on the Blueprint's content model. The content model is still part of the Blueprint
workspace, hence you may customize it. Be aware, that some changes will break
the Blueprint Base modules. Read Section “Content Type Model Dependencies” [142]
for the list of Blueprint Base dependencies to the Blueprint content type model.

Read Section 4.3.1, “Using Blueprint Base Modules” [141] for a detailed descrip-
tion of how to develop with the various Blueprint Base Modules.

4.1.3 Application Architecture
CoreMedia applications are hierarchically assembled from artifacts:

➞ Library artifacts are used by

➞ Component artifacts are used by

107CoreMedia DXP 8

Blueprint Workspace for Developers | Blueprint Base Modules

➞ Application artifacts are used by

➞ Packages artifacts

The following sections describe the intention of the given artifact types.

Library Artifacts

Library artifacts contain JAR artifacts with Java classes, resources and Spring bean
declarations.

An example is the artifact cae-base-lib.jar that contains CAE code as well as
the XML files which provide Spring beans.

Component Artifacts

Component artifacts provide a piece of business (or other high level) functionality
by bundling a set of services that are defined in library artifacts. Components follow
the naming scheme "<componentKey>-component.jar. The component artifact
cae-component.jar for example, bundles all services that are typically required
by a CAE web application based project.

Component artifacts are automatically activated on application startup, in contrast
to library artifacts. That is, Spring beans and properties are loaded into the applic-
ation context and servlets and so on will be instantiated. Therefore, you can add
a component by simply adding a Maven dependency. No additional steps (such as
adding an import to a Spring file) are necessary.

The following files allow you to declare services for a component which are auto-
matically activated:

➞ /META-INF/coremedia/component-<componentname>.xml:

An entry point for all component Spring beans. Either declared directly or
imported from library artifacts.

➞ /META-INF/coremedia/component-<componentname>.properties:

All configuration options of the component as key/value pairs. These prop-
erties might be overridden by the concrete application.

➞ /META-INF/web-fragment.xml: A Servlet 3.0 fragment of a web.xml
file that declares component specific servlets, listeners, etc. (see ht-
tp://www.oracle.com/technetwork/articles/javaee/javaee6overview-part2-
136353.html)

108CoreMedia DXP 8

Blueprint Workspace for Developers | Application Architecture

http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part2-136353.html
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part2-136353.html
http://www.oracle.com/technetwork/articles/javaee/javaee6overview-part2-136353.html

Consider extending com.coremedia.springframework.web.ComponentWebAp-
plicationInitializer instead of writing a web-fragment.xml so that your com-
ponent's servlet configuration (listeners, filters, etc.) can be disabled at applica-
tion startup time by passing a list of component names as property compon-
ents.disabled to the web application. The property is read using an instance
of spring's Standard Servlet Environment.

Application Artifacts

An application artifact is a WAR (web application) file that is ready to be deployed
in a servlet container. It consists of one or more component and library artifacts
as well as a small layer of code or configuration that glues the components together.
Web resources such as image or CSS files might be either directly contained in
application artifacts or might be bundled below /META-INF/resources inside
a shared library or component artifact.

Application artifacts may contain the following files to configure its components:

➞ /WEB-INF/web.xml: Servlet 3.0 web application deployment descriptor,
may declare a load order for component web fragments and additional servlet
filters, listeners, etc.

➞ /WEB-INF/application.xml: Contains additional Spring configuration
which is required by the application and not provided by components.

➞ /WEB-INF/application.properties: Configures components packaged
with the application. Values set here override any default application and
component configuration in /WEB-INF/application.xml and /META-
INF/coremedia/component-<componentname>.properties.

➞ /WEB-INF/logback.xml: Logback configuration file for this application.
If this file is present, it will override the default log configuration. Any custom
log configuration file should include logging-common.xml, which defines
appenders "file" and "console" and sets the name and location of the log file:

Example 4.2. Including
logback-common.xml<?xml version="1.0" encoding="UTF-8"?>

<configuration scan="true" scanPeriod="30 seconds">

<include resource="logging-common.xml"/>

<!-- define loggers here, for example: -->

<logger name="com.coremedia" additivity="false" level="info">

<appender-ref ref="file"/>
</logger>

<root level="warn">
<appender-ref ref="file"/>

109CoreMedia DXP 8

Blueprint Workspace for Developers | Application Architecture

https://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs//com/coremedia/springframework/web/ComponentWebApplicationInitializer.html
https://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs//com/coremedia/springframework/web/ComponentWebApplicationInitializer.html
http://docs.spring.io/spring/docs/4.0.1.RELEASE/javadoc-api/org/springframework/web/context/support/StandardServletEnvironment.html
http://logback.qos.ch/documentation.html

</root>

</configuration>

See Section “The Logging Component” [165] for additional information.

You can specify additional properties files by defining a comma-separated list of
paths in a System or JNDI property with the name propertieslocations.

Application properties are loaded from the following sources, from the highest to
the lowest precedence:

➞ System properties: Useful for overriding a property value on the command-
line. The actual property name must be prefixed with "coremedia.application."
when set as a system property:

$ mvn '-Dcoremedia.application.management.server.remote.url=
service:jmx:jmxmp://localhost:6666' tomcat7:run

➞ JNDI context: Allows deployers to override application properties without
modifying the WAR artifact. Object names must be prefixed with "core-
media/application/". For instance, to set the property management.serv-
er.remote.url via the JNDI context, its value may be added to the applic-
ation environment in the application's /WEB-INF/web.xml or in Tomcat's
context configuration:

Example 4.3. Setting
an environment prop-
erty in web.xml

<env-entry>
<env-entry-name>
coremedia/application/management.server.remote.url

</env-entry-name>
<env-entry-value>
service:jmx:jmxmp://localhost:6666

</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

Example 4.4. Setting
an environment prop-
erty in the context con-
figuration

<Context>
<!-- ... -->

<Environment
name="coremedia/application/management.server.remote.url"
value="service:jmx:jmxmp://localhost:6666"
type="java.lang.String"
override="true"/>

<!-- ... -->
</Context>

➞ /WEB-INF/application.properties: Build-time configuration of applic-
ation properties.

110CoreMedia DXP 8

Blueprint Workspace for Developers | Application Architecture

http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Environment_Entries

➞ /WEB-INF/component-*.properties: Likeapplication.properties,
but allows grouping of properties by component.

➞ classpath:/META-INF/coremedia/component-*.properties: Default
component configurations provided by the author of the component. These
files should not be modified to configure components for use in a particular
application. Instead, their values should be overridden in the application
artifact in the files /WEB-INF/component-*.properties or /WEB-
INF/application.properties.

Package Artifacts

A package artifact is a deployable artifact. It may contain one or more application
artifacts, which can be tools, web applications or any other resources you need to
deploy, for example an Apache configuration overlay or a Tomcat installation. The
main purpose of a package artifact is to add an installation infrastructure. In case
of simple Zip artifacts this can be a set of shell or batch scripts. In case of a native
package, an RPM for example, the native package manager provides the infrastruc-
ture to install a package artifact.

Package artifacts may be configured at build time with default values or with filter
tokens, that can be replaced after the installation on the target machine (see Section
4.3.9, “Configure Filtering in the Workspace” [171] for details).

Tomcat based Services

In case a package artifact repackages a set of WAR application artifacts, the package
artifact wraps a Tomcat configuration stub around one or more web applications
and adds the infrastructure to register the Tomcat instance as a service. A Tomcat
configuration stub contains only the necessary configuration files of a Tomcat and
the web applications it should start. A common Tomcat installation, identified by
an environment variable CATALINA_HOME, can then be used to start an instance
of itself using an environment variable CATALINA_BASE pointing to the Tomcat
configuration stub. This way you don't need to package a whole Tomcat installation
with each service package artifact.

For an overview of the default layout used for Linux/Unix, see Section 9.3, “Linux
/ Unix Installation Layout” [468].

Redundant Spring Imports

Due to the design of the Spring Framework and the CoreMedia CMS, it is necessary
to declare many <import/> elements in Spring configuration files, often pointing
to the same resource. This slows down the startup of the ApplicationContext.

Unfortunately,org.springframework.beans.factory.xml.XmlBeanDefin-
itionReader does not track imported XML files, so redundant <import/> ele-
ments will lead to Spring parsing the same XML files over and over again (in most

111CoreMedia DXP 8

Blueprint Workspace for Developers | Application Architecture

cases, those XML files will contain more <import/> elements leading to even
more parsing, ...) After moving to Servlet 3.0 resources, for each <import/>, the
JAR file containing the XML file has to be unpacked. Also, every time that an XML
file is completely parsed, Spring reads all Bean declarations, creates new
org.springframework.beans.factory.config.BeanDefinition instances,
overwriting any existing BeanDefinitions for the same bean ID.

This release introduces an optional Spring Environment property skip.redund
ant.spring.imports that is true by default. If set to true, the first <import/>
element will be used and all following, duplicate <import/> elements pointing
to the same resource will be ignored. The time saved depends on the number of
duplicated <import/> elements.

Even though this setting is recommended, it may change which bean definitions
are loaded. (As explained above, normally, bean definitions may be overwritten
by subsequent imports, depending on how <import/> elements are used in a
web application).

4.1.4 Structure of the Workspace
The CoreMedia Blueprint workspace contains the modules, packages, boxes and
test-data top level aggregator modules.

Figure 4.1. Workspace
Structure

112CoreMedia DXP 8

Blueprint Workspace for Developers | Structure of the Workspace

http://docs.spring.io/spring/docs/4.0.1.RELEASE/javadoc-api/org/springframework/core/env/Environment.html

modules

The modules aggregator module is the most important space for project developers.
All code, resources, templates and the like is maintained here. You can start all
components locally in the modules area.

The modules hierarchy consists of modules that build libraries and modules that
assemble these libraries to applications. Library modules are being built with the
standard Maven jar packaging type or with the jangaroo packaging type, which
is a custom packaging type to package CoreMedia Studio libraries and plugins.

Most applications created by the modules below the modules folder are web ap-
plications using the standard Maven war packaging type. All other applications
are built with the custom coremedia-application packaging type. In contrast
to war modules coremedia-application modules are being built with the
coremedia-application-maven-plugin, a custom plugin tailored to the CoreMedia
.jpif based application runtime.

The modules folder is structured in sub-hierarchies by grouping modules due to
their functionality. The main groups are cae, cmd-tools, ecommerce, editor-
components, studio, search and serverwhich contain the applications defining
CoreMedia DXP 8.

Beside the application groups you can see a folder named shared. Modules be-
longing to this category cannot be assigned to one group alone but merely provide
libraries and APIs for multiple applications. The remaining two groups extension-
config and extensions are required for the new extensions functionality of
CoreMedia Blueprint workspace.

By default, CoreMedia Blueprint workspace ships preconfigured with many extensions
such as Adaptive Personalization or Elastic Social. Many extensions not only touch
one application but merely extend many of them. The CoreMedia Project Extensions
decouples the application from the dependencies it is extended by and lets you
centralize and automatically manage the dependencies. See Section 4.1.5, “Project
Extensions” [114] for details.

Not all extensions will be used in a project right from the start. In this case, the
CoreMedia Project Extensions allow you to easily deactivate features that you do not
need.

packages

The artifacts, for example WAR and Zip files build by the modules hierarchy are
not deployable in a target environment as they contain default configuration values
used to simplify development with the workspace. The packages hierarchy adds
this configuration flexibility and even more important it adds the integration with
the servlet container and the operating systems service infrastructure.

113CoreMedia DXP 8

Blueprint Workspace for Developers | Structure of the Workspace

The artifacts build in packages are either Zip or RPM files. For RPM files there is
an inbuilt native installation routine whereas the Zip files contain custom installation
scripts.

The packages hierarchy consists of several sub-hierarchies. The main hierarchies
are services, tools and apache-overlays. The services sub-hierarchy builds
all applications that are built on top of Tomcat as a servlet container. The tools
sub-hierarchy builds all command-line tools for all services. The apache-overlays
hierarchy builds overlays to an already installed Apache server, adding only config-
uration files.

Beside these three hierarchies there is the package-template module, that
contains all the OS-specific installation code like the scriptlets for the RPM files or
the initialization scripts for the Tomcat services.

The tomcat hierarchy consists of modules necessary for the Tomcat service infra-
structure. The tomcat-installation module builds an installable version of a
Tomcat distribution. The Tomcat based services share, when installed on the same
machine, one installation of Tomcat. They only create instances of Tomcat using
the binaries of the distribution together with their own configuration files, which
are being provided by the tomcat-config artifacts. The tomcat-server-libs and
coremedia-tomcat modules provide class loading extensions.

The editor-webstart-webapp module has been placed here as signing and
repackaging is closer related to the packages hierarchy as with the modules hier-
archy.

boxes

The boxes module contains all provisioning code to automatically set up a CoreMedia
Blueprint system. For local development it also contains a harness in the form of
a Vagrant file to startup a virtual machine within VirtualBox. See Section 4.1.6,
“Virtualization and Provisioning” [119] for more information.

test-data

The test-data folder contains test content to run CoreMedia Blueprint with. It can
be imported into the content repository by using the CoreMedia serverimport tool.
Extensions may contain additional test-data folders. For more information have a
look at Section 3.5.3, “Locally Starting the Components” [85]

4.1.5 Project Extensions
One of the main goals of CoreMedia DXP 8 is to offer a developer friendly system
with a lot of prefabricated features, that can simply be extended modularly. To this
end, CoreMedia provides the Maven based CoreMedia Blueprint workspace and the
extensions mechanism.

114CoreMedia DXP 8

Blueprint Workspace for Developers | Project Extensions

ExtensionsAn extension adds new features to one or more CoreMedia components. To preserve
a modular structure in the workspace an extension should be developed in its own
Maven module and should have submodules for extensions that affect different
CoreMedia applications. Assume, for example, that you want to extend your
CoreMedia system to integrate external content and render this content with a
proof of origin. In this case there is a submodule for the CAE containing new view
templates for this content and there is another submodule containing new UI
components for Studio to search specific sources and create new content.

In CoreMedia Blueprint workspace extensions are, in principle, enabled for one
component by adding a Maven dependency on the extension module to the com-
ponent module.

CoreMedia Blueprint
Maven Plugin

Nevertheless, because extensions often affect more than one component (for ex-
ample the CAE and Studio as shown in Figure 4.2, “CoreMedia Extensions Over-
view” [115]) that would mean that a dependency for each affected component has
to be declared. If the extension should be disabled, the corresponding dependencies
have to be removed from the components. This requires many manual steps and
it is error-prone if dependencies are forgotten. The CoreMedia Blueprint Maven
Plugin is a Maven build extension that does all the dependency management for
you. It allows you to define extensions for multiple CoreMedia components in
separate modules and to enable or disable them in one place. Find the details de-
scribed in the following paragraphs.

Figure 4.2. CoreMedia
Extensions Overview

How Extensions and Components Integrate

The CoreMedia Blueprint Maven Plugin requires the following features in the Maven
workspace for operation :

➞ Extension Point: Each CoreMedia component that can be extended defines
an extension point in the modules/extensions-config folder. The exten-
sion point is a simple POM file in a component specific submodule. For in-

115CoreMedia DXP 8

Blueprint Workspace for Developers | Project Extensions

stance extensions-config/studio-extension-dependen
cies/pom.xml is the extension point of CoreMedia Studio.

➞ Extension Descriptor: A simple BOM POM file of the extension that has de-
pendencies on the component specific extension modules. The root POM
file of the project has to depend on this POM file in order to activate the
extension.

➞ coremedia.project.extension.for: A property in the POM files of the
component specific extension submodule. The property defines for which
CoreMedia component the extension is intended.

How the CoreMedia
Project Maven Exten-
sion works

The CoreMedia Blueprint Maven Plugin ia a tool which manages extensions for you.
It analyzes the root pom.xml file and its dependencyManagement entries to
identify the registered extensions by their extension descriptor. If any are found,
each extension module defined in the extension descriptor of the extension is added
to the extension point. An application now only needs to depend on its extension
points and all necessary dependencies will be added to the applications dependency
tree by transitivity. The following sections describe this in detail.

Mapping Components and Extensions

The CoreMedia Blueprint Maven Plugin handles the dependencies for you in order
to enable or disable an extension. To reach that, a relation between extension
module and corresponding component must exist. This relation will be defined by
the extension module itself. In other words the extension module exposes its target
component. The CoreMedia Blueprint Maven Plugin expects a Maven property in the
extension module. The name of the property is coremedia.project.extension.for.
The value of this property describes the target component or more precisely it
matches the prefix of one module of the extension points. The CoreMedia Blueprint
Maven Plugin adds a dependency on the extension module to the matching exten-
sion point module (see Figure 4.3, “Component Mapping” [116]).

Figure 4.3. Component
Mapping

116CoreMedia DXP 8

Blueprint Workspace for Developers | Project Extensions

Activating Extensions

As already mentioned the CoreMedia Blueprint Maven Plugin allows you to enable
and disable an extension in one place. Extensions are enabled by adding the Exten-
sion Descriptor to the project's root POM and running the update-extensions goal
of this Maven plugin. While the Extension Descriptor is a BOM POM you have to
import it to the dependencyManagement section of the project's root POM as
shown in Example 4.5, “Enabling an Extension” [117]. To disable an extension you
have to remove the import also followed by the update-extensions goal of this
plugin. For more information about developing with the CoreMedia Blueprint Maven
Plugin see Section 4.3.2, “Developing with Extensions” [146].

Example 4.5. Enabling
an Extension

<dependencyManagement>
<dependencies>
...
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>my-extension-bom</artifactId>
<version>${project.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>
...

</dependencies>
</dependencyManagement>

$ cd $BLUEPRINT_HOME
$ mvn com.coremedia.maven:coremedia-blueprint-maven-plugin:\

update-extensions

The Project Extension mechanism does not corrupt the Maven dependency
resolving in any way. The dependencies are added before Maven analyzes de-
pendencies and calculates the build order. Since the managed dependencies are
persisted in a standard pom.xml, every IDE and other Maven based tool should
work as expected.

Example

The example bases on the extension mentioned above; an extension that extends
your CoreMedia system to integrate external content and render this content in
the CAE. Therefore, it needs sub modules for Studio and CAE specific parts:

117CoreMedia DXP 8

Blueprint Workspace for Developers | Project Extensions

Example 4.6. Module
structure of the exten-
sion

--extensions
--externalContent
--externalContent-cae
--externalContent-studio

Each component specific submodule needs to show for which CoreMedia component
it is intended. The pom.xml file of the externalContent-studio module, for
example, has to contain the following property:

Example 4.7. Define
the component

<properties>
<coremedia.project.extension.for>
studio

</coremedia.project.extension.for>
</properties>

The extensions need to be defined in the extension descriptor in the BOM POM
file of the extension.

Example 4.8. Module
structure with BOM
POM

--extensions
--externalContent
--externalContent-bom
--pom.xml

--externalContent-cae
--externalContent-studio

Example 4.9. BOM
POM with dependen-
cies on submodules<dependencies>

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>externalContent-cae</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>externalContent-studio</artifactId>
<version>${project.version}</version>

</dependency>
</dependencies>

Now, you have to activate the extension. Simply add a dependency on the BOM
POM file to the root pom.xml file:

Example 4.10. En-
abling the extension in
the root POM file

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>

118CoreMedia DXP 8

Blueprint Workspace for Developers | Project Extensions

<artifactId>externalContent-bom</artifactId>
<version>${project.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>
</dependencies>

$ cd $BLUEPRINT_HOME
$ mvn com.coremedia.maven:coremedia-blueprint-maven-plugin:\

update-extensions

The CoreMedia Blueprint Maven Plugin will add the dependencies on the external-
Content-cae and externalContent-studio to the respective extension points
of CAE and Studio.

4.1.6 Virtualization and Provisioning
The CoreMedia Blueprint workspace supplies a virtualization and provisioning infra-
structure to set up a virtual machine (VM) with all services and applications in a
fully automated way. To achieve this Chef is used as the configuration management
tool, a tool that has been proven and has been adopted widely. As a virtualization
solution for development purposes, CoreMedia uses Vagrant as a wrapper around
Oracle VirtualBox to configure the virtualized hardware, the network settings and
to trigger the provisioning process of Chef on the box.

The term provisioning hereby describes the process of converging the state of a
box from an arbitrary current state into the desired state configured with Chef,
whereas the term box describes a virtual machine in the sense of a whole virtualized
systems and neither means a Java Virtual Machine nor a restriction to Oracle Virtual
Box as the virtualization solution. The Chef setup provided can also be applied to
VMware images and bare metal systems.

Due to legal restrictions from Oracle, the boxes are configured with OpenJDK.
If you want to use the Oracle JDK you have to import the Java community cook-
book (https://supermarket.chef.io/cookbooks/java) and activate Oracle JDK in
your Vagrant files.

Boxes Overview

By default, only a simple virtualized environment, where all applications are running
on one box, is shipped with the workspace. This box environment provides all the
blueprint services and its dependencies necessary for development purposes. For
better insight, it provides also a PSDash processes dashboard that allows tailing of

119CoreMedia DXP 8

Blueprint Workspace for Developers | Virtualization and Provisioning

https://supermarket.chef.io/cookbooks/java

logs from within the browser and provides a quick overview to all main system
statistics. Visit http://localhost:8999.

All links to applications and services can be gathered in the README.md at the root
directory of the workspace.

Please feel free to add your own custom tailored box scenarios to your workspace
to improve your development experience. There are many possible scenarios ranging
from a simple persistence box where only database services are running to a box
where you test your monitoring stack. With Vagrant and Chef, you can easily provide
reusable test beds for any kind of software.

Vagrant

Vagrant is a tool, that allows you to automate the bootstrapping and configuration
of virtualized images and thereby provides you with a workflow to test your code
in an isolated environment keeping your developers machine clean from any project
specific software. By abstracting the virtualization provider and the configuration
provisioner, it is highly adaptable to your projects infrastructure.

By default, CoreMedia uses Oracle VirtualBox as the provider and Chef as the provi-
sioner, but there are many free plugins adding other providers and provisioners.
A list of free plugins can be seen here. Beside these free plugins there are also
several commercial plugins, notably the VMware provider plugin, which is developed
by the Vagrant founder himself.

Vagrants main configuration interface is the Vagrantfile, written in a Ruby DSL
to configure hardware and network characteristics as well as a provisioning process
to be triggered after booting the box.

To control the lifecycle of the boxes, Vagrant comes with an easy to learn command-
line interface. Vagrant has commands to start, stop, destroy, suspend and resume
the boxes. There are also commands to trigger the provisioning process to update
the applications in the boxes. For a complete list of the available commands, either
call vagrant --help on your shell or visit the official Vagrant documentation
athttps://docs.vagrantup.com/v2/.

As Vagrant uses an approach, where it imports a base box and starts provisioning
from that state, CoreMedia provides you with a preconfigured base box, containing
only a minimum of preinstalled packages like Java. Visit CoreMedia Vagrant base
boxes reference for the current base box state.

Be aware that Vagrant is NOT a deployment tool for production use, it is a de-
veloper aid to get rid of installing and configuring server software on your laptop.
More precisely, it closes the gap between infrastructure and code, allowing you
to develop and test complex deployment scenarios from within your workspace.

120CoreMedia DXP 8

Blueprint Workspace for Developers | Virtualization and Provisioning

http://localhost:8999
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins
https://www.vagrantup.com/vmware
https://docs.vagrantup.com/v2/cli/index.html
https://support.coremedia.com/hc/en-us/articles/203959528
https://support.coremedia.com/hc/en-us/articles/203959528

The Vagrant file

The main file in any Vagrant based scenario is the Vagrantfile file, it is the
pom.xml file of the virtualization process. In the workspace you will find it beside
the main pom.xml at the root directory.

Example 4.11. Vag
rantfile ExampleVagrant.configure("2") do |config|

...
config.vm.box = "coremedia/base"
config.vm.box_version = "~> 1.16"
config.omnibus.chef_version = "12.8.1"
config.vm.define :blueprint do |blueprint_config|
blueprint_config.vm.network "private_network", ip:

"192.168.252.100"
blueprint_config.vm.provider "virtualbox" do |v|
v.customize ["modifyvm", :id, "--memory", 4096]
v.customize ["modifyvm", :id, "--cpus", 2]

end
blueprint_config.vm.provision "chef_solo" do |chef|
chef.cookbooks_path = path_cookbooks
chef.roles_path = path_roles
chef.add_role("coremedia-box-common")
...

end
end

end

In the Vagrantfile file, several Ruby blocks describe particular configurations.
For example the opening Vagrant.configure("2") do |config| block starts
the Vagrant DSL, whereas the config.vm.define :blueprint do |blue
print_config| block starts the configuration of a particular box. Within this
configuration block, you will encounter two more blocks. The blueprint_con
fig.vm.provider "virtualbox" do |v| block, that defines the Oracle Virtu-
alBox provider and the blueprint_config.vm.provision "chef_solo" do
|chef| block, that starts the Chef chef-solo provisioner. For a more comprehensive
documentation visit the official Vagrant documentation athttps://docs.vag-
rantup.com/v2/.

Chef

As already mentioned earlier, Chef is used as the provisioning tool of choice to fully
automate the deployment process of CoreMedia applications. Chef is a widely ad-
opted configuration management framework, that has a steadily growing com-
munity and provides free installation instructions (cookbooks) for almost any kind
of applications or infrastructures.

To learn more about the Chef configuration management tool please refer to the
official Chef documentation at https://docs.chef.io/.

Chef Repository

The CoreMedia Blueprint workspace provides a Chef infrastructure to manage a
complex CoreMedia installation. The parts of the infrastructure are grouped as a

121CoreMedia DXP 8

Blueprint Workspace for Developers | Virtualization and Provisioning

https://docs.vagrantup.com/v2/
https://docs.chef.io/

Chef repository, a directory layout convention required to work with chef-server,
the central management facility for complex deployments. The chef-repo directory
is located at boxes/chef/chef-repo and consists of the following subdirectories:

➞ cookbooks, the logical deployment unit for Chef recipes.

➞ roles, a Chef construct to bundle recipe executions together with configura-
tion attributes.

➞ data_bags containing data files structured as JSON files.

➞ environments a further topology based grouping construct of Chef.

The chef-repo directory contains README.md files which are part of the official
chef-repo template. They contain instructions how to use the different constructs.

For the development setup with Vagrant, chef-solo is currently used as the pro-
visioner, because it is easier to start with. The chef-repo though, is prepared to
use with chef-server. To work with both environments, there are extra recipes,
that use the chef-server search capabilities to dynamically connect nodes applic-
ations by querying nodes by their roles. These recipes have the suffix _override
and cannot be used together with Vagrant.

Cookbooks

The chef-repo directory contains all necessary cookbooks to set up a CoreMedia
installation. This includes third-party community cookbooks from the official Chef
Supermarket site. The cookbooks found there are being released regularly and
CoreMedia strives to update the dependencies in the workspace for every distribu-
tion release of CoreMedia Blueprint.

In the boxes/chef/chef-repo/cookbooks directory you will find cookbooks
provided by CoreMedia:

➞ The blueprint-yum cookbook configures the yum package management.

➞ The coremedia cookbook handles the deployment and configuration of all
CoreMedia applications.

➞ The psdash cookbook installs and configures the PSDash processes dash-
board. This cookbook is primary for development purposes, where quick in-
sights into the log files or the basic system statistics are helpful. The dash-
board can be accessed at http://localhost:8999.

CoreMedia Cookbook

The coremedia cookbook is located at boxes/chef/chef-repo/cook
books/coremedia and contains the full spectrum of Chef constructs, this includes:

122CoreMedia DXP 8

Blueprint Workspace for Developers | Virtualization and Provisioning

https://supermarket.chef.io/
https://supermarket.chef.io/
https://github.com/Jahaja/psdash
https://github.com/Jahaja/psdash

➞ recipes as the installation instructions to be executed by chef.

➞ attributes containing the default configuration attributes for all recipes.

➞ resources (lightweight resources LWR) to compose new recipes from. Cur-
rently there are resources for configuration, content, probedog and
workflows. For a more detailed description view the boxes/chef/chef-
repo/cookbooks/coremedia/README.md file written in markdown syntax,
a common standard for cookbook documentation.

➞ providers (lightweight providers LWP), the implementation of the LWRs.

➞ definitions as a macroized recipe, to reduce the repetitive declaration of
Chef resources in every recipe.

➞ libraries for concrete ruby implementation of Chef APIs.

➞ templates to render files with parameters to disk.

The recipes of the coremedia cookbook install either logical units of deployment
or configure infrastructure or third-party services.

The recipes installing CoreMedia services are very similar, they all contain one or
more package resources installing the service and tool RPMs and a service re-
source responsible for the lifecycle of the service. If present, a probedog resource
watches the availability of the service after it has been (re-)started.

In more complex recipes, the content_management_server or the work
flow_server recipe, for instance, the additional resources and providers (LWRP)
are being used to either import and publish content or upload workflows. The ref-
erence about the configuration possibilities of those recipes can also be found in
the README.md file.

The configuration resource is responsible for configuring the CoreMedia services
and tools. It represents a Chef facade for the configuration properties files located
below /etc/coremedia on the target machine and triggers the reconfiguration
process when necessary.

By default, all Chef attributes, together with all information gathered by Chefs in-
spection tool ohai are merged together into one JSON data structure for each Chef
node. By defining additional attributes either in roles or environments, you can
extend this set. The configuration resource accesses all attributes found below
the nested hash at node['coremedia']['configuration'] and compares
the ones required for an application with the ones found currently on disk. If both
sets don't match, the resource will trigger the reconfiguration of the resource.

All keys listed in the packages/src/main/filters/default-deploy
ment.properties file are available for configuration. If, for example, you may
want to change the value of the JVM heap size of the Content Management Server,
you need to set your desired value with the key configure.CMS_HEAP. In the

123CoreMedia DXP 8

Blueprint Workspace for Developers | Virtualization and Provisioning

boxes/chef/vagrant-chef-repo/roles/management.rb, you can see, how
it is done for the vagrant deployment.

Roles

Recipes that should run together on one node are grouped together with attributes
into Chef roles. In the boxes/chef/vagrant-chef-repo/roles directory, you
find roles configured only for the Vagrant development setup.

124CoreMedia DXP 8

Blueprint Workspace for Developers | Virtualization and Provisioning

4.2 Administration and Operation
This chapter describes how to administrate and operate features of CoreMedia Di-
gital Experience Platform 8 and how to release, deploy and maintain a Core-
Media DXP 8 System.

➞ Section 4.2.1, “Performing a Release” [125] gives a brief introduction on how
to perform a Maven release and how to upload the deployment artifacts
correctly.

➞ Section 4.2.2, “Deploying a System” [127] describes how to deploy the up-
loaded artifacts.

➞ Section 4.2.3, “Upgrade a System” [137] describes how you can upgrade a
system.

➞ Section 4.2.4, “Rollback a System” [139] describes how you can rollback de-
ployed packages.

➞ Section 4.2.5, “Troubleshooting” [140] gives some hints in case of problems.

4.2.1 Performing a Release
This section describes how you can release the workspace with Maven and upload
the artifacts to a repository. Before you continue, make sure you have configured
the scm and distributionManagement section as described in the Section 3.3.3,
“Configuring the Workspace” [46].

At the heart of every release process is the maven-release-plugin, which divides
the process into two phases, the prepare and the perform phase.

In the prepare phase Maven sets a release version, builds the workspace and if
that succeeds, it commits and tags the state. In a second step the version is bumped
up to the next SNAPSHOT version.

During the perform phase the release committed tag is being checked out to the
target/checkout directory, from where it is being build. During this perform
build, the release artifacts are being uploaded to a Maven repository.

The default call you need to execute is therefore:

$ cd $CM_BLUEPRINT_HOME
$ mvn release:prepare release:perform

Upload Libraries, Components and Applications

During a release, you only need to upload the artifacts of the modules below the
$CM8_BLUEPRINT_HOME/modules folder into a Maven repository as there is no
need to reuse the artifacts below the $CM8_BLUEPRINT_HOME/packages folder

125CoreMedia DXP 8

Blueprint Workspace for Developers | Administration and Operation

in other projects, they are for deployment purposes only. Because of this, the
maven-deploy-plugin is configured to skip the deploy goal for these modules.

Upload Packages

Because there are Maven repository servers with the capability to serve a Maven
repository with artifacts of type rpm as a Yum repository, you will find a hook to
the $CM8_BLUEPRINT_HOME/boxes module to upload the rpm artifacts to a
dedicated repository. Currently Nexus and Artifactory are supporting Yum reposit-
ories.

To deploy RPM packages, you need to activate the Maven profile repository-
upload.

By default, the profile can be configured using the properties shown in the table

Table 4.1. RPM deploy-
ment properties

below:

usageproperty

The URL to upload the artifacts to. Defaults to
${project.distributionManagement.re
pository.url}

rpm.upload.reposit-
ory.url

The id of the server authentication in the set
tings.xml. Defaults to ${project.distribu
tionManagement.repository.id}

rpm.upload.repository.id

Because repository servers like Nexus prohibit the deployment of snapshot artifacts
into release repository and vice versa, you need to overwrite the repository URL
to upload snapshot RPM artifacts. In case of a CI build you can then use a profile
defined in the settings.xml file to overwrite the properties. In most cases there
is already such a snapshot profile to add snapshot repositories and you can reuse
it. In any case, the profile must include the properties, for example :

Example 4.12. Snap-
shot Profile<profile>

<rpm.upload.repository.url>REPO_URL</rpm.upload.repository.url>
<rpm.upload.repository.id>REPO_ID</rpm.upload.repository.id>
</profile>

To activate the hook during the Maven release, you need to add the profile to the
comma separated list of profiles defined in the releaseProfiles configuration
property of the maven-release-plugin. You can find the configuration in the
pluginManagement section of the $CM7_BLUEPRINT_HOME/pom.xml.

Example 4.13. maven-
release-plugin<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>Configuration of maven-release-plugin</artifactId>

126CoreMedia DXP 8

Blueprint Workspace for Developers | Performing a Release

<version>2.3.2</version>
<configuration>
<autoVersionSubmodules>true</autoVersionSubmodules>
<pushChanges>false</pushChanges>
<localCheckout>true</localCheckout>
<preparationGoals>clean verify</preparationGoals>
<releaseProfiles>
postconfigure,
repository-upload

</releaseProfiles>
<arguments>-Ppostconfigure</arguments>

</configuration>
</plugin>

If you want to upload the RPM artifacts manually, you need to execute the deploy
goal together with the profile, for example:

$ cd $CM7_BLUEPRINT_HOME/boxes
$ mvn deploy -Prepository-upload

Upload RPM Archive to S3

If you want to deploy the system within Amazon EC2 there is another hook to create
an archive containing all RPM files and upload it to Amazon S3. This hook can be
activated with the Maven profile s3-upload, defined in the $CM7_BLUE
PRINT_HOME/boxes/pom.xml.

Upload Zip Packages

As there is no standardized deployment process for applications packaged as Zip
files, there is no preconfigured solution within the workspace as well. If you still
want to upload the Zip archives directly to their target machines, you can use the
wagon-maven-plugin to achieve this. You will find the plugin's documentation
here.

4.2.2 Deploying a System
After artifacts have been released or uploaded to a repository, you need to set up
a system by deploying those artifacts. Currently, CoreMedia offers you three possible
deployment strategies:

➞ The automatic provisioning process using Chef.

➞ The semiautomated processes using rpm and yum.

➞ The semiautomated process using the proprietary install scripts of the Zip
archives.

127CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

http://mojo.codehaus.org/wagon-maven-plugin/

Deployment with Chef

With the CoreMedia Blueprint workspace, CoreMedia provides you not only with
RPMs but also with a prefabricated automated way to set up a whole system from
scratch using Chef as a provisioning tool.

The whole idea of using Chef is to fully automate the installation and upgrade
process and integrate its configuration infrastructure as code into the workspace.
Bundled together, installation configuration and project code, you can reduce the
risk of not being able to set up a system specific state from scratch after a break-
down.

With Chef, you do not have to install and configure all services manually on each
machine by yourself, but Chef will take care of it. This includes not only the install-
ation of CoreMedia Digital Experience Platform 8 services, but also third-party software
like MongoDB and MySQL.

Using Chef-Solo

If you start with Chef and simply want to set up a system on a single machine, you
should use the chef-solo client utility as it doesn't require a Chef Server or an
account for Hosted Chef.

Prerequisites

Before you can start deploying the components with chef-solo, you need to
fulfill the following requirements:

➞ Install chef-solo.

➞ Provide the RPM artifacts either from a local directory or from a remote YUM
repository.

Additionally, there are some optional requirements, mostly used to set up a devel-
opment or test system:

➞ Provide a Zip archive of a content export, either as a local file or from a re-
mote accessible URL.

Installing Chef Client

To install Chef Client (including chef-solo) execute the following command:

sudo true && curl -L https://www.chef.io/chef/install.sh | sudo bash

128CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

https://docs.chef.io/chef_solo.html

Configuring the solo.rb file

The file to configure the chef-solo client is solo.rb, it contains the paths' to
the cookbooks and the roles and the logging configuration of Chef. You have to
create this file. A simple solo.rb file should look like the example below.

Example 4.14. An ex-
ample solo.rb file# CHEF ENVIRONMENT CONFIGURATION

log_level :info
log_location "/var/log/chef/chef-solo.log"
cookbook_path "PATH_TO_YOUR_CHEF_REPO/cookbooks"
role_path "PATH_TO_YOUR_CHEF_REPO/roles"

Install Berkshelf and vendor the cookbooks. To do so,

cd boxes/chef/chef-repo
berks vendor

Afterwards the new generated berks-cookbooks directory must be added to the
cookbooks path of the solo.rb.

Configuring the node.json file

The node.json file contains all the configurations you want to apply with the
chef-solo run. This includes the attributes you want to set but also the roles and
recipes you want to apply. The example below configures a complete CoreMedia 7
run.

Example 4.15. An ex-
amplenode.json file{

"fqdn":"YOUR_ALIAS",
"mysql":{
"allow_remote_root":true,
"bind_address":"0.0.0.0",
"use_upstart":false,
"server_repl_password":"coremedia",
"server_debian_password":"coremedia",
"server_root_password":"coremedia",
"tunable":{
"wait_timeout":"7200"

},
"client": {
"packages": ["mysql-community-client", "mysql-community-devel"]

},
"server": {
"packages": ["mysql-community-server"]

}
},
"coremedia":{
"db":{
"schemas":["cm7management",

"cm7master",
"cm7replication",

129CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

"cm7caefeeder",
"cm7mcaefeeder"]

},
"yum":{
"local": {
"path": "YOUR_LOCAL_RPM_REPO",
"archive": "YOUR_RPM_REPO_ARCHIVE_URL"

}
},
"content_archive": "YOUR_CONTENT_ARCHIVE"
},
"configuration":{
"configure.STUDIO_TLD":"YOUR_ALIAS",
"configure.DELIVERY_TLD":"YOUR_ALIAS",
"configure.CROWD_APP_NAME":"YOUR_CROWD_APP_NAME",
"configure.CROWD_PASSWORD":"YOUR_CROWD_PASSWORD",
"configure.CROWD_SERVER":"YOUR_CROWD_SERVER:8443",
"configure.ELASTIC_MAIL_HOST":"YOUR_MAIL_SERVER",
"configure.DELIVERY_REPOSITORY_HTTP_PORT":"42080",
"configure.DELIVERY_SOLR_PORT":"44080"

},
"logging":{
"default":{
"com.coremedia":{"level":"info"},
"cap.server":{"level":"info"},
"hox.corem.server":{"level":"info"},
"workflow.server":{"level":"info"}

}
},
"tomcat":{
"manager":{
"credentials":{
"admin":{
"username":"admin",
"password" : "tomcat",
"roles" : "manager-gui"

},
"script": {
"username" :"script",
"password" : "tomcat",
"roles" : "manager-jmx,manager-script"

}
}

}
}

},
"run_list":[
"recipe[blueprint-yum::default]",
"recipe[coremedia::chef_logging]",
"recipe[coremedia::reporting]",
"recipe[mysql::server]",
"recipe[coremedia::db_schemas]",
"recipe[mongodb::default]",
"recipe[coremedia::solr_master]",
"recipe[coremedia::master_live_server]",
"recipe[coremedia::content_management_server]",
"recipe[coremedia::workflow_server]",
"recipe[coremedia::caefeeder_preview]",
"recipe[coremedia::caefeeder_live]",
"recipe[coremedia::studio]",
"recipe[coremedia::studio_apache]",
"recipe[coremedia::certificate_generator]",
"recipe[coremedia::delivery]",
"recipe[coremedia::delivery_apache]"
]

}

130CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

Before you can execute chef-solo with this configuration, you need to replace
all uppercase values starting with YOUR_. The following table lists the most import-
ant ones:

Table 4.2. node.js
configurationsReplacementToken

If your machine has an alias and you want the system
to use it instead of the resolved hostname, you can set
it here.

YOUR_ALIAS

The path of the local directory containing the RPM ar-
tifacts. If you want to use this option, remove the at-

YOUR_LOCAL_RPM_REPO

tribute coremedia['yum']['loc
al']['archive'].

The URL to a remote archive of the RPM artifacts. If
you want to use this option, you can remove the attrib-

YOUR_LOC-
AL_RPM_REPO_ARCHIVE_URL

ute coremedia['yum']['local']['path]
and Chef will use the default for this value
(/shared/rpm-repo).

An array of paths to local Zip archives containing con-
tent, typically an archive with global content and some

YOUR_LOCAL_CONTENT_ARCHIVE

content archives of extensions which you have activ-
ated.

Now, you can simply start chef-solo by executing:

chef-solo -c solo.rb -j node.json

Configuring a Jenkins Setup

As described above, RPM repository and example content can be specified with
and retrieved from a remote HTTP URL. For a quick retest system with Jenkins, you
can use the REST API of Jenkins to retrieve those archives via the lastSuccessfulBuild
URLs. All you need to do is activate archiving for the boxes/target/shared/rpm-
repo/ folder and if you have a corresponding content job, you can apply this
pattern there too.

For the chef-repo, you can choose between using the archived artifacts or directly
reference the jobs workspace using the *zip* controller of Jenkins. The Jenkins
job then only needs execute a script, that downloads and extract the chef-repo
archive and configure the paths in the solo.rb correctly.

The script itself can be committed together with the node.json in the VCS that
the Jenkins job checks out.

131CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

The following list shows example URLs using lastSuccessFul artifact URLs for
RPM repository and content and a direct workspace URL for the chef-repo:

➞ http://MY_ JENKINS/job/MY_CM7_ JOB/lastSuccessfulBuild/arti-
fact/boxes/target/shared/rpm-repo/*zip*/rpm-repo.zip

➞ http://MY_JENKINS/job/MY_CM7_CONTENT_JOB/lastSuccessfulBuild/ar-
tifact/target/content-users.zip

➞ http://MY_ JENKINS/job/MY_CM7_ JOB/ws/boxes/chef/chef-
repo/*zip*/chef-repo.zip

Using PostgreSQL with Chef

The following steps show how to modify the deployment to use a PostgreSQL
database instead of MySQL. The Chef repository in the workspace is prepared for
a PostgreSQL deployment, but the included roles must be changed.

1. In the base role, set the coremedia.db.type attribute to postgresql so
that the PostgreSQL schema creation scripts are used. Depending on your oper-
ating system you may need to change several attributes of the PostgreSQL
cookbook.

➞ For CentOS 6 installations, more attributes need to be adjusted.

Ex-
ample 4.16. base.rb
for CentOS 6

name "base"
description "The base role for CoreMedia nodes"

override_attributes "java" => {"jdk_version" => "7"},
"coremedia" => {"db" => {"type" =>

"postgresql"}},
"mongodb" => {"cluster_name" =>

"coremedia"},
"postgresql" => {

"version" => "9.2",
"dir" =>

"/var/lib/pgsql/9.2/data",
"server" => {

"service_name" =>
"postgresql-9.2",

"packages" =>
["postgresql92-server"]

},
"client" => {"packages" =>

["postgresql92-devel"]},
"enable_pgdg_yum" => true,
"password" => {"postgres" =>

"coremedia"}
}

run_list "recipe[blueprint-yum::default]",
"recipe[java]"

2. In the management and replication roles, replace the mysql::server recipe
by the postgresql::server recipe. Adapt the coremedia.configuration
attributes.

132CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

Example 4.17. man
agement.rbname "management"

description "The role for CoreMedia Management nodes"

override_attributes "coremedia" => {
"db" => {"schemas" => %w(cm7management cm7master cm7caefeeder

cm7mcaefeeder)},
"configuration" => {
"configure.CMS_DB_URL" =>

"jdbc:postgresql://localhost:5432/coremedia",
"configure.CMS_DB_DRIVER" => "org.postgresql.Driver",
"configure.MLS_DB_URL" =>

"jdbc:postgresql://localhost:5432/coremedia",
"configure.MLS_DB_DRIVER" => "org.postgresql.Driver",
"configure.WFS_DB_URL" =>

"jdbc:postgresql://localhost:5432/coremedia",
"configure.WFS_DB_DRIVER" => "org.postgresql.Driver",
"configure.CAEFEEDER_PREVIEW_DB_URL" =>

"jdbc:postgresql://localhost:5432/coremedia",
"configure.CAEFEEDER_PREVIEW_DB_DRIVER" =>

"org.postgresql.Driver",
"configure.CAEFEEDER_LIVE_DB_URL" =>

"jdbc:postgresql://localhost:5432/coremedia",
"configure.CAEFEEDER_LIVE_DB_DRIVER" => "org.postgresql.Driver"

}
}

run_list "role[base]",
"recipe[postgresql::server]",
"recipe[coremedia::db_schemas]",
"recipe[mongodb]",
"recipe[coremedia::solr_master]",
"recipe[coremedia::master_live_server]",
"recipe[coremedia::content_management_server]",
"recipe[coremedia::workflow_server]",
"recipe[coremedia::caefeeder_preview]",
"recipe[coremedia::caefeeder_live]"

Example 4.18. rep
lication.rbname "replication"

description "The role for CoreMedia Replication nodes"

override_attributes "coremedia" => {
"db" => {"schemas" => %w(cm7replication)},
"configuration" => {
"configure.RLS_DB_URL" =>

"jdbc:postgresql://localhost:5432/coremedia",
"configure.RLS_DB_DRIVER" => "org.postgresql.Driver",

}
}

run_list "role[base]",
"recipe[coremedia::management_configuration_override]",
"recipe[postgresql::server]",
"recipe[coremedia::db_schemas]",
"recipe[coremedia::solr_slave]",
"recipe[coremedia::replication_live_server]"

133CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

Deployment with Yum

This section covers the deployment process of the CoreMedia services using the
rpm and yum utilities directly. It will not cover how to install and configure third-
party RPM files such as MongoDB or MySQL.

Prerequisites

In order to proceed you need to make sure that you successfully meet the following
prerequisites:

➞ A running MongoDB instance or cluster, either on the same machine or
somewhere else.

➞ A running MySQL instance, either on the same machine or somewhere else.

➞ A configured YUM environment, the yum client must be on the PATH.

➞ Either the package createrepomust be installed, that is createrepomust
be on the path or the RPM files must be accessible on a remote YUM repos-
itory. To install createrepo, call sudo yum install createrepo.

Creating a YUM repository

If you want to install the RPM files from a local RPM repository, make sure that
you copied all RPM files to a directory and call createrepo on that path. If you
are using a remote repository, you can skip this step.

Now you need to register a repository configuration in your /etc/yum.repos.d/.
To do so create a file below that directory, for example /etc/yum.repos.d/cm8-
repo, and add the following content.

Example 4.19. YUM re-
pository[cm8]

name=CoreMedia 8 Repo
baseurl=file://PATH_TO_YOUR_REPO
gpgcheck=0
enable=1

If you are using a remote repository you need to specify the baseurl property
accordingly.

Installing the RPMs

To install the RPMs, use the yum utility to install all selected packages at once, for
example:

sudo yum install cm8-*

for all matching packages or specify a list of packages by calling

134CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

sudo yum install [PACKAGE_1] ... [PACKAGE_N]

Similar to the roles in Chef that group recipes such as packages to apply to your
node, you can create groups within your YUM repository. This way, if there was a
group bluepring-delivery, you could simply use

sudo yum groupinstall "blueprint-delivery"

to install a set of RPM files at once, without knowing the concrete packages in-
cluded. To create groups use the yum-groups-manager utility.

After you have installed all RPM files and in case you are using the post-configur-
ation approach, you need to adapt the default configuration defined in the property
files below /etc/coremedia and reconfigure all services and tools. To skip this
step you may provide the correct configuration files in advance. As a start you can
use the default configuration files generated by the build and adapt them to your
needs. You find these files below the boxes/target/shared/configuration-
templates folder in your workspace.

To reconfigure the services and tools, you need to call sudo service [SERVICE
NAME] reconfigure for each service and /opt/coremedia/[TOOL_NAME]/re
configure-tool.sh for each tool.

Starting the Services

To start the services simply refer to the standard service utility. By default, all
Tomcat based services created with the Blueprint workspace offer the following
methods:

➞ start - to start the service

➞ stop - to stop the service

➞ restart - to restart the service

➞ status - to check the status of the service

➞ reconfigure - to reconfigure the service

➞ reload - to reconfigure and restart the service

The status method does not reflect the status of any of the contained web ap-
plications, it merely checks the presence of a process with a matching process
id.

135CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

The order in which the services need to be started depends on many factors includ-
ing customizations done in a project. Most CoreMedia applications can be started
independently of each other but a safe order would look like the following:

➞ service cm7-mls-tomcat start (Master Live Server)

➞ service cm7-cms-tomcat start (Content Management Server)

➞ service cm7-wfs-tomcat start (Workflow Server)

➞ service cm7-solr-master-tomcat start (Solr Search Engine)

➞ service cm7-caefeeder-preview-tomcat start (Preview CAE
Feeder)

➞ service cm7-caefeeder-live-tomcat start (Live CAE Feeder)

➞ service cm7-studio-tomcat start (Studio + Preview, WebDAV and
Site Manager)

➞ service cm7-delivery-tomcat start (Delivery CAE)

To reload Apache, call service httpd restart

Deployment with Zip (Linux)

If you cannot apply the RPM files because RPMs are not supported by your target
platform, you can use the Zip files built aside the RPMs. The Zip files contain in
stall.sh and uninstall.sh scripts to install the applications and services. Even
if these scripts internally call the scriptlets used in the RPM approach, they won't
provide you with an upgrade mechanism like the RPM approach. That is why it is
highly recommended to use the RPMs if possible.

Installing a serviceTo install a service or a tool with the Zip files you need to do the following:

1. Extract the Zip file to an arbitrary folder except any folder below /opt/core
media as this may lead to conflicts.

2. For the first installation, you may edit the property file below the INSTALL
folder. It is the one used for post-configuring the first installation. Alternatively
you skip this step and reconfigure the application after the installation as de-
scribed later on.

3. Execute the install.sh script.

4. After the installation script has succeeded configure the applications property
file below /etc/coremedia and reconfigure the service or tool. A service can
be reconfigured calling service SERVICE_NAME reconfigure whereas the tools
provide you with a reconfigure-tool.sh script below the installation direct-
ory of the tool, such as /opt/coremedia/cm8-cms-tools for the Content
Management Server tools.

136CoreMedia DXP 8

Blueprint Workspace for Developers | Deploying a System

Now you have installed CoreMedia DXP 8 applications on Linux using the Zip files.
To start the services follow the instructions shown in section “Starting the Ser-
vices” [135].

Uninstall serviceTo uninstall a service or a tool you simply need to execute the uninstall.sh
script in the specific installation directory.

4.2.3 Upgrade a System
This section describes, how you upgrade a system using the deployment options
provided by CoreMedia DXP 8.

Upgrading with Chef

Upgrading a system that is managed with Chef is as simple as deploying the system
with Chef. This stems from the fact, that Chef guarantees idempotency of its runs
which means that it converges the Chef resources of a node from an arbitrary state
into the desired state. Because this is only guaranteed on the level of Chefs domain
specific objects, the recipes containing the resources must implement the idem-
potency in their resources.

The coremedia cookbook implements idempotence for its recipes concerning the
versions of the installed packages and their configuration. This means, that you
only need to configure the versions you want to install and Chef will install them
on the next run. Due to the implementation of Chefs package resource, there are
two different upgrade strategies:

➞ upgrade to the latest available version, which is default behavior.

➞ upgrade to a specific version.

If you want to upgrade all packages to a specific version, the attribute you need
to configure in your roles is coremedia['version']['global']; if you want
to upgrade only specific packages to a version, you can add an attribute, mapping
the package name to the version aside the global attribute. The example below
shows such a configuration:

Example 4.20. upgrad-
ing to a specific version...

override_attributes "coremedia" => {
"version" => {
"global" => "14-1.release",
"cm7-cms-tomcat" => "14-2.release"

}
}

When Chef converges the node, the recipes of the coremedia cookbook follow a
standard process to upgrade the affected services.

137CoreMedia DXP 8

Blueprint Workspace for Developers | Upgrade a System

1. Install the new packages

2. Restart the services

3. Verify the successful restart by probing the service with a CoreMedia Probedog

The most important part of this process is the fact, that all service restarts will be
scheduled together to the end of the Chef run. This way, a service will only be re-
started if all packages could be successfully installed.

Upgrade with Yum

The first step, you should do, when you want to update your system, is to find out
what package updates are available. With YUM, you simply call yum list updates
cm8-*

In a second step, you may check if your configuration files below /etc/coremedia
are still up to date or if there are any changes required. You can do that manually
by inspecting the package description for each update or you can update the
packages and see if there are missing tokens. By default, the CoreMedia RPM files
will check if all necessary properties are defined in the configuration file, if that
already exists. If properties are missing, the package won't be installed and the
missing properties will be reported on the console or in the system log at
/var/log/messages.

To print out the description of an RPM, you need to execute:

yum info <PACKAGE NAME>

If for example, you execute yum info cm8-wfs-tomcat the RPM metadata will
be printed and in the description, you will see a list of properties you need to
define.

Example 4.21. Yum
infoName : cm8-wfs-tomcat

Arch : noarch
Version : 16
Release : 1.develop.1362133163
Size : 17 M
Repo : installed
From repo : local
Description : This rpm packages cm7-wfs-tomcat.

: revision: 20130301-1119
: To configure this service you have to define a
: configuration property file at
: /etc/coremedia/cm7-wfs-tomcat.properties containing:
: configure.CMS_DB_URL configure.CMS_HOST
: configure.WFS_IP configure.WFS_HOST
: configure.WFS_HEAP configure.WFS_PERM
: configure.CMS_DB_USER configure.CMS_DB_PASSWORD

Given that your YUM configuration is correct and all packages are accessible from
your YUM repositories, you have to manually proceed the following steps to upgrade
your services:

138CoreMedia DXP 8

Blueprint Workspace for Developers | Upgrade a System

1. sudo yum update cm8-* for all CoreMedia DXP 8 packages. It is important,
that you upgrade all packages within one transaction, as it makes it easier to
roll back, if something went wrong.

2. After all packages have been installed successfully, you need to restart all
CoreMedia services in the same order you started them during the initial deploy-
ment.

4.2.4 Rollback a System
This section describes, how you can rollback deployed CoreMedia Digital Experience
Platform 8 packages using the means, provided with the project package structure.

Rollback with Chef

Chef does not offer a specific rollback procedure, but in a proper Chef setup, you
have all infrastructure as code within your cookbooks and roles and together with
the idempotency Chef guarantees, rolling back a release should only require you
to rollback your Chef configuration into the desired state and wait until Chef finished
the converging of your nodes.

In case you simply want to reinstall an older version of the CoreMedia DXP 8 pack-
ages, all you need to do is to set the specific version you need to rollback to. See
Section 4.2.3, “Upgrade a System” [137] for a description how to set specific ver-
sions.

Rollback with YUM

To rollback the packages of a former installation you can undo the YUM transaction
that made the upgrade:

1. Enable the rollback feature in YUM by setting tsflags=repackage in the
/etc/yum.conf.

2. Find out the transaction ID of the upgrade you want to revert. sudo yum
history will list all the transactions. With sudo yum history info
[transaction id] you can show details of a transaction.

3. Roll back the transaction by calling sudo yum history undo [transaction
id].

If you want to downgrade one or all packages to a specific version you need to use
the yum downgrade command together with the full qualified package names
you want to downgrade, for example:

sudo yum downgrade cm8-cms-tomcat-14-1.release

139CoreMedia DXP 8

Blueprint Workspace for Developers | Rollback a System

Rollback with rpm

1. Enable the rollback feature by setting %_repackage_all_erasures 1 in the
/etc/rpm/macros.

2. Rollback to a specific date by executing

rpm -Uhv --rollback '<DATE>'

The date/time can be of the form 9:00 am or 4 hours ago or december
25.

4.2.5 Troubleshooting

Chef run fails when trying to install MongoDB

Possible cause:

External MongoDB Yum repository is not available.

Solution:

Please contact the support for a mirrored repository URL that can be set up in the
Chef attributes.

Cannot access the CAE behind an Apache server on Red Hat Enterprise Linux

Possible cause:

The SELinux policies are not set correctly

Solution:

Make sure that httpd_can_network_connect is set to "1" via:

setsebool -P httpd_can_network_connect 1

You are running all components on a single host and get OutOfMemory exceptions
in all CoreMedia components with the error message "unable to create
new native Thread", most often during the creation of RMI connections

Possible cause:

The process limit of your operation system for the "coremedia" user is too low.

Solution:

Monitor the process limit and, if necessary, increase it or deploy your CoreMedia
system on more than one host.

140CoreMedia DXP 8

Blueprint Workspace for Developers | Troubleshooting

4.3 Development
This chapter describes how you can customize your CoreMedia system in the
CoreMedia Blueprint workspace. However, it does not describe how you, for example,
write a Studio plugin or a CAE template; this is explained in the component's spe-
cific manual. Instead, it describes how you can use the workspace mechanisms to
include your extensions and where you can add your own code or configuration.

➞ Section 4.3.2, “Developing with Extensions” [146] describes how you can add
and remove extensions using the CoreMedia Project Maven Build Extension.
The extensions mechanism is explained in detail in Section 4.1.5, “Project
Extensions” [114].

➞ Section 4.3.3, “Extending Content Types” [155] describes how you can add
your own content types. You will find more details on content types in the
[Content Server Manual].

➞ Section 4.3.4, “Developing with Studio” [157] describes how you can add
Studio modules to the list of studio plugins.

➞ Section 4.3.5, “Developing with the CAE” [161] describes how you can add
extensions to the CAE and how you run performance tests.

➞ Section 4.3.7, “Adding Common Infrastructure Components” [165] describes
how you can add the default structure components for logging and JMX to
your own web applications.

➞ Section 4.3.8, “Managing Properties in the Workspace” [170] describes how
you can add properties to new or existing components and how you assign
values to these properties.

➞ Section 4.3.9, “Configure Filtering in the Workspace” [171] describes how
you can filter the configuration during deployment.

4.3.1 Using Blueprint Base Modules
This section describes how the Blueprint Base Modules are integrated into CoreMedia
Blueprint and how a developer might customize and configure all the various
modules or even replace certain modules completely.

CoreMedia Blueprint uses Blueprint Base Modules as binary Maven dependencies
but CoreMedia provides access to the source code via Maven source code arti-
facts. IDE's like Jetbrains IntelliJ Idea are able to download those sources auto-
matically for a certain class by evaluating its correspondent Maven POM file.

141CoreMedia DXP 8

Blueprint Workspace for Developers | Development

Content Type Model Dependencies

As its name implies, the Blueprint Base Modules contain Blueprint logic and thus
depend on the Blueprint's content type model. The content type model is still part
of the Blueprint workspace, hence you may customize it.Be aware, that changes
might affect or even break the Blueprint Base Modules. The following table shows
an overview of the content types which are relevant for the Blueprint Base Modules.
Details are explained in the sections about the particular modules.

Table 4.3. Content type
model dependenciesModuleContent Type (Properties)

SettingsCMLinkable (localSettings, linkedSettings)

SettingsCMTeaser (target)

SettingsCMNavigation

SettingsCMSettings

The Settings Service

Settings are a flexible way to enable editors to configure application behavior via
content changes within CoreMedia Studio without the need to redeploy a web ap-
plication. CoreMedia Blueprint uses the com.coremedia.blueprint.base.set-
tings.SettingsService to read certain settings from various different sources.
This section describes how you can use the settings service in your own projects.

Read Section 6.3.3, “Settings” [268] for a description of why you want to use
settings and how to do it from an editors perspective.

The setting* Methods

public interface SettingsService {
<T> T setting(

String name,
Class<T> expectedType,
Object... beans);

<T> T settingWithDefault([...]);

<T> List<T> settingAsList([...]);

<K, V> Map<K, V> settingAsMap([...]);

[...]
}

142CoreMedia DXP 8

Blueprint Workspace for Developers | Using Blueprint Base Modules

All setting* methods are actually just variants of the basic setting method.
Some provide additional convenience like settingWithDefault, others have
complex return types which cannot be expressed as a simple type parameter, for
example settingAsList. All setting*methods have some common parameters
which are described in Table 4.4, “ Parameters of the settings* methods ” [143].
For detailed descriptions of the setting* methods please consult the API docu-
mentation of the SettingsService.

Table 4.4. Parameters
of the settings* meth-
ods

DescriptionParameter

The name (or key) of the setting to fetch.name

The type of the returned object. This parameter allows for type safety
and prevents you from unchecked casts of the result. For the set-

expectedType

tingAsListmethod, theexpectedType parameter determines
the type of the list entries, not the list itself. settingAsMap has
separate type arguments for keys and values of the result map.

Settings are always fetched for one or multiple targets, which are
passed by the beans vararg parameter. In the Blueprint's default

beans

configuration the SettingsService supports content objects,
content beans, pages, sites and some other kinds of beans.

Configuring the Default Settings Service via SettingsFinders

The Blueprint Base Modules not only defines the interface of how to evaluate settings
but also provides an implementation and a Spring bean.

<beans>
<bean id="settingsService"

class="c.c.b.base.settings.impl.SettingsServiceImpl">
<property name="settingsFinders" ref="settingsFinders"/>

</bean>

<util:map id="settingsFinders">
</util:map>

</beans>

The plain SettingsService has no lookup logic for settings at all, but it must
be configured with SettingsFinders. A SettingsFinder implements a strategy
how to determine settings of a particular type of bean. CoreMedia DXP 8 provides
some preconfigured SettingsFinders for popular beans like content objects. It
can be modified and enhanced with custom SettingsFinders for arbitrary bean
types. As you can see, the default settings service only needs one property, which
is a map named settingsFinders. The keys of that map must be fully qualified
Java class names and its values are references to concrete SettingsFinder beans.

143CoreMedia DXP 8

Blueprint Workspace for Developers | Using Blueprint Base Modules

Example 4.22. The
Spring Bean Definition
for the Map of Settings
Finder

<util:map id="settingsFinders">
<entry key="com.coremedia.cap.content.Content"

value-ref="cmlinkableSettingsFinder"/>
<entry key="com.coremedia.cap.multisite.Site"

value-ref="siteSettingsFinder"/>
</util:map>

<bean id="cmlinkableSettingsFinder"
class="c.c.b.base.settings.CMLinkableSettingsFinder">

<property name="cache" ref="cache"/>
<property name="hierarchy" ref="navigationTreeRelation"/>

</bean>

<bean id="siteSettingsFinder"
class="c.c.b.base.settings.SiteSettingsFinder"/>

The example above shows a map with two settings finders. One is supposed to be
used for target beans of type com.coremedia.cap.content.Content and the
other for targets of type com.coremedia.cap.multisite.Site.

In order to determine the appropriate settings finder for a given target bean the
settings service calculates the most specific classes among the keys of the settings
finders map which match the target bean. For the above example this is trivial,
since Content and Site are disjointed. The lookup gets more interesting with
content beans which usually constitute a deeply nested class structure. Assume,
you configured settings finders for CMLinkable and CMTaxonomy. If you invoke
the settings service with a CMTaxonomyImpl bean, only the settings finder for
CMTaxonomy is effective. There is no automatic fallback to the CMLinkable finder.
If you need such a fallback, let your special settings finder extend the intended
fallback finder and call its setting method explicitly.

The easiest way to provide a custom way of fetching settings for certain documents
or even for objects that do not represent a CoreMedia document, is, to add a cor-
responding settings finder, that does the trick. Therefore, you should use Core-
Media's Spring bean customizer, that you can use anywhere within your Spring
application context as follows:

Example 4.23. Adding
Custom Settings Finder

<beans>
<customize:append id="mySettingsFinders" bean="settingsFinders">
<map>
<entry key="example.org.MyClass" value-ref="mySettingsFinder"/>

</map>
</customize:append>

</beans>

Via Spring you can configure one settings finder per class. This is a tradeoff between
flexibility and simplicity which is sufficient for most use cases. However, on the

144CoreMedia DXP 8

Blueprint Workspace for Developers | Using Blueprint Base Modules

Java level the SettingsServiceImpl provides the method addSettingsFind
er(Class<?>, SettingsFinder) which allows you to add multiple settings
finders for a class.

Typed Settings Interfaces

The SettingsService is a powerful multi-purpose tool. However, genericity al-
ways comes at the price of abstraction. Assume, there is some business logic which
is based on a domain specific interface Address:

Example 4.24. Busi-
ness Logic API

public interface Address {
String getName();
String getCity();

}

public class Messages {
public static String getHelloMessage(Address address) {
return "Hello " +

address.getName() +
", are you living in " +
address.getCity() + "?";

}
}

If your actual address data is provided by the SettingsService, it must be ad-
apted to the address interface.

Example 4.25. Settings
Address Adapter

class SettingsBackedAddress implements Address {
// [...] constructor and fields for service and provider bean
public String getName() {
return settingsService.setting("name", String.class, bean);

}
public String getCity() {
return settingsService.setting("city", String.class, bean);

}
}

Cumbersome, isn't it? Especially, if the interfaces are larger or not yet final. Fortu-
nately, you don't need to implement such interfaces manually, but SettingsSer
vice.createProxy does the job for you:

Example 4.26. Address
Proxy

class MyCode {
private SettingsService settingsService;

void doSomething(BusinessBean beanWithSettings) {
Address address = settingsService.createProxy(Address.class,

beanWithSettings);

145CoreMedia DXP 8

Blueprint Workspace for Developers | Using Blueprint Base Modules

String message = Messages.getHelloMessage(address);
}

}

Internally the default settings service intercepts the call to getName() and get
City(). The operation getCity() is translated to settingsService.set
ting("city", String.class, bean). Note: The property name "city" will be
derived from the operation getCity() in the interface. Be aware of this depend-
ency when choosing names for your settings properties and for the operations of
your business objects if you want to use the proxy mechanism.

Content types Requirements

The settings module makes use of the localSettings and linkedSettings
properties of the CMLinkable content type. The SettingsService itself does
not depend on particular content types, but some provided SettingsFinder
implementations support these properties. If you need struct data which is not to
be handled by the SettingsService, do not put it into localSettings and
linkedSettings, but add new struct properties to the content type model.

CMNavigation documents inherit their settings along the hierarchy up to the root
navigation. CMTeaser documents inherit the settings of their targets. If you rename
these content types, this functionality gets lost.

4.3.2 Developing with Extensions
As described in Section 4.1.5, “Project Extensions” [114] the CoreMedia Blueprint
workspace provides an easy way to enable or disable existing extensions in one
place. This chapter shows you how to enable, disable or remove existing extensions
in general and special.

➞ Section “Adding, Disabling or Removing an Extension” [147] describes how
you manage extensions in general

➞ Section “Removing the Elastic Social Extension” [149] describes how to remove
the Elastic Social Extension

➞ Section “Removing the Adaptive Personalization Extension” [149] describes
how to remove the Adaptive Personalization Extension

➞ Section “Removing the e-Commerce Blueprint” [150] describes how to remove
the e-Commerce Blueprint

➞ Section “Removing the Brand Blueprint” [150] describes how to remove the
Brand Blueprint

➞ Section “Removing the Advanced Asset Management Extensions” [151] de-
scribes how to remove the Advanced Asset Management Extension

146CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

➞ Section “Extensions and Their Dependencies” [151] lists all extensions and
their mutual dependencies.

Adding, Disabling or Removing an Extension

This section explains the required steps to add, disable or remove an extension
from the CoreMedia Blueprint workspace in general.

For most of the extensions, there is no single extension in the technical sense.
See the Elastic Social extension, for instance. Instead, there is an integration,
which consists of multiple extensions. The Elastic social integration, for example,
consists of multiple Elastic Social extensions which augment other extensions,
such as lc or p13n.

The reason for this is, that in order to use an extension generally, but disable
some particular extensions (lc for example), it must be possible to disable only
the lc related aspect of this extension. On the other hand, it must be possible
to use the lc extension without the other extension. So, it is not possible, for
example, to put all Elastic Social modules into a single extension nor include
them directly in other extensions. Therefore, you have an integration which
consists of several extensions.

Adding an Extension to the CoreMedia Blueprint workspace

To add an extension to CoreMedia Blueprint open the project's root POM and move
to the dependencyManagement section. Import the Extension Descriptor (a POM
import) as shown in Example 4.27, “Activation of an Extension in the project's root
POM” [147].

Example 4.27. Activa-
tion of an Extension in
the project's root POM

<dependencyManagement>
<dependencies>
...
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>my-blueprint-extension-bom</artifactId>
<version>${project.version}</version>
<scope>import</scope>

</dependency>
...

</dependencies>
</dependencyManagement>

Update the extensions configuration with the following call in the root folder of
the workspace :

mvn com.coremedia.maven:\
coremedia-blueprint-maven-plugin:\

147CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

update-extensions

Disabling or Removing an Extension from the Blueprint workspace

The CoreMedia Blueprint Maven Plugin is a tool which supports developers to disable
an extension in or remove an extension from the Blueprint workspace. Disabling
an extension using this tool means that the provided feature will not be available
and the source files are no longer part of the build process.

Removing an extension means, that the source code of the extension will be
disabled and removed from the workspace as well.

Before you can remove an extension, you have to build the workspace once.

To disable an extension, open a console and go to the Blueprint workspace. Call
the disable-extensions goal and identify the affected extension(s) by the
Maven artifactId of the extension descriptor (a BOM POM) using the core-
media.project.extensions option.

$ cd $BLUEPRINT_HOME
$ mvn com.coremedia.maven:coremedia-blueprint-maven-plugin:\

disable-extensions \
-Dcoremedia.project.extensions=my-extension.bom,\
another-extension.bom

To remove an extension, use the remove-extensions goal of this Maven plugin
instead of disable-extensions. The next sections describe how you remove
the predefined CoreMedia extensions.

Preparing the Workspace for Further Development

As described in the documentation of the CoreMedia Blueprint Maven Plugin the
POMs in the module modules/extension-config will be modified. The Core-
Media components in this workspace depend on these modules.

Therefore, when you want to start a web application like the CAE from the work-
space using the Maven Tomcat 7 plugin. for example, the modified POMs must be
available in the local Maven repository. To install them do the following:

$ cd $CM_BLUEPRINT_HOME/modules/extension-config
$ mvn clean install

During further development the CoreMedia components of the Blueprint workspace
will consider the changed set of extensions, that is, added extensions will be enabled
and removed extensions will no longer be available.

148CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

Removing the Elastic Social Extension

This section describes the required steps to remove the CoreMedia Elastic Social
extension from Blueprint.

Removing the Elastic Social Integration is optional. Even if you have no licence
or if you do not want to use it, you can leave the extension in the workspace.

1. Remove all affected extensions from the project. This includes all extensions
from Blueprint whose name contains an es segment and the shoutem extension
which depends on Elastic Social.

Example 4.28. Remove
CoreMedia Elastic So-
cial Extension

$ cd $BLUEPRINT_HOME
$ mvn

com.coremedia.maven:coremedia-blueprint-maven-plugin:remove-extensions
\

-Dcoremedia.project.extensions=es-bom,\

lc-es-bom,ecommerce-ibm-es-bom,es-p13n-bom,es-alx-bom,shoutem-bom

2. Some documents of the demo content may have references to extension
specific documents. After removing the extension, this may lead to errors in
the CoreMedia components. The content has to be adapted not to use exten-
sion specific content any longer.

Either exclude any documents of types defined in elastic-social-plugin-
doctypes.xml or manually add those content types to your Content Server.

3. Proceed with the instructions from Section “Adding, Disabling or Removing
an Extension” [147] for further development.

Removing the Adaptive Personalization Extension

This section describes the required steps to remove the CoreMedia Adaptive Person-
alization extension from CoreMedia Blueprint.

1. Remove all affected extensions from the project. This includes p13n, es-p13n,
alx-p13n, lc-p13n and nuggad which depend on Adaptive Personalization.

Example 4.29. Remove
CoreMedia Adaptive
Personalization Exten-
sion

$ cd $BLUEPRINT_HOME
$ mvn com.coremedia.maven:coremedia-blueprint-maven-plugin:\

remove-extensions \
-Dcoremedia.project.extensions=p13n-bom,\
alx-p13n-bom,es-p13n-bom,lc-p13n-bom,nuggad-bom

149CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

2. The Adaptive Personalization integration brings along specific content types.
If you disable the Adaptive Personalization Integration the Content Server's
configuration will be affected as well. In this case you have to drop the data-
bases of the Content Servers during the next deployment. Furthermore, you
have to remove the documents of this content types from the demo content
before importing or manually deploy the relevant content types to your content
server.

Example 4.30. Ex-
ample for Adaptive
Personalization Con-
tent in Blueprint

Either exclude any documents of types defined in personalization-doc
types.xml or manually add those content types to your Content Server.

3. Proceed with the instructions from Section “Adding, Disabling or Removing
an Extension” [147] for further development.

Removing the e-Commerce Blueprint

This section describes the required steps to remove the CoreMedia e-Commerce
Blueprint from the CoreMedia Blueprint workspace.

1. Remove the lc extension and its dependent extensions from the project.

Example 4.31. Remove
CoreMedia Livecontext
Extension

$ cd $BLUEPRINT_HOME
$ mvn com.coremedia.maven:coremedia-blueprint-maven-plugin:\

remove-extensions \
-Dcoremedia.project.extensions=\
lc-bom,lc-asset-bom,lc-es-bom,lc-p13n-bom,\
ecommerce-ibm-bom,ecommerce-ibm-es-bom

2. Proceed with the instructions from Section “Adding, Disabling or Removing
an Extension” [147] for further development.

Removing the Brand Blueprint

This section describes the required steps to remove the CoreMedia Brand Blueprint
from the CoreMedia Blueprint workspace.

1. Remove the corporate extension and its dependent extensions from the pro-
ject.

Example 4.32. Remove
CoreMedia Corporate
Extension

$ cd $BLUEPRINT_HOME
$ mvn com.coremedia.maven:coremedia-blueprint-maven-plugin:\

remove-extensions \
-Dcoremedia.project.extensions=\
corporate-bom

2. Proceed with the instructions from Section “Adding, Disabling or Removing
an Extension” [147] for further development.

150CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

Removing the Advanced Asset Management Extensions

This section describes the required steps to remove Advanced Product Asset Man-
agement from CoreMedia Blueprint. Advanced Asset Management consists of two
extensions.

1. Remove the lc-asset and the am-bom extensions from the project.

Example 4.33. Remove
CoreMedia Product As-
set Management Exten-
sion

$ cd $BLUEPRINT_HOME
$ mvn com.coremedia.maven:coremedia-blueprint-maven-plugin:\

remove-extensions \
-Dcoremedia.project.extensions=lc-asset-bom, am-bom

2. If you use the CoreMedia example content you also have to remove the links
to Asset content in the CMPicture files. You can use a tool like sed.

3. If you use the the new deployment scenario belowdeployment/chef, remove
the dependency to am-adobe-drive-server-webapp from the pom.xml
file in deployment/chef.

4. Proceed with the instructions from Section “Adding, Disabling or Removing
an Extension” [147] for further development.

Extensions and Their Dependencies

This section sums up the existing extensions in CoreMedia Blueprint and shows their
mutual dependencies. This information is required when removing extensions
completely. The table describes the extension descriptors used to enable or disable
the extension in the CoreMedia Blueprint workspace and lists extensions depending
on the given one. These extensions have to be disabled as well when disabling the
given extension.

You will also find a list of the extensions in the Blueprint workspace in the mod
ules/extensions folder in the README.md file.

Table 4.5. Blueprint
Extension Descriptors
and Dependencies

alx-bom

General Analytics IntegrationDescription

alx-google, alx-webtrends, es-alx-bom, alx-p13nRequired by Ex-
tension

alx-google, alx-webtrends

Specific Analytics Integration for Google Analytics and Webtrends. These
extensions can be enabled or disabled independently.

Description

Required by Ex-
tension

151CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

alx-p13n-bom

Personalization plugin for Analytics, exposes personalization info (e.g.
segment) for tracking

Description

alx-google, alx-webtrends, es-alx-bomRequired by Ex-
tension

am-bom

CoreMedia Asset Management allows you to store digital assets (for example
high-resolution pictures of products) in the content repository. An integ-
ration with Adobe Drive is available.

Description

Required by Ex-
tension

catalog-bom

Internal catalog.Description

corporate-bomRequired by Ex-
tension

corporate-bom

Extension with the features for the Brand Blueprint.Description

Required by Ex-
tension

create-from-template-bom

Create a Page in Studio with predefined content.Description

Required by Ex-
tension

custom-topic-pages-bom

Create custom topic pages in Studio.Description

Required by Ex-
tension

ecommerce-ibm-bom

IBM WCS specific implementations and features for LivecontextDescription

ecommerce-ibm-es-bomRequired by Ex-
tension

ecommerce-ibm-es-bom

IBM WCS specific Elastic Social implementations and features for LiveCon-
text

Description

Required by Ex-
tension

152CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

es-bom

CoreMedia Elastic Social IntegrationDescription

es-p13n-bom, es-alx-bom, shoutem-bom, lc-es-bomRequired by Ex-
tension

es-alx-bom

Extension to retrieve and cache computed data from Analytics. The data
is persisted using CoreMedia Elastic Social.

Description

Required by Ex-
tension

es-controlroom-bom

Extension that enables the collaborative features and supports MongoDB
as the database for collaborative components.

Description

Required by Ex-
tension

es-demodata-bom

Elastic Social Demo Data Generator. The Elastic Social Demo Data Gener-
ator is a tool to simulate actions of a website online community.

Description

Required by Ex-
tension

es-p13n-bom

Extension to retrieve data from CoreMedia Elastic Social for use in the
Adaptive Personalization Extension.

Description

Required by Ex-
tension

external-library-bom

Adds the external library functionality to Studio. The external library is a
Studio utility that supports to view external content, for example from
an RSS feed, in Studio and create CMS content from the external content.

Description

Required by Ex-
tension

external-preview-bom

Adds the external preview functionality to Studio and CAE. The external
preview is a Studio utility that supports to use one or more additional
displays for Studio's preview.

Description

Required by Ex-
tension

memory-controlroom-bom

153CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

CoreMedia in-memory Control Room extensionDescription

Required by Ex-
tension

lc-asset-bom

Feature allows you to manage images and image variants (or crops) for
categories, products and products variants (products for short) in the
CoreMedia system. These extensions depends on CoreMedia LiveContext.

Description

Required by Ex-
tension

lc-bom

Generic Livecontext ExtensionDescription

ecommerce-ibm, lc-es, lc-p13n, lc-assetRequired by Ex-
tension

lc-es-bom

Elastic Social features for LivecontextDescription

ecommerce-ibm-es-bomRequired by Ex-
tension

lc-p13n-bom

Personalization features for LivecontextDescription

Required by Ex-
tension

nuggad-bom

Nuggad IntegrationDescription

Required by Ex-
tension

optimizely-bom

Optimizely IntegrationDescription

Required by Ex-
tension

osm-bom

OpenStreetMap IntegrationDescription

Required by Ex-
tension

p13n-bom

CoreMedia Adaptive Personalization IntegrationDescription

154CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Extensions

es-p13n-bom, nuggad-bom, alx-p13n-bom, lc-p13n-bomRequired by Ex-
tension

shoutem-bom

ShoutEm IntegrationDescription

Required by Ex-
tension

upload-bom

Studio Bulk Upload IntegrationDescription

Required by Ex-
tension

4.3.3 Extending Content Types
Developing a new software almost always starts by analyzing the domain model.
This is not different for CoreMedia CMS. Here the domain model is the source for
modeling the content type model. The content type model is the backbone of
CoreMedia CMS as it describes what content means to you. Read section Developing
a Content Type Model of the [Content Server Manual] for details on the content
types.

Basically, there are two places within the Blueprint workspace you may use if you
define your own content type model or extend the Blueprint's one. You will learn
both of them by defining a new content type CMHelloWorld as a child of
CMTeaser within a new file mydoctypes.xml as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<DocumentTypeModel
xmlns="http://www.coremedia.com/2008/documenttypes"
Name="my-doctypes">

<ImportGrammar Name="coremedia-richtext-1.0"/>
<ImportDocType Name="CMTeaser"/>

<DocType Name="CMHelloWorld" Parent="CMTeaser">
<StringProperty Name="message" Length="32"/>

</DocType>
</DocumentTypeModel>

Defining content types in contentserver-blueprint-component

The first and a little easier way of defining CMHelloWorld is to put the new file
mydoctypes.xml shown above into the directory modules/server/content
server-blueprint-component/src/main/resources/framework/doc
types/my/. It is good style to create a subfolder under doctypes for your cus-
tomization, here named "my".

155CoreMedia DXP 8

Blueprint Workspace for Developers | Extending Content Types

https://documentation.coremedia.com/cm7/manuals/cms/current/contentserver-en/webhelp/content/ch04.html
https://documentation.coremedia.com/cm7/manuals/cms/current/contentserver-en/webhelp/content/ch04.html

After doing so, you can test your new content type. To do so, you have to build the
contentserver-blueprint-component module and the content-manage
ment-server-webapp module as follows. Remember to stop the server if you
have not already.

$ cd modules/server/contentserver-blueprint-component
$ mvn clean install
$ cd modules/server/content-management-server-webapp
$ mvn clean install

Now, start the Content Management Server web application and take a look into its
log file. You should see the following message, telling you that the Content Server
created a new database table for the new content type.

[INFO] SQLStore - DocumentTypeRegistry: creating table:
CREATE TABLE CMHelloWorld(id_ INT NOT NULL, version_ INT NOT NULL,
isApproved_ TINYINT, isPublished_ TINYINT, editorId_ INT,
approverId_ INT, publisherId_ INT, editionDate_ DATETIME,
approvalDate_ DATETIME, publicationDate_ DATETIME,
"locale" VARCHAR(32), "masterVersion" INT, "keywords" VARCHAR(1024),
"validFrom" DATETIME, "validFrom_tz" VARCHAR(30), "validTo" DATETIME,
"validTo_tz" VARCHAR(30), "segment" VARCHAR(64), "title"
VARCHAR(512),
"teaserTitle" VARCHAR(512), "notSearchable" INT, "message"
VARCHAR(32),
PRIMARY KEY (id_, version_), FOREIGN KEY (id_) REFERENCES
Resources(id_))

Using a Separate Module in the Context of an Extension

The second possibility is the more flexible way. You build your own module in the
context of an extension. The following steps assume that an extension module my-
extension already exists and requires a new content type. Proceed as follows:

1. Create a new subfolder my-extension-server in the modules/exten
sions/my-extension directory.

2. Create a pom.xml file and add the following contents.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>my-extension</artifactId>
<version>${project.version}</version>
<relativePath>../pom.xml</relativePath>

</parent>

<artifactId>my-extension-server</artifactId>

<properties>

156CoreMedia DXP 8

Blueprint Workspace for Developers | Extending Content Types

<coremedia.project.extension.for>
server

</coremedia.project.extension.for>
</properties>

</project>

3. Adjust the groupId and artifactId of the parent declaration according to
your project settings.

4. Add this module's Maven coordinates to the Extension Descriptor of the exten-
sion.

5. Create the subfolder src/main/resources/framework/doctypes/myex
tension.

6. Copy the content type definition file from above into the folder created in the
last step.

7. Refer to Section 4.3.2, “Developing with Extensions” [146] to enable the exten-
sion.

4.3.4 Developing with Studio
New Studio modules can be added to the project using the Blueprint extensions
mechanism or by adding them as child modules to the studio-plugins module.
This section describes how to add a new Studio module to the list of studio-
plugins. Adding a new Studio module as an extension works the same way but
requires additional Maven configurations.

Maven Configuration

First, add the new plugin to the modules section of the studio-plugins pom.xml
file:

<modules>
<module>taxonomy-studio-plugin</module>
<module>pagegrid-studio-plugin</module>
<module>contentchooser-studio-plugin</module>
<module>dynamic-content-query-studio-plugin</module>
<module>struct-editor-studio-plugin</module>

<!-- add module -->
<module>sample-studio-plugin</module>

</modules<

Next, create the child folder of the new module and its pom.xml file.

157CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Studio

Example 4.34. POM file
of a new Studio mod-
ule

<project>
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>studio-plugins</artifactId>
<version>8-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>

</parent>

<artifactId>sample-studio-plugin</artifactId>
<packaging>jangaroo</packaging>

<description>Sample Studio Plugin for the CoreMedia
Studio</description>

<dependencies>

<dependency>
<groupId>com.coremedia.ui.toolkit</groupId>
<artifactId>ui-components</artifactId>

</dependency>

<dependency>
<groupId>com.coremedia.ui.sdk</groupId>
<artifactId>editor-components</artifactId>

</dependency>

<dependency>
<groupId>net.jangaroo</groupId>
<artifactId>ext-as</artifactId>

</dependency>

</dependencies>

<build>
<sourceDirectory>src/main/joo</sourceDirectory>
<resources>
<resource>
<directory>src/main/resources</directory>
<filtering>true</filtering>
<includes>

<include>META-INF/resources/joo/${project.artifactId}.module.js</include>

</includes>
</resource>
<resource>
<directory>src/main/resources</directory>
<filtering>false</filtering>
<excludes>

<exclude>META-INF/resources/joo/${project.artifactId}.module.js</exclude>

</excludes>
</resource>
<resource>
<directory>target/generated-resources</directory>

</resource>
</resources>

<plugins>
<plugin>

158CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Studio

<groupId>net.jangaroo</groupId>
<artifactId>jangaroo-maven-plugin</artifactId>
<extensions>false</extensions>
<executions>
<execution>
<goals>
<goal>properties</goal>

</goals>
<configuration>
<resourceDirectory>src/main/joo</resourceDirectory>

</configuration>
</execution>

</executions>
</plugin>

<plugin>
<groupId>net.jangaroo</groupId>
<artifactId>exml-maven-plugin</artifactId>
<version>${jangaroo.version}</version>
<extensions>true</extensions>
<configuration>

<configClassPackage>com.coremedia.blueprint.studio.config.contentchooser</configClassPackage>

</configuration>
</plugin>

</plugins>
</build>

</project>

The module contains the packaging jangaroo which is necessary so that during
the Maven build time, the module is recognized as a Studio module.

Your IDE should display the new plugin as a successfully linked Maven module.
Now the module must be added as a dependency to the Studio web application.
Open the pom.xml of the studio-webappmodule and add following dependency:

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>sample-studio-plugin</artifactId>
<version>${project.version}</version>
<scope>runtime</scope>

</dependency>

Your module should have the following structure by now:

Figure 4.4. The new
sample studio plugin

Source Files and Folders

A Studio module contains at least two files: the plugin descriptor file located in
the resource folder (sample-studio-plugin.module.js) of the module and
the initializing plugin class (SampleStudioPlugin.as).

159CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Studio

Ensure that the name prefix of the plugin descriptor matches the name of the
Maven module.

Figure 4.5. The sample
studio plugin with plu-
gin class and descriptor

Add the class to the corresponding package, created in the subfolder
src/main/joo. You can use the IDEA context menu to apply the newly created
joo folder as the source path. It shows the formatted package name of the class
afterwards. Create an additional source path resources next to the joo folder
and create the subfolders META-INF/resources/joo. Create the file sample-
studio-plugin.module.js afterwards.

The plugin class only implements the initmethod of the EditorPlugin interface:

package com.coremedia.blueprint.studio.sample {
import com.coremedia.cms.editor.sdk.EditorPlugin;
import com.coremedia.cms.editor.sdk.IEditorContext;

public class SampleStudioPlugin implements EditorPlugin {

public function init(editorContext:IEditorContext):void {
}

}
}

The plugin descriptor class is read when the Studio's web page is invoked. It contains
the class name of the plugin class and can declare additional CSS files or other re-
sources required for the plugin.

joo.loadModule("${project.groupId}", "${project.artifactId}");
coremediaEditorPlugins.push({
name:"Sample Plug-in",
mainClass:"com.coremedia.blueprint.studio.sample.SampleStudioPlugin"
});

160CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with Studio

The object pushed onto the array coremediaEditorPluginsmay use the attrib-
utes defined by the class EditorPluginDescriptor, especially name and
mainClass as shown above. In addition, the name of a group may be specified
using the attribute requiredGroup, restricting access to the plugin to members
of that group.

When set up correctly, your project structure should compile successfully.

Additional steps would be adding resource bundles and plugin rules to your
plugin. For more details about this and developing Studio plugins and property
editors have a look at the [Studio Developer Manual].

Joo Unit Testing

The jangaroo-maven-plugin supplies unit testing of ActionScript classes inside the
Studio modules. Please refer to Jangaroo Tools Wiki, chapter "Unit Testing". The
tests can be triggered by following applicable conditions:

➞ By stating the Maven profile "joo-unit-tests" explicitly

➞ By stating the property phantomjs.bin with suitable value leading to the
phantomjs bin path

➞ phantomJS is located in /usr/local/bin/phantomjs on Linux/Unix OS

The test results are gathered in the /target/surefire-reports directory of
modules containing Joo unit tests. To debug the Joo unit tests, run

mvn jangaroo:jetty-run-tests

within the appropriate module and open the URL listed below with the browser.

4.3.5 Developing with the CAE
The CAE can be extended with new capabilities by using the Blueprint extension
mechanism or by just creating a new module with the required resources. In both
cases the extension will be activated by adding a Maven dependency on the new
module. This section describes how to add a new Blueprint module which contains
an additional view template and a new view repository using this template.

Maven Configuration

First you have to create a new module which contains the required resources. The
location of the new module inside the workspace is not important to enable the
new features provided by the module. But to keep cohesion in the aggregation
modules of the CoreMedia Blueprint workspace the new module should be created

161CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with the CAE

https://github.com/CoreMedia/jangaroo-tools/wiki/Maven-Build-Process

next to other CAE functions. In this example the new module sample-cae-exten-
sion will be created in the modules/cae module.

1. First, add a new module entry named sample-cae-extension to the modules
section of the cae pom.xml file:

<modules>
<module>cae-base-lib</module>
<module>cae-base-component</module>
<module>cae-live-webapp</module>
<module>cae-preview-webapp</module>
<module>contentbeans</module>
<module>cae-performance-test</module>
<module>cae-test</module>

<!-- add module -->
<module>sample-cae-extension</module>
</modules>

2. After that create a new subdirectory sample-cae-extension and add the
pom.xml.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.coremedia.blueprint</groupId>
<artifactId>cae</artifactId>
<version>BLUEPRINT_VERSION</version>
<relativePath>../pom.xml</relativePath>
</parent>

<artifactId>sample-cae-extension</artifactId>
<packaging>jar</packaging>

<dependencies>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>coremedia-spring</artifactId>
<scope>runtime</scope>
</dependency>
</dependencies>

</project>

Now the basic structure for the extension exists.

Enabling the Extension

To enable the extension the target component has to depend on the created exten-
sion module.

To enable the new capabilities in all CAEs add the following dependency to the
pom.xml of the cae-base-component module:

162CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with the CAE

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>sample-cae-extension</artifactId>
<version>${project.version}</version>

</dependency>

Creating Source Files and Folders

The sample extension for the CAE provides a new view template for the content
type CMArticle to display external content and a new view repository configura-
tion which includes this view template.

1. Create the new view template CMArticle.jsp in the module sample-cae-
extension in the directory src/main/resources/META-INF/re
sources/WEB-INF/templates/external-content-view-reposit
ory/com.coremedia.blueprint.common.contentbeans.

2. To include the new view repository add a new file component-sample-cae-
extension.xml to the directory src/main/resources/META-INF/core
media. Add the following contents to the file:

<?xml version="1.0" encoding="UTF-8"?>
<beans

xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:customize="http://www.coremedia.com/2007/coremedia-spring-beans-customization"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.coremedia.com/2007/coremedia-spring-beans-customization

http://www.coremedia.com/2007/coremedia-spring-beans-customization.xsd">

<customize:prepend id="addSampleViewRepository"
bean="viewRepositories">

<description>
Add repository name, relative to /WEB-INF/templates/
</description>
<list>
<value>sample-cae-extension</value>
</list>
</customize:prepend>

</beans>

163CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with the CAE

Running performance tests

In order to make performance testing as easy as possible, the workspace includes
a module with a preconfigured JMeter test, cae-performance-test.

Module description

An example module for a ready-to-run performance test for CAE web applications.

It uses JMeter as well as a Maven plugin for analyzing and providing results. To
keep the example as simple as possible, it is designed to run against the Preview
CAE. Typically, Live CAEs running against a Replication Live Server are performance
tested on appropriate (live) hardware from a remote machine. Also, plugin config-
uration and executions are configured in a profile performance so that no per-
formance test is executed when building the workspace with mvn package or
mvn install.

The module uses the jmeter-maven-plugin to run the JMeter test and the jmeter-
analysis-maven-plugin to analyze the results. It can analyze JMeter result files and
produces a result HTML, easy to read images with result data and summary CSV
files.

Prerequisites

If the performance test is used as is, the following prerequisites must be fulfilled:

➞ The Content Management Server must be started

➞ The Preview CAE must be started

Execution

To execute the performance test, run

$ mvn verify -Pperformance

Configuration

If you want to know more about configuration possibilities,

➞ Have a look at the pom.xml file where every used configuration element is
fully documented

➞ If you want to run your tests against another host and port just override the
properties webapp.host and webapp.port, for example mvn verify -
Pperformance -Dwebapp.host=myHost -Dwebapp.port=4711

➞ To use individual URLs for the performance test, you can provide an arbitrary
file with URL lists and configure the test plan to use it with the property

164CoreMedia DXP 8

Blueprint Workspace for Developers | Developing with the CAE

https://github.com/Ronnie76er/jmeter-maven-plugin
https://github.com/afranken/jmeter-analysis-maven-plugin
https://github.com/afranken/jmeter-analysis-maven-plugin

webapp.uris, for example mvn verify -Pperformance -
Dwebapp.uris=path-to-uri-file. The file contains a list of URI paths;
that is without protocol, host and port information.

Test URLs

To automatically generate test URLs for the CAE, the SiteMapController can
be used. See section Sitemap in the [Blueprint Concepts Guide].

To manually generate a list of test URLs, spider the site you want to test and save
the URIs.

4.3.6 Customizing the CAE Feeder
Before customizing the CAE Feeder, you should be familiar with the content of
Section 4.3.5, “Developing with the CAE” [161] about the CAE modules. Details
about how the CAE Feeder works and how it may be customized are presented in
the [Search Manual].

4.3.7 Adding Common Infrastructure Components
CoreMedia applications share common infrastructure components. CoreMedia
provides common application infrastructure components for logging and JMX
management. An application might use this infrastructure by simply adding the
particular component artifact to the application by defining a Maven dependency.
There is also the Base component, that aggregates basic infrastructure to be used
by all components.

The Logging Component

This component provides a common logging infrastructure based on the logback
framework. The component adds some new features:

➞ Automatic registration of a configuration MBean as com.core-
media:Type=Logging,application=<applicationname>

➞ A fallback logging configuration that is loaded when the application doesn't
provide a more specific one. You will find this configuration in the file /META-
INF/resources/WEB-INF/logback-default.xml in the logging-
component.jar file.

➞ Preconfigured logging appenders that can be simply imported from log
configuration files. Two profiles ("development" and "production") have been
defined that hold slightly different appender configurations. The "develop-
ment" profile logs more information for development issues while the "pro-
duction" profile should be used in a live system.

165CoreMedia DXP 8

Blueprint Workspace for Developers | Customizing the CAE Feeder

https://documentation.coremedia.com/cm7/manuals/blueprint/current/blueprint-en/webhelp/content/ch02s02s15.html
http://logback.qos.ch/

Adding the Logging Component

You can simply add the CoreMedia logging component to your CoreMedia web
application as described below. For your custom services and code, you should use
slf4j as a logging interface. When using the logging component, slf4j will be auto-
matically bound to the logback logger implementation.

Adding dependency

Adding the component simply consists of adding the following dependency to your
web application's project:

Example 4.35. Maven
Dependency for Log-
ging

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>logging-component</artifactId>
<scope>runtime</scope>
</dependency>

Adding log configuration

If you want to use your own log configuration, add a file /WEB-INF/logback.xml
to your application that looks like the following:

Example 4.36. Logback
Configuration<configuration>

<!--
includes a common configuration that dispatches to
"coremedia-development-profile.xml"
or
"coremedia-production-profile.xml" depending
on property "coremedia.logging.profile".

You can define a custom log pattern ("log.pattern") or a custom
log file name ("log.file") like this:

<property name="log.pattern" value="%d %-7([%level]) %logger -
[%X{tenant}] %message \\(%thread\\)%n" />

-->
<include resource="logging-common.xml"/>

<!-- adds project specific logger and references a common appender
-->
<logger name="com.coremedia" additivity="false" level="info">
<appender-ref ref="file"/>

</logger>

<root level="warn">
<appender-ref ref="file"/>

</root>
</configuration>

Changing log directory

By default, logs are written in the ./logs directory. If you want to change this
directory you have to either pass a system property coremedia.logging.dir-
ectory or a JNDI property java:comp/env/coremedia/logging/directory

166CoreMedia DXP 8

Blueprint Workspace for Developers | Adding Common Infrastructure Components

http://www.slf4j.org/

to the application. For example, when you use Tomcat you can add the following
code to context.xml:

Example 4.37. Change
Log Directory in Tom-
cat

<Context ...>
...
<Environment name="coremedia/logging/directory"
value="./my-log-dir" type="java.lang.String" override="true"/>

...
</Context>

See the Tomcat documentation for more details.

Switching the log profile

If you want to switch the logging profile from the default "production" to "develop-
ment", you have to either set the system property coremedia.logging.profile
or the JNDI property java:comp/env/coremedia/logging/profile to the
"development" value.

Changing log configuration at runtime

If you want to change the logback configuration during runtime, there are two
options: You can either use JMX or logback's automatic reloading mechanism. To
let logback reload the configuration, you have to add the scan attribute to the
configuration element.

Example 4.38. Auto-
matically reload config-
uration file every 30
seconds

<configuration scan="true" scanPeriod="30 seconds">
...

</configuration>

Consider that the scan feature only works for configuration loaded from the
file system. It does not work for classpath or web application resources. To this
end you have to override the property coremedia.logging.configuration
and provide a file URL pointing to the logback configuration (such as
file:/path/to/logback.xml). The property can be set via JNDI or as system
property.

The JMX Component

This component provides a common JMX infrastructure with the following features:

➞ All beans which are added to the map mbeans will be exported as MBeans
to an MBean server

➞ An MBean remote connector server (and a RMIRegistry if necessary) is started
if a JMX service URL is specified

167CoreMedia DXP 8

Blueprint Workspace for Developers | Adding Common Infrastructure Components

http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Environment%20Entries

➞ MBeans are exported automatically using a completed object name

The component is preconfigured in CoreMedia Blueprint but does not use the own
remote connector server. Instead, the container's remote connector server is used
which is the recommended way for CoreMedia DXP 8.

Adding the JMX Component

If you want to add the JMX component to your own web application project, proceed
as follows:

Adding JMX

1. Add the following dependency to your web application project:

Example 4.39. Depend-
ency for JMX<dependency>

<groupId>com.coremedia.cms</groupId>
<artifactId>management-component</artifactId>
<scope>runtime</scope>
</dependency>

2. Add a property management.server.remote.url to /WEB-INF/applic
ation.properties to your application. The value of the property is the URL
of the component's server. For example:

➞ service:jmx:rmi://localhost/jndi/rmi://local
host:1098/myapplication

This will start the adequate remote connector server so that the application's
MBeans are available under the specified URL. If you want to use Tomcat's
server, read the paragraph "Using Tomcat's remote connector server".

3. Every component has to register its MBeans by itself in order to make its
MBeans available to the management component. Therefore, add a configur-
ation like the following to the components descriptor in /META-INF/core
media/component-<component-name>.xml.

Example 4.40. Register
the MBeans<import

resource="classpath:/com/coremedia/jmx/mbean-services.xml"/>

<bean id="myComponentMbeanRegistrator"
class="com.coremedia.jmx.MBeanRegistrator">

<property name="registry" ref="mbeanRegistry"/>
<property name="mbeans">
<map>
<entry key="type=MyService" value-ref="myBean"/>
</map>
</property>
</bean>

168CoreMedia DXP 8

Blueprint Workspace for Developers | Adding Common Infrastructure Components

The MBean's object name will be automatically completed, a configured name
"type=MyService" will, for instance, be automatically transformed to
com.coremedia:type=MyService,application=<applicationname>

Using Tomcat's remote connector server

Instead of starting a custom remote connector server you might also use Tomcat's
remote connector server infrastructure. In this case, leave the property manage-
ment.server.remote.url empty and pass the following properties to Tomcat's
catalina.bat/catalina.sh file:

Example 4.41. Use
Tomcat remote connect-
or server

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=8008
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

If you require authentication add and change the properties as follows and provide
the appropriate access and password file:

Example 4.42. Use
Tomcat remote connect-
or server with authen-
tication

-Dcom.sun.management.jmxremote.authenticate=true
-Dcom.sun.management.jmxremote.password.file= \
../conf/jmxremote.password
-Dcom.sun.management.jmxremote.access.file= \
../conf/jmxremote.access

See also Enabling_ JMX_Remote in Tomcat documentation and JmxRemoteLifecycleL-
istener in Tomcat documentation for how to enable JMX for Tomcat.

Now, you can reach Tomcat's remote connector via

service:jmx:rmi:///jndi/rmi://localhost:8008/jmxrmi

The Base Component

This component aggregates basic infrastructure to be used by all components. It
contains a dependency on the Logging and JMX component and provides the
mechanisms for bootstrapping all other components. It also implements configur-
ation file and properties loading scheme described in Section 4.1.3, “Application
Architecture” [107].

Adding the Base Component

To use the base component, add the following dependency to your component or
web application module pom.xml:

169CoreMedia DXP 8

Blueprint Workspace for Developers | Adding Common Infrastructure Components

http://tomcat.apache.org/tomcat-7.0-doc/monitoring.html#Enabling_JMX_Remote
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener
http://tomcat.apache.org/tomcat-7.0-doc/config/listeners.html#JMX_Remote_Lifecycle_Listener_-_org.apache.catalina.mbeans.JmxRemoteLifecycleListener

Example 4.43. Adding
the Base Component<dependency>

<groupId>com.coremedia.cms</groupId>
<artifactId>base-component</artifactId>
<scope>runtime</scope>
</dependency>

Most applications (like the Content Application Engine) need an external service
like the Content Management Server to startup. In order to make such an application
start up independently, the spring application context is loaded asynchronously.
Incoming requests must wait until the Spring root context is initialized.

This behavior can be disabled at runtime by configuring

com.coremedia.springframework.web.context.disableAsynchronousLoading=true

by either setting a servlet context init param, a servlet config init param, or any
other property source known to the Standard Servlet Environment .

4.3.8 Managing Properties in the Workspace
One wants to add properties to the workspace either in new components or existing
code. This chapter describes, how to handle these properties from the code to the
packaging and ensure the replacement of the property with default values as well
as dynamic substitutions during the installation of RPMs.

Usage of Properties in Components

The correct usage and substitution of properties will be demonstrated by an ex-
ample. Assume that the property example.value is introduced in the source
code and your task is to assign the value 120 to it.

Properties for components, which are designed to be changeable, should be
propagated via a property file in the web applications. In this case there is a property
file in the Preview CAE called modules/cae/cae-preview-
webapp/src/main/webapp/WEB-INF/application.properties where
properties defined by the components themselves are overwritten. Thus, add the
following line to application.properties:

example.value=120

This definition has to be added to every web application the plugin belongs to, but
can have different values. The web application can be started with these settings
via mvn tomcat7:run, for example.

Defining default values for deployment

To make the introduced property deployment independent, you have to configure
the property in the packages/ part of the workspace too. Under services/,

170CoreMedia DXP 8

Blueprint Workspace for Developers | Managing Properties in the Workspace

http://docs.spring.io/spring/docs/4.0.1.RELEASE/javadoc-api/org/springframework/web/context/support/StandardServletEnvironment.html

there are the deployment services like the studio-tomcat or delivery-tomcat.

To configure the new property add the following value for the preview web applic-
ation instudio-tomcat/src/main/override-properties/blueprint/WEB-
INF/application.properties.

example.value=@EXAMPLE_VALUE@

This is the base configuration for further deployment independent configurations.
To set the default values for this property, you have to set the desired value in
packages/src/main/filters/preconfigure.properties with the value:

EXAMPLE_VALUE=120

The token within the configuration of the web application will be replaced with
these values in case of preconfigured builds of the packages.

Configuring this property for post-configured RPM deployment

To make this variable configurable on different deployment environments, set the
new property in the file packages/src/main/filters/postconfigure.prop
erties in the following way:

EXAMPLE_VALUE=@configure.EXAMPLE_VALUE@

Defining default valueThe property configure.EXAMPLE_VALUE can be set on the target server to a
server specific value, and will substitute this configuration in the RPM while in-
stalling it. Default values can also be provided by set the value in pack
ages/src/main/filters/default-deployment.properties. If the property
is not configured on the target server, this default value will be applied instead.

To get familiar with this mechanism, you should take a look at the predefined
properties all over the workspace, components and modules and read the Section
4.3.9, “Configure Filtering in the Workspace” [171] for a deeper introduction into
the configuration process. If you use the post-configuration approach and use
the RPM files for installation, the information about missing properties will be
logged in the system log at /var/log/messages.

4.3.9 Configure Filtering in the Workspace
Postconfiguration vs.
preconfiguration

Speaking about deployment, one has to choose between configuration at build
time, that is preconfiguration, and configuration at installation time, that is post-
configuration. Regardless of which approach you choose, you have to add filtering
to your build repertoire. In a preconfiguration build, a filter token, called the source
token, is being replaced with an explicit value, whereas in a post-configuration
build, the source token is being replaced with another filter token, called the target

171CoreMedia DXP 8

Blueprint Workspace for Developers | Configure Filtering in the Workspace

token. The target token will be replaced not during build but during installation
time on the target machine.

Replacing a token with a token may seem strange at first sight but it is necessary
in order to provide a central configuration facility that can deal with both ap-
proaches, preconfiguration and post-configuration.

Token naming schemeAs a convention, the target token is derived from the source token by adding the
common prefix "configure.". To distinguish the source tokens and target tokens
from any other property that can be used in Maven for filtering and other purposes,
they are all defined uppercase with underscores as a separation element.

Central configuration files

In Maven, a central configuration facility can be either the main pom.xml file or
some property files to be loaded by a plugin. In the CoreMedia DXP 8 workspace
the latter approach is used and you can find the three property files below pack
ages/src/main/filters:

➞ default-deployment.properties

➞ postconfigure.properties

➞ preconfigure.properties

The filespostconfigure.properties andpreconfigure.properties contain
the properties for build-time filtering whereas the default-deployment.prop
erties file contains the default values for filtering at installation.

Preconfigure profileBy default, the CoreMedia Blueprint workspace uses the post-configure approach,
which means, that it loads the properties found in the postconfigure.proper
ties for build-time filtering. If you want to use the preconfigure approach, you
simply have to enable the preconfigure Maven profile.

Configuration templates

To allow reconfiguration without redeployment for post-configuration builds, all
deployable artifacts from the packages hierarchy contain their files with target
tokens twice. The copies of these files are packaged below an INSTALL directory
as an overlay to the installation root. At reconfiguration time the overlay is copied
on top of the application and in a second step all target tokens are being replaced
with the values found in the applications configuration file.

In addition to the configuration templates, the coremedia-application-maven-plugin
selects all those properties from the default-deployment.properties file
that match the target tokens found in the configuration template and generates a
default configuration file, containing all tokens necessary to post-configure this
package. The default configuration file is generated in a modules output directory

172CoreMedia DXP 8

Blueprint Workspace for Developers | Configure Filtering in the Workspace

below the INSTALL folder with the name of the application as the filename. You
can generate a complete list of these files in the boxes/target/configuration-
templates folder, if you execute one of the update scripts in the boxes folder
after you build the packages hierarchy.

To support usability at deployment, the commented descriptions of the target
tokens in the default-deployment.properties file are being merged into
the default configuration files too. As a result, adding a new source token to a
configuration file requires the following:

➞ add the source token with an explicit value to the preconfigure.proper
ties

or

➞ add the source token to target token mapping to the postconfigure.prop
erties

➞ add the target token with a good default value to the default-deploy
ment.properties

Build verification

To prevent you from deploying packages with undetected tokens, the coremedia-
application-maven-plugin will fail the build, if target tokens are found not starting
with the common prefix. The pattern for this check can be configured in the plugin
configuration in the packages/pom.xmlwith the element allowFilterTokens.

Override properties

Filtering requires the presence of ant-style filter tokens in the configuration files
and would therefore require the duplication of the whole configuration file even
if only one value has to be replaced. With CoreMedia 7 some filtering enhancements
have been added to the coremedia-application-maven-plugin to define only those
properties that you want to reconfigure. In the workspace you can find these deltas
as property files below the override-properties directory. If you want to
override a file completely, you can still do this by adding files below the
src/main/app directory. For a more detailed description how to use and configure
this mechanism, you should read the plugins documentation at https://document-
ation.coremedia.com/utilities/coremedia-application-maven-plugin/2.6/.

173CoreMedia DXP 8

Blueprint Workspace for Developers | Configure Filtering in the Workspace

https://documentation.coremedia.com/utilities/coremedia-application-maven-plugin/2.6/

5. IBM WebSphere Commerce
Integration

This chapter describes how the CoreMedia system integrates with IBM WebSphere
Commerce Server. You will learn how to add fragments from the CoreMedia system
into a WebSphere generated site, how to access the IBM WebSphere catalog from
the CoreMedia system and how to develop with the e-Commerce API. The configur-
ations of your IBM RAD system are described in Section 3.4, “Customizing IBM
WebSphere Commerce” [58]

In general CoreMedia Digital Experience Platform 8 offers two integration scenarios
with IBM WebSphere Commerce: Content-led (see Section 5.2.1, “Content-led In-
tegration Overview” [195]) and commerce-led (see Section 5.1, “Commerce-led
Integration Scenario” [176]).

Integration scenarios➞ In the commerce-led scenario, pages are delivered by the WCS. The page
navigation is determined by the catalog category structure and cannot be
changed in the CMS. You can augment the categories and product detail
pages with content from the CMS. Content and settings are also inherited
along the catalog category structure.

➞ In the content-led scenario, pages are delivered by both systems, transparent
for the user. You can manipulate the navigation through the catalog pages
and add complete new navigation paths. You can augment product detail
pages with content from the CMS. Categories are rendered from the CAE.
However, content and settings are inherited along the catalog category
structure. Figure 5.1, “The CoreMedia Perfect Chef site with dynamic price
information from the IBM WebSphere Commerce shop” [175] shows a page
delivered by the CMS but enhanced with price information from the WCS
system.

174CoreMedia DXP 8

IBM WebSphere Commerce Integration |

Figure 5.1. The Core-
Media Perfect Chef site
with dynamic price in-
formation from the
IBM WebSphere Com-
merce shop

➞ Section 5.1, “Commerce-led Integration Scenario” [176] describes the com-
merce-led scenario and shows how you extend WCS pages with CMS frag-
ments.

➞ Section 5.2, “Content-led Integration” [195] describes the content-led scenario
and some content-led specific configurations.

➞ Section 5.3, “Communication” [204] describes the communication between
the IBM WCS and the CoreMedia CMS system.

➞ Section 5.4, “Connecting with an IBM WCS Shop” [207] describes how you
connect a CoreMedia web application with an IBM WebSphere Commerce
store.

➞ Section 5.5, “Link Building for Fragments” [213] describes deep links from
fragments of the CMS system to pages of the WCS system.

➞ Section 5.6, “Enabling Preview of Commerce Category Pages in Studio” [215]
describes how you activate the preview of WCS pages in Studio.

➞ Section 5.7, “Enabling Contract Based Preview” [216] describes how you en-
able the preview of WCS content based on contracts.

➞ Section 5.8, “The e-Commerce API” [219] describes main classes of the
CoreMedia e-Commerce API, which you can use to access the WCS system.

➞ Section 5.9, “Commerce Cache Configuration” [221] describes the CoreMedia
cache for e-Commerce entities from the WCS system.

➞ Section 5.10, “Studio Integration of the IBM WebSphere Commerce Con-
tent” [223] shows the e-Commerce features integrated into CoreMedia Studio.

175CoreMedia DXP 8

IBM WebSphere Commerce Integration |

5.1 Commerce-led Integration Scenario
In the commerce-led integration scenario, the WCS delivers content to the customer.
The WCS pages are augmented with fragment content from the CoreMedia system.

This chapter describes how you include the content from the CMS into the WCS-
Have also a look into Section 5.10.5, “Augmenting WCS Content” [231] and
Chapter 6, Working with Product Catalogs in CoreMedia Studio User Manual for more
details about the Studio usage for e-Commerce.

➞ Section 5.1.1, “Commerce-led Integration Overview” [176] gives an overview
over the request flow in the commerce-led integration scenario.

➞ Section 5.1.2, “Solutions for Same-Origin Policy Problem” [177] describes
how the same-origin policy problem has been solved for the CoreMedia
solution.

➞ Section 5.1.3, “Extending the Shop Context in Commerce-led Integration
Scenario” [181] describes how you extend the shop context that is delivered
to the CMS.

➞ Section 5.1.4, “Extending with Fragments” [183] describes how you can add
fragments to the WCS via the CoreMedia widgets and the lc:include tag
and how you augment the WCS pages in Studio.

5.1.1 Commerce-led Integration Overview

Figure 5.2. Commerce-
led integration scen-
ario

Apache

shop-helios.blueprint-box.vagrant WCS CAE

1 2 3

4

5

Figure 5.2, “Commerce-led integration scenario” [176] shows the commerce-led
integration scenario where the CoreMedia CAE operates behind the commerce
server. Moreover, you can see two kinds of requests. While the green arrows rep-
resent HTTP page requests to the commerce server, that include fragments delivered
by the CAE, the blue arrows are resource or Ajax requests directly redirected by
the one virtual host in front of both servers to the CAE.

A typical flow of requests through a commerce-led system is as follows:

1. A user requests a product detail page that is received by the virtual host.

2. The virtual host identifies the request as a commerce request and forwards it
to the commerce server.

176CoreMedia DXP 8

IBM WebSphere Commerce Integration | Commerce-led Integration Scenario

studio-user-en.pdf#catalogManagement

3. Part of the requested Product Detail Page (PDP) is a CAE fragment as described
in the corresponding Commerce Composer page layout. Hence, the WCS requests
the fragment from the CAE.

4. The resulting HTML page flows back to the user's browsers. Because the page
contains dynamic CAE fragments which have to be fetched via Ajax, the browser
triggers the corresponding request, against the virtual host.

5. As this is a CAE request, the virtual host forwards it directly to the CAE.

From the point of view of the user all requests are sent to exactly one system,
represented by the one virtual host that forwards the requests accordingly.

5.1.2 Solutions for Same-Origin Policy Problem
When the commerce system has to deliver the end user's web pages, CoreMedia
Digital Experience Platform 8 offers a way to enrich those web pages with content
from the CoreMedia CMS; the fragment connector. Figure 5.3, “The Perfect Chef
header as a fragment for the Aurora shop” [177] shows the IBM Aurora demo shop
page with the integrated CoreMedia PerfectChef header.

Figure 5.3. The Perfect
Chef header as a frag-
ment for the Aurora
shop

177CoreMedia DXP 8

IBM WebSphere Commerce Integration | Solutions for Same-Origin Policy Problem

Integrating content from the CoreMedia system into the IBM WebSphere Commerce
pages presents a challenge due to the same-origin policy:

Figure 5.4. Cross Do-
main Scripting with
Fragments

CAE

IBM WebSphere Commerce

Fragment Connector

23

1

4

5

The image above shows a typical situation when a user requests an IBM commerce
page that includes CoreMedia fragments.

1. The page request from the end user is sent to the IBM WebSphere Commerce
server.

2. While rendering the page, the commerce server requests a fragment from the
CAE.

3. The returned fragment contains itself parts that must be delivered dynamically.
Take the login button. It is user specific, hence it must not be cached. The
CoreMedia LiveContext Blueprint may include such parts via Ajax requests or
as ESI tags, depending on the capabilities of the component which sent the re-
quest.

4. The commerce server returns the complete page, including the fragment that
was rendered by the CAE.

5. Because it is assumed that the CoreMedia LiveContext fragment contains a dy-
namic part, which must not be cached, the browser tries to trigger an Ajax re-
quest to the CAE. But this breaks the same-origin policy and will not succeed.

Solution 1: Access-Control-Allow-Origin

The first solution is built into the CoreMedia Blueprint workspace, so you may use
it out of the box. The idea is to customize the same origin policy by setting the
Access-Control-Allow-Origin HTTP header accordingly.

178CoreMedia DXP 8

IBM WebSphere Commerce Integration | Solutions for Same-Origin Policy Problem

Figure 5.5. The
CrossDomainEna-
bler

2

3

1

4

shop.perfectchef.com

IBM WebSphere Commerce

Fragment Connector

cae.perfectchef.com

CAECrossDomain
Enabler

CoreMedia Blueprint contains a servlet filter that does this job: The CrossDomain
Enabler. The picture shows the relevant parts of the request flow:

1. For every Ajax request that is called from within a fragment, that was delivered
by the commerce system, the JavaScript will trigger an HTTP OPTIONS request,
asking for the allowance to set the X-Requested-With header.

2. The CrossDomainEnabler receives that request and allows that header to be
sent for the given Ajax request.

3. The JavaScript client triggers the Ajax request and sets the X-Requested-With
header to XMLHttpRequest.

4. The CrossDomainEnabler intercepts this request and writes its cross domain
whitelist to the Access-Control-Allow-Origin header of the response
before it forwards the request to the corresponding handler.

5. The browser receives the response and accepts that it.

The CrossDomainEnabler does not allow every cross domain access. Instead, it
must be configured within the Spring application context with domains that are
meant to be safe. To customize the CrossDomainEnabler, define the property
livecontext.crossdomain.whitelist in the application context with a
comma separated list of domains, as in the example below.

livecontext.crossdomain.whitelist=http://my.shop.domain1,http://my.shop.domain2

There are two additional properties that you may want to change.

179CoreMedia DXP 8

IBM WebSphere Commerce Integration | Solutions for Same-Origin Policy Problem

1. The ajaxIndicatorHeaderName is the name of a header that the cross domain
enabler uses to identify Ajax requests. Its default value is X-Requested-With
which is used by jQuery to mark Ajax requests.

2. The ajaxIndicatorHeaderValue is the value that the header must contain
in order to be identified as an Ajax request. Again the default value is set to
jQuery's XMLHttpRequest.

Per default springs org.springframework.web.servlet.DispatcherSer
vlet does not handle OPTIONS request. You have to enable it via an init-
param within your web.xml. CoreMedia DXP 8 comes with that parameter set
to true.

Solution 2: The Proxy

To solve this problem the classical way, the Ajax request needs to be sent to the
same origin than the whole page request in step 1 was. The next image shows the
solution to this problem: A reverse proxy needs to be put in front of both the CAE
and the WCS.

Figure 5.6. Cross Site
Scripting with frag-
ments

CAE

IBM WebSphere Commerce

Fragment Connector

23

1

4

5

Proxy

Actually, you may use any proxy you fell comfortable with. The following snippet
shows the configuration for a Varnish. Two back ends were defined, one for the
CoreMedia LiveContext CAE named blueprint and another one for the IBM
WebSphere Commerce server named commerce.

The vcl_recv subroutine is called for every request that reaches the Varnish in-
stance. Inside of it the request object req is examined that represents the current
request. If its url property starts with /blueprint/, it will be sent to the Core-
Media LiveContext CAE. Any other request will be sent to the commerce system.
(~ means "contains" and the argument is a regular expression)

180CoreMedia DXP 8

IBM WebSphere Commerce Integration | Solutions for Same-Origin Policy Problem

Now, if you request an Aurora URL through Varnish and the resulting page contains
a CoreMedia LiveContext fragment including a dynamic part that must not be
cached, like the sign in button, the Ajax request will work as expected.

backend commerce {
.host = "ham-its0484-v";
.port = "80";

}

backend blueprint {
.host = "ham-its0484";
.port = "40081";

}

sub vcl_recv {
if (req.url ~ "^/blueprint/") {
set req.backend = blueprint;

} else {
set req.backend = commerce;

}
}

5.1.3 Extending the Shop Context in Commerce-led
Integration Scenario
To render personalized or contextualized info in content areas it is important to
have relevant shop context info available during CAE rendering. It will be most
likely user session related info, that is available in the IBM WCS shop only and must
now be provided to the back-end CAE. Examples are the user id of a logged in user,
gender, the date he was logged in the last time or the names of target groups he
belongs to, up to the info which campaign should be applied. Of course these are
just examples and you can imagine much more. So it is important to have a
framework in order to extend the transferred shop context information flexibly.

The relevant shop context will be transmitted to the CoreMedia CAE automatically
as HTTP header parameters and can there be accessed for using it as "personaliza-
tion filter". It is a big advantage of the dynamic rendering of a CoreMedia CAE that
you can easily process this information at rendering time.

The transmission of the context will be done automatically. You do not have to
take care of it. On the one end, at the IBM WebSphere Commerce System, there
is a context provider framework where the context info is gathered, packaged and
then automatically transferred to the back-end CAE. A default context provider is
active and can be replaced or supplemented by our own ContextProvider im-
plementation.

Implement a custom ContextProvider

181CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending the Shop Context in Commerce-led Integration Scenario

Let's imagine you have to implement a new ContextProvider that will extend
the shop context. It should be possible to apply it for all available content slots or
only for a certain one because of its supposed exceptional specialty.

First, you write a class that implements the ContextProvider interface. The
ContextProvider interface demands the implementation of a single method.

Example 5.1. Context-
Provider interface
method

package com.coremedia.livecontext.connector.context;

import javax.servlet.http.HttpServletRequest;

public interface ContextProvider {

/**
* Add values to the given context.
* @param contextBuilder the contextBuilder - the means to add

entries to the entry
* @param request - the current request, from which e.g. the

session can be retrieved
* @param environment - an environment, not further specified
*/

void addToContext(ContextBuilder contextBuilder, HttpServletRequest
request, Object environment);
}

There can be multiple ContextProvider instances chained. Each ContextPro-
vider enriches the Context via the ContextBuilder. The resulting Context
wraps a map of key value pairs. Both, keys and values have to be strings. That
means if you have a more complex value, like a list, it is up to you to encode and
decode it on the back-end CAE side. Be aware that the parameter length can not
be unlimited. Technically it is transferred via HTML headers and the size of HTML
headers is limited by most HTTP servers. As a rough upper limit you should not
exceed 4k bytes for all parameters. You should also note that this data must be
transmitted with each back-end call.

As a rough upper limit you should not exceed 4k bytes for all parameters, as
they will be transmitted via HTTP headers.

All ContextProvider implementations are configured via the property
com.coremedia.fragmentConnector.contextProvidersCSV in the file
coremedia-connector.properties as a comma separated list. The configured
ContextProvider instances are called each time a CMS fragment is requested
from the CAE back-end.

Read shop context values

On the back-end CAE side the shop context values will be automatically provided
via a Context API. You can access the context values during rendering via a Java
API call.

182CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending the Shop Context in Commerce-led Integration Scenario

Example 5.2. Access
the Shop Context in
CAE via Context API

All fragment requests are processed by the FragmentCommerceContextInter-
ceptor in the CAE. This interceptor calls LiveContextContextAccessor.open
AccessToContext(HttpServletRequest request) to create and store a
Context object in the request. You can access the Context object via LiveCon
textContextHelper.fetchContext(HttpServletRequest request).

import com.coremedia.livecontext.fragment.links.context.Context;
import
com.coremedia.livecontext.fragment.links.context.LiveContextContextHelper;

import javax.servlet.http.HttpServletRequest;

public class FragmentAccessExample {
...
private LiveContextContextAccessor fragmentContextAccessor;

public void buildContextHttpServletRequest request(){
fragmentContextAccessor.openAccessToContext(request);

}

public String getUserIdFromRequest(HttpServletRequest request){
Context context = LiveContextContextHelper.fetchContext(request);

return (String) context.get("wc.user.id");
}

...
}

5.1.4 Extending with Fragments
A pure e-Commerce system is focused on the more transactional aspects of the
buying process. To create a more engaging user experience you can augment the
catalog pages with editorial content from the CMS. This includes, articles, images
or videos.

Types of augmentable
pages

There are two types of shop pages that can be extended by the CoreMedia CMS:

➞ Catalog Pages that are part of the catalog hierarchy, like a Category Overview
or Landing Page and a Product Detail Page (PDP). They are extended by
Augmented Categories in the CMS.

➞ Other Pages that are not located in the catalog hierarchy, for example, all
subordinate shop pages like "Contact Us", "Log On", "Checkout", "Register"
or "Search Result", which also belong to a shop but don't have a category or
an product connected with. Even the homepage and other special topic pages
belong to this type. These pages are extended by Augmented Pages in the
CMS.

In addition, you can show complete CMS pages in the context of the WCS.

The augmentation pro-
cess

The basis for augmentation is the use of the CoreMedia Content Widget or the
lc:include tag in the WCS system.

183CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

On the IBM WCS side add the CoreMedia Content Widget to IBM WCS page layouts.
Here, content from the CMS will be shown. The value of the placement property
connects the widget with a placement in a CMS layout. Technically, the widgets
use the lc:include tag. See Section “CoreMedia Widgets” [184] and Section “The
CoreMedia Include Tag” [186] for details.

When you have added the widget and you have connected the WCS and CMS sys-
tems, you can augment WCS content in Studio. Section 5.10.5, “Augmenting WCS
Content” [231] describes the required steps.

CoreMedia Widgets

Adding the CoreMedia
Content Widget

On the IBM WCS side it is necessary to define slots where the CMS content can be
displayed. This is normally done by adding the CoreMedia Content Widgets to an
IBM WCS page layout.

Using the lc:include
tag

In other cases, where a widget cannot be used, it can also be achieved by directly
adding an lc:include tag into a JSP within the IBM WCS workspace. This is typically
done in advance during the project phase. Later, editors will only deal with Aug-
mented Categories and Augmented Pages that they can edit and preview via
CoreMedia Studio.

The content that is shown in the CoreMedia Content Widget is taken from a placement
in the augmented content item, whose name corresponds with the name set in
the widget. See Figure 5.7, “ Connection via placement name ” [184] for an example.
Note, that the name of the placement shown in the Studio form is only a localized
label. The name in the Content Widget must match with the technical name in the
page grid definition. If the widget defines no placement, the full page grid is taken.

Figure 5.7. Connection
via placement name

The CoreMedia widgets are IBM Commerce Composer Widgets that display content
or assets from the CMS on any page managed through the IBM Commerce Composer.
After the CoreMedia widgets have been deployed on the WCS side (see Section

184CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

3.4.11, “Deploying the CoreMedia Widgets” [73]), two CoreMedia widgets are
available in the IBM Commerce Composer:

➞ CoreMedia Content Widget

➞ CoreMedia Asset Widget

Figure 5.8. CoreMedia
Widgets in Commerce
Composer

Technically, the CoreMedia Widgets use the lc:include. See Section “The Core-
Media Include Tag” [186] for a description.

The CoreMedia Content Widget

You can use the Content Widget like any other Commerce Composer Widget. It has
the following configuration options:

Table 5.1. CoreMedia
Content Widget config-
uration options

DescriptionOption

The widget name.Widget name

185CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

DescriptionOption

The name of the placement as defined in CoreMedia CMS. Con-
tent on page grids in CoreMedia are defined through so called

CoreMedia Placement
Name

placements. Each placement is associated with a specific position
of the page grid through its name. Using CoreMedia Studio the
editor can add content to the placement which will be shown
at the associated position of the page grid and subsequently in
the layout of this CoreMedia Content Widget.

The view of the placement as defined in CoreMedia CMS. Each
placement can be rendered with a specific view which needs to
be predefined to handle the content in a placement.

CoreMedia View Name

The CoreMedia Product Asset Widget

The Product Asset Widget is part of the CoreMedia Advanced Asset Management
module described in Section 8.7, “Advanced Asset Management” [443]. This
module requires a separate licence.

You can use the CoreMedia Product Asset Widget like any other Commerce Composer
Widget. It has the following configuration option:

Table 5.2. CoreMedia
Product Asset Widget
configuration options

DescriptionOption

If checked, a picture gallery is rendered from CMS pictures and
videos that are associated with the product.

Display Pictures and
Videos

The orientation of the pictures (only relevant if pictures are in-
cluded). The possible values are Square and Portrait

Orientation

If checked, an Additional Downloads list is rendered from CMS
Download documents that are associated with the product.

Include Downloads

The CoreMedia Include Tag

Behind the scenes of the CoreMedia Commerce Composer Widget (Section 3.4.11,
“Deploying the CoreMedia Widgets” [73]) works the CoreMedia include tag,
which you may use in your own JSP templates to embed CoreMedia content on
the WCS side. In general it is used like this:

<%@ taglib prefix="lc"
uri="http://www.coremedia.com/2014/livecontext-2" %>
<lc:include

storeId="${WCParam.storeId}"

186CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

locale="${WCParam.locale}"
productId="${WCParam.productId}"
categoryId="${WCParam.categoryId}"
placement="${param.placement}"
view="${param.view}"
externalRef="${WCParam.externalRef}"
exposeErrors="${not empty WCParam.externalRef

&& empty WCParam.categoryId
&& empty WCParam.categoryId}"

httpStatusVar="fragmentHttpStatus"/>

All parameters are described in the next two sections.

Include Tag Reference

The tag attributes have the following meaning:

Table 5.3. Attribute of
the Include tag

DescriptionParameter

These attributes are mandatory. They are used in the CAE to
identify the site, which provides the requested fragment.

storeId, locale

These attributes are used in the CAE to find the context which
will be used for rendering the requested fragment. Both para-

productId,category-
Id

meters should not be set at the same time since depending on
the attributes set for the include tag, different handlers are in-
voked: If thecategoryId is set,CategoryFragmentHand-
ler will be used to generate the fragment HTML. If the pro-
ductId is set, ProductFragmentHandler will be used
to generate the fragment HTML.

This parameter is optional. Usually, the page ID is computed
from the requested URL (the last token in the URL path without

pageId

a file extension). If you set the parameter, the automatically
generated value is overwritten. On the blueprint side an Augmen-
ted Page will be retrieved to serve the fragment HTML. The
transmitted page ID parameter must match the External Page ID
of the Augmented Page. You might use the parameter, for ex-
ample, in order to have one CoreMedia page to deliver the same
content to different WCS pages.

This attribute defines the name of a placement in the page grid
of the requested context. In the example for the header frag-

placement

ment, the "header" placement was used. If you do not want to
render a certain placement but a view of the whole context
(generally a CMChannel), you may omit it. If the view attribute
isn't set, the "main" placement will be used as default instead.
This attribute can be combined with theexternalRef attrib-
ute. In this case the placement will be rendered for a specific
CMChannel, so the external reference must point to a
CMChannel instance.

187CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

DescriptionParameter

The attribute "view" defines the name of the view which will
render the fragment. For including the CoreMedia CSS links into

view

the header, chose the "css" view. And because no placement
was provided, the CAE was told to render the "css" view of the
whole root channel. If you omit the view, the default view will
be used.

This attribute is used in the CAE to find content. Several formats
are supported here as described in the previous section. The

externalRef

attribute can be used in combination with the "view" and/or
"parameter" attribute.

This attribute is optional and may be used to apply a request
attribute to the CAE request. The request attribute is stored using

parameter

the constant FragmentPageHandler.PARAMETER_RE-
QUEST_ATTRIBUTE. The value may be read from a triggered
web flow, for example, to pass a redirect URL back to the com-
merce system once the flow is finished. The attribute also sup-
ports values to be passed in JSON format (using single quotes
only), for example parameter="{'test':'some
value','value':123}". The key/values pairs are available
in the FragmentParameters object and may be accessed
using the getParameterValue(String key) method.
Other additional values, like information about the current user
that should be passed for every request, may be added to the
request context that is build when the commerce system re-
quests the fragment information from the CAE (see next section).

This attribute is optional. If set, the parsed output of the CAE is
not written in the parsed output stream but in a page attribute

var

named like the var parameter value. This allows you, for ex-
ample, to replace or transform parts of the CAE result or, if
empty, to render a different output.

This attribute is optional. If set to true, the tag will expose any
errors that occur during the interaction with the CMS. These

exposeErrors

errors are then directly written to the response. Thus, the IBM
WCS has the ability to handle the errors, e.g. to show an error
page.

This attribute is optional. If set, the http status code of the
fragment request is set into a page attribute named like the

httpStatusVar

httpStatusVar parameter value. This allows you, for ex-
ample, to react on the result code, e.g. set the fragment as un-
cacheable in IBM Dynacache.

188CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

External References

Any linkable CoreMedia content can be included as fragment by specifying a value
for the externalRef attribute. The value of the attribute is applied to the first
ExternalReferenceResolver predicate that is applicable for the externalRef
value. The Spring list externalReferenceResolvers which contains the sup-
ported ExternalReferenceResolvers is injected to the ExternalRefFrag-
mentHandler. This section shows the supported formats that are applicable for
the existing resolvers.

The following table shows an overview about the possible values for the extern-
alRef attribute.

Table 5.4. Supported
usages of the extern-
alRef attribute

DescriptionExampleValue Type

Includes the content with the given
cap id as fragment. The root channel

cm-coremedia:///cap/content/4711Content ID

of the corresponding site will be
used as context.

Works the same way like the cap id
include, only with the numeric con-
tent ID.

cm-4712Numeric Content
ID

Includes the content with the given
absolute path. All exclamation marks

cm-path!!Themes!ba-
sic!img!icons!ico_rte_link.png

Absolute Content
Path

('!') after the prefix 'cm-path!' will
be mapped to slashes ('/') to provide
a valid absolute CMS path. The given
path may not contain 'Sites' (referen-
cing content of a different site is not
allowed). The storeId and loc-
ale parameter are still mandatory
for this case.

Includes the content with the given
path treated as a relative path from

cm-path!actions!LoginRelative Content
Path

the site's root folder. All exclamation
marks ('!') after the prefix 'cm-path!'
will be mapped to slashes ('/') to
provide a valid relative CMS path.
The given path may not contain '..'
(going up in the hierarchy). The site
is determined through the stor-
eId and locale parameter.

The prefix is the numeric content ID
of the context to be rendered. The

cm-3456-6780Numeric Context
and Content ID

suffix is the numeric content ID of

189CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

DescriptionExampleValue Type

the content to be rendered with the
given context.

The actual value (excl. the format
prefix cm-segmentpath:) de-

cm-segmentpath:!perfectchef!on-
the-table

Segment Path

notes a segment sequence, separ-
ated by exclamation marks. The
segments are matched against the
values of the segment properties
of the content. The very last seg-
ment denotes the actual content.
The other segments denote the
navigation hierarchy which determ-
ines the context of the content. The
example value references a linkable
content with the segmenton-the-
table in the context of a channel
perfectchef (which is appar-
ently the root channel, since it con-
sists of a single segment). The con-
text and the content must fulfill the
Blueprint's context relationship,
otherwise the request is handled as
invalid.

Segment Path external references
are resolved by querying the Solr
search engine. The CAE Feeder must
be running for up-to-date results.

Includes the content that contains
the given search term (specified

cm-searchterm:summerSearch Term

after the prefix cm-
searchterm:). This resolver is
typically used to resolve search
landing pages. By default, contents
of type CMChannel below the
segment path <root seg
ment>/livecontext-
search-landing-pages are
checked if their keywords search
engine index field contains the term.
Matching is case-insensitive by de-
fault and can be customized by us-
ing a different search engine field
or field type. The value of the seg-
ment path which is used to identify
the SLP channel is configured with

190CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

DescriptionExampleValue Type

the property livecon
text.slp.segmentPath in file
component-lc-ecommerce-
ibm.properties.

Content type and search engine field
can be configured with Spring
properties searchTermExtern
alReferenceResolver.con
tentType and searchTermEx
ternalReferenceResolv
er.field, respectively. The seg-
ment path is configured as relative
path after the root segment. The
configured segment path value must
not start with a slash.

Search term lookup is cached, by
default for 60 seconds. You can
configure the cache time in seconds
with Spring property searchTer
mExternalReferenceResolv
er.cacheTime and the maximum
number of cached search term
lookups with searchTermEx
ternalReferenceResolv
er.cacheCapacity (defaults to
10000).

Search Term external references are
resolved by querying the Solr search
engine. The CAE Feeder must be
running for up-to-date results.

A cm:include tag that uses this
external reference format is used in

cm-metadataMetadata Retriev-
al

the Metadata.jsp which is part
of the commerce workspace. The JSP
is included in the head section of
several commerce templates. It is
used to retrieve data for the HTML
tagstitle andmeta. The CAE will
render the corresponding HTML us-
ing the Naviga
tion.metaData.ftl template.

191CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

Finding Handlers

You can control the behavior of the include tag by providing different sets of
attributes. Depending on the used attributes, different handlers are invoked to
generate the HTML.

The CoreMedia lc:include tag requests data from the CAE via HTTP. Each attrib-
ute value of the include tag is passed as path or matrix parameter to the Fragment-
PageHandler. In order to find the matching handler, the FragmentPageHandler
class calls the include method of all fragment handler classes defined in the file
livecontext-fragment.xml. The first handler that returns "true" generates
the HTML. Example 5.3, “ Default fragment handler order ” [192] shows the default
order:

Example 5.3. Default
fragment handler order<util:list id="fragmentHandlers"

value-type="com.coremedia.livecontext.fragment.FragmentHandler">
<description>This list contains all handlers that are used for

fragment calls.</description>
<ref bean="externalRefFragmentHandler" />
<ref bean="externalPageFragmentHandler" />
<ref bean="productFragmentHandler" />
<ref bean="categoryFragmentHandler" />

</util:list>

If the handlers are in the default order, then the table shows which handler is used
depending on the set attributes. An "x" means that the attribute is set, a "-" means
that the attribute is not allowed to be set and no entry means that it does not
matter if something is set. For more details, have a look into the handler classes.

Table 5.5. Fragment
handler usageUsed HandlerProduct IDCategory IDPage IDExternal

Reference

ExternalRefFragmentHand-
ler

x

ExternalPageFragmentHand-
ler

--x-

ProductFragmentHandlerx-

CategoryFragmentHandler-x-

Fragment Request Context

In addition to the passed request parameters, a context is build by the registered
ContextProvider implementations that are part of the commerce workspace.
The context provider passes context information as header attributes to the CAE.
For more details see Section 5.1.3, “Extending the Shop Context in Commerce-led
Integration Scenario” [181].

192CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

CMS Error Handling

Since the CoreMedia include tag requests data from the CAE via HTTP, errors
can occur. The error handling can be controlled by different parameters. If the
com.coremedia.fragmentConnector.isDevelopment property (see Section
3.4.9, “Deploying the CoreMedia Fragment Connector” [68]) is set to true, the
include tag will embed occurring error messages as strings into the page output.
You may not want to see such information on the live side, thus the flag can be
set to false and all output will be suppressed (the errors are only visible in the
log).

This behavior is sufficient for providing additional (possibly optional) information
on a page, a banner or teaser, for instance. But if the requested content is the
major content of a page, then it is not desirable to deliver a mainly empty page.
In such a case the IBM WCS should be able to handle the error situation and answer
in an appropriate form. That could be e.g. an 404 error page.

For this purpose the exposeErrors parameter was introduced for the include
tag. If this parameter is set to true, the tag will expose any error that occur during
the interaction with the CMS. These errors are directly written to the response.
Sending a response with an error status code (e.g. 404) requires that still nothing
has been written to the Response object. Therefore this flag should only be set
on the include tag if rendered early enough before any other response code has
been set.

In our IBM WCS reference workspace the usage of the exposeErrors parameter
is demonstrated in the CommonJSToInclude.jspf template. The template is
executed on every page request and renders, amongst other things, the HTML
head section of a page. The first occurrence of the include tag is used to do the
error handling.

Since the template is executed for all shop pages the flag must be set depending
on the target page. If it's a content centered page (it has, for example, a cm para-
meter), then the parameter would be set to true, in case of an category or product
detail page probably not.

exposeErrors="${not empty WCParam.externalRef && empty
WCParam.categoryId && empty WCParam.categoryId}"

Another possibility to handle failed fragment requests is the usage of the http-
StatusVar parameter. If this parameter is set, the include tag will write the http
status code of the fragment request into a JSP attribute/variable. You can then add
JSP code to react on specific result codes and for example disable caching of this
fragment in IBM Dynacache.

<lc:include ...
httpStatusVar="status"/>

193CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

...
<c:if test="${not empty status && status >= 400}">
... // error handling

</c:if>

194CoreMedia DXP 8

IBM WebSphere Commerce Integration | Extending with Fragments

5.2 Content-led Integration
In the content-led scenario, WCS and CMS system are equal partners. It is possible,
that the CoreMedia CAE delivers all content to the customer, while augmenting
the pages with content, such as prices, from the WCS.

➞ Section 5.2.1, “Content-led Integration Overview” [195] gives an overview
over the request flow in the content-led scenario.

➞ Section 5.2.2, “Status Synchronization in the Content-led Integration Scen-
ario” [196] describes how the user state is synchronized between the WCS
and CMS systems. This includes authorization, password reset and more.

➞ Section 5.2.3, “Configuring Protocol-less Links for WCS” [202] describes how
you configure protocol-less links required for the content-led scenario.

5.2.1 Content-led Integration Overview

Figure 5.9. Content-led
integration scenario

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.blueprint-box.vagrant

shop-helios.blueprint-box.vagrant

CAE
CAE

CookieLeveler

WCS

1
2

3

4 5

6

The most obvious difference to the commerce-led scenario in the content-led
scenario is the presence of a second virtual host, that separates both systems, the
CAE and the commerce system, clearly from one another. Here the CAE is the fully
equal partner of the commerce system with the potential to become the driving
force for rendering the whole front end.

The description of a typical request flow through the system, as shown in Figure 5.9,
“Content-led integration scenario” [195], clarifies the different roles of the CAE and
the commerce system in this scenario.

1. The user requests a marketing driven landing page of a shop system.

195CoreMedia DXP 8

IBM WebSphere Commerce Integration | Content-led Integration

2. The virtual host for the CAE forwards the request to the CAE.

3. Part of the requested page are various product teasers, with dynamic prices.
Hence, the CAE needs to fetch corresponding information from the commerce
system.

4. After receiving the page from the CAE, the user decides to click on a product
teaser to see the corresponding product details. The link, rendered by the CAE
as part of the landing page, directs the user to the virtual host of the commerce
system.

5. The virtual host forwards the request to the commerce server.

6. As the requested Product Detail Page (PDP) contains a CoreMedia fragment,
the WCS requests it from the CAE and sends the whole PDP back to the user.

From the example follows, that the commerce-led integration scenario described
in Section 5.1, “Commerce-led Integration Scenario” [176] is a subset of the content-
led scenario. The request flow 4->-5->-6 uses the exact same technique to handle
included CoreMedia fragments into WCS pages as described in the commerce-led
scenario. The only difference is that resources or dynamic fragments fetched via
Ajax requests are not handled by the virtual host of the commerce system. Instead,
they are sent to the CAEs virtual host.

5.2.2 Status Synchronization in the Content-led
Integration Scenario

MotivationTake a look at figure Figure 5.9, “Content-led integration scenario” [195]. As you
can see, the CAE and the commerce system stand side by side as equal partners
from a users point of view. A user is allowed to request pages from both systems
at any given time.

This architecture forces the CAE to synchronize any user sessions on the commerce
system with its own. A user that browses the CAE and afterwards visits the WCS
must keep his session and vice versa a user browsing the WCS going to the CAE
afterwards must keep his state as well.

This section describes how the synchronization of this state is implemented by the
CoreMedia CAE.

What Is The Users State?

IBM WebSphere Commerce represents the state of a user session using cookies.
To understand the synchronization of a users state across both systems you need
to understand how those cookies may flow through the system. Take a closer look
at Figure 5.10, “Content-led integration scenario with cookies” [197]. In addition
to the request flow, the dashed green and blue arrows represent the flow of
cookies.

196CoreMedia DXP 8

IBM WebSphere Commerce Integration | Status Synchronization in the Content-led Integration Scenario

Figure 5.10. Content-
led integration scen-
ario with cookies

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.blueprint-box.vagrant

shop-helios.blueprint-box.vagrant

CAE
CAE

CookieLeveler

WCS

1 2

3

4 5

6

You can see that cookies may flow nearly everywhere. No matter where a request
starts and where it ends, either between the browser and the CAE or between the
CAE and the WCS, every node may be the source as well as the receiver of cookies.

Two things that need explanation. First, two kinds of cookies flow from the browser
to the CAE, cookies which were originally created in the commerce system and
cookies that are created by the CAE. This is necessary because the CAE must send
the commerce cookies to the commerce system as part of its back-end calls. Second,
for fragment requests (labeled with 6), no CoreMedia cookies are needed, hence,
the browser does not need to send the CAE cookies to the commerce server.

Hence, CoreMedia had to answer the following questions:

➞ How can the CAE render fragments without the need to receive its own
cookies?

➞ How can the user's browser be enabled to send cookies received from the
commerce system to the CAE?

➞ How can the CAE be seen as the source of WCS cookies without actually
creating them by itself?

➞ How can the CAE synchronize its own user session with the one of the com-
merce system?

The following section will answer all four questions.

How does the CAE renders fragments without its own cookies?

Cookies are used for dynamic HTML snippets, which are snippets that cannot be
cached because they contain user specific content. Fragments that the CAE delivers

197CoreMedia DXP 8

IBM WebSphere Commerce Integration | Status Synchronization in the Content-led Integration Scenario

to the commerce server should never include such dynamic HTML snippets because
this would prevent a CDN or other caching infrastructure from caching complete
WCS pages.

But if the CAE does only return static HTML within the fragment responses to the
commerce system, it does not need any cookies. Everything that needs cookies in
a fragment must instead be implemented by using dynamic fragments, explained
in Section 8.2.1, “Using Dynamic Fragments in HTML Responses” [414].

For solving the same origin policy problem that would occur for dynamic (Ajax)
requests against the CAE, that originated in a static CAE fragment delivered via the
WCS, CoreMedia provides a solution described in Section 5.1.2, “Solutions for
Same-Origin Policy Problem” [177]

How does the browser deliver WCS cookies to the CAE?

The browser sends cookies to a server that runs in the same domain, that is saved
with the cookie. In general the cookie domain of a cookie is left empty, so that the
browser stores the exact host name of the server that responded to a request. But
because the CAE and the commerce system must have different host names (via
their virtual host), the CAE would never receive WCS cookies.

Figure 5.11. Content-
led integration scen-
ario

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.blueprint-box.vagrant

shop-helios.blueprint-box.vagrant

CAE
CAE

CookieLeveler

WCS

1 2

3

4 5

6

The solution to this problem is fairly simple. A servlet filter, the so called cookie
leveler, runs in front of any WCS storefront call. It wraps the HttpServletRe-
sponse into a custom one, that intercepts addCookie() method calls in order
to set the cookie domain to a configurable value.

198CoreMedia DXP 8

IBM WebSphere Commerce Integration | Status Synchronization in the Content-led Integration Scenario

You have to enable the cookie leveler from within your web.xml file of your
storefront and preview webapp, which is described in Section 3.4.5, “Configuring
the Cookie Domain” [65]

The cookie leveler should be executed prior to any other filter that may add cookies
to the response. In general CoreMedia recommends you to put its filter mapping
definition in front of any other filter mapping.

There is one cookie that cannot be customized that way, the JSESSION cookie,
which is set by the WebSphere servlet container. You have to configure it via the
usual mechanisms provided by IBM, for example via the IBM console.

Now the CAE and the WCS only need to be put into the same domain, for example
helios.blueprint-box.vagrant for the CAE and shop-helios.blueprint-box.vagrant for
the WCS. The cookie domain must then be configured to be .blueprint-box.vagrant

The cookie domain must not be a top level domain, for example .com, because
that would mean, every website in the .com domain will receive the cookies.
Because that does not make any sense, cookies with only a top level domain are
generally not sent at all.

The CAE as WCS Cookie Source

From the point of view of the user, the CAE seems to be a second source for WCS
cookies as follows: A user requests a landing page from the CAE. Part of this page
is a login link. The login will be again handled by the CAE. But to authenticate the
user the CAE delegates to the WCS (call 3 in the figure). That is a store front call
and WCS creates the usual WCS cookies as result of a successful authentication.
The CAE receives them and copies them to the original HTTP response that is sent
back to the user.

The next figure shows the copy process in the top right corner. Moreover, you can
see that any WCS cookies, that were sent to the CAE will be copied to any back-end
call to the WCS.

199CoreMedia DXP 8

IBM WebSphere Commerce Integration | Status Synchronization in the Content-led Integration Scenario

Figure 5.12. Content-
led integration scen-
ario

CookieLevelerCookieLeveler

Apache

CookieLeveler

helios.blueprint-box.vagrant

shop-helios.blueprint-box.vagrant

CAE
CAE

CookieLeveler

WCS

1 2

3

4 5

6

How are sessions between CAE and WCS are synchronized?

Session synchronization is done by the CAE only. The commerce system does not
know anything about the CAE. Although it is the CAE that executes the session
synchronization, it is the WCS that is the leading system for doing so.

There are two states to look at, theorg.springframework.security.core.con
text.SecurityContext that reflects the authentication state remembered
within the CAE and the authentication state within the WCS.

Synchronization is done by the com.coremedia.livecontext.services.Ses
sionSynchronizer, which is triggered by the com.coremedia.livecon
text.handler.SessionSynchronizationInterceptor, a Spring Handler
Interceptor that intercepts dynamic fragment requests. If the current user is
logged into the CAE but not into the WCS, the user will be logged out from the CAE.
And if the user is not logged into the CAE but into WCS, he will be logged into the
CAE.

Authentication Process

CoreMedia's solution for this is a UserService which is triggered by the authen-
tication forms. The interface UserService describes operations for authentication
and for changing the password. Part of the delivery is a concrete UserService
UserServiceImpl which tries the authentication operation against the third-
party commerce system. For IBM WebSphere the WcsUserServiceImpl is an
implementation of the interface CommerceUserService. An instance for this is
provided as a Spring bean with the id liveContextUserService.

200CoreMedia DXP 8

IBM WebSphere Commerce Integration | Status Synchronization in the Content-led Integration Scenario

The authentication is realized through a Spring security manager that is configured
in file livecontext-cae-spring-security.xml. The Spring security config-
uration of CoreMedia DXP 8 provides an AuthenticationProvider that is imple-
mented in the class LiveContextUserAuthenticationProvider. The provider
looks up the Elastic Social user for a given user name or email address. If the user
exists, the credentials are checked using login method of the CommerceUserSer-
vice.

Registration

When a user registers at the system, the UserServiceImpl.registerUser()
method is called. If the user data is valid, the user is registered in the CMS first.
The registration call against the IBM WebSphere Commerce system is executed
afterwards. If both calls are successful, the user is notified about a successful regis-
tration. If the IBM WebSphere Commerce registration fails, the user is deleted from
the CMS afterwards.

The registration call of the UserServiceImpl sets the system property elast-
ic.automatic.user.activation to "true". This ensures that the user is auto-
matically a registered user in the CMS and no separate registration confirmation
has to be executed. Also, for security reason the password of the user is only stored
in the IBM WebSphere Commerce server and reset to an empty string before it is
stored in the CMS. Since the authentication is executed against the IBM WebSphere
Commerce system, it is not used here.

The field mapping between the Elastic Social and commerce user models can
be customized in the class PersonMapper. The class implements the mandatory
mappings that are executed during the registration and the profile editing of
the user.

Edit User Details

Authenticated users can update their details and their passwords in the profile
settings. All data is stored in the commerce system. Only the user name and pass-
word (if editable) are synchronized between the IBM WebSphere system and the
CMS. To edit the user data the user detail model of Elastic Social is used by the
specialized class LiveContextUserDetails. Once the user submits the profile
form, the data of this model is applied to the Person model of the e-Commerce
API and stored in the commerce system.

Password Reset

If users have forgotten their password, an email or some other type of notification
is sent via the IBM WebSphere Commerce server. The message contains the newly
generated password. The user can login on the store again and update the password
in the profile settings.

201CoreMedia DXP 8

IBM WebSphere Commerce Integration | Status Synchronization in the Content-led Integration Scenario

The password reset is executed by a custom REST service handler PasswordRe-
setHandler that has to be installed for the Commerce system. The update pass-
word method of the handler will reset the password for unauthorized users and
update the password for authenticated users. Once the password is reset/updated,
an email will be sent by the Commerce system. Ensure that an SMTP server is
configured properly in the IBM WebSphere Administration Console for that. Also,
the Administration Console allows inspecting the mail queue of pending mails (if
the SMTP server has not been setup yet).

The default password reset behavior differs from the default one that has been
implemented for IBM's Aurora store. If unauthorized users reset their passwords,
they can not login until the generated password has been updated to a new one.
Every link in the store points to the update password form.

This behavior can not be disabled in the developer edition of the IBM WebSphere
Commerce server, but should be disabled for the production environment: The
default login flow that is configured in the XML file lc/lc-
cae/src/main/resources/com/coremedia/livecontext/ es/web-
flow/com.coremedia.blueprint.elastic.social.cae.flows.Lo-
gin.xmlwill try to log out users if they authenticate against the IBM WebSphere
Commerce system with an expired password. This log out call will fail since the
system assumes that the user has to be logged in until the password has been
updated. On the CAE site, this will result in an inconsistent cookie state.

Error Handling

Since all user data is stored in the IBM WebSphere Commerce server and the user
authenticates against the server too the catalog API provides error handling so
that errors thrown by the IBM WebSphere Commerce system can be handled by
the CAE. IBM WebSphere Commerce provides several error messages with error
codes that may occur during the registration, authentication or password reset/up-
date of the user. The error codes are automatically extracted by the exception
CommerceRemoteException. The Elastic Social web flow looks up commerce
errors using the resource key format commerce.error.<ERROR_CODE>. The
current error mapping can be configured in the sample content files in /test-
data/content/Settings/Options/Bundles/Livecontext*.

5.2.3 Configuring Protocol-less Links for WCS
In the content-led scenario, commerce must render protocol-less links (without
"http:" or "https:" prefix), so that during a protocol change links of included CAE
fragments will use the correct protocol automatically. The configuration for this
can be set in the wc-server.xml of the WCS:

202CoreMedia DXP 8

IBM WebSphere Commerce Integration | Configuring Protocol-less Links for WCS

<SEOConfiguration defaultUrl="" dynamicUrl="true" enable="true"
constructUrlWithoutHost="true"/>
<UrlTagConfiguration useRelativePath="true"/>

203CoreMedia DXP 8

IBM WebSphere Commerce Integration | Configuring Protocol-less Links for WCS

5.3 Communication
CoreMedia DXP 8 and IBM WebSphere communicate over REST interfaces. The
concrete communication differs slightly based on the selected deployment scenario
which are the content-led scenario and the commerce-led scenario. The following
picture shows the communication how fragments of a page are delivered from the
CAE and from the commerce system.

Figure 5.13. Content-
led/Commerce-led
scenario communica-
tion

In the content-led scenario common pages and detail pages are delivered by the
CAE, including fragments like the login information and the shopping cart. For
product teasers and the shopping cart, additional data is requested from the
commerce system to display the price and other details. The CAE can only render
products as teaser. The document type CMProductTeaser is used for this, because
it contains a reference to the concrete product variant inside the commerce system.
Therefore, also the teaser text, title and picture are read from the CMS and only
the pricing information is read (through the commerce API) from the product:

204CoreMedia DXP 8

IBM WebSphere Commerce Integration | Communication

Figure 5.14. Example
of a Commerce API Re-
quest

The image shows what happens when the CAE requests data from commerce. First
of all, the Store- and UserContextInterceptors are executed to determine
the store (and locale) and user the request is executed for. Depending on the
commerce request, an additional authentication is performed to authorize the user
to request the data. The response authentication token is used to retrieve the data
itself, for example, the details of a product or a shop category. The return format
is JSON which is wrapped into Java objects. These objects are used to render
commerce data like the name of a product inside a product teaser.

When the user clicks on a product teaser, the CAE redirects the user to the com-
merce system which renders the product detail page. Depending on the scenario
(Content-led/Commerce-led) the header and footer fragments are rendered by the
CAE or the commerce system. The commerce system requests the fragments using
the CoreMedia Fragment Connector.

205CoreMedia DXP 8

IBM WebSphere Commerce Integration | Communication

Figure 5.15. Example
of a Fragment Connect-
or Request

Fragment requests are executed through the lc:include tag. The tag is paramet-
erized with several attributes and additional HTTP headers that are set through
request context providers which are defined in the web.xml of the commerce
system. The fragment request contains all cookies of the commerce system too.
This is mandatory since the CAE needs to know if the user is already authenticated
against the system to deliver the corresponding fragments.

Each response of the CAE contains HTML with JSON placeholders (wrapped inside
an HTML comment). The link building is executed by the commerce system by
applying a template for every link, depending on the JSON data that was returned
for the link. The lookup folder for these templates are also defined in the web.xml
of the commerce system.

206CoreMedia DXP 8

IBM WebSphere Commerce Integration | Communication

5.4 Connecting with an IBM WCS Shop
To connect your Blueprint web applications with an IBM Commerce Store, you
configure a connection on the CMS side. The connection to the IBM WebSphere
Commerce system contains two parts:

➞ Spring configuration in the web application

➞ Settings configuration in Studio which refers to the Spring based configuration
with the possibility to overwrite individual properties)

Prerequisite

Before you can connect the CoreMedia system with the WCS you need to deploy
the CoreMedia extensions into your WCS system as described in Section 3.4,
“Customizing IBM WebSphere Commerce” [58].

Spring Configuration

The information on how to connect to the IBM WCS system is configured in the
filesystem of the web applications that use the e-Commerce API. These web applic-
ations are at least the Studio web application (workspace module studio-webapp)
and the CAE applications for delivery (workspace modules cae-preview-webapp
and cae-live-webapp).

The application.properties file below the WEB-INF directory of your web
application contains the IBM WCS related configuration properties. Example 5.4,
“IBM WCS configuration in application.properties” [207] shows the relevant parts
of the file. The meaning of the values will be explained in the table below.

Example 5.4. IBM WCS
configuration in applic-
ation.properties

###
CoreMedia LiveContext Configuration
###

livecontext.ibm.wcs.url= http://wcs-server.yourdomain.com
livecontext.ibm.wcs.secureUrl= https://wcs-server.yourdomain.com
livecontext.ibm.wcs.rest.url=
${livecontext.ibm.wcs.url}/wcs/resources/store
livecontext.ibm.wcs.rest.secureUrl=
${livecontext.ibm.wcs.secureUrl}/wcs/resources/store
livecontext.ibm.wcs.store.url=
${livecontext.ibm.wcs.url}/wcsstore/Aurora
livecontext.service.credentials.username= <wcs_username>
livecontext.service.credentials.password= <wcs_password>
livecontext.managementtool.web.url=
${livecontext.ibm.wcs.secureUrl}/lobtools/cmc/ManagementCenterMain

207CoreMedia DXP 8

IBM WebSphere Commerce Integration | Connecting with an IBM WCS Shop

Table 5.6. Properties
for WCS connection

livecontext.ibm.wcs.url

The general WCS URLDescription

http://wcs-server.yourdomain.comExample

livecontext.ibm.wcs.secureUrl

The secure WCS URLDescription

https://wcs-server.yourdomain.comExample

livecontext.ibm.wcs.rest.url

How to reach the WCS REST API via HTTPDescription

${livecontext.ibm.wcs.url}/wcs/resources/storeExample

livecontext.ibm.wcs.rest.secureUrl

How to reach the WCS REST API via HTTPSDescription

${livecontext.ibm.wcs.secureUrl}/wcs/resources/storeExample

livecontext.ibm.wcs.store.url

Another WCS URL to get shop resourcesDescription

${livecontext.ibm.wcs.url}/wcsstore/AuroraExample

livecontext.service.credentials.username

The service user used to login into WCSDescription

cmsadminExample

livecontext.service.credentials.password

Password of the service userDescription

changemeExample

livecontext.managementtool.web.url

The web URL of the commerce system's management toolDescription

${livecontext.ibm.wcs.secureUrl}/lobtools/cmc/ManagementCenterMainExample

The exact store configuration depends on your store configuration in your IBM
WCS environment. The store specific properties that logically define a shop instance
can also be part of the Spring configuration. The following listing gives an example.

<util:map id="myStoreConfig">
<entry key="store.id" value="${my.wcs.store.id}"/>
<entry key="store.name" value="${my.wcs.store.name}"/>
<entry key="catalog.id" value="${my.wcs.catalog.id}"/>
<entry key="currency" value="${my.wcs.store.currency}"/>
<entry key="dynamicPricing.enabled"

value="${my.wcs.store.dynamicPricing.enabled}"/>
</util:map>

208CoreMedia DXP 8

IBM WebSphere Commerce Integration | Connecting with an IBM WCS Shop

<customize:append id="ibmStoreConfigurationsCustomizer"
bean="ibmStoreConfigurations">
<map>
<entry key="myStore" value-ref="myStoreConfig"/>

</map>
</customize:append>

The example makes use of Spring placeholder tokens that are mapped in the
properties file mentioned above. It also shows how to add the custom store config-
uration to the existing ibmStoreConfigurations map. Later this store config-
uration (myStore) can be referenced from the site configuration settings within
the content. Individual values can be overwritten in the content again.

Alternatively to a catalog.id it is also possible to use the catalog name within
a catalog.name property instead. It will be mapped to the current catalog.id
at runtime. When the catalog id is not given in configuration the id from the default
catalog will be automatically used.

The same function is also available for the store ID. In case a store ID is not given
it can also be retrieved from the IBM WCS but a given config value for store.id
takes precedence.

Content Settings

Each site can have one single shop configuration (see the Blueprint site concept).
That means only shop items from exactly that shop instance (with a particular view
to the product catalog) can be interwoven to the content elements of that site.

At least the config.id must be configured for the site root page (see the Local
Settings tab) within a struct property named livecontext.store.config. This
config.id maps to a named store configuration mentioned above (configured
via Spring). The Spring configuration itself provides all other connection relevant
values.

Table 5.7. config.id
RequiredExampleDescriptionTypeName

truemyStoreThe configuration ID
defined in Spring configur-
ation

String Propertyconfig.id

All other store configuration settings, like the store.id will be taken from the
Spring configuration. But it is also supported to overwrite such settings within the
content settings.

209CoreMedia DXP 8

IBM WebSphere Commerce Integration | Connecting with an IBM WCS Shop

The concrete store related IDs (store.id and catalog.id) can also be dynam-
ically retrieved from the IBM WCS. As long as a store.name and catalog.name
value is available in the configuration (Spring or content settings) the corres-
ponding IDs will be retrieved dynamically.

Redefine the Currency

A popular example would be the usage of a base configuration in Spring referenced
by the config.id but with the variation of the locale and currency for each site
(default currency of myStore is USD).

Table 5.8. Currency
configurationRequiredExampleDescriptionTypeName

truemyStoreThe configuration ID
defined in Spring configur-
ation

String Propertyconfig.id

falseEURThe currency for all
product prices

String Propertycurrency

Be aware, that the locale is also part of each shop context. It is defined by the
locale of the site. That means all localized product texts and descriptions have
the same language as the site in which they are included and one specific cur-
rency.

Enabling Dynamic Pricing

Dynamic price rendering is disabled by default. If this feature is not used on IBM
WCS side then it is not necessary to turn it on on CMS side. It avoids an additional
call to IBM WCS that is not needed in such a scenario.

But if you use personalized price rules in IBM WCS then it is necessary to switch
this feature on. For price rules on contract bases (where the prices are the same
for all members of the group) you do not necessarily need to enable this feature.

Table 5.9. Currency
configurationRequiredExampleDescriptionTypeName

truemyStoreThe configura-
tion ID defined in

String Propertyconfig.id

Spring configura-
tion

210CoreMedia DXP 8

IBM WebSphere Commerce Integration | Connecting with an IBM WCS Shop

RequiredExampleDescriptionTypeName

falsetruePersonalized
product prices
enabled

Boolean PropertydynamicPricing.en-
abled

Please see Section 5.4, “Connecting with an IBM WCS Shop” [207] to get the inform-
ation how the dynamic prices can be switched on on IBM WCS side.

Tenant specific Configuration

Per default only one IBM WebSphere Commerce Server Management Center system
can be configured per Content Application Engine. If you want to connect to different
IBM WebSphere Commerce Server Management Center hosts per site for example (dev,
staging), you need to duplicate all URL configuration properties the hostname is
part of via Spring. Since this would multiply the amount of your configuration
properties, LiveContext 2 provides a mechanism to replace placeholder tokens
within your configured URLs etc. with values defined in the current StoreContext
at runtime.

For example within the component-lc-ecommerce-ibm.properties the fol-
lowing is defined:

livecontext.ibm.wcs.url=http://${livecontext.ibm.wcs.host}
livecontext.ibm.wcs.rest.path=/wcs/resources
livecontext.ibm.wcs.rest.url=${livecontext.ibm.wcs.url}${livecontext.ibm.wcs.rest.path}

Instead of the global host configuration you want to connect different IBM Web-
Sphere Commerce Server Management Center environments per site:

livecontext.ibm.wcs.url=http://{livecontext.ibm.wcs.host}
livecontext.ibm.wcs.rest.path=/wcs/resources
livecontext.ibm.wcs.rest.url=${livecontext.ibm.wcs.url}${livecontext.ibm.wcs.rest.path}

You need to add the following to your site specific store configuration:

<util:map id="auroraStoreConfigDev">
...
<entry key="livecontext.ibm.wcs.host" value="myhost"/>

</util:map>

After doing that the URL token will be replaced with the values of you current store
configuration at runtime: livecontext.ibm.wcs.rest.url >> http://my
host/wcs/resources

The configuration keys must exactly match with the token defined in your URL
configuration. If you add custom properties make sure to use the replacement
mechanism CommercePropertyHelper:

211CoreMedia DXP 8

IBM WebSphere Commerce Integration | Connecting with an IBM WCS Shop

public String getCustomWcsUrl() {
return CommercePropertyHelper.replaceTokens(customWcsUrl,

StoreContextHelper.getCurrentContext());
}

212CoreMedia DXP 8

IBM WebSphere Commerce Integration | Connecting with an IBM WCS Shop

5.5 Link Building for Fragments
OverviewIf you include CoreMedia fragments into WCS pages, these fragments might contain

links to WCS pages; a link to an Augmented Category, for example. Depending on
the scenario that you use, this link should led to a page rendered by the CAE
(content-led scenario) or to a page rendered by the WCS (commerce-led scenario).
The latter is named "deep link".

A use case for deep links might be the following: You have an existing commerce
solution with carefully styled category and product pages. While you want to switch
to CoreMedia DXP 8 in order to enhance your site with editorial content, there is
no need to port the commerce pages to CoreMedia DXP 8. Instead, you want to reuse
the existing pages (possibly enhanced with CoreMedia DXP 8 fragments).

Configuring deep links

Properties for deep link
activation

CoreMedia DXP 8 supports two settings to switch to deep links for categories and
products:

➞ livecontext.policy.commerce-product-links

➞ livecontext.policy.commerce-category-links

Default setting "true"The settings are at the root channel of each site. The default setting is true, which
means that the CAE creates deep links to the product or category pages of the IBM
WCS. However, for links to other content types, such as HTML, CSS or JavaScript,
links to the CAE will be generated. Also, URLs to dynamic resources (UriCon-
stants.Prefixes.PREFIX_DYNAMIC) won't be converted to JSON. See Section
5.6, “Enabling Preview of Commerce Category Pages in Studio” [215] to learn how
to enable the preview for WCS pages in Studio.

The settings are evaluated by the LiveContextPageHandlerBase and its sub-
classes.

Link building and re-
quest handling

If a setting is true, the corresponding @Link method creates links to IBM WCS, so
there is no need for a matching @RequestMapping method. If it is false, the
@Link method creates CAE links. So you must keep the according @RequestMap
ping method in sync with changes to the URL pattern and provide (or customize)
the ProductPageHandler or ExternalNavigationHandler classes. See also
the Section 4.3, “The CAE Web Application” in CoreMedia Content Application De-
veloper Manual for request handling and link building.

Format of Deep Links

How deep links are
build

Each lc:include requests an HTML fragment via HTTP from the CAE. Every link
of a fragment that is requested by the WCS from the CAE is processed by LiveCon-
textLinkTransformer classes. The transformer is only applied for fragment

213CoreMedia DXP 8

IBM WebSphere Commerce Integration | Link Building for Fragments

cae-developer-en.pdf#CAEWebApplication

requests. Depending on the document type the link should be generated for, an
absolute CAE URL is generated or a JSON string is returned. Each of these JSON
objects contains at least the values of the constants LiveContextLinkResolv-
er.OBJECTTYPE and LiveContextLinkResolver.RENDERTYPE and the ID of
the content.

For example, the HTML fragment contains a link to a CMArticle document. Instead
of rendering the regular link, for example

http://localhost/blueprint/servlet/page/perfectchef/magazine-spring/spring-salads-1888

the corresponding Link generated by the LiveContextLinkResolver would
look like:

a href="<!--CM {
"id":"cm-1696-1888",
"renderType":"url",
"externalSeoSegment":"spring-salads-1888",
"objectType":"content"}
CM-->" ...

The CoreMedia Fragment Connector will parse the JSON, identify the object
type and rendering type and apply a template to render a commerce link that points
to the parameterized Struts action CoreMediaContentURL. For the given example,
the template Content.url.jsp will be used, applied by the pattern "<OB-
JECT_TYPE>.<RENDER_TYPE>.jsp". The JSP file will render a commerce URL after-
wards:

http://localhost/webapp/wcs/stores/servlet/CoreMediaContentURL?
storeId=10202&externalSeoSegment=spring-salads-1888&
urlRequestType=Base&langId=-1&catalogId=10051

The SEO feature has not been configured for this example, otherwise the ex-
ternalSeoSegment value would be used to render a SEO friendly URL.

Other templates are located in the folder workspace\Stores\WebContent\Wid
gets-CoreMedia\com.coremedia.commerce.store.widgets.CoreMedi
aContentWidget\impl\templates by default. The path is configurable via
propertycom.coremedia.widget.templates incoremedia-connector.prop
erties. New templates can be added by extending the CMObjectLiveCon-
textLinkResolver in the Blueprint workspace. Custom object types can be added,
depending on the document type of the content or its property values. Also, addi-
tional rendering types can be defined for an object type. Using this templating
mechanism, it is possible to support different layouts for content depending on
its context.

214CoreMedia DXP 8

IBM WebSphere Commerce Integration | Link Building for Fragments

5.6 Enabling Preview of Commerce Category
Pages in Studio
When you have links in your content that point to an Augmented Category
content item, CoreMedia DXP 8 allows you to build links instead, that link to the
corresponding commerce category page. The feature depends on the configuration
flag livecontext.policy.commerce-category-links which is located in
the LiveContext settings document, that is linked to the root channel of a site.
If this Boolean property is set to true, the CAE will render links for augmented
categories that point to the corresponding category page of the commerce system
instead of rendering a regular CAE page link (see Section 5.5, “Link Building for
Fragments” [213]). In this case, the Studio user wants to see the commerce category
page in the preview too.

In order to enable the preview of Commerce category pages in Studio, proceed as
follows:

1. Open the CommonJSToInclude.jspf file and ensure that ${jsAssets
Dir}javascript/CoreMedia/coremedia-pbe.js is included if
_cm_page_pbe_pageData is not empty.

Configure in the
CoreMedia system

2. Open the application.properties file of the studio-webapp. The stu-
dio.previewUrlWhitelist property must contain the commerce URL (in-
cluding the port, for example *coremedia.com or http://local
host:40080). Be aware that this property overwrites the studio.previewUrl
Prefix property, so you have to add the default CAE preview URL to the stu
dio.previewUrlWhitelist property too.

If your IBM WCS shop storefront uses any clickjacking prevention features (for
example, X-Frame-Options (see http://www-01.ibm.com/support/knowledge-
center/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tseiframerestrictx-
frame.htm?lang=en for details), please make sure to allow the shop preview
(IBM WCS Staging-/Authoringserver) being embedded as an iframe within Core-
Media Studio.

215CoreMedia DXP 8

IBM WebSphere Commerce Integration | Enabling Preview of Commerce Category Pages in Studio

http://www-01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tseiframerestrictxframe.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tseiframerestrictxframe.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tseiframerestrictxframe.htm?lang=en

5.7 Enabling Contract Based Preview
In Studio you can preview the effect of different WCS contracts on your pages. To
enable the preview you have to do the setup in the WCS system and the CoreMedia
system.

Setup within the IBM WCS

The IBM WCS Feature Enhancement Pack 8 enables the management of B2B extended
sites, clients and organizations. In order to enable contract based preview in Core-
Media Digital Experience Platform 8 you need to create a dedicated commerce user
in your IBM WCS. The user credentials (username and password) will be used in a
public way and send as plaintext in an URL call. Furthermore, the user should be
authorised to use the contract you intend to preview within Studio.

For more information on how to configure commerce users and organizations
please refer to the IBM WCS documentation.

You have to enable the cookie leveler from within your WCDE-INSTALL/work
space/Preview/WebContent/WEB-INF/web.xml file of your preview web
application, which is described in Section 3.4.5, “Configuring the Cookie Do-
main” [65]

Setup within Blueprint

For contract based preview of shop pages in Studio, you can configure contracts
to the test personas of a B2B enabled site.

Figure 5.16. Edit Com-
merce Contracts in Test
Persona

If you edit an Augmented Page in Studio and select a test persona with a configured
contract, the preview will automatically login as a dedicated service user for contract
preview and redirects to the current shop page with the selected contract. The
following screenshots show the same Augmented Page with no test persona selec-
tion compared to contract based preview.

216CoreMedia DXP 8

IBM WebSphere Commerce Integration | Enabling Contract Based Preview

Figure 5.17. Preview
Augmented Page no
Test Persona

Figure 5.18. Preview
Augmented Page with
Contracts in Test per-
sona

217CoreMedia DXP 8

IBM WebSphere Commerce Integration | Enabling Contract Based Preview

These properties are important for B2B contract based personalization and can be

Table 5.10. Properties
for B2B contract based
personalization

configured in application.properties:

livecontext.ibm.contract.preview.credentials.username

The service user used for contract based shop preview in b2b scenariosDescription

previewExample

livecontext.ibm.contract.preview.credentials.password

Password of the contract preview userDescription

changemeExample

218CoreMedia DXP 8

IBM WebSphere Commerce Integration | Enabling Contract Based Preview

5.8 The e-Commerce API
The e-Commerce API is a Java API provided by CoreMedia DXP 8 that can be used to
build shop applications. Various services allow you to access the e-Commerce
system for different tasks:

➞ The CatalogService can be used to access the product catalog in many
ways: traverse the category tree, products by category, various product and
category searches.

➞ With the PriceService you can access prices: list prices and dynamic offer
prices.

➞ The AvailabilityService lets you access the inventory of the e-Com-
merce system to check the availability of Stock Keeping Units (SKUs).

➞ The MarketingSpotService gives you access to IBM WCS e-Marketing
Spots, a common method to use marketing content (product teasers, images,
texts) depending on the customer segments.

➞ The SegmentService lets you access customer segments, for example, the
customer segments the current user is a member of.

➞ Use the CartService to manage orders.

➞ The WorkspaceService lets you retrieve the list of existing workspaces.
A workspace is a concept to prepare changes in a separated branch/environ-
ment. A selected workspace is part of the current store context you work
with.

The e-Commerce API is used internally to render catalog-specific information into
standard templates. Furthermore, the Studio Library integration makes use of the
API to browse and work with catalog items. If you develop your own shop applica-
tion you will use the API in your templates and/or business logic (handlers and
beans).

The following key points will give you a short overview of the components that are
also involved. They build up an infrastructure to bootstrap a connection to a com-
merce system and/or perform other supportive tasks.

➞ The Commerce class is the essential part of the bootstrap mechanism to ac-
cess a commerce system. You can use it to create a connection to your
commerce system.

➞ The CommerceConnectionInitializer is used to initialize a request
specific commerce connection. The resolved connection is stored in a thread
local variable.

➞ The CommerceBeanFactory creates CommerceBeanswhose implementa-
tion is defined via Spring. It is also used by the services to respond service

219CoreMedia DXP 8

IBM WebSphere Commerce Integration | The e-Commerce API

calls, for example, instances of Product and/or Category beans. You can
integrate your own commerce bean implementations via Spring (inheriting
from the original bean implementation and place your own code would be
a typical pattern).

➞ The StoreContextProvider can retrieve an applicable StoreContext
(the shop configuration that comprises information like the shop name, the
shop id, the locale and the currency).

➞ The UserContextProvider is responsible to retrieve the current UserCon-
text. Some operations, like requesting dynamic price information, demand
a user login. These requests can be made on behalf of the requesting user.
User name and user id are then part of the user context.

➞ The CommerceIdProvider is able to format and parse references to com-
merce items. References to commerce items will be possibly stored in con-
tent, like a product teaser stores a link to the commerce product.

Commerce beans are cached on time basis. Cache time and capacity can be con-
figured via Spring.

Please refer to the Javadoc of the Commerce class as a good starting point on 'How
to use the e-Commerce API'.

220CoreMedia DXP 8

IBM WebSphere Commerce Integration | The e-Commerce API

5.9 Commerce Cache Configuration
The CoreMedia system uses caching to provide a faster access to various e-Com-
merce entities (that is, products, categories, etc.). These entities will automatically
be cached when used by the CoreMedia system. The unified API cache keys are
used for caching the commerce entities.

The e-Commerce API defines cache classes for each entity. These are used to define
default capacity and cache time. Each of the default values can be adapted to the
needs of your system environment by overwriting the corresponding properties.
The following overview lists all default values available for configuration. Each
value can be overwritten in the corresponding CoreMedia Blueprint applica
tion.properties file.

Please note that the CoreMedia system also performs an active event based cache
invalidation (see also Section 3.4.13, “Event-based Commerce Cache Invalida-
tion” [78]).

e-Commerce Cache parameter for each Commerce related CacheClass
cache time will be set in seconds, capacity in number of instances
#
Note, for each language and currency variant a separate cache
instance is used!

Product and SKU instances
livecontext.ecommerce.cache.product.time=3600
livecontext.ecommerce.cache.product.capacity=10000

Category instances
livecontext.ecommerce.cache.category.time=3600
livecontext.ecommerce.cache.category.capacity=10000

number of lists containing top categories
livecontext.ecommerce.cache.topCategoryLists.time=3600
livecontext.ecommerce.cache.topCategoryLists.capacity=100

number of lists containing sub categories
livecontext.ecommerce.cache.subCategoryLists.time=1800
livecontext.ecommerce.cache.subCategoryLists.capacity=1000

number of product lists for categories (products as direct
members of a category)
livecontext.ecommerce.cache.productListsByCategory.time=3600
livecontext.ecommerce.cache.productListsByCategory.capacity=500

Marketing Spot instances
livecontext.ecommerce.cache.marketingSpot.time=3600
livecontext.ecommerce.cache.marketingSpot.capacity=5000

number of lists containing all marketing spots
livecontext.ecommerce.cache.marketingSpotLists.time=3600
livecontext.ecommerce.cache.marketingSpotLists.capacity=100

dynamic/personalized price instances
livecontext.ecommerce.cache.dynamicPrice.time=300
livecontext.ecommerce.cache.dynamicPrice.capacity=10000

static/list price instances
livecontext.ecommerce.cache.staticPrice.time=300

221CoreMedia DXP 8

IBM WebSphere Commerce Integration | Commerce Cache Configuration

livecontext.ecommerce.cache.staticPrice.capacity=10000

availability infos for all products
livecontext.ecommerce.cache.availability.time=300
livecontext.ecommerce.cache.availability.capacity=10000

user segment instances
livecontext.ecommerce.cache.segment.time=3600
livecontext.ecommerce.cache.segment.capacity=5000

number of lists containing all user segments
livecontext.ecommerce.cache.segmentLists.time=3600
livecontext.ecommerce.cache.segmentLists.capacity=100

number of segment lists for all users
livecontext.ecommerce.cache.segmentsByUser.time=60
livecontext.ecommerce.cache.segmentsByUser.capacity=1000

contract instances
livecontext.ecommerce.cache.contract.time=3600
livecontext.ecommerce.cache.contract.capacity=500

number of contract lists for all users
livecontext.ecommerce.cache.contractsByUser.time=60
livecontext.ecommerce.cache.contractsByUser.capacity=200

number of lists containing all workspaces
livecontext.ecommerce.cache.workspaceLists.time=3600
livecontext.ecommerce.cache.workspaceLists.capacity=100

number of previewTokens used be all editors
rule of thumb for capacity: 5 x number of editors
livecontext.ecommerce.cache.previewToken.time=3600
livecontext.ecommerce.cache.previewToken.capacity=1000

user is logged in info that is used for request
rule of thumb for capacity: number of expected concurrent requests
livecontext.ecommerce.cache.userIsLoggedIn.time=10
livecontext.ecommerce.cache.userIsLoggedIn.capacity=500

commerce user instances (caching for request purpose only)
livecontext.ecommerce.cache.commerceUser.time=10
livecontext.ecommerce.cache.commerceUser.capacity=500

store info instances
livecontext.ecommerce.cache.storeInfo.time=3600
livecontext.ecommerce.cache.storeInfo.capacity=100

contract ids for all users
livecontext.ecommerce.cache.contractIdsByUser.time=3600
livecontext.ecommerce.cache.contractIdsByUser.capacity=1000

222CoreMedia DXP 8

IBM WebSphere Commerce Integration | Commerce Cache Configuration

5.10 Studio Integration of the IBM WebSphere
Commerce Content
CoreMedia Digital Experience Platform 8 offers an integration of IBM WebSphere
Commerce Server systems. Each content site can be configured with a specific shop
instance to deliver content pages mixed with e-Commerce catalog items. The term
"e-Commerce catalog items" means all items that live only in the e-Commerce
catalog. Nevertheless, these elements are to be interwoven with content on mixed
pages.

From classical shop pages, like a product catalog ordered by categories or product
detail pages up to landing pages or homepages, all grades of mixing content with
catalog items are conceivable. The approach followed in this chapter, assumes that
items from the catalog will be linked or embedded without having stored these
items in the CMS system. Catalog items will be linked typically and not imported
(importless integration).

➞ Section 5.10.1, “Catalog View in CoreMedia Studio Library” [223] gives a
short overview over the Catalog mode in the Studio Library.

➞ Section 5.10.2, “WCS Management Center Integration in CoreMedia Stu-
dio” [227] gives a short overview over the WCS Management Center integra-
tion in CoreMedia Studio.

➞ Section 5.10.3, “WCS Preview Support Features” [227] gives a short overview
over the IBM WCS preview functions that are supported in CoreMedia Studio.

➞ Section 5.10.4, “Working with WCS Workspaces” [230] shows how CoreMedia
Studio supports the IBM WCS Workspaces.

➞ Section 5.10.5, “Augmenting WCS Content” [231] describes how you augment
WCS content in the commerce-led scenario in CoreMedia Studio.

5.10.1 Catalog View in CoreMedia Studio Library
When the connection to the IBM WCS system and a concrete shop for a content
site are configured as described in Section 5.4, “Connecting with an IBM WCS
Shop” [207] the Studio Library shows the e-Commerce catalog to browse product
categories, products and marketing spots in the e-Commerce catalog and to search
for products, product variants and marketing spots. After the editor has selected
a preferred site with a valid store configuration the catalog view will be enabled
and the catalog will be shown in the Library:

223CoreMedia DXP 8

IBM WebSphere Commerce Integration | Studio Integration of the IBM WebSphere Commerce Content

Figure 5.19. Library
with catalog in the tree
view

These catalog items can be accessed and assigned to various places within your
content. For example, an e-Commerce Product Teaser document can link to a product
or product variant from the catalog. The product link field (in e-Commerce Product
Teaser documents) can be filled by drag and drop from the library in catalog mode.

Linking a content (like the e-Commerce Product Teaser) to a catalog item leads to a
link that is stored in the CMS document and references the external element. Apart
from the external reference (in the case of the IBM WCS it is typically a persistent
identifier like the part number for products) no further data will be imported (im-
portless integration).

While browsing through the catalog tree you can also open a preview of a category
or a product form the library. It can be achieved by a double-click on a product in
the product list or by activating the context menu on a product or a category (right
click on the desired item) and choosing the entry "Open in Tab" from the context
menu as shown in the pictures below.

224CoreMedia DXP 8

IBM WebSphere Commerce Integration | Catalog View in CoreMedia Studio Library

Figure 5.20. Open
Product in tab

Figure 5.21. Product in
tab preview

225CoreMedia DXP 8

IBM WebSphere Commerce Integration | Catalog View in CoreMedia Studio Library

Figure 5.22. Open Cat-
egory in tab

Figure 5.23. Category
in tab preview

In addition to the ability to browse through the e-Commerce catalog in an explorer-
like view it is also possible to search for products, variants and marketing spots
from catalog. As for the content search if you are in the catalog mode and you type
a search keyword into the search field and press Enter, the search in the e-Com-
merce system will be triggered and a search result displayed.

226CoreMedia DXP 8

IBM WebSphere Commerce Integration | Catalog View in CoreMedia Studio Library

5.10.2 WCS Management Center Integration in
CoreMedia Studio
In addition to the e-Commerce catalog library integration you can directly access
the IBM WebSphere Commerce Server Management Center from CoreMedia Studio. A
context menu action on a product, product variant, category or e-marketing spot
opens the item in a window within CoreMedia Studio where catalog item properties
can be edited directly. This applies to all components in CoreMedia Studio which
represent a product, product variant, category or e-marketing spot. Categories
in the library do not open in Management Center by double click as this is the de-
fault behavior for navigation in the library tree.

Figure 5.24. Manage-
ment Center in Studio

Known restriction:

➞ Up to FEP 7, the only supported web browsers are Internet Explorer and
Firefox as these are supported web browsers for IBM WebSphere Commerce
Server Tools. Since FEP 8 Chrome is also supported.

➞ Currently there is no Single Sign On implemented between CoreMedia
Studio and Management Center. You have to login to the Management
Center with your IBM WCS login credentials.

5.10.3 WCS Preview Support Features
CoreMedia Studio supports a variety of IBM WCS preview functions directly:

227CoreMedia DXP 8

IBM WebSphere Commerce Integration | WCS Management Center Integration in CoreMedia Studio

➞ Time based preview (time travel)

When a preview date is set in CoreMedia Studio, it sets the virtual render time
to a time in the future. If the currently previewed page contains content
from IBM WCS, it is desirable that also these content reflects the given preview
time. That could be a marketing spot containing activities with different
validity time ranges. A specific activity could be valid only after a certain
time or a marketing teaser that announces a happy hour could be another
example.

If such data is requested from IBM WCS within the context of a CoreMedia
page, the preview date is also sent to IBM WCS as a genuine IBM WCS preview
token. The IBM WCS recognizes the transmitted preview date and renders a
control on top of the page that lets you inspect the currently active settings.
Figure 5.25, “Time based preview affects also the IBM WCS preview” [228]
gives an example.

Figure 5.25. Time
based preview affects
also the IBM WCS pre-
view

➞ Customer segment based preview

The commerce segment personalization is not available in IBM WCS (FEP6).

Another case where editors need preview support is the creation of person-
alized content. That is, content is shown depending on the membership in
specific customer segments. In addition to the existing rules, you can define
rules that are based on the belonging to customer segments that are main-

228CoreMedia DXP 8

IBM WebSphere Commerce Integration | WCS Preview Support Features

tained by IBM WCS. These commerce segments will be automatically integ-
rated and appear in the chooser if you create a new rule in a personalized
content. For a preview, editors can use test personas which are associated
with specific customer segments.

Figure 5.26, “Test Persona with Commerce Customer Segments” [229] shows
an example where the test persona is female and has been already registered.

Figure 5.26. Test Per-
sona with Commerce
Customer Segments

Such preview settings apply as long as they are not reset by the editor.

The test persona document can be created and edited in CoreMedia Studio.
The customer segments available for selection will be automatically read
from the IBM WebSphere Commerce Server.

Figure 5.27. Edit Com-
merce Segments in Test
Persona

229CoreMedia DXP 8

IBM WebSphere Commerce Integration | WCS Preview Support Features

Personalized content based on commerce customer segmentation rules can
be used in both, the content-led scenario and the commerce-led scenario.
If the CoreMedia CAE is rendering IBM WCS content, like catalog items or
marketing spots, the given user ID is also sent to the IBM WCS. So all content
that is received from the IBM WCS is delivered within the context of the
current IBM WCS user.

The IBM WCS segments that the current user belongs to are available during
the rendering process within a CoreMedia CAE. Thus, content from the Core-
Media system can also be filtered based on the current IBM WCS segments.

In the other direction, if the personalized content is integrated within a
content fragment on a IBM WCS page, the current IBM WCS user is also
transmitted as a parameter. Thus, the CoreMedia system can retrieve the
connected customer segments from the IBM WCS in order to perform com-
merce segment personalization within the supplied content fragments.

➞ B2B Contract based preview

CoreMedia Adaptive Personalization has been extended to support a person-
alized site preview for B2B contracts from IBM WCS. A two-step configuration
needs to be applied in order to use the B2B contract based preview within
Studio. See Section 5.7, “Enabling Contract Based Preview” [216] to learn how
to enable contract based preview.

5.10.4 Working with WCS Workspaces
CoreMedia Studio supports working with IBM WCS Workspaces. If the Workspaces
feature is enabled in IBM WCS and if you work on a workspace to prepare changes
in a separated space (that are invisible to other users) the same workspace can be
chosen in CoreMedia Studio.

You can select the workspace in the User Preferences Dialog. The setting is available
only if Workspaces are enabled and at least one workspace exists in the IBM WCS
system.

230CoreMedia DXP 8

IBM WebSphere Commerce Integration | Working with WCS Workspaces

Figure 5.28. Work-
spaces selector in User
Preferences Dialog

The selection of an IBM WCS workspace in CoreMedia Studio lets you access shop
items that may only exist in a workspace. On the CMS side there is no mechanism
that separates the edited content elements accordingly. If you change the selec-
ted workspace in CoreMedia Studio or if you reset it by selecting No workspace
all editorial changes still remain. That means on CMS side only one global space
is used and no separated workspace specific Projects. That can lead to situations
where possibly not working references are left in CMS content (references to
catalog items that are not visible for other users). There is no common procedure
to deal with that. You should be aware of the issue and address it through organ-
izational precautions, like editing in separated content areas up to work with
separate content sites.

5.10.5 Augmenting WCS Content
In the commerce-led scenario you can augment pages from the WCS, such as PDPs
or categories, with content from the CMS system. The following sections describe
the steps required in Studio.

In general, extending a shop page with CMS content comprises the following steps,
which will be explained in the corresponding sections. It is supposed that the WCS
and CMS systems are connected as describe in Section 5.4, “Connecting with an
IBM WCS Shop” [207].

1. Augment the root channel of the WCS catalog as described in Section “Augment-
ing the Root Node” [232]

2. In the CMS create a document of type Augmented Category or Augmented
Page.

231CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

3. When you augment a category, the connection between the category and the
Augmented Category content is automatically created. For the Augmented
Page you have to create this connection manually via a property, which contains
a part of the URL to the page.

4. In the Augmented Category or Augmented Page choose a page layout that
corresponds to the shop page layout. It should contain all the placements for
which there are CoreMedia Content Widgets defined on the WCS side.

5. Drop the augmenting content into the right placements of the Augmented
Category or Augmented Page content item. That is, into a placement whose
name corresponds with the name defined in the CoreMedia Content Widget.

Augmenting the Root Node

Root channel of the
site

The root channel of your site is a content of type Augmented Page. This page will
hold all elements that are used to augment the home page of the WCS. The root
channel also serves as the fallback location for fragments for which no more spe-
cific pages are found. Therefore, most of the settings of a site are directly linked
to the root channel.

Catalog view in StudioIf the shop connection is properly configured, you will see an additional top level
entry in the Studio library that is named after your store (AuroraESite, for instance).
Below this node you can open the Product Catalog with categories and products.
The Product Catalog node also represents the root category of a catalog.

Augmented catalog
root

To have a common ancestor for all augmented catalog pages, the root node of the
WCS catalog must be augmented. You can augment the root category by clicking
Augment Category in the context menu of the root category. An augmented category
content opens up, where you can start to define the default elements of your
catalog pages, like the page layouts for the Category Overview Pages (COP) and
Product Detail Pages (PDP) and first content elements. All sub categories, augmen-
ted or not, will inherit these settings. See Section 6.2.3, “Adding CMS Content to
Your Shop Pages” in CoreMedia Studio User Manual for more information.

232CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

studio-user-en.pdf#commerceLedActivities
studio-user-en.pdf#commerceLedActivities

Figure 5.29. Catalog
structure in the catalog
root content item

Now, you can start augmenting sub categories or Product Detail Pages of the
catalog. All content and settings are inherited down in this hierarchy. However,
you cannot add non-augmented pages to the navigation and inheritance hierarchy.
This is different in the content-led scenario.

Selecting a Layout for an Augmented Page

CoreMedia Digital Experience Platform 8 comes with a predefined set of page layouts.
Typically, this selection will be adapted to your needs in a project. By selecting a
layout an editor specifies which placements the new page will have, which of them
can be edited and how the placements are arranged generally. It should correspond
to the actual shop page layout. All usable placements should be addressed. The

233CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

placement names must match the placement names used in the slot definition on
the shop side.

Figure 5.30. Choosing
a page layout for a
shop page

If you augment a category, the corresponding Augmented Category document
contains two page layouts: the one in the Content tab is applied to the Category
Overview Page and the other in the Product Content tab is used for all Product Detail
Pages. Both layouts are taken from the root category. The layouts that are set there
form the default layouts for a site. Hence, they should be the most commonly used
layouts. If you want something different, you can choose another layout from the
list.

Finding CMS Content for Category Overview Pages

Category overview
pages

A category overview page is a kind of landing page for a product category. If a user
clicks on a category without specifying a certain product, then a page will be
rendered that introduces a whole product category with its subcategories. Category
overview pages contain typically a mix of promotional content like product teasers,
marketing content (that can also be product teasers but of better quality) or other
editorial content. You can use the CoreMedia Content Widget in the commerce-led
scenario in order to add content from the CoreMedia CMS to the category overview
page.

234CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

Figure 5.31. Category
overview page with
CMS content

Information passed to
the CoreMedia system

When a category page contains the CoreMedia Content Widget, then, on request,
the current category ID and the name of the placement configured in the Content
Widget are passed to the CoreMedia system. The CoreMedia system uses this in-
formation to locate the content in the CoreMedia repository that should be shown
on the category overview page.

Locating the content in
the CoreMedia system

CoreMedia DXP 8 tries to find the required content with a hierarchical lookup using
the category ID and placement name information. The lookup involves the following
steps:

1. Select the Augmented Page that is connected with the IBM store (see Section
5.4, “Connecting with an IBM WCS Shop” [207] on how to connect an IBM shop
with CoreMedia DXP 8).

2. Search in the catalog hierarchy for an Augmented Category content item
that references the catalog category page that should be augmented and that
contains a placement with the name defined in the CoreMedia Content Widget.

a. If there is no Augmented Category for the category, search the category
hierarchy upwards until you find an Augmented Category that references one
of the parent categories.

b. If there is no Augmented Category at all, take the site root Augmented Page.

3. From the found Augmented Category or Augmented Page take the content
from the placement which matches the placement name defined in the Content
Widget.

235CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

Figure 5.32, “Decision diagram” [236] shows the complete decision tree for the
determination of the content for the category overview page or the product detail
page (see below for the product detail page).

Figure 5.32. Decision
diagram

Request with:
Category

Type
Placement, Product ID

Exists
Augmented Category
in Site for Category?

Exists Augmented Category
in Site for the parent

Category?

Is Category root
reached?

Has
page a placement for

given type in category grid
or in product grid

Take Category root
page

Augment Category or
PDP with content from
respective placement

Take site root page

Take Augmented
Category page

Has
page a placement for

given type in category grid
or in product grid

Has
page a placement for
given type in category

grid

No augmentation

Is type Product Detail
Page

No

No

No

Yes

Yes

Yes Yes

Yes

No

Yes No

No

No

Yes

Keep the following rules in mind when you define content for category overview
pages:

➞ You do not have to create an Augmented Category for each category. It's
enough to create such a page for a parent category. It is also quite common
to create pages only for the top level categories especially when all pages
have the same structure.

➞ You can even use the site root's Augmented Page to define a placement
that is inherited by all categories of the site.

➞ If you want to use a completely different layout on a distinct page (a landing
page's layout, for example, differs typically from other page's layouts), you
should use different placement names for the "Landing Page Layout", for
example with a landing-page prefix (as part of the technical identifier in
the struct of the layout document). This way, pages below the intermediate
landing page, which use the default layout again, can still inherit the elements
from pages above the intermediate page (from the root category, for in-
stance), because the elements are not concealed by the intermediate page.

236CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

Finding CMS Content for Product Detail Pages

Product detail pagesProduct detail pages give you detailed information concerning a specific product.
That includes price, technical details and many more. You can enhance these pages
with content from the CoreMedia system by adding the CoreMedia Content Widget
similar to the category overview page.

Figure 5.33. Product
detail page with CMS
content highlighted by
the red border

Information passed to
the CoreMedia system.

Similar to the category overview pages, the Category ID and placement name are
passed to CoreMedia DXP 8 in order to locate the content.

Locating the content in
the CoreMedia system

For product detail pages, CoreMedia DXP 8 uses the same lookup as described for
the category overview page. That is, an Augmented Category content item is
searched by category ID that matches the category of the product. There is only
one difference; the site root Augmented Page content item is not considered as
a default for the product detail page.

The content to augment is taken from a separate page grid of the Augmented
Category, called Product Content.

237CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

Figure 5.34. Page grid
for PDPs

Adding CMS Assets to Product Detail Pages

Product detail pagesYou can enhance product detail pages with assets from the CoreMedia system by
adding the CoreMedia Asset Widget.

238CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

Figure 5.35. Product
detail page with CMS
assets

Information passed to
the CoreMedia system.

The Product ID and orientation are passed to CoreMedia DXP 8 in order to locate
and layout the assets.

Locating the assets in
the CoreMedia system

To find assets for product detail pages, CoreMedia DXP 8 searches for the picture
content items which are assigned to the given product. These items are then sorted
in alphabetical order. See Section 8.7, “Advanced Asset Management” [443] for
details.

Adding CMS Content to non-catalog Pages (Other Pages)

Non Catalog Pages
(Other Pages)

Non-catalog pages (or "Other Pages") like "Contact Us", "Log On" or even the
homepage are shop pages, which can also be extended with CMS content. The
"homepage" case is quite obvious. The need to enrich the homepage with a custom
layout and a mix of promotional and editorial content is very clear. However, the
less prominent pages can also profit from extending with CMS content. For example,

239CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

context-sensitive hotline teasers, banners or personalized promotions could be
displayed on those pages.

You can augment a non-catalog page with Studio using the preview's context menu.
In the Studio preview, navigate to the non-catalog page that should be augmented
, right-click its page title and select Augment page from the context menu.

You can also perform the following steps using the common content creation dialog:

1. Make sure, that the layout of the page in the WCS contains the CoreMedia Content
Widget.

2. Create a document of type Augmented Page and add it to the Navigation Children
property of the site root content.

3. Enter the ID (from the URL) of the other page into the External Navigation field
of the Augmented Page.

4. Optional: Set the External URI Path if special URL building is needed.

In the following example a banner picture was added to an existing "Contact Us"
shop page. To do so, you have to create an Augmented Page, select an corresponding
page layout and put a picture to the Header placement.

Figure 5.36. Example:
Contact Us Pagegrid

Difference between the
augmentation of cata-
log and other pages

The case to augment a non-catalog page with CoreMedia Studio differs only slightly
from augmenting a catalog page. You use Augmented Page instead of Augmented
Category and instead of linking to a category content, you have to enter a page
ID in the External Navigation field. The page ID identifies the page unambiguously.
Typically it is the last part of the shop URL-path without any parameters.

https://<shop-host>/en/aurora/contact-us

240CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

The URL above would have the page id contact-us that will be inserted into the
External Navigation on the Navigation tab. In case of a standard "SEO" URL without
the need of any parameters the External URI Path field can be left empty.

Figure 5.37. Example:
Navigation Settings for
a simple SEO Page

URLs of non-SEO pagesWhen the URL to a WCS page is not a standard SEO URL but contains, for example,
additional parameters, you can add this additional information via the External URI
Path field (see Figure 5.38, “Example: Navigation Settings for a custom non SEO
Form” [242]). This is necessary in order to get the Studio preview for the augmented
page or for links rendered from the CMS. Therefore, if you have entered the correct
URL, you will see the page in the preview.

In the External URI Path field, you redefine the URL path starting from /en/au
rora/... and add required parameters. For example the advanced search page
does not use the standard SEO path and in turn it has additional parameters:

.../AdvancedSearchDisplay?catalogId=10152&langId=-1&storeId=10301

Some of the standard parameters are well known and can be replaced by tokens,
because they are very typical for all such URLs. In order to flexibly copy these URLs
to other sites with different shop configurations the following tokens can be used:

Table 5.11. config.id
DescriptionToken

The current store id.storeId

The current catalog id.catalogId

The current language id.langId

Tokens have to be enclosed with curly braces. In case of the Advanced Search Page
it would be possible to enter to following String into the External URI Path:

/AdvancedSearchDisplay?catalogId={catalogId}&langId={langId}&storeId={storeId}

241CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

Figure 5.38. Example:
Navigation Settings for
a custom non SEO
Form

Be aware that the property External Navigation must be unique within all other
"Other Pages" of that site. Otherwise the rendering logic is not able to resolve
the matching page correctly. A validator in CoreMedia Studio displays an error
message, if a collision of duplicate External Navigation values occurs. Your nav-
igation hierarchy can differ from the "real" shop hierarchy. There is also no need
to gather all pages below the root page. You can completely use your custom
hierarchy with additional pages in between, that are set Hidden in Navigation
but can be used to define default content for are group pages.

Special Case: Homepage

Special Case:
Homepage

The home page of the site is the main entry point, when you want to augment an
IBM WCS catalog. In the commerce-led scenario, it is a content item of type Aug-
mented Page. While in the content-led scenario it is a Page.

The External Navigation field can be left empty. The homepage is anyway the last
instance that will be choosen if no other page can be found to serve a fragment
request.

The External URI Path field is also likely to remain empty, unless the shop site is to
be accessible with an URL, which still has a path component (e.g. ../en/au
rora/home.html). But in most cases you wouldn't want that.

242CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

Figure 5.39. Special
Case: Navigation Set-
tings for the
Homepage

243CoreMedia DXP 8

IBM WebSphere Commerce Integration | Augmenting WCS Content

6. CoreMedia DXP 8 e-Commerce
Blueprint - Functionality for
Websites

This chapter describes the CoreMedia DXP 8 content type structure and the resulting
website structure.

➞ Section 6.2, “Basic Content Management” [248] describes aspects of the
content type model of CoreMedia Blueprint.

➞ Section 6.3, “Website Management” [264] describes all features relevant for
website management, such as layout, search and navigation.

➞ Section 6.4, “Website Development with Themes” [311] describes how you
will work with content when you develop your website.

➞ Section 6.5, “Localized Content Management” [332] describes all aspects of
multi-site management.

➞ Section 6.6, “Workflow Management” [356] describes all aspects of multi-site
management.

244CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites |

6.1 Overview of e-Commerce Blueprint
The e-Commerce Blueprint provides a modern, appealing, highly visual website
template that can be used to start a customization project. It demonstrates the
capability to build localizable, multi-national, experience-driven e-Commerce web
sites. Integration with IBM WebSphere Commerce ships out of the box. Other e-
Commerce systems can be integrated via the CoreMedia e-Commerce API as a
project solution.

Two integration patterns are available with the product:

➞ e-Commerce-led fragment-based approach shown in the Aurora B2C and
B2B store examples

➞ Experience-led hybrid blended approach shown in the Perfect Chef store
example

Based on a fully responsive, mobile-first design paradigm, the e-Commerce Blueprint
leverages the Masonry dynamic grid framework and the Freemarker templating
framework. It scales from mobile via tablet to desktop viewport sizes and uses the
CoreMedia Adaptive and Responsive Image Framework to dynamically deliver the
right image sizes in the right aspect ratios and crops for each viewport.

245CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Overview of e-Commerce Blueprint

Figure 6.1. Aurora
category page for differ-
ent devices: desktop,
tablet, mobile

The responsive navigation can blend e-Commerce as well as content categories
and content pages seamlessly and in any user-defined order that does not have to
follow the catalog structure. Navigation nodes with URLs to external sites can be
added in the content.

246CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Overview of e-Commerce Blueprint

Figure 6.2. Perfect
Chef homepage for dif-
ferent devices: desktop,
tablet, mobile

247CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Overview of e-Commerce Blueprint

6.2 Basic Content Management
The basis of the information structure of a CoreMedia system are content types.
Content types organize your content and form a hierarchy with inheritance. See
the [Content Server Manual], Developing a Content Type Model and Section 9.6,
“Content Type Model” [476] for more details.

CoreMedia Blueprint comes with a comprehensive content type model that covers
the following topics:

➞ Common content such as Articles or Pictures.

➞ Placeholder types that you can use to link to e-Commerce content

➞ Taxonomies are used to tag content.

6.2.1 Common Content Types

Requirements

An appealing website does not only contain text content but has also images,
videos, audio files or allows you to download other assets such as brochures or
software.

In addition, current websites aim to reuse content in different contexts. An article
about the Hamburg Cyclassics might appear in Sports, Hamburg and News section,
for example. An image of the St. Michaelis church (the "Hamburger Michel") on
the other hand might appear in Articles about sights in Hamburg or religion. Nev-
ertheless, it's not a good idea to copy the article to each section or the image to
each article because this is error prone, inefficient and wastes storage.

Therefore, content should be reusable across different contexts (different sites,
customer touchpoints for instance) by just applying the context specific layout and
without having to duplicate any content. This increases the productivity by reducing
redundancy and keeps management effort at a minimum.

Solution

CoreMedia Blueprint is shipped with content types that model common digital assets
such as articles, images, videos or downloads. All these types inherit from a common
parent type and can be used interchangeably. In addition, none of these types has
fixed information about its context so that it can be used repeatedly and everywhere
in your site. The context is first determined through the page which links to the
document or through the position in the folder hierarchy of the website (see Section
6.3.2, “Navigation and Contexts” [265] for more details).

248CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Basic Content Management

Common Content Types

CoreMedia Blueprint defines the following types for common content. Using Core-
Media's object oriented content model projects can define their own content types
or add to the existing ones.

Table 6.1. Overview of
Content Types for com-
mon content

CMArticle

ArticleUI-Name

Contains mostly the textual content of a website combined with images.Description

CMPicture

PictureUI-Name

Stores images of the website. The editor can define different crops of the
image which can be used in different locations of the website.

Description

CMVideo

VideoUI-Name

Stores videos which can be viewed on the website.Description

CMAudio

AudioUI-Name

Stores audio/podcast information which can be heard on the website.Description

CMDownload

DownloadUI-Name

Stores binary data for download. You can add a description, image and
the like.

Description

CMGallery

GalleryUI-Name

Aggregates images via a linklist. You can add a description, teaser text
and the like.

Description

e-Commerce Placeholder Types

Blueprint comes with some additional content types required to build representa-
tions of entities of an e-Commerce system.

Table 6.2. e-Commerce
Content TypesCMProductTeaser

Product TeaserUI-Name

249CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Common Content Types

A teaser for products of the e-Commerce system. It inherits from
CMTeasable

Description

CMMarketingSpot

e-Marketing SpotUI-Name

A placeholder for an e-Marketing spot. It inherits from CMTeasable.Description

CMExternalChannel

Category PlaceholderUI-Name

Documents of this type are used to build a CMS representation of com-
merce categories. It inherits from CMAbstractCategory which in
turn inherits from CMChannel.

Description

CMExternalPage

Placeholder for other WCS pages such as Help pages or the main page.UI-Name

Documents of this type are used to build a CMS representation of other
commerce pages. It inherits from CMChannel.

Description

e-Commerce Content Properties

A short description of the properties provided for e-Commerce scenarios is provided
below.

Table 6.3. Overview e-
Commerce Content
Properties

externalId

External IDUI-Name

The ID of the corresponding entity in the e-Commerce system. For a CM-
ProductTeaser this id is the technical id of the product in the catalog.

Description

localSettings.shopNow

'Shop Now' flagUI-Name

This Boolean flag is stored in the local settings of the document types
CMProductTeaser and CMExternalChannel and is used in the

Description

content-led scenario. If enabled the 'Shop Now' overlay is visible for
product teasers. This configuration is extendable viaCMExternalChan-
nels and may be overwritten for everyCMProductTeaser.

Common Content Properties

All common content types extend the abstract type CMTeasable to share common
properties and functionality. Teasable means that you can show for each content

250CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Common Content Types

that inherits from CMTeasable a short version that "teases" the reader to watch
the complete article, site or whatever else.

A short description of the core properties of content is provided below. Properties
specific for certain Blueprint features such as teaser management etc. are described
in their respective sections (follow the link in the Description column).

Table 6.4. Overview
Common Content
Properties

title

(Asset) TitleUI-Name

The name or headline of an asset, for example the name of a download
object or the headline of an article.

Description

detailText

Detail TextUI-Name

A detailed description, for example the article's text, a description for a
video or download.

Description

teaserTitle, teaserText

Teaser Title and TextUI-Name

The title and text used in the teaser view of an asset. See Section 6.3.9,
“Teaser Management” [286].

Description

pictures

PicturesUI-Name

A reference to CMPicture items that illustrate content. Examples in-
clude a photo belonging to the article, a set of images from a video etc.

Description

Usage of the pictures depends on the rendering. In Blueprint the pictures
are used for teasers and detail views of content.

related

Related ContentUI-Name

The related content list refers to all items that an editor deems related
to the content. For an article for a current event this list could include a

Description

video describing of the event, a download with event brochure, an au-
dio/podcast file with an interview with the organizers, an image gallery
with photos of the previous event and many more.

keywords

KeywordsUI-Name

Keywords for this content. CoreMedia Blueprint currently uses keywords
as meta information for the HTML <head>.

Description

subjectTaxonomy

locationTaxonomyUI-Name

251CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Common Content Types

Tags for this content. See Section 6.2.3, “Tagging and Taxonomies” [254]
for details.

Description

viewType

Layout VariantUI-Name

The layout variant influences the visual appearance of the content on the
site. It contains a symbolic reference to a view that should be used when

Description

the content is rendered. For more information see Section 6.3.7, “View
Types” [282]

segment

URL SegmentUI-Name

A descriptive segment of a URL for this content. Used for SEO on pages
displaying the content. See Section 6.3.15, “URLs” [300]

Description

locale, master, masterVersion

Locale, Master, Master VersionUI-Name

See Section 6.5, “Localized Content Management” [332] for details.
Properties for the Localization of this asset.

Description

validFrom, validTo

Valid From, Valid ToUI-Name

Meta information about the validity time range of this content. Content
which validity range is not between validFrom and validTo will not be

Description

displayed on the website. See Section 6.3.17, “Content Visibility” [301]
for details.

notSearchable

Not Searchable FlagUI-Name

Content with this flag will not be found in end user website search. See
Section 6.3.21, “Website Search” [308] for details.

Description

Media Content

The abstract content type CMMedia defines common properties for all media types.
Media types for content such as pictures (CMPicture), video (CMVideo), audio
(CMAudio), and HTML snippets (CMHTML) inherit from CMMedia.

Table 6.5. CMMedia
Propertiesdata

DataUI-Name

252CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Common Content Types

The core data of the content. Either a com.coremedia.cap.com
mon.Blob or in the case of CMHTML a com.core
media.xml.Markup.

Description

copyright

CopyrightUI-Name

Allows you to store arbitrary copyright information in a string property.Description

alt

Alternative RepresentationUI-Name

Allows managing alternative representations of an image, for example a
description of an image that can be used to enable a website accessible
for the visually impaired.

Description

caption

CaptionUI-Name

The caption of a content. Unused property in Blueprint.Description

A common feature of all CMMedia objects is the ability to generate and cache
transformed variants of the underlying object (see CMMedia#getTransformed
Data). This ability is extensively used for rendering images without the need to
store image variants and renditions as distinct blobs in the system.

6.2.2 Adaptive Personalization Content Types
Adaptive Personalization extends Blueprint with the following content types:

➞ Personalized Content (CMSelectionRules)

Personalized Content enables an editor to explicitly determine under which
conditions a certain Content is shown. Conditions can be combined with
AND and OR operators to create complex expressions. At runtime, theses
Conditions are evaluated against the provided contexts.

➞ Personalized Search (CMP13NSearch)

Personalized Search documents can be used to augment search engine
queries with context data. The result is a dynamic list of Content.

➞ User Segments (CMSegment)

User Segments let an editor predefine sets of conditions to be (re-)used in
Personalized Content, thereby grouping your website's visitors. For example
one can imagine a User Segment called "Teenage Early Birds". This could
then aggregate the conditions

253CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Adaptive Personalization Content
Types

➞ "(logged in) user is older than 14"

➞ "(logged in) user is younger than 20"

➞ "It is earlier than 10 am"

➞ Test User Profiles (CMUserProfile)

Test User Profiles are artificial contexts under the control of the editors. They
can be used to test the CAE's rendering when creating Personalized Content.
Typically, Test User Profiles are used to simulate certain website visitors
containing the corresponding context properties.

6.2.3 Tagging and Taxonomies

Requirements

Most websites define business rules that require content to be classified into certain
categories. Typical examples include use cases such as "Display the latest articles
that have been labeled as press releases" or "Promote content tagged with 'Travel'
and 'London' to visitors of pages tagged with 'Olympic Games 2012'" etc.

Keywords or tags are common means to categorize content. Employing a controlled
vocabulary of tags can be more efficient than allowing free-form keyword input
as it helps to prevent ambiguity when tagging content. Furthermore, a system that
supports the convenient management of tags in groups or hierarchies is required
for full editorial control of the tags used within a site.

254CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

Figure 6.3. Dynamic
list of articles tagged
with "Vegetables"

Solution

Blueprint currently uses tag information in various ways:

➞ It is possible to use the taxonomies of a content item as conditions for dy-
namic lists of content (such as "5 latest articles tagged with 'London').

➞ In CoreMedia Adaptive Personalization tags can be used to gather information
about the topics a site visitor is interested in (see TaxonomyInterceptor).

➞ In CoreMedia Adaptive Personalization tag information representing the
interests of visitors can be used to define user segments, conditions for
personalized selection rules and personalized searches.

➞ It is possible to display related content for a content item based on content
that shares a similar set of tags (see CMTeasableImpl#getRelatedBySim
ilarTaxonomies).

In CoreMedia Blueprint tags are represented as CMTaxonomy content items which
represent a controlled vocabulary that is organized in a tree structure. CoreMedia
Blueprint defines two controlled vocabularies: Subject and location taxonomies
that can be associated with all types inheriting CMLinkable.

255CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

Taxonomy Management

Subject taxonomies can be used to tag content with "flat" information about the
content's topic (such as Olympic Games 2012). They can also enrich assets with
hierarchical categorization for fine-grained drill down navigation (such as Hardware
/ Printers / Laser Printer). Subject Taxonomies are represented by the content type
CMTaxonomy which defines the following properties:

Table 6.6. CMTax-
onomy Propertiesvalue

StringType

Name of this taxonomy nodeDescription

children

Link listType

References to subnodes of this taxonomy nodeDescription

externalReference

StringType

Reference of an equivalent entity in an external system in the form of an
ID / URI etc.

Description

Location taxonomies allow content to be associated with one or more locations.
Location taxonomy hierarchies can be used to retrieve content for a larger area
even if it is only tagged with a specific element within this area ("All articles for
'USA'" would include articles that are tagged with the taxonomy node North
America / USA / Louisiana / New Orleans). Location taxonomies are represented
by the content type CMLocTaxonomy which inherits from CMTaxonomy and adds
geographic information for more convenient editing and visualization of a location.

Table 6.7. Additional
CMLocTaxonomy Prop-
erties

latitudeLongitude

StringType

Latitude and longitude of this location separated by commaDescription

postcode

StringType

The post code of this locationDescription

The taxonomy administration editor can be used to create a taxonomy and build
a tree of keywords.

256CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

Figure 6.4. Taxonomy
Administration Editor

The taxonomy administration editor displays taxonomy trees and provides drag
and drop support and the creation and deletion of keywords.

Taxonomy Assignment

To enable tagging of content two properties are available the CMLinkable content
type.

Table 6.8. CMLinkable
Properties for TaggingsubjectTaxonomy

Link listType

Subject(s) / topic(s) of that content itemDescription

locationTaxonomy

Link listType

Geographic location(s) of that content itemDescription

Table 6.9. CMLinkable
Properties for Tagging

PurposeTypeProperty

Subject(s) / topic(s) of that content itemLink listsubjectTax
onomy

Geographic location(s) of that content itemLink listlocationTax
onomy

Editors can assign taxonomies to content items using CoreMedia Studio and the
Blueprint taxonomy property editor. It allows for the following:

➞ adding/removing references to taxonomy

257CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

➞ autocompletion

➞ suggestions

Figure 6.5. Taxonomy
Property Editor

The user can add taxonomy keywords to the corresponding property link list using
the taxonomy property editor. The editor also provides suggestions that are provided
by the OpenCalais integration or a simple name matching algorithm. The strategy
type can be configured in the preferences dialog of CoreMedia Studio.

258CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

Figure 6.6. Taxonomy
Studio Settings

How taxonomies are loaded

A Blueprint taxonomy tree is built through content items located in a specific folder
of the content repository. As a default strategy for building a taxonomy tree, the
taxonomy REST service of the taxonomy Studio extension looks up specific folders.
Each document of the folder is analyzed for its position in the taxonomy tree. The
name of the folder in which the taxonomy tree is placed defines the name of the
taxonomy tree and is visible as a root node in the taxonomy administration UI.
First level taxonomies must be placed directly within the root folder. Taxonomies
of subsequent levels can also be placed in subfolders.

The lookup folders for taxonomies and the strategy used to build the tree are
configured in the Spring configuration file component-taxonomies.xml. The
bean property

<property name="taxonomyFolders"
value="/Settings/Taxonomies/,Options/Taxonomies/"/>

configures the folders that are used to find taxonomies. Relative paths will be
concatenated with the sites root folder. The taxonomyFolders property is part
of the CMTaxonomyResolver class which actually detects the trees and wraps
the access to them through implementations of the interface Taxonomy. CMTax-
onomyResolver implements the interface TaxonomyResolver so that it is pos-
sible to implement other taxonomy detection strategies.

How to implement a new taxonomy resolver strategy

The CMTaxonomyResolver implements the interface TaxonomyResolver and
is injected to the TaxonomyResource so that a request for a taxonomy is made
in CoreMedia Studio, the taxonomy resource instance looks up the corresponding

259CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

Taxonomy bean using the resolver instance. To change the resolver strategy, inject
another instance of TaxonomyResolver to the TaxonomyResource.

How to implement a new taxonomy

If only the taxonomy build strategy will be changed, it is sufficient to keep the ex-
isting CMTaxonomyStrategy. And only modify the instance creation of CMTax-
onomy and substitute it with an own implementation (for example a folder based
taxonomy strategy).

How to configure the document properties used for semantic strategies

The document properties that are used for a semantic evaluation are configured
in the file semantic-service.xml. The Spring configuration declares the abstract
class AbstractSemanticService that new semantic service can extend from.
The default properties used for a semantic suggestion search are:

➞ title

➞ teaserTitle

➞ detailText

➞ teaserText

How to implement a new suggestion/semantic strategy

To add a new semantic strategy to Studio, it is necessary to implement the corres-
ponding strategy for it and add it to CoreMedia Studio.

A new semantic strategy can easily be created by implementing the interface
SemanticStrategy. The result of a strategy is a Suggestions instance with
several Suggestion instances in it. Each Suggestion instance must have a cor-
responding content instance in the repository whose content type matches that
one used for the taxonomy. Blueprint uses CMTaxonomy documents for keywords
of a taxonomy, so suggestions must be fed with these documents. Additionally, a
float value weight can be set for each suggestion, describing how exactly the
keyword matches from 0 to 1. After implementing the semantic strategy, the im-
plementing class must be added to the Spring configuration, for example:

<customize:append id="semanticStrategyExamplesCustomizer"
bean="semanticServiceStrategies" order="1000">

<list>
<ref bean="myMatching"/>
</list>
</customize:append>

Next the new suggestion strategy has to be added to Studio, so that is selectable
in CoreMedia Studio. For that proceed as follows:

260CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

1. Open the ActionScript file TaxonomyPreferencesBase.as

2. Add a new key value for storing the strategy in the user preferences, for example

public static var TAXONOMY_MY_MATCHING_KEY:String = "myMatching";

Make sure that the constant value used here matched the Spring bean id of
your suggestion strategy.

3. Add a new value to the taxonomy combo box in the preference dialog by adding
the line

['Display name of My Suggestion Strategy',
TAXONOMY_MY_MATCHING_KEY],

to method getTaxonomyOptions(). This will add the display name with the
corresponding combo box item value to the taxonomy combo box.

4. Rebuild and restart Studio so that the changes take effect.

How to remove the OpenCalais suggestion strategy

If you want to disable the OpenCalais integration and remove the selection option
from Studio, proceed as follows:

1. Remove the entry <ref bean="semanticService"/> from taxonom
ies.xml.

2. Remove the following line from the method getTaxonomyOptions of the
TaxonomyPreferencesBase.as class:

[TaxonomyStudioPlugin_properties.INSTANCE.
TaxonomyPreferences_value_semantic_opencalais_text,
TAXONOMY_SEMANTIC_CALAIS_KEY]

3. In the same file as above, replace

DEFAULT_SUGGESTION_KEY:String = TAXONOMY_SEMANTIC_CALAIS_KEY;

with

DEFAULT_SUGGESTION_KEY = TAXONOMY_NAME_MATCHING_KEY;

How to add a site specific taxonomy

Adding a site specific taxonomy doesn't require any configuration effort. The logic
how a site depending taxonomy tree is looked up can be found in class CMTax-
onomyResolver.

To create a new site depending taxonomy proceed as follows:

261CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

1. Open Studio and select the folder Options/Taxonomies/ from the library.

2. Create a new sub folder with the name of the new taxonomy.

The location for the new taxonomy has been created now.

3. To identify the type of taxonomy (such as CMTaxonomy or CMLocTaxonomy)
you have to create at least one taxonomy document in the new folder.

Once the taxonomy has been set up, additional nodes can be created using the
taxonomy manager. If the new taxonomy does not appear as new element in the
column on the left, press the reload button. It ensures that the CMTaxonomyRe-
solver rebuilds the list of available taxonomy trees. The new taxonomy is shown
in the root column afterwards, include the site name it is created in.

Creating site specific taxonomies allows you to overwrite existing ones. For example
you create a new taxonomy tree called Subject for site X and open an article that
is located in a sub folder of site X, the regular Subject taxonomy property editor
on the Taxonomies tab in CoreMedia Studio will access the Subject taxonomy
of your new site, not the one that is located in the global Settings folders. The
suggestions and the chooser dialog will also work in the new taxonomy tree.

How to configure the taxonomy property editor for a taxonomy

CoreMedia Blueprint comes with two types of taxonomies: Subject and Location.
The name of the taxonomy matches the folder name they are located in, which is
/Settings/Taxonomies. When the taxonomy property editor for a Studio form
is configured, these IDs are passed to the property editor, for example

<taxonomy:taxonomyPropertyField propertyName="subjectTaxonomy"

taxonomyId="Subject"/>
<taxonomy:taxonomyPropertyField itemId="locTaxonomyItemId"

propertyName="locationTaxonomy"

taxonomyId="Location"/>

As mentioned in the previous section, it is possible to overwrite the existing location
or subject taxonomy with a site depending variant. In this case, it is not necessary
to change the configuration for the property field. The taxonomy property editor
will always try to identify the site depending taxonomy with the same name first.
If this one is not found, the global taxonomy with the given id will be looked up
and used instead.

How to configure access to the taxonomy administration

The taxonomy plugin uses the configurations-rest-extension module to
load configuration values from a Settings document. The configuration document
TaxonomySettings that contains the name of the user groups that are allowed
to administrate taxonomies is located in the folder /Settings/Options/Set
tings. Additional configuration files with the same name can be put in the folder

262CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

Options/Settings (Relative paths will be concatenated with the root folder of
the active site.). The entries of the files will be added to the existing configuration.
Below the default taxonomy settings are shown.

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">

<StringListProperty Name="administrationGroups">
<String>global-manager</String>
</StringListProperty>
</Struct>

263CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Tagging and Taxonomies

6.3 Website Management
Website management comprises different features. For example:

➞ Layout

➞ Navigation

➞ Search

6.3.1 Folder and User Rights Concept
It is good practice to organize the content of a content management system in a
way that separates different types of content in different locations and to have
user groups that attach role depending rights to these locations. This fits with
CoreMedia access rights, which are assigned to groups and grant rights to folders
and their content, including all sub folders, to all members of that group. See Section
3.16, “User Administration” in CoreMedia Content Server Manual for details about
the CoreMedia rights system.

CoreMedia Blueprint comes with demo sites that provide a proposal on how to
structure content in a folder hierarchy and how to organize user groups for different
roles. A more fine grained folder and group configuration can easily be built upon
this base. For details on site specific groups and roles have a look at Groups and
Rights Administration for Localized Content Management [338] and for a set of
predefined users for that groups and roles see Appendix - Predefined Users [484].

CoreMedia Blueprint distinguishes between the following types of content in the
repository:

Different content types
for different uses

➞ Content: These are the "real" editorial contents like Articles, Images, Videos,
and Products. They are created and edited by editorial users. In a multi-site
environment editors are usually working on one of the available sites and
they can only access that site's content.

➞ Navigation and page structure: These types represent the site's navigation
structure - both the main navigation as well as the on-page navigation ele-
ments like collections or teasers linking to other pages. They are readable
by every editorial user, but only the site manager group may maintain them.

➞ Technical content types like options, settings and configuration: These
types provide values for drop down boxes in the editorial interface, like view
types. They also bundle reusable sets of context settings, for example API
keys for external Services. These types are readable by every editorial user
but can only be created and edited by Administrators or other technical staff.

➞ Client code: Consists of Javascript and CSS and is maintained by technical
editors.

264CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Website Management

contentserver-en.pdf#UserAdministration
contentserver-en.pdf#UserAdministration

CoreMedia Blueprint comes with a folder structure that simplifies groups and rights
management in that way that users taking specific roles only get rights to those
contents they are required to view or change. Most notably you will find a /Sites
folder which contains several sites and several other folders which contain globally
used content like global or default settings. For details on the structure of the
/Sites folder have a look at Section “Sites Structure” [334].

Commonly used content is stored below dedicated folders directly at root level.
Web resources like CSS or JavaScript is stored under /Themes. Global settings,
options for editorial interfaces, and the like are stored under /Settings.

Site-Independent Groups

Along with the site specific groups which are described in Groups and Rights Ad-
ministration for Localized Content Management [338] there are also groups repres-
enting roles for global permissions required by some of the predefined workflows.
These workflows are especially dedicated to the publication process and are bound
to the following roles:

composer-role

This site-independent group allows members to participate in a workflow as a
composer, that is each member of this group may compose a change set for a
publication workflow.

approver-role

This site-independent group allows members to participate in a workflow as an
approver, that is each member of this group may perform approval operations
within a publication workflow.

publisher-role

This site-independent group allows members to participate in a workflow as a
publisher, that is each member of this group may publish the content items involved
in a workflow.

For details on these groups and how to connect them to a LDAP server have a look
at CoreMedia Workflow Manual.

6.3.2 Navigation and Contexts

Requirements

Websites are structured into different sections. These sections frequently form a
tree hierarchy. For example, a news site might have a Sports section with a Basket-
ball subsection. The website of a bank might have different sections for private

265CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Navigation and Contexts

workflow-developer-en.pdf#WorkflowDeveloperManual

and institutional investors with the latter having subsections for public and private
institutions.

Sections are also often called "navigation" or "context". Usually the sections of a
site are displayed as a navigable hierarchy (a "navigation" or "site map"). The current
location within the tree is often displayed as a "breadcrumb navigation".

Figure 6.7. Navigation
in the Perfect Chef Site

Figure 6.8. Bread-
crumb in the Corporate
Blueprint Site

Additionally, efficient content management requires reuse of content in different
contexts. For example, reusage of an article for a different section, a mobile site
or a micro site should not require inefficient and error-prone copying of that article.

Solution

A site section (or "navigation" or "context") is represented by a content item of
type CMChannel or CMExternalChannelwhich is a child of CMChannel. Sections
span a tree hierarchy through the child relationships of CMChannel#children.
If a CMChannel is referenced by a CMSite item it is considered a root channel,
that is an entry into a channel hierarchy representing a website. The CMChannel
content items fulfill the following purposes:

➞ Hierarchy: They form a hierarchy of site sections which can be displayed as
a navigation, sitemap, or bread crumb. Each site consists of exactly one
section tree.

➞ Context: They function as contexts for content. Content can be reused
within different contexts in different layouts and visual appearance. For ex-

266CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Navigation and Contexts

ample, an article's layout may differ in a company's blog section from its
layout in the knowledge base.

➞ Page: Each CMChannel can be rendered as an overview page of the section
it represents. Therefore, the CMChannel contains information about the
page structure (the "grid") for this overview page and the pages generated
when content items are displayed in the content of the CMChannel. For
more information on how web pages are assembled in Blueprint also refer
to the Section 6.3.4, “Page Assembly” [269] section.

➞ Configuration: CMChannel content items contain settings which configure
various aspects of the site section they represent. Each CMChannel can
override parent configuration by defining its own layout settings, content
visibility, and other context settings. If for example, the "News" section of a
site is configured for post-moderation of comments this configuration can
be overwritten to premoderation in the subsection "News/Politics". For more
information on settings see the section Section 6.3.3, “Settings” [268].

The context in which a content should be displayed is determined whenever a URL
to the content is created. In a simple website with no content reuse all contents
only have a single context and link building is very simple. For more complex
scenarios Blueprint includes a ContextStrategy for the following purposes:

➞ Generate a list of the available contexts for a content (the ContextFinder).

➞ Determine the most appropriate context for the specific link to be built (the
ContextSelector).

The DefaultContextStrategy in Blueprint uses a list of ContextFinders to
retrieve all possible contexts for a content item and a single ContextSelector
to determine the most appropriate one from the list.

The main ContextFinder in CoreMedia Blueprint is the FolderPropertiesE
valuatingContextFinder. Its logic to retrieve contexts is as follows:

1. Determine the folder of the content item.

2. Traverse the folder hierarchy starting from the folder in step 1 to the root folder
looking for a content item of type CMFolderProperties named _folder
Properties.

3. Return the contents of the linklist property contexts of the found CMFolder
Properties document.

The ContextSelector in CoreMedia Blueprint is the NearestContextSelector.
From the list of possible contexts for a content it selects the context closest to the
current context.

267CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Navigation and Contexts

6.3.3 Settings

Requirements

Editorial users must be able to adjust site behavior by editing content without the
need to change the code base and redeploy the application. For example:

➞ Enable/disable comments for a certain section or the whole site.

➞ Set the number of dynamically determined related content items that are
shown in an article detail view.

➞ Configure the refresh interval for content included from an external live
source.

Administrative users must be able to adjust more technical settings through content,
for example:

➞ Manage API keys for external services

➞ Image rendering settings

➞ Localization of message bundles

Solution

CoreMedia Blueprint uses Markup properties following the CoreMedia Struct XML
grammar to store settings. Struct XML offers flexible ways to conveniently store
typed key-value pairs where the keys are Strings and the values can be any of the
following: String, Integer, Boolean, Link, Struct (allows for nested sub Structs). For
more information on the Structs and CoreMedia Struct XML please see the chapter
Structs in the [CoreMedia Unified API Developer Manual]

Settings can be defined on all content types inheriting from CMLinkable.
Table 6.10. Properties
of CMLinkable for Set-
tings Management

localSettings

Local SettingsUI-Name

The settings defined specifically on this CMLinkable.Description

linkedSettings

Linked SettingsUI-Name

A list of reusable CMSettings documents that contain a bundle of
settings.

Description

268CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Settings

The local settings are easiest to edit. However, if you want to share common settings
across multiple contents, you should spend the few extra steps to put them into a
separate Settings document and add it to the linked settings in order to facilitate
maintenance and ensure consistency. Some projects make use of settings quite
extensively. Multiple Settings documents are a good instrument to structure
settings of different aspects. You can still override single settings in the local set-
tings, which have higher precedence.

The application also considers settings of the content's page context. If you declare
a setting in a page, it is effective for all contents rendered in the context of this
page. Settings are inherited down the page hierarchy, so especially settings of the
root page are effective for the whole site, unless they are overridden in a subpage
or a content.

For more detailed information and customization of the settings lookup strategy
see Section “The Settings Service” [142] and the SettingsService related API
documentation.

Settings as Java Resource Bundles

In a typical web application there is the need to separate text messages (such as
form errors or link texts) from the rendering templates as well as rendering them
according to a certain locale. The Spring framework provides a solution for these
needs by the concepts of org.springframework.context.MessageSource
for retrieving localized messages and by org.springframework.web.ser
vlet.LocaleResolver for retrieving the current locale. Certain JSP tags such
as <form:error%gt; or <spring:message> are built on top of these concepts.

In CoreMedia Blueprint, localized messages are stored as settings in Structs as de-
scribed above and can be accessed as java.util.ResourceBundle instances.

A handler interceptor (com.coremedia.blueprint.cae.web.i18n.Resource
BundleInterceptor) is used to make these content backed messages (as well
as the current locale) available to the rendering engine: They are extracted from
the content and passed to a special Spring MessageSource, the RequestMes
sageSource by storing it in the current request. As a consequence, using JSP tags
like <spring:message>, <form:error> or <fmt:message> will transparently
make use of these messages.

6.3.4 Page Assembly
RequirementsRequirements

For a good user experience a website should not layout each and every page in a
different fancy manner but limit itself to a few carefully designed styles. For ex-
ample, most pages consist of two columns of ratio 75/25, where the left column

269CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

shows the main content, and the right column provides some personalized recom-
mendations.

In the best case an editor needs to care only for the content of a page, while the
layout and collateral contents are added automatically, determined by the context
of the content. However, there will always be some special pages, so the editors
must be able to change the layout or the collateral contents. For example for a
campaign page which features a new product they may omit the recommendations
section and choose a simple one-column layout without any distracting features.
In order to preserve an overall design consistency of the site, editors are not sup-
posed to create completely new layouts. They can only choose from a predefined
set.

Solution

CoreMedia Blueprint addresses these requirements with the concept of a page grid
and placements.

The page grid does not handle overall common page features such as navigation
elements, headers, footers and the like. Those are implemented by Page templates
with special views. Neither does the page grid control the layout of collections on
overview pages. This is implemented by CMCollection templates with special
views and view types.

Page grid defines lay-
out of a page

You can think of a page grid as a table which defines the layout of a page with
different sections. Each section has a link to a symbol document which will later
be used to associate content with the section. Technically, the layout of a page is
defined in form of rows, columns and the ratio between them. A page grid contains
no content and can be reused by different pages. So you might define three global
page grids from which an editor can select one, for instance.

CMChannel contains
content for page

The content for the page grid on the other hand, is defined in a CMChannel docu-
ment in so called placements, realized as link lists in structs. Each placement is
associated with a specific position of the page grid through a link to a symbol
document. The editor can add content to the placement, collections for example,
which will be shown at the associated position of the page grid.

Inheriting placementsPlacements can also be shared between channels because a child inherits the
placements of its parent. A prerequisite for inheritance is that the page grids of
the parent and child page must have sections with the same name. For example,
the parent channel has a two-column layout with the sections "main" and "sidebar".
The child channel has a three-column layout with the sections "main", "sidebar"
and "leftcolumn". For the placements this means:

➞ The child must fill a placement with content for the "leftcolumn" section,
because the parent has no such section.

270CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

➞ The child will override the placement for the "main" section with its content.
Inheritance makes no sense for the "main" section.

➞ The child does not need to declare a "sidebar" placement but can inherit the
"sidebar" placement of the parent, even though it uses a different layout.

Before going into the implementation details of the page grid, you will see how to
work with page grids in CoreMedia Studio.

Page grids in CoreMedia Studio

Inheriting placements
and locking

Editors can manage pages directly by editing the "placements" in the page grid in
CMChannel documents (localized as Page in CoreMedia Studio). A placement is a
specific area on a page such as the navigation bar, the main column or the right
column. A CMChannel can inherit page grid placements of its parent channel. For
example, the Sports/Football section of a site can inherit the right column from
the Sports section. Editors can also choose to "lock" certain placements and thus
prevent subchannels from overwriting them. Each page grid editor provides a
combo box to choose between different layouts for a page. Depending on the se-
lected layout, placement may inherit their content if the same placement is defined
in the layout of the parent page.

Layout of placement
via view type

Each placement link list can configure a view type. The view type determines how
the placement is rendered.

To define which placement view types are available for a page in some site, view
type (CMViewtype) documents are placed in view type folders under a site-relative
path or at global locations. The default paths are the site-relative path Op
tions/Viewtypes/ and the absolute path /Settings/Options/Viewtypes/.
This can be configured via the application property pagegrid.viewtype.paths,
which contains a comma-separated list of repository paths. Each path may start
with a slash ('/') to denote an absolute path or with a folder name to denote a path
relative to a site root folder. When changing these values, please make sure that
the existing view type documents are moved or copied to the new target location.

Web pages are represented in the CAE using thecom.coremedia.blueprint.com-
mon.contentbeans.Page object which consists of two elements: the content to
be rendered and the context in which to render the content.

Pages where the content to be rendered is the same as the context (for example,
section overview) display the page grid of the context. Pages where content items
(such as Articles) are displayed within a context use display the context's page grid
but replace the "main" placement with the content item.

271CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

Figure 6.9. The page
grid editor

Icon to show location
on page

Each placement has an icon symbolizing where it is located on the page. It contains
a link list and several additional buttons on top of it. The order of the linked ele-
ments can be modified using drag and drop.

Figure 6.10. The main
placement of a page

Inheriting content from
parent page

Instead of adding own content, a placement can inherit the linked content from a
parent's page placement. If you inherit the content, you cannot edit the placement

272CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

in the child page. You have to deactivate the "override" button to change the content
of the placement.

Figure 6.11. An inherit-
ing placement

Locking placementA placement can be locked using the "lock" button. In this case all child placements
are not able to overwrite this placement with own content.

Figure 6.12. A locked
placement

The page grid editor provides a combo box with predefined layouts to apply to the
current page. After changing the layout, the Studio preview will immediately reflect
the new page layout.

273CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

Figure 6.13. The layout
chooser combo box

Inconsistency between
parent and child page
grid

The layout of a parent page grid may be changed so that it does not fit anymore
with the layout of a child page which inherits some settings. A child may use a
three-column layout and inherit most of its content from its parent page that also
uses a three-column layout. Then, the layout of the parent may be changed to an-
other layout with a single column that doesn't contain any of the needed layout
sections. The child configuration is invalid in this case and the user has to reconfig-
ure all child pages.

No check for inconsist-
ency

Currently there is no kind of detection for these cases in Studio, so the user has to
check manually if the child configurations are still valid.

How to configure a page grid editor

The Blueprint base module bpbase-pagegrid-studio-plugin provides an
implementation of the page grid editor shown above through the config class
pageGridPropertyField in the package com.coremedia.blue
print.base.pagegrid.config. In many cases, you can simply use this com-
ponent in a document form by setting only the standard configuration attributes
bindTo, forceReadOnlyValueExpression, and propertyName

If you want to adapt the columns shown in the link list editors for the individual
section, you can also provide fields and columns using the attributes fields and
columns, respectively. The semantics of these attributes match those of the
linkListPropertyField component.

How to configure the layout location

Pages look up layouts from global and site specific folders. By default, the site
specific page grid layout path will point to Options/Settings/Pagegrid/Lay
outs and the global one to /Settings/Options/Settings/Pagegrid/Lay
outs. This can be changed via the application property pagegrid.layout.paths,
which contains a comma-separated list of repository paths. Each path may start

274CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

with a slash ('/') to denote an absolute path or with a folder name to denote a path
relative to a site root folder. When changing these values, please make sure that
the existing page layout documents are moved or copied to the new target location.
Also, mind that when looking for the default page layout (see below), paths men-
tioned first take precedence, so it usually makes sense to start with site-relative
paths and continue with absolute paths.

The default layout settings document PagegridNavigation must be present
in at least one of the available layout folders. The page grid editor will show an
error message if the document is not found.

If several layout folders are used, make sure that the layout settings documents
have unique names.

How to configure a new layout

Every CMSettings document in a layout folder is recognized as a layout definition.
The settings struct property defines a table layout with different sections. The
struct defines two integer properties with the overall row and column count. The
struct data may also contain two string properties name and description, which
are used for the localization of page grid layout documents (see section “How to
localize page grid objects” [279]).

The items property contains a list of substructs, each defining a section of the
page grid. The order in which the sections appear in the struct list matches the
order in which the link lists of the individual sections are shown by the page grid
editor.

The sections are represented by CMSymbol documents. The layout definition is
inspired by the HTML table model, even though CoreMedia Blueprint's default
templates do not render page grids as HTML tables but with CSS means. The sections
support the following attributes:

➞ col: The column number where the section is placed or, if the colspan at-
tribute is set, the column number of the leftmost part of the section.

➞ row: The row number where the section is placed or, if the rowspan attribute
is set, the row number of the topmost part of the section.

➞ colspan: The number of columns spanned by the section.

➞ rowspan: The number of rows spanned by the section.

➞ width: The width of this section in percent of the total width.

➞ height: The height of this section in percent of the total height.

275CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

The col, row and rowspan attributes of the section must match the grid layout
defined by the colCount and colRow attributes (see Example 6.1, “Pagegrid ex-
ample definition” [276]). That is, when colCount and colRow are "3" and "4", for
example, then you have 12 cells in the page grid table layout which must all be
filled by the sections. No cell can be left empty, and no section can overlap with
other sections.

The height attribute is only used for the preview of the layout in the page form. It
has no impact on the delivered website.

The default PagegridNavigation layout settings document with a 75%/25% two
column layout looks as follows:

Example 6.1. Pagegrid
example definition<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.org/1999/xlink">
<IntProperty Name="colCount">2</IntProperty>
<IntProperty Name="rowCount">1</IntProperty>
<StructListProperty Name="items">
<Struct>
<LinkProperty Name="section"

xlink:href="coremedia:///cap/content/550"
LinkType="coremedia:///cap/contenttype/CMSymbol"/>

<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">1</IntProperty>
<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">75</IntProperty>
<IntProperty Name="colspan">1</IntProperty>

</Struct>
<Struct>
<LinkProperty Name="section"

xlink:href="coremedia:///cap/content/544"
LinkType="coremedia:///cap/contenttype/CMSymbol"/>

<IntProperty Name="row">1</IntProperty>
<IntProperty Name="col">2</IntProperty>
<IntProperty Name="height">100</IntProperty>
<IntProperty Name="width">25</IntProperty>
<IntProperty Name="colspan">1</IntProperty>

</Struct>
</StructListProperty>
<StringProperty Name="name">2-Column Layout (75%,

25%)</StringProperty>
<StringProperty Name="description">Two column layout with main

and sidebar sections</StringProperty>
</Struct>

The main content of a document will always be rendered into the main section
of a layout. Therefore, every layout must define a main section.

How to configure a read-only placement

The page grid layout definition provides the possibility to declare a read-only sec-
tion. The Boolean property "editable" has to be declared for the struct element
of the corresponding section, for example:

276CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

<Struct>
<LinkProperty Name="section"

xlink:href="coremedia:///cap/content/120"
LinkType="coremedia:///cap/contenttype/CMSymbol"/>
<IntProperty Name="row">2</IntProperty>
<IntProperty Name="col">1</IntProperty>
<IntProperty Name="colspan">1</IntProperty>
<IntProperty Name="height">75</IntProperty>
<IntProperty Name="width">25</IntProperty>
<BooleanProperty Name="editable">false</BooleanProperty>

</Struct>

The section that matches the given symbol will be shown as disabled in Studio. The
matching placements will not appear in the editor.

How to populate a page grid with content

Page grids are defined in the struct property CMNavigation.placement of a
channel. Such structs are typically created using the page grid editor shown above.
Example:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">
<StructListProperty Name="placements">
<Struct>
<LinkProperty Name="section"

LinkType="coremedia:///cap/contenttype/CMSymbol"
xlink:href="coremedia:///cap/content/550"/>

<LinkProperty Name="viewtype"
LinkType="coremedia:///cap/contenttype/CMViewtype"
xlink:href="coremedia:///cap/content/1784"/>

<LinkListProperty Name="items"
LinkType="coremedia:///cap/contenttype/CMArticle">

<Link xlink:href="coremedia:///cap/content/134"/>
<Link xlink:href="coremedia:///cap/content/498"/>

</LinkListProperty>
</Struct>
<Struct>
<LinkProperty Name="section"

LinkType="coremedia:///cap/contenttype/CMSymbol"
xlink:href="coremedia:///cap/content/544"/>

<LinkListProperty Name="items"
LinkType="coremedia:///cap/contenttype/CMArticle">

<Link xlink:href="coremedia:///cap/content/776"/>
</LinkListProperty>

</Struct>
</StructListProperty>
<StructProperty Name="placements_2">
<Struct>
<LinkProperty Name="layout"

LinkType="coremedia:///cap/contenttype/CMLayout"
xlink:href="coremedia:///cap/content/3488"/>

</Struct>
</StructProperty>

</Struct>

A placement struct contains a list of section structs placements. The place-
ments_2 struct contains another struct, placements and a link property layout,
which determines the layout for this channel.

277CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

The placements struct property consists of substructs for the single placements,
each of which refers to a section and lists its contents in the items property. Addi-
tionally, each placement can declare a view type.

Layouts and placements are connected by the section documents. Let's assume
you have two sections, "main" and "sidebar". Your channel declares some latest
news for the main section and some personalized recommendations for the sidebar.
The layout definition consists of one row with two columns, the left column refers
to the "main" section, the right column refers to the "sidebar". This will make your
channel be rendered with the main content left and the recommendations on the
right. If you don't like it, you can simply choose another layout, for example with
a different width ratio of the columns or with the sidebar left to the main section.

The rendering of a page grid is layout-driven, because the sections of the table-
like layout model must be passed to the template in an order which is suitable for
the output format (usually HTML). CoreMedia Blueprint's web application processes
a page grid as follows:

1. The PageGridServiceImpl determines the layout document of the channel.
If there is no layout link in the placements_2 struct, a fallback document
PagegridNavigation is used. This name can be configured by setting the
application property pagegrid.layout.defaultName. The fallback layout
document can be located in any of the configured layout folders (see "layout
locations"), usually it will be located under the site relative path Options/Set
tings/Pagegrid/Layouts. The layout definition is evaluated and modeled
by a ContentBackedStyleGrid.

2. The PageGridServiceImpl collects the placements of the channel itself and
the parent channel hierarchy. The precedence is obvious, for example a channel's
own placement for a section ("sidebar" for instance) overrides an ancestor's
placement for that section.

3. Both layout and placements are composed in a ContentBackedPageGrid
which is the backing data for a PageGridImpl. PageGridImpl implements
the PageGrid interface and prepares the data of the ContentBackedPageGrid
for access by the templates. Basically

➞ it wraps the content of the placements into content beans,

➞ it arranges the placements in rows and columns, according to the layout

➞ it replaces the channel's main placement with the requested content.

Blueprint's default templates (namely PageGrid.jsp) do not render page grids
as HTML tables but as nested <div> elements and suitable CSS styles. The beginning
of a rendered page grid looks like this:

278CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

<div id="row1" class="row">
<div id="main" class="col1 column col1of2 width67">

The outer <div> elements represent the rows of the page grid, the inner <div>
elements represent the columns. The ids of the rows are generated by the template
as an enumeration. The ids of the columns are the section names of the placements.
The column <div> elements are rendered with several class attributes:

➞ column: A general attribute for column <div> elements

➞ col1: The absolute index of the column in its row

➞ col1of2: The colspan of this column (1) and the absolute number of
columns of the page grid (2)

➞ width67: The relative width of this column

You can use these attributes to define appropriate styles for the columns. CoreMedia
Blueprint's default CSS provides styles which reflect the width ratios of some typical
multi-column layouts. You find them in the document /Themes/basic/css/ba
sic.css in the content repository where you can enhance or adapt them to your
needs.

In the inner <div> elements the placements are included, and their section names
determine the views. For example a "sidebar" placement is included by the
PageGridPlacement.sidebar.jsp template.

How to localize page grid objects

To localize a layout name, create a resource bundle entry with the key <layout
name>_text in the resource bundle PageGridLayouts_properties, where
<layoutname> is the name of the layout document or, preferably, the name
property of the settings struct of the layout. Similarly, a layout description can be
localized with entries of the form <layoutname>_description. If no correspond-
ing resource bundle entries are found, the description property of the settings
struct of the layout is used. If that property is empty, too, the name is used as the
description. The resource bundle is available in the package com.coremedia.blue
print.base.pagegrid of module bpbase-pagegrid-studio-plugin.

For the purposes of localization, placements are treated as pseudo-properties and
localized according to the standard rules for content properties as described in the
[Studio Developer Manual]. The name of the pseudo-property is <structname>-
<placementname>, where <structname> is the name of the struct property
storing the page grid and <placementname> is the name of the section document.
For example, a placement with the name main that is referred from the standard
page grid struct placement of a CMChannel document would obtain its localization
using the key CMChannel_placement-main_text. You can add localization

279CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Page Assembly

entries to the resource bundle BlueprintDocumentTypes_properties of
module blueprint-forms, which is applied to the built-in resource bundle
ContentTypes_properties at runtime.

To localize a view type name or a view description, you can add a property
<viewtypename>_text or <viewtypename>_description to the bundle
Viewtypes_properties. Here <viewtypename> is the name of the view type
document or, preferably, the string stored in its layout property. Because view
types are also used in other contexts, this bundle has been placed in the package
com.coremedia.blueprint.base.components.viewtypes of module bp
base-studio-components.

CoreMedia Blueprint defines three resource bundles BlueprintPageGridLay
outs_properties,BlueprintPlacements_properties, andBlueprintView
types_properties. Entries of these bundles are copied to the bundles described
above, providing a convenient way to add custom entries.

6.3.5 Overwriting Product Teaser Images

Requirements

You have put a product teaser on your home page, which is displayed with the
default product image coming from the commerce system but you want to highlight
that teaser by changing its default image to a more engaging one.

Solution

CoreMedia Digital Experience Platform 8 allows you to either use the content from
the e-Commerce database or overwrite this image with your own image in the
Teaser content type.

6.3.6 Content Lists

Requirements

Websites frequently display content items that share certain characteristics as lists,
for example, the top stories of the day, the latest press releases, the best rated
articles or the recommended products. Some of these lists are managed editorially
while others should be compiled dynamically by business rules defined by editors.
It is a common requirement to reuse these content lists across different web pages
and use common functionality to place lists on pages and assign different layouts
to lists.

280CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Overwriting Product Teaser Images

Figure 6.14. Teaser
collection with prices

Solution

CoreMedia Blueprint defines different content types for lists of content which differ
in how they determine the content items. Leveraging CoreMedia's object oriented
content modeling these lists can reuse view templates and can be placed inter-
changeably on web pages.

Table 6.11. Collection
Types in CoreMedia
Blueprint

PurposeType

A common base type for lists, which all other list types extend.
It provides functionality for editorially managed lists.

CMCollection

A distinct content type for lists of CMMedia content items
which should be displayed as a gallery.

CMGallery

Dynamic lists that are based on content metadata, such as
"latest 5 articles in sport".

CMQueryList

Dynamic lists that are based on context information with
rules defined by editorial users, such as "if a visitor is inter-

CMSelectionRules
(part of Adaptive
Personalization) ested in notebooks, display this product, otherwise display

something else."

Dynamic lists based on content metadata and context inform-
ation, such as "display list of articles matching the current
visitor's bookmarked taxonomies."

CMP13NSearch (part
of Adaptive Person
alization)

Dynamic lists that are based on Elastic Social metadata, such
as "5 best rated articles in news."

ESDynamicList (part
of Elastic Social)

Dynamic lists that are bases on analytics data, such as "10
most viewed articles in business."

CMALXPageList (part
of Analytics)

281CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Content Lists

6.3.7 View Types

Requirements

A common pattern for CoreMedia projects is to reuse content and display the same
content item on various pages in different layouts and view variants. A content
list, for example, could be rendered as simple bulletin list or as a list of teasers
with thumbnails. Similarly, an article can be displayed in a default ("full") view or
as a teaser.

Usually the rendering layer decides what view should be applied to a content item
in different use cases. For example, the view rendering results of a search on the
website could use the asListItem view to render the found items.

Editors still need a varying degree of control to influence the visual appearance of
content in specific cases. They might want to decide whether a list of content items
should be displayed as a teaser list or a collapsible accordion on a page, for example.

Solution

A dedicated content type called CMViewtype is available that can be associated
with all CMLinkable content types. During view lookup a special com.core
media.objectserver.view.RenderNodeDecorator, the ViewTypeR
enderNodeDecorator, augments the view name by the layout property of the
view type referenced by the content item.

The BlueprintViewLookupTraversal then evaluates this special view name
and falls back to the default view name without the view type if the view could
not be resolved.

In the example above the template responsible for rendering search results would
include all found content with the asListItem view. If the content is of type
CMArticle there would be a lookup for a CMArticle.asListItem.jsp (among
others in the content object's type hierarchy, see section [Views] in the [Content
Application Developer Manual] for more CoreMedia's object oriented view dispatch-
ing). If the article has a view type assigned (such as breakingnews) there would
be a lookup for CMArticle.asListItem[breakingnews].jsp before falling
back to CMArticle.asListItem.jsp. This allows for very fine grained editorially
driven layout selection for any created content.

Selecting a view type in CoreMedia Studio

You can use the view type selector which is associated with the view type property
to select a specific view type for a document, a collection for instance. The view
type selector is implemented as a combo box providing an icon preview and a de-
scription text about the view type. View types can be defined globally or site spe-
cific. If the view type item is configured for a site, the name of the site is also dis-
played in the combo box item.

282CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | View Types

Figure 6.15. Layout
Variant selector

The view type selector combo box of the image gallery document.

How to configure a view type selector

There are several document forms that include the view type selector form EXML.
The ViewTypeSelectorForm bundles the view type selector combo box and its
configuration parameters. Basically the parameters paths and allowedDoctypes
define which items are shown in the combo box. The combo box assumes that
each of the items (CMViewtype here) has a property icon that contains the
thumbnail view of the view type.

<bpforms:viewTypeSelectorForm propertyName="viewtype"
paths="{['/Settings/Options/Viewtypes/CMTeasable',
'Options/Viewtypes/CMTeasable']}"
withEmptySelection="true"
allowedDoctypes="CMViewtype"/>

In this example all CMViewtype documents of the folders /Settings/Op
tions/Viewtypes/CMTeasable and Options/Viewtypes/CMTeasable (site
depending) are shown in the view type selector combo.

How to localize view types for the view type selector

The view type selector displays two fields of a view type: The name (which is the
name of the document in the repository) and the description property. These
string can be localized as described earlier in section “How to localize page grid
objects” [279].

6.3.8 CMS Catalog

Requirements

Some companies do not run an online store. They do not need a fully featured
shopping system. Nonetheless, they want to promote some products on their cor-
porate site.

283CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CMS Catalog

Solution

CoreMedia Digital Experience Platform 8 provides the CMS Catalog, an implementation
of the e-Commerce API (known from the WebSphere Commerce Integration), which
is backed only by the CMS and does not need a third-party commerce system. It
allows to maintain a smaller number of products and categories for presentation
on the website. It does not support shopping features like availability or payment.
The CMS Catalog is based on Blueprint features. It is already integrated in the Cor
porate extension, so you can use it out of the box.

Table 6.12. CMS Cata-
log: Maven parent
modules

DescriptionMaven Module

Contains the e-Commerce API implementation for the
cms. The implementation is content type independent.

com.coremedia.blue-
print.base:bpbase-ecom-
merce

Contains the content types, content beans and the
studio catalog component.

com.coremedia.blue-
print:ecommerce

Example usage of the catalog in the corporate page.com.coremedia.blue-
print:corporate

Content Types

In the CMS Catalog products and categories are modeled as content. There are two
new content types, CMProduct and CMCategory, which extend the well known
Blueprint document types CMTeasable and CMChannel, respectively. So you can
seamlessly integrate categories into your navigation hierarchy and place products
on your pages, just like any other content. In order to activate the new content
types you have to add a Maven runtime dependency on the catalog-doctypes
module to your Content Server components.

Content Beans

The modules catalog-contentbeans-api and catalog-contentbeans-lib
provide content beans for CMProduct and CMCategory. The content beans integ-
rate into the class hierarchy according to their content types, that is they extend
CMTeasable and CMChannel, respectively. The content beans do not implement
the e-Commerce API interfaces Product and Category, though. Instead, they
provide delegates via getProduct and getCategory methods. While this may
look inconvenient at first glance, it has some advantages concerning flexibility:

➞ The content bean interfaces remain independent of future changes in the
e-Commerce API.

➞ You have better control over the view lookup by explicitely including the
content bean or the delegate.

284CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CMS Catalog

Configuration

First, you need three settings in the root channel to activate a CMS Catalog for
your site. Blueprint Base provides a commerce connection named cms1 which is
backed by the content repository. You can activate this connection by the live-
context.connectionId setting. Moreover, your catalog needs a name, which
is specified by the livecontext.store.name setting. Finally, your catalog needs
a root category, which is specified by the livecontext.rootCategory setting.

Figure 6.16. CMS Cata-
log Settings

Although the catalog indicator is a CMCategory document, it does not represent
a category but serves only as a technical container for the actual top categories
(see e-Commerce API, CatalogService#findTopCategories). The concept re-
sembles the site indicator, which is the point of entry to the navigation without
being part of it.

In a multi-site project sites may have different commerce connections. In order to
make Commerce#getCurrentConnection work correctly regarding to the site
a particular request refers to, you need to declare a Maven runtime dependency
on the bpbase-ec-cms-component module and import some magic into the
CAE Spring configuration:

<import
resource="classpath:/com/coremedia/blueprint/ecommerce/cae/ec-cae-lib.xml"/>

While the product → category relation is modeled explicitely with the contexts
link list, the reverse relation uses the search engine. Therefore, you need to extend
the contentfeeder component with some Spring configuration from the bpbase-
ec-cms-contentfeeder-lib module:

<import
resource="classpath:/framework/spring/bpbase-ec-cms-contentfeeder.xml"/>

285CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CMS Catalog

Templating

You can use both, Product or CMProduct templates. You can also use a mixture
of both for different views or fallback to CMTeasable templates for views that do
not involve CMProduct specific features.

Using Product templates you can easily switch to a third-party e-Commerce system
later, since the interface remains the same. Otherwise you are more flexible with
CMProduct templates:

➞ You can easily enhance the CMProduct content type and interface and access
the new features immediately.

➞ You benefit from all the inherited features (like multi language) and fallback
capabilities along the content type driven interface hierarchy.

➞ You can easily switch from CMProduct to Product just by calling CM
Product#getProduct anywhere you need a Product object. The reverse
direction is more cumbersome.

6.3.9 Teaser Management

Requirements

Most websites present short content snippets as "teasers" on various pages. Content
and layout for teasers should be flexible but manageable with minimum effort.

286CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Teaser Management

Figure 6.17. Default
view and teaser view of
an Article

It is a common requirement to automatically derive abbreviated content teasers
without the need to duplicate any content items. In some cases, editors wish to
create distinct teasers for a content item that don't reuse any information from
that item.

Example: An editor wants to point to an article using a specific image that is not
part of that article. Or: An editor wants to promote an article on a page with a
teaser that is not the default teaser (using different text, image, or layout).

Solution

In CoreMedia Blueprint all content types for content and pages extend from the
abstract content type CMTeasable. It defines common properties and business
rules which provide all types inheriting from CMTeasable with a default behavior
when displayed as a teaser.

Table 6.13. Properties
of CMTeasablePurposeType

The title of the content item when displayed as a teaser.teaserTitle

287CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Teaser Management

PurposeType

The text of the content item when displayed as a teaser.teaserText

Fallbacks to automatically display the shorter teaser variant of properties are im-
plemented in the content bean implementation for CMTeasable. For example,
the teaserText of a content reverts to the detailText if no teaserText has
been entered by an author.

For distinct teasers CoreMedia Blueprint includes a CMTeaser content type that
can be used for this purpose. It provides all properties required to display a teaser
and can be linked to the content that it promotes. Teasers without a link are also
supported to create non-interactive brand promotions etc.

6.3.10 Dynamic Templating

Requirements

In order to quickly implement microsites, campaigns, or specialized channels with
unique template requirements, templates can be updated without interrupting the
service or requiring a redeployment of the application.

Solution

Views can be implemented as FreeMarker templates and uploaded to the Content
Repository in a container file, preferably a JAR. For details, consult the "Loading
Templates from the Content Repository" chapter in the [CAE Developer Manual].

Create the archive containing the templates

A template set archive, preferably a JAR file, can contain FreeMarker templates
which must be located under the path: /META-INF/resources/WEB-INF/tem
plates/siteName/packageName/

The easiest way to create the JAR is to create a new Maven module with a POM
like this one:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example.groupId</groupId>
<artifactId>templates</artifactId>
<version>--insert version here--</version>
<packaging>jar</packaging>
<description>
CAE templates to be uploaded to a CMTemplateSet document in
/Themes/*my.package*/templates/ with name

288CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Dynamic Templating

my.package-templates.jar.

Use the *my.package* as a reference in a Page's
"viewRepositoryNames" settings (list of strings).

</description>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>
<archive>
<addMavenDescriptor>true</addMavenDescriptor>

</archive>
</configuration>

</plugin>
</plugins>

</build>
</project>

Put your templates below the path src/main/resources/META-INF/re
sources/WEB-INF/templates/--themeName--/--packageName--/, for
example src/main/resources/META-INF/resources/WEB-INF/tem
plates/corporate/com.coremedia.blueprint.common.content
beans/Page.ftl

Upload the template set

CoreMedia Blueprint provides the content type Template Set (CMTemplateSet)
which is used for this purpose. Create a document of type Template Set in folder
/Themes/--themeName--/templates and upload the JAR to its archive
property. Its name is significant and is used to reference template sets from
channel settings, as explained see below.

Table 6.14. Properties
of CMTemplateSetDescriptionName

A description of the purpose / contents of the code.description

blob property that contains the archive (preferably a JAR) that
contains the templates.

archive

Add the template set to a page

A Page context can be configured to add additional template sets to all pages
rendered in its context. The names of additional template sets are configured in a
string list setting viewRepositoryNames of a Page. Like all settings, a Page will
inherit this list of names form its parent context, if it is not set. See Section 6.3.11,
“View Repositories” [290] for more details.

289CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Dynamic Templating

The CAE will resolve view repository names automatically according to the pre-
defined name pattern. For instance, if a Page sets its viewRepositoryNames
to the list ["christmas", "campaigns"], each page rendered in this context
will use templates implemented in the Template Sets /Themes/christmas/tem
plates/christmas-templates.jar and /Themes/campaigns/tem
plates/campaigns-templates.jar before falling back to the default tem-
plates defined for the web application.

6.3.11 View Repositories

Requirements

A CoreMedia deployment can host multiple sites which frequently differ in layout
and functionality. It is a common requirement to use different view templates for
those sites but still be able to define reused templates across sites flexibly.

Solution

The CoreMedia CAE offers a very flexible view selection mechanism by providing
theViewRepositoryNameProvider andViewRepositoryProvider abstraction
(see [Content Application Developer Manual], chapter "Views").

CoreMedia Blueprint offers the BlueprintViewRepositoryNameProvider im-
plementation which for each lookup of model and view generates a list of view
repository names to query. The list is created based on

➞ the specific view repository names defined in the String list setting
viewRepositoryNames of the navigation context of the provided model,

➞ the view repository names defined via Spring in the property commonViewRe
positoryNames on the BlueprintViewRepositoryNameProvider Java
bean.

This allows for more fine-grained control of the used view repositories as view re-
positories can be configured not only specific for a site but also for each site section.

CoreMedia Blueprint uses the standard CAE TemplateViewRepositoryProvider
to create from the list of view repository names the list of actual view repositories
to query. CoreMedia Blueprint configures the following templateLocationPat
terns for the TemplateViewRepositoryProvider:

➞ jar:id:contentproperty:/Themes/%1$s/templates/%1$s-tem
plates.jar/archive!/META-INF/resources/WEB-INF/tem
plates/%1$s

290CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | View Repositories

➞ jar:id:contentproperty:/Themes/%1$s/templates/%1$s-tem
plates.jar/archive!/META-INF/resources/WEB-INF/tem
plates/sites/%1$s

➞ /WEB-INF/templates/sites/%s

➞ /WEB-INF/templates/%s

Example: For a content of the corporate site the BlueprintViewRepository
NameProvider yields the view repository names "corporate". The Tem
plateViewRepositoryProviderwould then return the following view reposit-
ories which are queried for the responsible view:

➞ A FreeMarker template view repository in the CMS located in the
/Themes/corporate/templates/corporate-templates.jar (a
CMTemplateSet) content item's blob property archive

➞ A Freemarker or JSP file system view repository below /WEB-INF/tem
plates/sites/corporate

➞ A Freemarker or JSP file system view repository below /WEB-INF/tem
plates/corporate

6.3.12 Client Code Delivery

Requirements

Client code such as JavaScript and CSS is changing more rapidly than JSP templates
and back-end business rules. To deliver JS and CSS changes conveniently it is a
common pattern to consider those as content and use the common editorial
workflow (create, approve, publish) to deploy these to the live environment.

Solution

CoreMedia Blueprint provides the content types CMCSS and CMJavaScript which
both inherit from the common super type CMAbstractCode.

Table 6.15. Client Code
- Properties of CMAb
stractCode

DescriptionName

A description of the purpose / contents of the code.description

The code stored in a CoreMedia XML property following the
CoreMedia RichText schema. This allows for embedding images

code

directly in a code fragment and enables quick fixes of client code
in the standard CoreMedia editing tools.

291CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Client Code Delivery

DescriptionName

Prevents the CAE from compressing the code. Setting this flag
is recommended if the code is either already compressed or if

disableCompress

it is not compatible with the compression engine. The CSS Im-
porter and the coremedia-webresource-content-maven-plugin
automatically set this flag if the compatibility test fails or if the
file extension is .min.js or .min.css.

Other code elements that should be deployed together with this
one.

include

An (optional) URL of the code on an external system. Allows to
also manage all code included from third-party servers as if it
was part of the CoreMedia repository.

dataUrl

Client code is associated with site sections. CMNavigation content items contain
references to the CSS and JavaScript items to be used within the section. Child
sections inherit code from their parent. They can extend it to refine their section
layout. This enables editorial users to quickly associate new design to sections that
stand out from the rest of the page, or even roll out a site wide face lift without
having to redeploy the application itself.

Table 6.16. Client Code
- Properties of CMNav
igation

DescriptionName

The CMJavaScript scripts used within the context.javaScript

The CMCSS style sheets used within the context.css

Additional resources for preview

Additional CSS and JavaScript can be added to sites for use in CoreMedia Studio
and the embedded preview. CSS will be included in Page.head.ftl and JavaScript
in Page.bodyEnd.ftl after the regular web resources.

Settings to add re-
sources for preview

The settings are organized as linklist properties. The name of the linklist for
CSS itself must be "previewCss" and "previewJs" for Javascript. The settings must
be attached to the root channel of a site.

Web Performance Optimization

Besides the concepts for managing and deploying client code from within the
content repository, CoreMedia Blueprint also features mechanisms to both speed
up site loading and reduce request overhead during the delivery of web resources.

292CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Client Code Delivery

Requirements

Reducing the overhead of both client request count and data transfer sizes for
client codes and web resources such as JavaScript and/or CSS.

Solution

➞ Minification of client codes: In order to reduce the data transfer to the client,
JavaScript and CSS files are usually minified, meaning, that all unnecessary
characters are removed from the source code. This results in smaller files,
hence reduces the amount of data that needs to be transferred to the client.
This can especially be useful for mobile clients. For the CAE, the minification
of web resources is turned on by default. Each needed source file is processed
by a minifier. The minifier strips all comments, whitespaces and any other
unwanted information from the source code and compresses it. The ideal
result will be a source file with just a single line of code.

➞ Merging of client codes: CoreMedia Blueprint also offers a merging process
which compresses all JavaScript and CSS files into a single one each. The
merging, if turned on, immediately follows the minification step. Client codes
are also merged by default. As a matter of fact, both features cannot be
turned on or of separately.

The process of minification and merging only applies to source files, that don't
have a set IE Expression or Data URL property. If an IE Expression or Data URL
is set, the file will be skipped in both process steps and result in each file
rendered separately into the source code of the page.

Configure minification and merging

For debugging purposes during the development, it might come in handy to disable
the minification and merging feature. You do that by turning on the cae.de
veloper.mode property switch, either provided with a standard property file, or
via a Maven switch. Inside the cae-preview-webapp module, all you have to do
is to start the preview CAE web application locally using the Maven Tomcat plugin.

6.3.13 Managing End User Interactions

Requirements

For a truly engaging experience website visitors need to be able to interact with
your website. Interactions can reach from basic ways to search content, register
and give feedback to enabling user-to-user communication and facilitating business
processes such as product registration and customer self care.

End user interactions should be configurable in the editorial interface by non-
technical users in the editorial interface of the system. It should, for example, be

293CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Managing End User Interactions

possible to place interaction components such as Login and Search buttons on
pages just like any other content, configure layout and business rules etc.

Solution

For the Blueprint website, the term "action" denotes a functionality that enables
users to interact with the website.

Examples:

➞ Search: The "search" action lets user to enter a query into a form field. After
processing the search, a search result is displayed to the user.

➞ Login: This action can be used by users to login to the website by adding
user name and password credentials. A successful login changes the state
web application's state for the user and offers him additional actions such
as editing his user profile.

From an editor's perspective, all actions are represented by content objects of type
CMAction. This enables an editor to add an action content to a page, for example
by inserting it to the navigation linklist property. When rendering the page,
this action object is rendered by a certain template that (for example) renders a
search form. The submitted form data (the query, for instance) is received by a
handler that does some processing (passing the query to the search engine, for
instance) and that provides a model containing the search action result.

This section demonstrates the steps necessary to add new actions to CoreMedia
Blueprint. It also helps to understand the currently available actions.

Standard Actions

As stated above, all actions are represented as CMAction contents in the repository.
These contents can be used as placeholders in terms of the "substitution" mechan-
ism described in the [CAE Developer Manual]. An example for adding a new action:
Consider an action where users can submit their email addresses in order to receive
a newsletter.

1. Create a bean that represents the subscription form and add an adequate tem-
plate.

public class SubscriptionForm {
public String email;

public void setEmail(String email) {
this.email = email;

}

public String getEmail() {
return email;

}

294CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Managing End User Interactions

}

SubscriptionForm.asTeaser.jsp

<%@ taglib prefix="form"
uri="http://www.springframework.org/tags/form"%>
<%--@elvariable id="self" type="com.mycompany.SubscriptionForm
"--%>
<%--@elvariable id="subscriptionForm"
type="com.mycompany.SubscriptionForm "--%>
<%--@elvariable id="cmpage"
type="com.coremedia.blueprint.common.contentbeans.Page"--%>
<cm:link target="${cmpage.linkable}" var="redirectUri"/>
<cm:link target="${self}" var="subscriptionUri">
<cm:param name="return" value="${redirectUri}"/>

</cm:link>
<form:form id="subscriptionForm" modelAttribute="subscriptionForm"

action="${subscriptionUri}" method="post">
<form:input path="email"/>
<input type="submit"/>

</form:form>

2. Add a handler that is able to process the subscription as well as a link scheme
that builds links pointing to the handler.

@Link
@RequestMapping
public class SubscriptionHandler {

@RequestMapping(value="/subscribe", method=RequestMethod.POST)
public ModelAndView

handleSubscription(@RequestParam(value="return", required=true)
String redirectUri,

@ModelAttribute("subscriptionForm") SubscriptionForm form,
HttpServletRequest

request, HttpServletResponse response)
throws IOException {

doSubscribe(request.getSession(), form.getEmail());
response.sendRedirect(redirectUri);
return null;

}

@Link(type=SubscriptionForm.class, parameter="return",
uri="/subscribe")
public UriComponents createSubscriptionLink(UriComponentsBuilder
uri, Map<String,Object> parameters) {

return uri.queryParam("return", (String)
parameters.get("return")).build();
}

...
}

Don't forget to register this class as a bean in the Spring application context.

295CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Managing End User Interactions

3. Define an action substitution.

public class SubscriptionHandler {
...
@Substitution("com.coremedia.subscription",

modelAttribute="subscriptionForm")
public SubscriptionForm createSubscriptionSubstitution(CMAction
original, HttpServletRequest request) {

return new SubscriptionForm();
}
...

}

Notes

➞ The parameters original as well as request are optional and might
be omitted here. But in a more proper implementation it might be useful
to have access to the original bean and the current request.

➞ The optional modelAttribute causes the substitution to be become
available as a request attribute subscriptionForm. This is useful when
using dealing with the Spring form tag library (see above).

4. Create a newsletter action content

➞ Create a content of type CMAction

➞ Set the id property to value com.coremedia.subscription

➞ Insert this content to a page's teaser link list.

Here is what happens when opening the page by sending an HTTP request:

1. The request will be accepted by the PageHandler that builds a ModelAndView
containing the Page model. This model's tree of content beans contains the
new CMAction instance.

2. The model will be rendered by initially invoking Page.jsp for the Page bean.

3. When the CMAction is going to be rendered in the teaser list, the template
CMAction.asTeaser.jsp is invoked. This template substitutes the CMAction
bean by invoking the cm:substitute function while using the ID com.core
media.subscription.

4. The substitution framework invokes the method #createSubscriptionSub
stitution after checking whether SubstitutionRegistry#register has
been invoked by any handler for his ID (which hasn't happened here). As the
result, the substitutions result is a bean of type SubscriptionForm.

5. The above mentioned template CMAction.asTeaser.jsp therefore delegates
to SubscriptionForm.asTeaser.jsp then.

296CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Managing End User Interactions

6. While rendering SubscriptionForm.asTeaser.jsp, a link pointing to this
form bean is going to be built. The method #createSubscriptionLink is
chosen as a link scheme so that the link points to the handler method
#handleSubscription.

7. After the user has received the rendered page, he might enter his email address
and press the submit button.

8. This new (POST) request is accepted by the mentioned handler method
#handleSubscription that performs the subscription and redirects the ori-
ginal page then so that the first step of this flow is repeated.

Of course, a more proper implementation could mark the subscription state (sub-
scribed or not) in a session/cookie and would return an UnsubscribeForm from
#createSubscriptionSubstitution depending on this state.

Webflow Actions

Spring Webflow (http://www.springsource.org/spring-web-flow) is a framework
for building complex form based applications consisting of multiple steps. Webflow
based actions can be integrated into Blueprint as well. This section describes the
steps of how to integrate this kind of actions.

In CoreMedia Blueprint the PageActionHandler takes care of generally handling
Webflow actions. The flow's out coming model is automatically wrapped into a
bean WebflowActionState. A special aspect of this bean is that it implements
HasCustomType and therefore is able to control the lookup of the of the matching
template.

1. Place your flow definition file somewhere below a package named webflow
somewhere in the classpath. The name of the flow definition file should be
<action_id>.xml. Example: For an action com.mycompany.MyFlowAction
you might create a file com.mycompany.MyFlowAction.xml that can be
placed below a package com.coremedia.blueprint.mycompany.webflow.

2. For every flow view (such as "success" or "failure") create a JSP template. The
template name needs to match the action id. Example: The action com.my-
company.MyFlowAction requires templates to be named .../tem
plates/com.mycompany/MyFlowAction.<flowView>.jsp. These templates
will be invoked for the mentioned beans of type WebflowActionState.

3. Create (and integrate) a new document of type CMAction and set the property
id to the action id (such as com.mycompany.MyFlowAction) and the property
type to webflow.

297CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Managing End User Interactions

6.3.14 Images

Requirements

For a website images are required in different sizes and formats. For example,
teaser need a small image with an aspect ratio of 1:1 in the sidebar and an aspect
ratio of 4:3 in the main section. Images in articles and galleries are shown in 5:2
or 4:3 with a large size. And even these sizes are different on mobile devices and
desktop displays.

Solution

CoreMedia Blueprint supports different formats combined with different sizes. It
comes with nine predefined cropping definitions, which are used on the Perfect
Chef and Aurora example sites.

➞ portrait_ratio20x31 (aspect ratio of 2:3.1)

➞ portrait_ratio3x4 (aspect ratio of 3:4)

➞ portrait_ratio1x1 (aspect ratio of 1:1)

➞ landscape_ratio4x3 (aspect ratio of 4:3)

➞ landscape_ratio16x9 (aspect ratio of 16:9)

➞ landscape_ratio2x1 (aspect ratio of 2:1)

➞ landscape_ratio5x2 (aspect ratio of 5:2)

➞ landscape_ratio8x3 (aspect ratio of 8:3)

➞ landscape_ratio4x1 (aspect ratio of 4:1)

A list of sizes can be defined for each format in the Responsive Image Set
tings, located in Options/Settings/CMChanel. The website will automatically
choose the best matching image depending of the viewport of the client's browser.

How to configure image sizes

The struct responsiveImageSettings contains a list of string properties. This
string must contain the name of a cropping format. For example portrait_ra
tio1x1. Each format contains a list of string properties, representing one size of
this format. The name and the order of this list is not important and will be ignored.
Every size must contain two integer properties width and height.

298CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Images

If site specific image variants are enabled, the Responsive Image Settings
will be used for the image editor as well. In this case the additional integer property
fields widthRatio, heightRatio, minWidth and minHeight must be defined.
Additionally, the field previewWidth and/or previewHeight should be defined
to define the preview size in the Studio.

For example a Responsive Image Settings with two formats. portrait_ra
tio1x1 with just one size and landscape_ratio4x3 with 3 sizes.

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">
<StructProperty Name="responsiveImageSettings">
<Struct>
<StructProperty Name="portrait_ratio1x1">
<IntProperty Name="widthRatio">1</IntProperty>
<IntProperty Name="heightRatio">1</IntProperty>
<IntProperty Name="minWidth">200</IntProperty>
<IntProperty Name="minHeight">200</IntProperty>
<IntProperty Name="previewWidth">400</IntProperty>
<Struct>
<StructProperty Name="0">
<Struct>
<IntProperty Name="width">60</IntProperty>
<IntProperty Name="height">60</IntProperty>

</Struct>
</StructProperty>

</Struct>
</StructProperty>
<StructProperty Name="landscape_ratio4x3">
<IntProperty Name="widthRatio">4</IntProperty>
<IntProperty Name="heightRatio">3</IntProperty>
<IntProperty Name="minWidth">1180</IntProperty>
<IntProperty Name="minHeight">885</IntProperty>
<IntProperty Name="previewWidth">400</IntProperty>
<Struct>
<StructProperty Name="0">
<Struct>
<IntProperty Name="width">200</IntProperty>
<IntProperty Name="height">150</IntProperty>

</Struct>
</StructProperty>
<StructProperty Name="1">
<Struct>
<IntProperty Name="width">320</IntProperty>
<IntProperty Name="height">240</IntProperty>

</Struct>
</StructProperty>
<StructProperty Name="2">
<Struct>
<IntProperty Name="width">640</IntProperty>
<IntProperty Name="height">480</IntProperty>

</Struct>
</StructProperty>

</Struct>
</StructProperty>

</Struct>
</StructProperty>

</Struct>

299CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Images

Every image cropping format must contain one image size, otherwise the default
size and format, defined in ImageFunctions, will be used.

High Resolution/Retina Images

CoreMedia Blueprint supports high resolution images. Set the BooleanProperty en
ableRetinaImages to true. If enabled, the Javascript jquery.coremedia.re
sponsiveimages.js is choosing a larger image according to the devicePixelRa
tio of the browser.

For Example the website wants to render an image with an aspect ratio of 4:3 and
the best responsive image size is 400px : 300px. With a devicePixelRatio
of 2, the JavaScript jquery.coremedia.responsiveimages.js is now choosing
the size of 800px : 600px.

Default JPEG Compression Quality

The default JPEG compression quality is 80% in CoreMedia Blueprint. This parameter
is configured in blueprint-handlers.xml for the transformedBlobHandler.
For further information consult the "CAE Application Developer Manual", chapter
"Image Transformation API".

6.3.15 URLs
Link generation and request handling is based on the concepts of the CAE web
application. For further information consult the "CAE Application Developer
Manual". CoreMedia Blueprint offers a simple mechanism for link building and
parsing that is based on regular expressions. The out of the box configuration has
been made with "SEO Search Engine Optimization" in mind:

➞ URLs show to which site section the currently displayed page belongs

➞ URLs for asset detailed pages – opposed to section overview pages – contain
the title of the asset

See Section 9.7, “Link Format” [478] for link schemes and controllers of CoreMedia
Blueprint as well as existing post processors.

6.3.16 Vanity URLs

Requirements

Editors should be able to define special URLs to special content objects which are
easy to remember.

300CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | URLs

Solution

Vanity URLs are special human readable URLs which do not contain any technical
identifiers like document IDs. CoreMedia Blueprint provides a means to assign
vanity URLs to content objects.

Vanity URLs are configured in channel settings. Typically, there is one Vanity URL
settings document for the root channel of a given site. This is the setup chosen for
CoreMedia Blueprint demo content. To find the Vanity URL settings document, open
the root channel of a site and switch to the Settings tab. You will find the Vanity
URL settings document link inside the Linked Settings section.

Vanity URLs are defined as a relative URI path. The path might consist of several
segments, but if you would like keep your Vanity URLs simple, just use only one
path segment. The URI path is then prepended with a path segment consisting of
the site name. For example, for the site perfectchef, a URI path of my/spe
cial/artilce would yield the Vanity URL /perfectchef/my/special/art
icle.

To add a Vanity URL for a document, follow these steps:

1. Select the StructListProperty vanityUrlDefinition and create a new
child Element Struct by clicking the [Add item to List Property] symbol in
the toolbar.

2. Create a new LinkProperty and name it "target".

3. Set the content type field to the type of your target document.

4. Click on the value field, this will open the library window. Drag your target
document from the library window into the value field.

5. Create a StringProperty, name it id and type your vanity URI path inside
the value field.

Once the settings document is published, the new Vanity URL is reachable on the
live site, and it is used for all generated links referring to the target document.

6.3.17 Content Visibility

Requirements

Content should become available online only within a specific time frame. For ex-
ample, editors need to ensure that a press release only becomes public at a certain
day and time or an article should expire after a specific day. In addition, editors
want to preview their preproduced content in the context of the website as if it
was already available.

301CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Content Visibility

Solution

CoreMedia Blueprint supports restricting the visibility of content items by setting
the optional validFrom and validTo date properties of content of type CMLink
able.

Table 6.17. Properties
for Visibility RestrictionvalidFrom

Valid FromUI-Name

Content where the "valid from" date has not been reached yet is not dis-
played on the site yet.

Description

validTo

Valid ToUI-Name

Content where the "valid to" date has passed is not displayed on the site
anymore. By not specifying either of validTo or validFrom, an open interval
can be specified to define just a start or end date.

Description

Content is filtered in the CAE during the following two stages of request processing:

➞ The controller is resolving content from a requested URL. See ContentValid
ityInterceptor.

➞ In the content bean layer whenever references to other content beans that
implement ValidityPeriod are returned.

In the CAE visibility checking is implemented as part of an extensible content val-
idator concept. The generic ValidationService is configured with a Validi
tyPeriodValidator to filter content when it is requested.

To allow editors to preview content for a certain preview date and time a PreviewD
ateSelector component has been added to Studio, which sets the request
parameter previewDate. This parameter is respected by the ValidityPeriod
Validator.

6.3.18 Content Type Sitemap

Configuration

The content type Sitemap has three fields you can configure:

302CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Content Type Sitemap

Figure 6.18. Content
Type Sitemap

Enter a Sitemap Title which will be rendered as the headline of the Sitemap section
in the site. The Root Page field defines the root node from where the content for
the sitemap will be rendered. Additional the Sitemap can be rendered to a specific
depth which can be set here. This depth is three by default.

6.3.19 Robots File

Requirements

Technical editors should be able to adjust site behavior regarding robots (also
known as crawlers or spiders) from search engines like Google. For example:

➞ Enable/disable crawling of certain pages including their sub pages.

➞ Enable/disable crawling of certain single documents.

➞ Specify certain bots to crawl different sections of the site.

To support this functionality most robots follow the rules of robots.txt files like
explained here: http://www.robotstxt.org/ For example, the site "Corporate" is
accessible as http://corporate.blueprint.coremedia.com. For all content
of this site the robots will look for a file called robots.txt by performing an HTTP
GET request tohttp://corporate.blueprint.coremedia.com/robots.txt
A sample robots.txt file may look like this:

Example 6.2. A ro
bots.txt fileUser-agent: Googlebot,Bingbot

Disallow: /folder1/

303CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Robots File

http://www.robotstxt.org/

Allow: /folder1/myfile.html

Solution

Blueprint's cae-base-libmodule provides a RobotsHandlerwhich is responsible
for generating a robots.txt file. A RobotsHandler instance is configured in
blueprint-handler.xml. It handles URLs like http://corporate.blue
print7.coremedia.com:49080/blueprint/servlet/robots/corporate

This is a typical preview URL. In order to have the correct external URL for the robots
one needs to use Apache rewrite URLs that forwards incoming GET requests for
http://corporate.blueprint7.coremedia.com/robots.txt to ht
tp://corporate.blueprint7.coremedia.com:49080/blueprint/ser
vlet/robots/corporate

The RobotsHandler will be responsible for requests like this due to the path
element /robots The last path element of this URL (in this example /corporate
will be evaluated by RobotsHandler to determine the root page that has been
requested. In this example "corporate" is the URL segment of the Corporate Root
Page. Thus, RobotsHandler will use Corporate root page's settings to check for
Robots.txt configuration.

To add configuration for a Robots.txt file the corresponding root page (here:
"Corporate") needs a setting called Robots.txt

Figure 6.19. Ro
bots.txt settings

304CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Robots File

Example configuration for a Robots.txt file

The settings document itself is organized as a StructList property like in this
example:

Figure 6.20. Channel
settings with configura-
tion for Robots.txt
as a linked setting on
a root page

For any specified user agent the following properties are supported:

➞ User-agent: Specifies the user agent(s) that are valid for this node.

➞ Disallow: A link list of items to be disallowed for robots. This list specifies
a black list for navigation elements or content: Elements that should not be
crawled. Navigation elements will be interpreted by "do not crawl elements
below this navigation path". This leads to two entries in the resulting ro
bots.txt file: one for the link to the navigation element and one for the
same link with a trailing '/'. The latter informs the crawler to treat this link
as path (thus the crawler will not work on any elements below this path).
Single content elements will be interpreted as "do not crawl this document"

➞ Allow: A link list of items to be explicitly allowed for robots. This list specifies
navigation elements or content that should be crawled. It is interpreted as
a white list. Usually one would only use a black list. However, if you intend
to hide a certain navigation path for robots but you want one single document
below this navigation to be crawled you would add the navigation path to
the disallow list and the single document to the allow list.

➞ custom-entries: This is a String List to specify custom entries in the Ro
bots.txt. All elements here will be added as a new line in the Robots.txt
for this node.

The example settings document will result in the following robots.txt file:

305CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Robots File

Example 6.3. ro
bots.txt file gener-
ated by the example
settings

User-agent: *
Disallow: /corporate/corporate-information/
Allow: /corporate/corporate-information/contact-us

User-agent: Googlebot
Disallow: /corporate/embedding-test

6.3.20 Sitemap

Requirements

If you run a public website, you want to get listed by search engines and therefore
give web crawlers hints about the pages they should crawl. ht-
tp://www.sitemaps.org/ declares an XML format for such sitemaps which is sup-
ported by many search engines, especially from Google, Yahoo! and Microsoft.

"Sitemap" in terms of http://www.sitemaps.org/ is not to be mistaken with a human
readable sitemap which visualizes the structure of a website (see Section 6.3.18,
“Content Type Sitemap” [302]). It is rather a complete index of all pages of a site.
A simple sitemap file looks like this:

Example 6.4. A
sitemap file<?xml version="1.0" encoding="UTF-8"?>

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9
http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd">
<url>
<loc>
http://helios.coremedia.com/perfectchef/spicy-duck-694
</loc>

</url>
<url>
<loc>
http://helios.coremedia.com/perfectchef/share-your-recipes-696
</loc>

</url>
...

</urlset>

Maximum number of
URLs

The size of a sitemap is limited to 50,000 URLs. Larger sites must be split into
several sitemap files and a sitemap index file which aggregates the sitemap files.
A sitemap index file looks like this:

Example 6.5. A
sitemap index file<?xml version="1.0" encoding="UTF-8"?>

<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<sitemap>
<loc>http://helios.coremedia.com/sitemap1.xml.gz</loc>
<lastmod>2014-03-31T15:33:26+02:00</lastmod>

</sitemap>
...

</sitemapindex>

306CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Sitemap

http://www.sitemaps.org/
http://www.sitemaps.org/
http://www.sitemaps.org/

Solution

A sitemap consists of multiple entities (the index and the sitemap files) and has
dependencies on almost the whole repository. If a new content is created, which
"coincidentally" occurs in the first sitemap file, the entries of all subsequent sitemap
files are shifted. In border cases even the number of sitemap files may change,
which affects the sitemap index file. So you cannot generate single sitemap entities
on crawler demand, asynchronously and independent of each other, but you must
generate a complete sitemap which represents a snapshot of the repository.
Moreover, the exhaustive dependencies make sitemaps practically uncacheable,
and the generation is expensive. For these reasons Blueprint does not render
sitemaps on demand but pregenerates them periodically. So you must distinguish
between sitemap generation and sitemap service. Both are handled by the live
web application, though.

Sitemap Generation

CoreMedia Blueprint features separated sitemaps for each site. Sitemap generation
depends on some site specific configuration, like the document types to include
or paths to exclude, amongst others. This configuration is specified by Sitemap
Setup Spring beans. The lc and the corporate extension each provide a
SitemapSetup bean suitable for their particular sites. Projects can declare their
own sitemap setups. The setups are collected in the sitemapConfigurations
Spring map.

<bean id="livecontextSitemapConfiguration" class="c.c.b.c.s.SitemapSetup">
<property name="protocol" value="http"/>
...

</bean>

<customize:append id="appendLSC" bean="sitemapConfigurations">
<map>
<entry key="livecontext" value-ref="livecontextSitemapConfiguration"/>

</map>
</customize:append>

If you want to generate a sitemap for a site, you have to specify the setting
sitemapOrgConfiguration at the root channel. It is a String setting, and the
value must be a key of the sitemapConfigurations map.

Figure 6.21. Selection
of a sitemap setup

By default, the PerfectChef sites and the Corporate sites are sitemap-enabled, while
the Aurora sites are not. Since the Aurora sites serve only as backend for WCS ap-
plications, there is no need for sitemaps.

307CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Sitemap

Sitemaps are generated periodically in the Delivery CAE by a SitemapGeneration
Job. You can specify the initial start time and the period as application properties
blueprint.sitemap.starttime and blueprint.sitemap.period, respect-
ively. For details about the values see the JavaDoc of the setters in SitemapGen
erationJob. The Blueprint is preconfigured to run the sitemap generation nightly
at 01:30. You can also trigger sitemap generation for a particular site manually by
the URL

http://live-cae:49080/blueprint/servlet/internal/corporate-de-de/sitemap-org

where corporate-de-de stands for the segment of the site's root channel. Note
that it is an internal URL which can only be invoked directly on the CAE's servlet
container. Sitemap generation is an expensive administrative task, which is not to
be exposed to end users. CoreMedia's default Apache rewrite rules block internal
URLs, see rewrite.inc files.

The sitemaps are written into the file system under a directory which is specified
by the blueprint.sitemap.target.root application property. That means,
the CAE needs write permissions for this directory.

Sitemap Service

The generated sitemaps are available by the URL pattern

/service/sitemap/the-site-ID/sitemap_index.xml

In order to inform search crawlers, the sitemap URLs are included in the ro
bots.txt files. Since there is only one robots file per web presence, you will see
multiple sitemap entries for the localized sites:

User-agent: *
Disallow: /

Sitemap: http://corporate.acme.com/service/sitemap/ab..ee/sitemap_index.xml
Sitemap: http://corporate.acme.com/service/sitemap/1c..7a/sitemap_index.xml

6.3.21 Website Search

Requirements

For IBM WebSphere Commerce integration scenarios, all search is handled by
IBM WCS. CMS content must be crawled by the IBM Solr Search engine. Please
refer to the IBM documentation. A configuration file for each example site is
part of the CoreMedia LiveContext 2.0 WebSphere Commerce Project Workspace
archive (for example, WCDE-ZIP/components/foundation/subcompon
ents/search/solr/home/droidConfig-cm-aurora-en-US.xml).

In order to make content more accessible for their audience virtually all websites
have full-text search capabilities. To improve the search experience some websites

308CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Website Search

also offer features such as search term autocompletion, suggestions in case of
misspelled search terms, more advanced filtering options or even metadata based
drilldown navigation in search results.

Solution

CoreMedia CMS has built-in integration with the Apache Solr search engine. Blue-
print comes with a small abstraction layer that offers unified search access to Solr
for all CAE based code. It provides the following features, all based on standard
Solr functionality:

➞ Full text search: Search for content across all fields

➞ Field based filters: Filter results by metadata such as the content type, the
site section it belongs to, etc.

➞ Facets: Display facets, that is the number of results in a field for certain values

➞ Spellcheck suggestion: "Did you mean" suggestions for misspelled terms

➞ Search term highlighting: All words are highlighted in your text

➞ Validity range filtering: Automatically filter for only visible results (see section
Section 6.3.17, “Content Visibility” [301]

➞ Filter non-searchable: Automatically filter content that should not be part
of search results.

➞ Caching: Search results can be optionally cached for a certain amount of
time.

The search integration can be found in the modules com.coremedia.blue
print.cae.search and com.coremedia.blueprint.cae.search.solr.

6.3.22 Search Landing Pages

Feature is only supported in e-Commerce Blueprint

Requirements

Using CoreMedia Digital Experience Platform 8 the user should have the possibility
to define custom page layouts for search terms.

Solution

Search Landing Pages are used to apply a custom page layout for product searches
that match specific search terms. This feature is used when CAE fragments should

309CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Search Landing Pages

be included to search result pages of a commerce system. To provide a new search
landing page, do the following:

1. Create a new folder with the name Search Landing Pages in one of your
sites folders. The folder must be part of a site, global search landing pages are
not provided.

2. Create a new page document and add the matching keywords in the input field
"HTML Keywords" (CMChannel property "keywords").

3. Add the newly created page document as navigation child to the root document.
Ensure that the search landing page has checked the "Hidden in Sitemap" and
"Hidden in Navigation" checkboxes.

When the search landing page is included to the commerce storefront, only the
main placement of the page's page grid will be included as fragment.

310CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Search Landing Pages

6.4 Website Development with Themes
Consistent page design
with themes

A consistent page design is essential for a professional website. Apart from the
HTML structure reflected by the templates, the layout is mainly controlled by web
resources, like CSS, JavaScript and templates. CoreMedia uses themes to bundle
these files.

Conflicting interests
between developing
themes and using
themes

Developing and using themes, have some conflicting interests. On the one hand,
changes of web resources should be immediately effective on your site, so they
must be integrated into the caching and invalidation mechanisms of CoreMedia
CMS and thus be maintained in the content repository. On the other hand, web
designers want to work with their favorite familiar tools and short round-trips to
test their changes. Maintaining each interim change into the content repository
would be too much effort. In many projects the CSS and JavaScript is maintained
by external agencies which do not even have access to the CMS but deliver their
work as ordinary files.

Develop locally but
have resources as con-
tent

In order to resolve this conflict, Web resources are treated as content in Blueprint,
so that you do not need to take care of dependencies such as making sure that
image files linked to the CSS files are deployed into your web application and how
the files are included to your site. On the other hand, CoreMedia Blueprint ships
with built in, ready to use features for developers, who would like to get started
working on local web resources and templates as themes for their site.

Theme concept and
Blueprint build process

One has to differentiate between the pure theme concept which comprises the
theme structure, the theme descriptor file and the coremedia-webresource-content-
maven-plugin and the automated Blueprint build process.

The following sections describe these topics:

➞ Section 6.4.1, “CoreMedia Themes” [311] describes the structure of a theme
and gives some hints about coding styles.

➞ Section 6.4.2, “Web Development Workflow” [321] describes the web devel-
opment workflow. That includes how developers can work with local re-
sources, rather than with content objects inside the repository, how deploy-
able theme artifacts can be build and how the artifacts can be imported into
the content repository.

6.4.1 CoreMedia Themes
In order to edit the web resources you need to know how the workspace is arranged.
Web resources are organized in themes, where each theme is a separate module.
A theme consists of a set of related resources, typically

➞ Templates (FreeMarker)

➞ CSS

311CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Website Development with Themes

➞ JavaScript

➞ Images

➞ Fonts

➞ Third-party libraries (for example, jQuery)

A site can aggregate multiple themes, so you can easily share common web re-
sources among different sites. CoreMedia Blueprint currently contains the following
themes for the example websites. Some extensions, such as asset management,
contain additional web resources:

Figure 6.22. Themes
in the Library

Theme Structure

Workspace structureA theme consists of the actual web resources and the theme descriptor. Ex-
ample 6.6, “ File structure of a theme ” [312] shows the directory structure of a
theme in the workspace. CoreMedia recommends to use a single root directory for
each theme, in order to avoid conflicts between multiple themes.

Example 6.6. File
structure of a themethemes

└── [$foo-theme] // name of theme,
│ for example "foo" and suffix "-theme"
│ ├── src // all source files. add subfolders for all types like

│ │ sass, js, fonts or images
│ │ ├── css
│ │ │ ├── box.css
│ │ │ └── navigation.css
│ │ ├── fonts
│ │ │ └── arial.woff

312CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

│ │ ├── images
│ │ │ ├── icon-sprite.png
│ │ │ └── logo.png
│ │ ├── js
│ │ │ ├── coremedia.theme-name-a.js
│ │ │ └── own-plugins.js
│ │ ├── main // use this java typical file structure for
│ │ │ templates
│ │ │ └── resources
│ │ │ └── META-INF.resouces.WEB-INF.templates.$foo
│ │ └── vendor
│ │ ├── jquery.js
│ │ └── third-party.css
│ ├── target // all generated files, used for local
│ │ developing and importing
│ ├── Gruntfile.js // optional config for grunt tasks
│ ├── package.json // optional config for node_modules
│ │ dependencies
│ └── $foo-theme.xml // theme definition config, mandatory for
│ importing themes!
│
└── [$bar-theme]

Theme descriptorBelow the root directory of the theme module lies the theme descriptor. It is named
after the theme module to which it belongs, basic-theme.xml, for instance. The
theme descriptor contains the paths to all Javascript and CSS files used by the
theme. This file is used to create the aggregating CSS and JavaScript files in
the CoreMedia content. Here, you have to add paths to CSS and JavaScript files of
other themes that you want to use in your theme. Example 6.7, “ Theme descriptor
example ” [313] shows the structure of a theme descriptor and contains some
comments for the usage.

Example 6.7. Theme
descriptor example<?xml version="1.0" encoding="UTF-8"?>

<themeDefinition modelVersion="1">
<!--
name *mandatory: - used as name for the aggretating files
like theme-name.js or theme-name.css

-->

<name>theme-name</name>

<!-- description: optional -->

<description>Basic Theme</description>

<!--
add all javascript and css files needed for this theme. the
paths are relative to the content object. Don't use
absolute or workspace path. Take care about the
order of the files, if they are related to each
other, like jquery and jquery plugins.

-->

<!--
all files are linked to a placeholder js file called
theme-name.js

-->
<javaScripts>

313CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

<!--
"disableCompression" optional attribute that sets the

"disableCompress"
flag of the resulting content object. Set this flag if the

file is already
compressed or if it is not compatible with the compression

engine used
by the CAE.

-->
<javaScript

disableCompression="true">vendor/jquery-2.2.3.min.js</javaScript>

<javaScript>js/example.js</javaScript>
<javaScript>../other-theme/js/example.js</javaScript>

<!--
"ieExpression" optional expression for conditional comments
for Internet Explorer without "if", see
https://msdn.microsoft.com/en-us/library/ms537512.aspx#syntax

-->
<javaScript ieExpression="IE">/js/all_ie.js</javaScript>
<javaScript ieExpression="lte IE 9">/js/ie9.js</javaScript>

</javaScripts>

<!--
all files are linked to a placeholder css file called
theme-name.css

-->

<styleSheets>
<css>css/example.css</css>
<css>../other-theme/css/example.css</css>
<css ieExpression="IE">.css/ie.css</css>

</styleSheets>

</themeDefinition>

Structure of web re-
sources

All web resource files, except the templates, can be arranged arbitrarily in direct-
ories. However, In CoreMedia themes these resources are arranged by their partic-
ular types. When you import a theme into the CoreMedia repository, these direct-
ories will be mapped 1:1 to repository paths. See Section 6.3.12, “Client Code De-
livery” [291] for more details. CoreMedia uses the following typical style for web-
safe file names:

➞ File names should all be lower case

➞ Nouns should be used in singular

➞ Words should be separated by dashes

Templates structureTemplates are located in the src/main/resources directory of the theme
module. Inside this directory, according to the Servlet spec 3.0, the templates are
located in the META-INF/resources directory. Underneath this convention
driven base path the templates are structured in packages, corresponding to the
content beans. See Section 6.3.10, “Dynamic Templating” [288] for details.

314CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

In the CoreMedia repository, templates are stored as JAR archives in blob properties.

Themes in the Core-
Media repository

Themes imported into the Content Server are stored in a folder named
Themes/<ThemeName> by default. The content is stored in the following content
types:

➞ CSS files in content of type CSS

➞ JavaScript files in content of type JavaScript

➞ Freemarker Templates as JAR archives in blob properties in content of type
Template Set

➞ All other resources in content of type Technical Image

In order to connect the content with a Site page, the content is linked in the follow-
ing way:

➞ All imported CSS files of the theme are linked by a content of type CSS in
the main folder of your theme called <themename>.css

➞ All imported JavaScript files of the theme are linked by a content of type
JavaScript in the main folder of your theme called <themename>.js

➞ All images or fonts are linked from inside the CSS files, through direct content
links to the corresponding Technical Image content.

➞ Templates are found through its view repositories. See Section 6.3.10, “Dy-
namic Templating” [288] for details.

➞ The Site page links to the aggregating CSS and JavaScript content items
(see Figure 6.25, “ Linking a theme to site root ” [330].

CSS Files

CoreMedia HTML in templates follow the B.E.M. pattern, standing for block, element,
modifier, for naming. Make sure you understand the principles (see for example
http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-
syntax.

Usage of IDs

Avoid styling IDs. IDs should be used for the semantic of a page. CSS rules bound
to IDs have a higher order than css rules bound to class names. This leads, if not
used carefully, in long term to very bad workarounds in CSS styles and so to much
more CSS styles than needed and to very difficult maintenance.

In general only elements that occur exactly once inside a page are valid candidates
for IDs. However, this doesn't mean that it is a good idea to make them an ID. Only
use IDs in these two cases:

315CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax
http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax
http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax

➞ You need to identify a DOM element where you want to explicitly say that
it may only occur once per page and you need to make sure that this is the
case. This is useful to jump to specific sections of a page, for a screen reader,
for instance.

➞ You need to distinct an element of a certain common class from the other
ones and you can not find it through relatively moving over the DOM tree.

When you are in doubt, use a class name.

CoreMedia CSS files follow a style guide to which you should adhere when you
write your own stylesheets.

Coding Style

➞ In class names use dashes to separate, not camelCase or underscores.

➞ Indent property declarations by two spaces.

➞ In property declarations, put a space after the colon.

➞ In rule declarations, put spaces before the curly bracket.

➞ In parameter listings, put a space after each comma.

➞ Write empty property values without a unit. That is "width: 0" instead of
"width: 0px".

➞ Use hexadecimal color codes (#00000a) with lowercase instead of RGB unless
you are using RGB.

➞ Use 6-character hexadecimal code, if you use 3-character code every char-
acter is duplicated. That is, for instance, #abc is short for #aabbcc and not
#abcabc.

Example 6.8. CSS code
that follows the style
guide

.styleguide-format {
margin: 0;
border: 1px solid #0f0;
color: #000000;
background: rgba(0, 0, 0, 0.5);

}

Saas Files

In the Brand Blueprint CSS files are generated from Saas files (see sass-lang.com).
Except for the main Saas file of the theme ($theme-name.scss) all other files
are partial files. That is, the name starts with an underscore so that Saas does not
render separate files. In each folder is a _import.scss file in which all the other

316CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

http://www.sass-lang.com

partial files from the folder are imported. This is required by Idea, to make all files
"green". For Saas it is enough to link to all imported files from the main Saas file.

The folder structure is as follows:

Example 6.9. Folder
structure of the Saas
files

sass // scss files should be located inside
a themes 'src' folder

├── base // contains configuration in form of variables
│ ├── _import.scss
│ ├── _variables.scss
│ └── ...
├── components // contains components with declarations
│ ├── _component1.scss
│ ├── _component2.scss
│ └── ...
├── utils // contains mixins and functions to be used by
│ components
│ ├── _import.scss
│ ├── _utils1.scss
│ ├── _utils2.scss
│ └── ...
└── $theme-name.scss // main Sass file for theme. Imports

all required Sass files

Commenting in Saas

The following conventions for comments are used:

➞ Comments for SASS are made with "//". They do not appear in the generated
CSS and can be used for internal comments.

➞ Comments appearing in the generated CSS are made with "/* */". These
comments are removed when minifying the CSS in the CAE.

➞ Comments appearing in the generated CSS "/*! */". These comments are
not removed when minifying the CSS in the CAE. Used for license texts, for
example.

JavaScript Files

In the CoreMedia frontend, JQuery is used as the main JavaScript framework. You
should also use this framework for your own extensions.

Save selector in a vari-
able

Using a selector in JQuery is an expensive operation and should only be done once.
If you want to use the selector multiple times, store it in a variable. In the example,
the variable starts with a $, so that it is clear, that it is a jQuery object.

Example 6.10. Save
selector in variableBad example

$(".container .children").addClass("black");
$(".container .children").show();

Avoids redundancy but still bad example

317CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

var selector = ".container .children";
$(selector).addClass("black");
$(selector).show();

Good example

var $children = $(".container .children");
$children.addClass("black");
$children.show();

JQuery and noConflictIn order to avoid conflicts with different JavaScript frameworks the noConflict(true)
functionality of jQuery is used to reset the assignment of $ and also of jQuery
global scope variables. While $ avoids conflicts with other JavaScript frameworks
such as Dojo, removing jQuery assignment also makes sure that there are no con-
flicts with different jQuery versions used.

For CoreMedia JavaScript this has the consequence that you cannot rely on $ or
jQuery as a variable of the global scope. The jQuery functionality used in CoreMedia
Blueprint is attached to the variable coremedia.blueprint.$

This can be realized without much refactoring to the JavaScript Code if you declare
a local variable $ which is only valid in the current scope (var $ = coremedia.blue-
print.$). CoreMedia jQuery plugins already have been adjusted in a more elegant
way, where the correct jQuery Version is injected into the function registering the
plugin (see for example, jquery.responsiveImages.js).

Images

For images exist no specific rules. Images are imported in Technical Image
content items. In your CSS or JavaScript files in the workspace, you link to images
through a relative path URL. For example, background-image: url("../im
ages/testimage.png"). After the upload, these links are replaced by internal
content links.

Templates

Dynamic templating (see Section 6.3.10, “Dynamic Templating” [288]) requires the
usage of Freemarker, not JSP, templates. Freemarker templates are imported as
JAR files into a blob property of content of type Template Set. See CoreMedia
Content Application Developer Manual for more details about templates.

Templates naming and lookup

The view dispatcher of the CAE (see the CoreMedia Content Application Developer
Manual for more details) selects the appropriate view template for a content bean
according to the following data:

318CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual

1. Name of the content bean

The view dispatcher looks for a template whose name starts with the name of
the content bean.

Example: The template CMExample.ftl is a detail view for the content bean
CMExample.

2. A specific view name

A view name specifies a special view for a content bean. The view is added as
a parameter when you include a template in another template via <cm.include
self=self view="asPlacement"/>.

Example: The template CMExample.specialView.ftl is a special view for
the content bean CMExample.

3. A specific view variant

A view variant is used, when the look of a rendered view should be editable in
the content (see Section 6.3.7, “View Types” [282] for details).

Example: The template CMExample.[differentLayout].ftl is a special
view of the content bean CMExample. The view variant must be enclosed in
square brackets.

The template name is always in the order content bean name, view name, view
variant. The view dispatcher looks for the most specific template.

Freemarker

Escaping HTML output

In CoreMedia Blueprint escaping of output is enabled by default. Auto-escaped are
all values printed with ${value}. However, there are cases were you need to
disable escaping, for example, when you get HTML code that you want to print as
HTML, not escaped HTML.

When you really need to disable auto-escaping (not recommended) you can use
the cm.unescape plugin.

Example 6.11. Disable
auto-escaping with the
cm.unescape plugin

<@cm.unescape self.textAsHtml />

Robustness of templates

In order to make sure that the rendering of templates does not fail you have to
ensure that FTL template can be rendered although some information is not
provided. In order to achieve this FreeMarker adds some functionality to detect if
a variable is set and if it contains content.

319CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

If you want to check for existence and emptiness of a hash/variable (null is also
considered as empty) you need to use ?has_content.

If you want to declare a default value for an attribute that could be null or empty
use ! followed by the value to be taken if the variable/hash is null.

Example:

Example 6.12. Ex-
ample of a fallback in
Freemarker

${existingPossibleNullVariable!"Does not exists"}

<#list existingPossibleNullList![] as item>...</#list>

Freemarker for JSP Developers

As a JSP developer you are familiar with JSPs in general and with writing CAE
templates with JSPs. In this section, you will learn about important differences.

Type-Hinting

Type-hinting in JSP or Freemarker templates helps IntelliJ Idea to offer you code
completion and to make the templates "green". The syntax of the required com-
ments is different in Freemarker than in JSP:

➞ Comments are marked with <#-- comment --> instead of <%-- comment
--%>

➞ The annotation is called @ftlvariable instead of @elvariable

➞ The attribute that names the typ-hinted object is called name instead of id

➞ The comment must have a single space after the opening comment tag

Example 6.13. Differ-
ence between JSP and
Freemarker type-hint-
ing comment

JSP:
<%--@elvariable id="self"

type="com.coremedia.blueprint.MyClass"--%>

Freemarker:
<#-- @ftlvariable name="self"

type="com.coremedia.blueprint.MyClass" -->

Passing Parameters

In JSP files, it was necessary to wrap arguments passed to taglibs or other function-
ality into quotes and to give them out via ${]. In Freemarker, this is no longer
necessary.

Example 6.14. Passing
parametersJSP:

<mytaglib:functionality name="${name}" booleansetting=true />

320CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | CoreMedia Themes

Freemarker:
<mymacro.functionality name=name booleansetting=true />

6.4.2 Web Development Workflow
This section contains the best practice web development workflow of CoreMedia.
It describes how to adapt your resource files in the CoreMedia workspace with fast
turnaround times and how you can deploy the files to the live system later (see
Section 6.3.12, “Client Code Delivery” [291] for details). It does not cover how to
write CSS or JavaScript files or how to configure and use the CoreMedia CAE.

Develop local, deploy
global

Web development usually takes place in IDEs or some other kind of source code
editor. And since development of web resources, aside from minor changes,
shouldn't take place in CoreMedia Studio, CoreMedia Blueprint has a solution, that
lets web developers work with resource files in the workspace until the files are
ready to be imported into the content repository.

CoreMedia Blueprint supports local resources as a simple yet powerful way for de-
velopers to work with workspace resources, rather than code objects in the content
repository.

Figure 6.23. CAE flow
in detail

Browser

Content Management Server

Local Workspace

themesContent Application Engine

live modus only

development modus only

1) get page

3a) deliver content
including web resources
and (optional) templates

5) deliver web resources
and templates

3b) deliver content
only linking web
resources

2) get content

4) get web resources

6) deliver page

Figure 6.23, “CAE flow in detail” [321] gives an overview of the idea behind local
resources.

1. The browser requests a page from the locally started CAE.

2. The CAE requests the content from the Content Server.

321CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

3. While in development mode, the Content Server delivers content such as Articles
and content items which link to the web resources.

In live mode, the Content Server also delivers the web resources to the CAE.

4. The CAE has got the editorial content which links to the web resources. Now,
the CAE resolves the local location of the web resources and requests the re-
sources from the file system.

5. The CAE reads the resources from the file system.

6. The CAE combines the content from the Content Server and the web resources
from the file system and delivers the requested page to the browser.

Workflow

Figure 6.24. Workflow
in detailLocal Workspace

cae-local-resources

exported content

Editing

VCS

Content Management
Server

Master Live Server

Server Import

Server Export

CMS Workspace
Commiting Publishing

Importing Importing

Exporting

Exporting

Daily Work

Release Work

Figure 6.24, “Workflow in detail” [322] gives an overview of the web development
workflow including the interaction between the different locations of web resources.
The "exported content" part of the local workspace contains files used for versioning
content itself for later reimport into a different CoreMedia Content Management
Server (find more in section “Exporting” [331]).

The complete workflow comprises the following steps:

1. Editing the web resources to fit yours needs

2. Building the sources with Grunt

3. Importing the local changes to the Content Management Server and Linking
the resources to the content.

322CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

This step is only necessary when you start with a new theme. Afterwards you
can work with local resources until you want to publish the changes to the live
system.

4. Previewing your changes in the preview CAE

5. Committing your changes (optional) to a VCS

6. Exporting the resouces (optional)

Software Requirements

On your computer you need the following:

➞ The Blueprint workspace which contains the web resources

➞ Your favorite tools to develop and maintain the web resources

➞ A locally running preview CAE to visualize your changes immediately

➞ Access to CoreMedia Studio to attach web resources to pages

For the development of web resources it is not relevant whether the Content
Management Server used by CAE and Studio is running locally or remote. So you can
use shared test infrastructure.

Editing Source Files

In general, editing a theme is a straightforward development task as soon as you
have set-up the preview. When you edit CSS files, Saas files or JavaScript files, add
images and, maybe, write Freemarker templates you will immediately see all
changes in your preview CAE.

All CoreMedia themes come with a Grunt watch taks, which includes a live reload
mode. This will automatically releoad your changed files (see https://git-
hub.com/gruntjs/grunt-contrib-watch#live-reloading).

However, before you can start editing a theme, you need a theme. You can either
edit an existing theme, or create a new theme. Creating a new theme requires
additional work, because before you can see the preview, you need to create a
new module, do an initial upload of your theme to the Content Server and link it to
a site.

Renaming or adding of templates will work smoothly, but deleting a template
will not work without clearing the cache. Empty the cache or restart the CAE to
see the affected changes.

323CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

https://github.com/gruntjs/grunt-contrib-watch#live-reloading
https://github.com/gruntjs/grunt-contrib-watch#live-reloading

Creating a New Theme

A theme is edited in an extension module in the workspace. The structure of a
theme is described in Section 6.4.1, “CoreMedia Themes” [311].

Extending an existing
theme

When you create a new theme it is a good idea to extend at least the CoreMedia
Blueprint basic theme because it deals with some common problems, such as con-
flicting JavaScript frameworks. The basic theme is located in modules/cae/cae-
themes/basic-theme.

Extending an existing theme requires two steps:

1. Add a dependency to this theme in the POM of your own theme. This is necessary
for code completion in your IDE.

2. Add links to all CSS and JavaScript files of the theme that you extend to the
theme descriptor of your new theme .

When you import resources from another theme, you need to follow a certain order:

CSS files First, you have to import the CSS files of the parent
theme, then your own files.

JavaScript files 1. Vendor-specific JavaScript files of the parent theme
2. Vendor-specific JavaScript files of your theme
3. CoreMedia-specific JavaScript files of the parent
theme
4. JavaScript files of your theme

The reason for this order is the use of noConflict(true) in the first CoreMedia-
specific JavaScript. Because, CoreMedia cannot customize third-party addons,
noConflict() can only be called after the inclusion of third-party addons. All
CoreMedia-specific JavaScript files use a CoreMedia-specific namespace for JQuery
to avoid conflicts. As a result, you cannot rely on $ and jQuery global scope vari-
ables.

Preparing the Preview

Immediate preview of your changes requires a local preview CAE on a Tomcat in
development mode and the usage of local resources.

Internally, the CAE handlers and link schemes will map the linked resource objects
of a page content in the repository to the files in the local workspace. For this, you
have to do the following configuration:

1. Add the paths to the resources of your theme to the extraResourcePaths
property of the Resources element in the tomcat-context.xml file of the
preview CAE Tomcat.

324CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

Example 6.15. Theme
paths in tomcat-con-
text.xml

<Resources
className="org.apache.naming.resources.VirtualDirContext

extraResourcePaths="${project.basedir}/../../extensions/corporate/corporate-theme/src/main/resources/META-INF/resources,
"${project.basedir}/../../extensions/corporate/corporate-theme/target/resources,
${project.basedir}/../../extensions/corporate/corporate-cae/src/main/resources

All paths must be in one line, separated by commas.

2. To start the local Tomcat in development mode, use the following command:

mvn -pl :cae-preview-webapp tomcat7:run -Pdevelopment-ports
-Dinstallation.host=<YourCMS>

a. The Maven setting cae.use.local.resources of the preview CAE must
be "true" in order to use local resources. This is the default setting.

b. The Maven setting cae.developer.mode of the preview CAE must be "true"
in order to run Tomcat in developer mode. This is the default setting

Local resources only work with a CAE started in a Tomcat in development
mode. Otherwise, the CAE will not initialize, throwing an IllegalStateEx
ception. If development mode is turned on, JavaScript and CSS content will
not be minified and merged into one JavaScript and one CSS resource.

Open your browser at http://localhost:40081/blueprint/servlet/<YourDemoS-
ite>.

3. You have to create and link a content structure in the Content Server which
corresponds to your local resource structure. The easiest way is to import your
resources in the content repository as described in Section “Import Changes
into Repository and Link to Content” [326] and link them afterwards to the site.

4. In order to see the effect of your changes, you have to build your resources
after each change. The easiest way is to use grunt watch. This will watch your
Sass, Javascript and Freemarker source files and will recompile them after each
change. See the README.md file in the corporate-theme module of the
workspace for details.

When you have configured the preview, you will see the effect of changed web
resources in the CAE in your local browser by navigating through the site that you
have changed.

Preview in local StudioWhen you have started a local CoreMedia Studio you can watch the changes more
comfortably in the Studio preview, because, by default, CoreMedia Studio uses the
CoreMedia CAE for preview which is installed on the same computer as Studio. The
Studio preview offers the ability to explicitly search for elements and display them

325CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

as preview without displaying the surrounding sites while still loading dependencies
like CSS styles from web resources.

Preview without local
Studio

When you do not want to build and start a local CoreMedia Studio, you can just copy
and paste the preview URL of a non-local Studio to a new browser window/tab
and change the hostname to your localhost. Therefore, you will see the preview
as it would be in Studio.

Committing (optional)

The next step is committing your local changes to the VCS of your choice to save
and finish your daily work.

Import Changes into Repository and Link to Content

You do not need to import every change into CoreMedia Content Server for your
daily work. Importing is only required when you create a new theme and when
you add or delete web resources from your theme. That is because the linked re-
sources in the Content Server have to correspond to your local resources.

The integrated Blueprint workflow for theme import requires the following Maven
plugins:

frontend-maven-plugin This plugin (see https://github.com/eirs-
lett/frontend-maven-plugin) is used to in-
tegrate Node, NPM and tools such as Grunt,
Bower, Gulp into your Maven workflow. The
plugin uses Grunt to build your Saas re-
sources and to put the Freemarker tem-
plates into a JAR file.

maven-assembly-plugin This plugin puts all generated web resources
into a Zip file and also adds the theme
descriptor to the file.

coremedia-webresource-content-
maven-plugin

This plugin (see https://documentation.core-
media.com/utilities/coremedia-webre-
source-content-maven-plugin/ for details)
creates CoreMedia XML conform content
from your web resources. This content is
ready for the import into the Content Server.

In short, the Blueprint workflow consists of the following steps:

1. You edit the native web resources in a theme. See Section 6.4.1, “CoreMedia
Themes” [311] for details.

2. You build the theme with the frontend-maven-plugin or use directly Grunt (see
the README.md file, in the corporate-theme extension).

326CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

https://github.com/eirslett/frontend-maven-plugin
https://github.com/eirslett/frontend-maven-plugin
https://documentation.coremedia.com/utilities/coremedia-webresource-content-maven-plugin/
https://documentation.coremedia.com/utilities/coremedia-webresource-content-maven-plugin/
https://documentation.coremedia.com/utilities/coremedia-webresource-content-maven-plugin/

3. The web resources are bundled into Zip artifacts with the maven-assembly-plugin
in the theme modules.

4. The coremedia-webresource-content-maven-plugin takes the themes artifact and
creates CoreMedia XML conform content.

5. Afterwards, you can use the serverimport tool (see Section “Serverimport/Server-
export” in CoreMedia Content Server Manual for details) to import the content
into the Content Server.

6. When you have imported the theme for the first time, you have to link it to the
appropriate site. You can do this in CoreMedia Studio.

The following sections describe these tasks in more detail:

Building and Packaging the Web Resources

Building the themeThe theme is build with Grunt. Either directly started, or with the maven-frontend-
plugin. When you want to add the templates to the theme, you have to start the
plugin with the withTemplates profile.

Example 6.16. Build-
ing the theme with
Grunt or Maven

grunt build

mvn install

Grunt is configured in the Gruntfile.js file. Mainly, Grunt processes the Saas
files and copies them together with the other resources into the target/re
sources/themes folder. The Freemarker templates are packaged into a JAR file
and also copied into the target folder.

Packaging the themeAs a second step, the maven-assembly-plugin takes the web resources from the
target directory and packs them into a Zip file. It also adds the theme descriptor
into the THEME-METADATA folder of the Zip file. The configuration of the maven-
assembly-plugin is taken from the assembly/resources-assembly-
descriptor.xml file.

The Maven build process also creates a theme JAR file which contains the tem-
plates, directly below the target folder. However, this file is not used.

Converting web resources into content items

Before you can import web resources into the CoreMedia repository, you have to
convert them into an XML format that can be imported. CoreMedia Blueprint contains
the coremedia-webresource-content-maven-plugin for this task (see https://docu-
mentation.coremedia.com/utilities/coremedia-webresource-content-maven-plugin/
for details).

When configured, the plugin processes the web resources of all dependencies with
type "zip" and classifier "theme" automatically during the Maven build and produces

327CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

contentserver-en.pdf#CMServerimportExport
contentserver-en.pdf#CMServerimportExport
https://documentation.coremedia.com/utilities/coremedia-webresource-content-maven-plugin/
https://documentation.coremedia.com/utilities/coremedia-webresource-content-maven-plugin/

XML content ready to be imported with the serverimport tool. The content files are
bundled into another Zip artifact.

Configure the plugin in your POM file as follows:

Example 6.17. Config-
uration for webre-
sources plugin

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>MyTheme</artifactId>
<version>${project.version}</version>
<classifier>theme</classifier>
<type>zip</type>

</dependency>
</dependencies>
<build>
<plugins>
<!-- Create Webresource content in target folder -->
<plugin>
<groupId>com.coremedia.maven</groupId>

<artifactId>coremedia-webresource-content-maven-plugin</artifactId>

<dependencies>
<!-- Provide the CSS importer implementation and its

configuration-->
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>css-importer-lib</artifactId>
<version>${project.version}</version>

</dependency>
<!-- Provide doctypes to create web resources as content-->

<dependency>
<groupId>${project.groupId}</groupId>

<artifactId>contentserver-blueprint-component</artifactId>

<version>${project.version}</version>
</dependency>

</dependencies>
<executions>
<execution>
<id>compile-resource-corporate-testdata</id>
<goals>
<goal>compile</goal>

</goals>
<phase>compile</phase>

</execution>
</executions>

</plugin>
</plugins>

</build>

Dependency on content
types

The module in which you execute the plugin requires a dependency on your theme
artifact. The plugin itself requires a dependency on CoreMedia content types.
However, the plugin is only capable of the CoreMedia Blueprint document types.
Even though the dependency to the document types might look generic, it is needed
only for technical reasons. That is because the plugin makes use of a temporary
content server internally.

328CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

Content modulesCoreMedia Blueprint comes with some test-data modules which provide the
content of the CoreMedia example sites. In the default configuration, these modules
include the themes content for input.

Even though presumably you do not maintain any articles and pictures in the project
workspace, you should add a content module to your project right now, because
it also serves as hook point to include the themes. You might use a content module
for some initial content like technical settings, symbols and the like.

Importing content into Content Server

When the coremedia-webresource-content-maven-plugin has created XML content,
import the content into the Content Server. For the local Chef deployment, this is
integrated in the deployment workflow. So, when you have integrated the content
creation into an existing content module as described above, your theme will
automatically be imported, when you create or update your Vagrant box.

Content of type CMJavaScript stores the JavaScript as XML in the repository.
However, some JavaScript minifier tools create minified JavaScript that contains
Unicode characters that are not allowed in XML. For example, U+001F or U+FEFF.
If you try to load or import JavaScript with such a character, you will get error
or log messages like Could not convert markup or InvalidProperty-
ValueException(errorCode: CAP-API-16176).

When you want to import the content manually, using the serverimport tool, have
a look in Section 3.5.3, “Locally Starting the Components” [85]. You will find a
description on how to import content from the workspace into the server. In Section
“Serverimport/Serverexport” in CoreMedia Content Server Manual you will find more
details about the serverimport tool.

Linking

After importing the web resources, they are available on your CoreMedia Content
Server below the Themes folder. If you added new web resources, you have to link
them to the root page of a site (see Section 6.3.12, “Client Code Delivery” [291]).
To do this, you can use CoreMedia Studio or CoreMedia Site Manager. If you just
changed an existing web resource and do not want to change linking you can skip
this step.

To link the theme, proceed as follows:

1. Open the Page to which you want to add the theme in CoreMedia Studio.

2. Open the System tab.

3. Link the aggregating CSS and JavaScript files from the main folder of the
theme to the Associated CSS and Associated JavaScripts properties respectively
(see Figure 6.25, “ Linking a theme to site root ” [330]).

329CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

contentserver-en.pdf#CMServerimportExport
contentserver-en.pdf#CMServerimportExport

Figure 6.25. Linking a
theme to site root

Release work

The release work consists of two parts:

➞ publishing the content

➞ exporting the content to your VCS (optional)

Publishing

Just like every other content, web resources imported to the Content Server need
to be published in order to let the changes affect the live CAE. See the CoreMedia
Studio User Manual for details about publishing content.

330CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

studio-user-en.pdf#StudioUserManualEn
studio-user-en.pdf#StudioUserManualEn

Exporting

If you want to export the resources to a local repository, you need the server export
tool. For details of the server export tool consult Section “Serverimport/Serverex-
port” in CoreMedia Content Server Manual.

This can be useful if you want to store content in your local repository, for example
to use versioning of the content itself for later re-import into a different Content
Management Server. You then need to export content created for the web resource
and every content you linked the content to.

Keep in mind that if you have dependencies inside your web resources, for example
you have a CSS file which styles the background of an element using a background
image, you need to export the created content for the image file as well. Keep in
mind that the content is just exported to the local file system so you need to
commit the created files to the repository afterwards.

331CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Web Development Workflow

contentserver-en.pdf#CMServerimportExport
contentserver-en.pdf#CMServerimportExport

6.5 Localized Content Management
One of the primary challenges when engaging in a global market is to reach all
customers in different countries.

The first most obvious task is to provide your website contents in different lan-
guages. But in addition you may also want to customize your advertised products
to local holidays or meet the different legal requirements in different countries.

CoreMedia DXP 8's Multi-Site concept assists you in meeting these requirements.

6.5.1 Concept
There are many possible approaches to fulfill the requirements for providing mul-
tiple sites in different countries. CoreMedia DXP 8 offers a solution which you can
customize to your needs and to the workflows you are used to.

The following chapter will present the basic ideas and concepts of CoreMedia DXP 8's
Multi-Site to you.

Terms

The multi-site concept and documentation is based on the following terms. You
may skip this section for now and return to it later when these terms are referenced.

Locale locale = country + lan-
guage

The term locale refers to the concept of
translation and localization. Thus, it is in
general a combination of a country and a
language. So if the country Switzerland re-
quires contents to be available in English,
Italian, German and Romansh, four locales
have to be defined.

IETF BCP 47The locale is represented as IETF BCP 47
language tag (Tags for Identifying Lan-
guages).

Site A site is a cohesive collection of web pages
in a single locale, sometimes referred to as
localized site. Technically a site consists of:

➞ the site folder,

➞ the site indicator,

➞ the site's home page and

332CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Localized Content Management

➞ other contents of the site.

Master Site A master site is a site other localized sites
are derived from. A localized site might it-
self take the role of a master site for other
derived sites. This reflects the need that
your localized Canadian site (which is in
English) needs another localized variant in
French.

Site Folder All contents of a site are bundled in one
dedicated folder. A typical example of a site
folder is:

/Sites/MySite/Canada/French

Site Indicator A site indicator is the central configuration
object for a site. It is an instance of the
content type CMSite. It explicitly config-
ures:

➞ the site's home page,

➞ the site identifier,

➞ the site name,

➞ the site's locale,

➞ the master site and

➞ the site manager group.

It also implicitly defines the root of the site
folder.

Home Page The site's home page is the main entry point
for all visitors of a site. Technically it is also
the main entry point to calculate the default
layout and the contents of a site.

Site Identifier The site identifier needs to be unique
among all sites. It can be used to reference
a site reliably also outside the CMS for ex-
ample in configuration files.

Site Name The site name is the name of a master site
and all derived sites. A derived site inherits

333CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Concept

the site name from its master site and must
not change it.

Site Manager Group Members of a site manager group are typic-
ally responsible for one localized site. The
recommendation is to have one dedicated
group for each site with appropriate permis-
sions applied for the site folder.

Responsible means that they take care of
the contents of that site and that they ac-
cept translation tasks for that site. If a site
manager is allowed to also trigger transla-
tion tasks from the master site to their site
they need to be be added to the translation
manager role.

Global and Local Site
Manager

While the Site Manager Groups are typically
local to their site, thus represent the hori-
zontal layer, CoreMedia Digital Experience
Platform 8 also introduces a vertical layer
referred to as global site manager. As a con-
sequence the members of the horizontal
layer are sometimes referred to as local site
managers.

Global site managers have an overview over
all sites while local site managers focus on
their sites with additionally required access
to the particular master site for translation
processes.

Translation Manager Role Editors in the translation manager role are
in charge of triggering translation workflows
either from or to a site.

Sites Structure

CoreMedia DXP 8 assumes that your localized sites are all derived from one master
site. The site hierarchy might be nested, thus a site derived from the master site
again might have derivatives. You can trigger the localization process from your
master site, directly derived sites will adapt and forward changes to their derived
sites.

The examples below refer to the default configuration which comes with CoreMedia
Blueprint. To adapt the structure to your needs you have to configure the SiteMod
el - see also Section “Site Model and Sites Service” [342].

334CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Concept

Multi-Site Folder Structure

All elements belonging to a site structure are placed in one dedicated folder. In
this folder you will find the master site as well as all derived localized sites.

Another set of master and derived sites could be created in parallel to that site
following the same concept.

Example 6.18. Multi-
Site Folder Structure
Example

/Sites/
MySite/

United States/
English/ master
Spanish/ derived from U.S. English

Canada/
English/ derived from U.S. English
French/ derived from Canadian English

MyOtherSite/ another master site structure

The folder structure of the master site and its target sites should be kept equal to
avoid the automatic recreation of removed or renamed folders during the translation
workflow.

In addition to this common aspects for all sites might be placed outside this folder
structure. For details see Section 6.3.1, “Folder and User Rights Concept” [264].

Site Folder Structure

The central entry point into the site folder is the site indicator. It points implicitly
to the site's root folder (as it needs to be located at the same folder hierarchy depth
among all sites in the system) and points explicitly to the site's home page.

Assuming that your site indicator is always placed in some folder like Navigation
your site folder structure may look like this:

Example 6.19. Site
Folder Structure Ex-
ample

MySite/
United States/

English/
Navigation/

MySite [Site] site indicator
MySite site's home page
...

While the above describes the mandatory folder structure for a site, there are ad-
ditional structures which adhere to the proposed separation of concerns in Section
6.3.1, “Folder and User Rights Concept” [264], thus within a site you can have sev-
eral user roles taking care of different aspects of the site as there are:

335CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Concept

➞ Editorial content: For example, articles, images, collections etc. This is the
real content of a site that is rendered to the web page. They are located in
folders Editorial, Pictures and Videos.

➞ Navigation content: Channels that span the navigation tree and provide
context information, as well as their page grids (see also Section 6.3.2,
“Navigation and Contexts” [265]). These contents are located in a folder
named Navigation.

➞ Technical content: Site specific, technical documents, like actions, settings,
view types, etc. They can be found in folder named Options.

Site Interdependence

Having a site derived from its master you will have two layers of interdependence:

1. The site indicator points to its master site indicator.

2. Each derived document points to its master annotated by the version of the
master when the derived document retrieved its last update from the master.
This information is used in the update process when a new master version re-
quires its derived contents to be translated again.

3. A site indicator inherits the site name from its master. If a site indicator has no
master it has to define the site name, which will be used for all derived sites.

Figure 6.26. Multi-Site
InterdependenceSite Folder (Master)

Document (Master)

Site Indicator (Master)

Site Folder (Derived)

Document (Derived)

Site Indicator (Derived)

implicitly by folder

Master + Version

implicitly by folder

Master

The master property is configured as weak link by default. Thus, you might publish
derived sites before (or without) publishing the master site.

Modifying the Site Structure

Whenever possible, the structure of a site should not be changed after it has been
set up initially. In particular, you should not:

336CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Concept

➞ Change the id of a site. If you do so, you must at least re-index its entire
master site, if any. See Section 5.2, “Configuring the CAE Feeder” in CoreMedia
Search Manual for details on the re-indexing procedure. However, the site
id might also be stored in other places that a simple re-indexing will not
update.

➞ Move a content to a different site. If you do so, you must at least update the
master links of the affected contents to point into the master site of the new
site.

➞ Change the locale of a site. If you do so, you must at least update the locale
stored in each individual content of the site.

➞ Change the master site of a site. If you do so, you must at least update the
master links of all contents in the site.

After significant changes of the site structure, you should run the cm validate-
multisite tool to detect inconsistencies in the content. See Section “Validate
Multi-Site” in CoreMedia Content Server Manual for details.

6.5.2 Administration
Using CoreMedia DXP 8's Multi-Site concept requires some administrative efforts
which are described in this section.

Locales Administration

Each site is bound to a specific locale (see Locale [332]). In order to ensure a con-
sistent usage of locale strings across multiple sites that might be managed in a
single content repository, the entire list of available locales is maintained in a
central document of type CMSettings.

LocaleSettings docu-
ment for locale config-
uration

The document /Settings/Options/Settings/LocaleSettings contains in
the property Settings a String List property availableLocaleswhich contains
locale strings. Example 6.20, “ XML of locale Struct ” [337] shows the XML structure
of the Struct:

Example 6.20. XML of
locale Struct<settings>

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">

<StringListProperty Name="availableLocales">
<String>de</String>

</StringListProperty>
</Struct>

</settings>

337CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Administration

search-en.pdf#ConfigurationCAEFeeder
contentserver-en.pdf#ValidateMultisite
contentserver-en.pdf#ValidateMultisite

Please make sure, that the path to the LocaleSettings is configured in the
Studio properties, as described in Section 7.15, “Available Locales” in CoreMedia
Studio Manual.

For providing a new locale, you can simply open the document LocaleSettings
and add a new entry to the list of locales. See Section 4.6.4, “Editing Struct Proper-
ties” in CoreMedia Studio User Manual for details on how to edit a struct property
and add items to string lists. Figure 6.27, “Locales Administration in CoreMedia
Studio” [338] shows a Studio tab in which the LocalesSettings document is
being edited.

Supranational regionsSometimes you might want to define locales for a supranational region such as
Africa or Latin America. In this case you can add the language code followed by
the UN M.49 area code as described in http://en.wikipedia.org/wiki/UN_M.49.
For Spanish in Latin America and the Caribbean add, for example, "es-419".

Figure 6.27. Locales
Administration in
CoreMedia Studio

Groups and Rights Administration

This chapter describes all groups and users, that have to be defined for localization.
There are several explicit groups and one user, that can be configured in the
SiteModel - see also Section “Site Model and Sites Service” [342]. For an overview
of predefined editorial users that come with CoreMedia Blueprint have a look at
Appendix - Predefined Users [484].

translation manager
role

The translation manager role is defined once in the property translationMan
agerRole of the SiteModel. It is a required group for every user that needs to
start a translation workflow and to derive a site.

338CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Administration

studio-developer-en.pdf#VailableLocales
studio-user-en.pdf#newStructEditor
studio-user-en.pdf#newStructEditor
http://en.wikipedia.org/wiki/UN_M.49

global site managerIn case, you do not want to allow every translation manager to also derive sites, it
is advisable to create an additional global site manager group, that has the right,
to make modifications in the global sites folder.

site manager groupMembers of a site manager group take care of the contents of one or more sites.
They may for example accept translation workflows if they manage the correspond-
ing target site of a workflow. Or they may start a translation workflows from the
master site. For the latter, they must also be member of the translation manager
role group, which is described above.

The site manager group can be defined in the site indicator. The name of the cor-
responding property field is defined in the siteManagerGroupProperty of the
SiteModel. If not specified, the group "administratoren" will be used by default.
This is also the fallback if the defined group is not available.

There are two ways to set the site manager group:

➞ While deriving a new site in the sites window, you can set the group.

➞ Directly in the site manager group property of the site indicator.

translation workflow
robot user

For technical reasons the actual changes during a translation workflow are per-
formed as the translation workflow robot user as configured in the property
translationWorkflowRobotUser of the SiteModel. The user needs read and
write access on the sites taking part in a translation workflow. As this user is only
technical, access to the editor and filesystem services should be restricted, which
can be done in the file jaas.conf in the module content-management-server-
webapp. (For details see Section “LoginModule Configuration in jaas.conf” in
CoreMedia Content Server Manual).

Overview of required users and groups for multi-site

Table 6.18, “Suggested Users and Groups for multi-site” [339] shows an example,
how the configuration of user groups may look like in CoreMedia Blueprint.

Table 6.18. Suggested
Users and Groups for
multi-site

RemarkRightsMember ofNameType

approver-role,
publisher-role,

global-site-
manager

group ➞ /Home (folder:
RMDS, content:
RSF)translation-

manager-role ➞ /Settings (folder
and content: R)

➞ /System (folder
and content: R)

➞ /Sites (folder:
RAPSF, content:
RMDAPS)

339CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Administration

contentserver-en.pdf#LoginModule

RemarkRightsMember ofNameType

approver-role,
publisher-role,

local-site-man-
ager

group ➞ /Home (folder:
RMDS, content:
RSF)translation-

manager-role ➞ /Settings
(folder and con-
tent: R)

➞ /System
(folder: RF, con-
tent: RMD)

➞ /Themes
(folder: RAPF,
content: RMDAP)

➞ /Sites/<mas
ter-site-
root-
folder>
(folder and con-
tent: R)

Suggested pattern con-
figured in siteMan

local-site-man-
ager

manager-<lan-
guage-tag>

group ➞ /Sites/<site-
root-
folder>
(folder: RAPF,
content: RMDAP)

agerGroupPattern
of the SiteModel

Configured intransla
tionManagerRoleof
the SiteModel

translation-
manager-role

group

translation-
workflow-ro-
bots

group ➞ / (folder and
content: R)

➞ /Sites (folder:
RFA, content:
RMDA)

Configured intransla
tionWorkflowRo

translation-
workflow-ro-
bots

translation-
workflow-robot

user

botUser of the Site
Model

The rights abbreviations denote:

➞ R - read

➞ M - modify / edit

340CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Administration

➞ D - delete

➞ A - approve

➞ P - publish

➞ F - folder

➞ S - supervise

For further information about the rights, please refer to chapter "User Rights
Management" in [CoreMedia Content Server Manual].

Definition while deriving site

When deriving a new site, a proposal for the name of the site manager group is
generated from a predefined pattern. By default, the name starts with manager
followed by the language tag of the selected target locale (see also Figure 6.28,
“Derive Site: Setting site manager group” [341]). This pattern may be configured
in the property siteManagerGroupPattern of the SiteModel.

Figure 6.28. Derive
Site: Setting site man-
ager group

Adapting site manager group later on

If the site already exists, the name of the site manager group can be set or modified
directly in the site indicator (see Figure 6.29, “Site Indicator: Setting site manager
group” [342]).

341CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Administration

Figure 6.29. Site Indic-
ator: Setting site man-
ager group

If the group does not exist, the property field will be marked red and the creation
of the site or the assignment of the group may not be performed, thus the group
needs to have been created before. Read more about users, groups and adminis-
tration in Section 3.16, “User Administration” in CoreMedia Content Server Manual.

6.5.3 Development
CoreMedia DXP 8's Multi-Site concept contains an example implementation for
translation and localization processes. As you might have different requirements,
for example defined by a translation agency which does the translation for you,
the Multi-Site feature is highly configurable. Read the following sections to learn
about the configuration options.

Site Model and Sites Service

The site model and the sites service are strongly connected with each other. While
the site model consists of properties defining the site structure, the sites service
uses this model to work with sites programmatically.

Sites Service

The sites service is designed to access the available sites and to determine the re-
lation between sites and contents. The site model configures the behavior of the
sites service.

For developing multi-site features the main entry point is the sites service.

Site Model

The site model is the centralized configuration of the CoreMedia Multi-Site beha-
vior. Its configuration is required in several applications which are listed below.
While section Site Model Properties [343] lists the configurable properties (exception:

342CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

contentserver-en.pdf#UserAdministration

CoreMedia Site Manager with an extra description in Site Model in CoreMedia Site
Manager [347]) the different configuration locations are explained per application:

➞ Site Model in CoreMedia Studio [346]

➞ Site Model in Content Application Engine [346]

➞ Site Model in Command Line Tools [347]

➞ Site Model in CoreMedia Site Manager [347]

Site Model Properties

The following table illustrates the configurable site model properties. To get to
know more about the properties and patterns used, consult the Javadoc of
com.coremedia.cap.multisite.SiteModel.

Table 6.19. Properties
of the Site Modelsitemodel.site.indicator.documentType

Specifies the content type of the site indicator document. Each site must
only have one instance of that content type.

Description

CMSiteDefault Value

sitemodel.site.indicator.depth

Defines the depth under the root of the site folder, where the site indic-
ator document resides.

Description

1Default Value

sitemodel.site.indicator.namePattern

Name pattern, which will be used for the name of the site indicator doc-
ument when deriving a site. Only placeholder {0} is available for this

Description

property. For an overview of placeholders see Table 6.20, “Placeholders
for Site Model Configuration” [345].

{0} [Site]Default Value

sitemodel.site.rootdocument.namePattern

Defines the pattern for the site's home page document name, used while
deriving a site. Only placeholder {0} is available for this property. For

Description

an overview of placeholders see Table 6.20, “Placeholders for Site Model
Configuration” [345].

{0}Default Value

sitemodel.site.manager.groupPattern

Defines the pattern for responsible default site manager group name
when deriving a site. For available placeholders see Table 6.20, “Place-
holders for Site Model Configuration” [345]

Description

343CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

https://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs//com/coremedia/cap/multisite/SiteModel.html
https://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs//com/coremedia/cap/multisite/SiteModel.html

manager-{4}Default Value

sitemodel.siteManagerGroupProperty

Defines the property of the site indicator document holding the site
manager group name.

Description

siteManagerGroupDefault Value

sitemodel.translationManagerRole

Defines the group name denoting the role which permits a user to start
a translation workflow.

Description

translation-manager-roleDefault Value

sitemodel.idProperty

Defines the property of the site indicator document which contains the
site id.

Description

idDefault Value

sitemodel.nameProperty

Defines the property of the site indicator document which contains the
site name.

Description

nameDefault Value

sitemodel.localeProperty

Defines the property of translatable content and the site indicator docu-
ment, which holds the locale of the content.

Description

localeDefault Value

sitemodel.masterProperty

Defines the property of translatable content and the site indicator, which
contains the link the master document.

Description

masterDefault Value

sitemodel.masterVersionProperty

Defines the property of translatable content, which contains the version
the corresponding master document.

Description

masterVersionDefault Value

sitemodel.rootProperty

Defines the property of the site indicator document, which refers to the
home page document of this site.

Description

rootDefault Value

sitemodel.uriSegmentProperty

344CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

Defines the property of the site's home page content type, which defines
the root URI segment of the site.

Description

segmentDefault Value

sitemodel.uriSegmentPattern

Defines the pattern for the default root URI segment when deriving a
site. For available placeholders see Table 6.20, “Placeholders for Site
Model Configuration” [345].

Description

{0}-{4}Default Value

sitemodel.rootFolderPathPattern

Defines the pattern to determine the site folder for a new derived site.
For available placeholders see Table 6.20, “Placeholders for Site Model
Configuration” [345].

Description

/Sites/{0}/{6}/{5}Default Value

sitemodel.rootFolderPathDefaultCountry

Defines the folder name for the country folder, if the locale chosen while
deriving a site defines no country explicitly.

Description

NO_COUNTRYDefault Value

sitemodel.translationWorkflowRobotUser

Defines the user name of the user responsible for creating derived content
during a translation workflow.

Description

➞ The user should have read / write access on all localizable Sites.

➞ The user should not be allowed to use the editor and filesystem
services.

translation-workflow-robotDefault Value

Site Model Placeholders
Table 6.20. Placehold-
ers for Site Model Con-
figuration

ExampleDescriptionPlace-
holder

MySitesite name{0}

ensite locale's language code{1}

USsite locale's country code (defaults to language code, if not
available)

{2}

345CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

ExampleDescriptionPlace-
holder

u-cu-usdsite locale's variant (defaults to country or language code,
if not available); using BCP 47 Extensions

{3}

en-US-u-cu-usdsite locale's IETF BCP 47 language tag{4}

Englishsite locale's language display name (localized in U.S. Eng-
lish); only available forsitemodel.rootFolderPath-
Pattern

{5}

United Statessite locale's country display name (localized in U.S. English);
only available forsitemodel.rootFolderPathPat-
tern

{6}

_arevelasite locale's variant with the prefix variantPrefix
configured in site model's Spring context; defaults to empty

{7}

String; only available for sitemodel.rootFolder-
PathPattern. See IANA Language Subtag Registry for
valid registered variants.

Application Configurations

For details of the configuration in every application, please read the documentation
below.

CoreMedia Studio

The site model default properties can be adjusted in the application.proper
ties file in the src/main/webapp/WEB-INF directory of the studio-webapp
module. See Chapter 3, Deployment in CoreMedia Studio Manual for further inform-
ation.

Content Management Server

The site model default properties can be adjusted in the application.proper
ties file in the src/main/webapp/WEB-INF directory of the content-manage
ment-server-webapp module. See Section 3.1, “Structure of Content Server In-
stallation” in CoreMedia Content Server Manual for further information.

Content Application Engine

The site model default properties can be adjusted in the component-blueprint-
cae.properties file in the src/main/resources/META-INF/coremedia
directory of the cae-base-component module. Thus, the configuration applies
to the Live CAE as well as to the Preview CAE. See CoreMedia Content Application
Developer Manual for further information.

346CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
studio-developer-en.pdf#Deployment
contentserver-en.pdf#BuildingContentServer
contentserver-en.pdf#BuildingContentServer
cae-developer-en.pdf#ContentApplicationDeveloperManual
cae-developer-en.pdf#ContentApplicationDeveloperManual

Command Line Tools

The site model default properties can be adjusted in the commandline-tools-
sitemodel.properties file in the properties/corem directory of the cms-
tools-application module.

CoreMedia Site Manager

The Site Manager provides only rudimentary support of the multi-site features es-
pecially for backwards compatibility to old CoreMedia systems. For the full set of
features please use CoreMedia Studio.

To migrate from existing multi-site features of Site Manager you need to adapt the
editor.xml for example by adding a SiteModel.

Example 6.21, “SiteModel in editor.xml” [347] shows an example for adding the
SiteModel to editor.xml.

Example 6.21. SiteMod-
el in editor.xml<Editor>

<!-- ... -->
<SiteModel
siteIndicatorDocumentType="CMSite"
siteIndicatorDepth="1"
idProperty="id"
rootProperty="root"
masterProperty="master"
localeProperty="locale"/>

<!-- ... -->
</Editor>

Mind that for changing property names of master and masterVersion you also
need to adapt property editors for the versioned master reference as shown in
Example 6.22, “Versioned Master Link in editor.xml” [347].

Example 6.22. Ver-
sioned Master Link in
editor.xml

<Document type="..." viewClass="...">
<!-- ... -->
<Property
name="master"
editorClass="hox.corem.editor.toolkit.property.VersionLinkEditor"

versionProperty="masterVersion"/>
<Property
name="masterVersion"
editorClass="hox.corem.editor.toolkit.property.InvisibleEditor"/>

<!-- ... -->
</Document>

Content Type Model

While you might create your very own content type model, the following description
is based on the assumption that you use the content type model of CoreMedia

347CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

Blueprint. For a custom content type model you must meet certain requirements
which are described at the end of this section.

Content Types

The base content type for any contents which require to be translated is CMLocal
ized. For further information see Section 9.6, “Content Type Model” [476].

Example 6.23. CMLoc-
alized<DocType Name="CMLocalized" Parent="CMObject" Abstract="true">

<StringProperty Name="locale" Length="64"/>
<LinkListProperty Name="master" Max="1"

LinkType="CMLocalized"
extensions:weakLink="true"/>

<IntProperty Name="masterVersion"/>
...

</DocType>

Weak Link Attribute

The contents of each site have to be published and withdrawn independently of
their master. Therefore, the weakLink attribute of every master property must be
set to true - see also Content Type Model - LinkListProperty in CoreMedia Content
Server Manual.

Translatable Properties

The properties that have to be translated when in derived sites are marked as
translatable in the content type model by attaching the extensions:translat
able attribute to the property declaration - see also Content Type Model - Trans-
latable Properties in CoreMedia Content Server Manual.

Example 6.24. CMTeas-
able<DocType Name="CMTeasable" Parent="CMHasContexts" Abstract="true">

<LinkListProperty Name="master" Max="1"
LinkType="CMTeasable"
Override="true"
extensions:weakLink="true"/>

<StringProperty Name="teaserTitle" Length="512"
extensions:translatable="true"/>

<XmlProperty Name="teaserText" Grammar="coremedia-richtext-1.0"
extensions:translatable="true"/>

<XmlProperty Name="detailText" Grammar="coremedia-richtext-1.0"
extensions:translatable="true"/>

...
</DocType>

Automatically Merged Properties

Usually all non-translatable properties in the master content will be applied auto-
matically to the derived content when a translation task is accepted. This helps to
keep binary and structural data in sync between sites, such as images, crops, set-
tings, and the navigation hierarchy, and complements the XLIFF-based update of
translatable properties. To enable the automatic merge for a translatable property

348CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

contentserver-en.pdf#CTM-LinkListProperty
contentserver-en.pdf#CTM-TranslatableProperties
contentserver-en.pdf#CTM-TranslatableProperties

or disable the automatic merge for a non-translatable property the exten
sions:automerge attribute has to be attached.

Example 6.25. CMSet-
tings<DocType Name="CMSettings" Parent="CMLocalized">

<LinkListProperty Name="master" Max="1" LinkType="CMSettings"
Override="true" extensions:weakLink="true"/>
<XmlProperty Name="settings" Grammar="coremedia-struct-2008"

extensions:translatable="true" extensions:automerge="true"/>
<StringProperty Name="identifier" Length="100"/>

</DocType>

Custom Content Type Models

Even if it is not recommended, you can use your own content type model with the
Multi-Site feature of CoreMedia DXP 8. Prerequisite is, that you can configure the
Site Model mentioned before to meet the requirements of your own content type
model. In addition, you probably need to adapt your document type model to fit
the requirements of the multi-site concept.

Therefore, every content type, which may occur in a site must contain all properties,
listed below.

➞ master

➞ masterVersion

➞ locale

Please adapt the configuration of each property to the properties of CMLocalized
in the example above.

ServerImport and ServerExport

Both serverimport and serverexport have a special handling built in for the
master and masterVersion properties. The export will store the translation state
of a derived document and on import efforts are taken to reestablish a comparable
translation state.

For the concrete names of the master and masterVersion properties, the
SiteModel has to be provided to the tools, which is done via Spring in the file
COREM_HOME/properties/corem/serverimportexport-context.xml (In
CoreMedia Blueprint this file is added in the cms-tools-application module).

349CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

Examples:

The examples assume that you export a document and its master and import it
afterwards into a clean system. The table uses # (hash mark) to denote contents
having the given latest version number.

Master (before) The master version before export. none means that no
master link is set.

Version (before) Value of the master version property of the derived
document before export. none means that no version is
specified yet which actually marks derived documents
as not being up to date with its master document.

State (before) The translation state of the derived document before
export.

Master (after) The master version after import (actually always #1).

Version (after) Value of the master version property of the derived
document after import.

State (after) The translation state of the derived document after im-
port.

Table 6.21. Example
for server export and
import for multi-site

CommentState (after)Ver-
sion
(after)

Mas-
ter
(after)

State (be-
fore)

Ver-
sion
(be-
fore)

Mas-
ter
(be-
fore)

The master and derived docu-
ment were up to date before

up to date1#1up-to-date5#5

export (derived document is
most recent localization of its
master). Thus, after import the
same state is set.

The master and derived docu-
ment were not up to date be-

master ver-
sion des-
troyed

0#1not up-to-date4#5

fore export. Thus, after import
the value of the master version
property is set to a special
version number denoting that
the derived content is not up-
to-date. On API level this is re-
garded as if the referred mas-
ter version got destroyed
meanwhile. For the editor the
document will appear as being
not up-to-date.

350CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

CommentState (after)Ver-
sion
(after)

Mas-
ter
(after)

State (be-
fore)

Ver-
sion
(be-
fore)

Mas-
ter
(be-
fore)

Derived document was never
localized from its master. Thus,

not trans-
lated yet

none#1not translated
yet

none#5

the same state applies after
import.

Corrupted content: No special
logic is applied. The overall

no master5noneno master5none

approach for import and ex-
port is defensive thus if the
state was invalid before, the
fallback is to use the default
behavior from import and ex-
port keeping the values as is.

XLIFF Integration

Translation jobs can be represented using the XLIFF, the XML Localization Interchange
File Format. XLIFF is an OASIS standard to interchange localizable data tools as for
example used by translation agencies. An XLIFF file contains the source language
content of translatable properties from one or more documents. It is then enriched
by a translation agency to contain the translated content, too. CoreMedia DXP 8
support XLIFF 1.2, where version 1.2 is the most recent final specification.

An XLIFF file is structured into multiple translation units. While a string property
is encoded as a single translation unit, a richtext property is split into semantically
meaningful parts, comprising for example a paragraph or a list item. Translation
units are then grouped, so that units belonging to a single property are readily
apparent.

All properties of a single document are included in a single file section according
to the XLIFF standard. A custom attribute allows the importer to identify the target
document that should receive the translation, as supported by the XLIFF standard.
Translation tools must preserve this extension attribute when filling the target
content into the XLIFF file.

The following fragment shows the start tag of a <file> element for translating
from English to French, indicating the source document 222 and the target docu-
ment 444.

Example 6.26. XLIFF
fragment<file

xmlns:cmxliff=
"http://www.coremedia.com/2013/xliff-extensions-1.0"

351CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

original="coremedia:///cap/version/222/1"
source-language="en"
datatype="xml"
target-language="fr"
cmxliff:target="coremedia:///cap/content/444">

Translation Workflow

Translation Workflow Configuration

This section describes general configuration options for translation workflows.

XLIFF

The handling of empty translation units during XLIFF import can be configured
using the following properties:

Table 6.22. XLIFF
PropertiesDefault ValueDescriptionProperty Name

IGNORE_WHITESPACEConfigure handling of empty
trans-unit targets for XLIFF
import. Possible values:

translate.xliff.im-
port.emptyTransUnit-
Mode

➞ IGNORE: Empty tar-
gets are allowed. On
import the empty
translation unit will re-
place a possibly non-
empty target and thus
delete its contents.

FORBIDDEN: No
empty targets are al-
lowed

IG-
NORE_WHITESPACE:
Empty targets are only
allowed where the
matching source is
empty or contains only
whitespace characters

[\\s\\p{Z}]*Configure the regular expres-
sion that determines which

translate.xliff.im-
port.ignorable-
WhitespaceRegex characters are counted as ig-

norable whitespace. This
configuration is only used
when trans-

352CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

Default ValueDescriptionProperty Name

late.xliff.im-
port.emptyTransUnit-
Mode is set toIG-
NORE_WHITESPACE.

Translation Workflow Studio UI

The translation workflow UI in CoreMedia Studio consists of several panels that
enable site managers to start, view and control a translation workflow. Like the
workflows themselves (see section “Configuration and Customization” [364]), these
panels are also highly customizable.

To get a glance of the Workflow UI see Section 2.4.2, “Control Room” in CoreMedia
Studio User Manual and Section 4.7.3, “Translating Content” in CoreMedia Studio
User Manual.

addTranslationWorkflowPlugin

The configuration of the workflow panels is done in the ControlRoomStudioPlu
gin.exmlusing thecom.coremedia.cms.editor.controlroom.config.ad-
dTranslationWorkflowPlugin. The addTranslationWorkflowPlugin
configures four separate panels for one processDefinitionName:

➞ startPanel:com.coremedia.cms.editor.controlroom.config.ab
stractStartTranslationWorkflowPanel

The panel to start one or more translation workflows. It creates the Process
instances, sets process variables and finally starts the process.

➞ inboxPanel:com.coremedia.cms.editor.controlroom.con
fig.workflowForm

The panel to display and control a Task in the user's inbox.

➞ pendingPanel:com.coremedia.cms.editor.controlroom.con
fig.workflowForm

The panel to display a Process in the user's pending list.

➞ finishedPanel:com.coremedia.cms.editor.controlroom.con
fig.workflowForm

The panel to display a finished Process in the user's finished list.

workflowForm

As you can see, the type of all these panels except the startPanel is
com.coremedia.cms.editor.controlroom.config.workflowForm. This

353CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

studio-user-en.pdf#controlRoom
studio-user-en.pdf#TranslatingContent

is the base component for displaying Processes and Tasks and it is inspired by
the com.coremedia.cms.editor.sdk.config.documentForm. Like the
documentForm the workflowForm has some configuration options that are
provided to the form by the framework and are forwarded to nested items using
component defaults:

➞ bindTo

A value expression returning the process to show.

➞ bindToTask

A value expression returning the task to show. If this form displays a process
and not a task (especially in the finished list) this option is null.

➞ forceReadOnlyValueExpression

An optional ValueExpression which makes the component read-only if it is
evaluated to true.

➞ processDefinitionName

The name of the definition of processes that may be displayed using this
form. This configuration option is not forwarded to nested items.

For detailed information consult the CoreMedia Studio ActionScript API.

Customization

Most panels that are used by default only have very few configuration options.
This means that if you want to customize these, you will likely have to implement
your own workflowForms or start panel.

The only exception is the defaultTranslationWorkflowDetailFrom, which
can be configured with the state transitions of the workflow. When you have a look
at the provided translation workflow (see Section 6.6.2, “Predefined Translation
Workflow” [362]), you will notice a process variable called translationAction.
This variable is used to let the user select the next workflow step, which works by
setting the value of the translationAction variable to the selected value of
the radio group shown in the form. A click on the [Apply] button will then com-
plete the Translate task, which is followed by a Switch task that maps the value
of the translationAction to a successor task.

So, by adding a new Switch case and a new successor task for example, you can
easily create another translation option. The mapping from UI to workflow is done
with the workflowStateTransitions configuration option of the default-
TranslationWorkflowDetailFrom. This is basically a map from the current
value of the translationAction called state to a list of possible next values
for the translationAction called successors. Each workflowStateTrans
ition creates a radio group with the successors as radio buttons, that will be
displayed, when the current value of the translationActionmatches the state.

354CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

https://releases.coremedia.com/dxp8/7.5.45-10/distribution/asdoc/

Localization

Localization of the translation workflow UI is done in the file BlueprintProcess
Definitions.properties, which uses the following patterns:

➞ <ProcessDefinition-name>_text: the name of the ProcessDefini
tion

➞ <ProcessDefinition-name>_state_<state>_text: the name of a
state or successor of a workflowStateTransition

➞ <ProcessDefinition-name>_task_<task>_text: the name of a Task

355CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Development

6.6 Workflow Management
In this chapter you will find a description of the predefined workflows as well as
the workflow actions that are needed to customize existing workflows or define
new ones.

Predefined workflows described in here:

➞ workflows covering the publication of resources, see Section 6.6.1, “Public-
ation” [356],

➞ an example translation workflow, see Section 6.6.2, “Predefined Translation
Workflow” [362],

➞ a fixed workflow for initially deriving a site from an existing site, see Section
6.6.3, “Deriving Sites” [369].

6.6.1 Publication
In this chapter you will find a description of publication workflows and a description
of the publication semantics.

CoreMedia delivers the listed example workflows. But the workflow facilities are
not restricted to those features. They can be tailored to fit all types of business
processes.

Approval and Publication of Folders and Content Items

What is and what does
a publication?

A publication synchronizes the state of the Live Server with the state of the Content
Management Server. All actions such as setting up new versions, deleting, moving
or renaming files, withdrawing content from the live site require a publication to
make the changes appear on the Live Server.

CoreMedia makes a distinction between the publication of structural and of content
changes:

➞ Content-related changes are changes in document versions such as a newly
inserted image, modified links, text.

➞ Structure-related changes are moving, renaming, withdrawing or deleting
of resources. So it becomes possible to publish structural changes separately
from latest and approved document versions.

For every publication a number of changes is aggregated in a change set. This
change set is normally composed in the course of a publication workflow. The ad-
ministrator and other users with appropriately configured editors can also execute
a direct publication, which provides a simpler, although less flexible means of
creating a change set.

356CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Workflow Management

Change Set in Direct Publications

When performing a direct publication, the change set is primarily based on the set
of currently selected resources or on the single currently viewed resource. As the
set of resources does not give enough information for all possible types of changes,
three rules apply:

➞ You cannot publish movements and content changes separately. Whenever
applicable, both kinds of changes are included in the change set.

➞ When a document is marked for deletion or for withdrawal, new versions of
that document are not published.

➞ If the specific version to be published is not explicitly selected, the last ap-
proved resource version is included in the change set.

There are also some automated extension rules for the change set, which modify
the set of to-be-published resources itself. These rules can be configured in detail.
Ask your Administrator about the current settings.

➞ When new or modified content is published and links to an as yet unpublished
resource, the unpublished resource is included in the change set. Depending
on the configuration, also recursively linked documents can be included in
the change set. Target documents that are linked via a weak link property
are not included in the change set.

➞ When the deletion of a folder is published, all directly and indirectly contained
resources are included in the change set.

➞ When the withdrawal of a folder is published, all directly and indirectly
contained published resources are included in the change set.

➞ When the creation, movement, or renaming of a resource in an unpublished
parent folder is published, that folder is included in the change set.

Preconditions for a
successful publication

Preconditions

Preconditions for a successful publication are:

➞ all path information concerning the resource has to be approved too: if the
resource is located in a folder never published before, this folder has to be
published with the resource. So, add it to the change set or publish the folder
before.

➞ withdrawals and deletions must be approved before publication.

➞ all documents linked to from a document which is going to be published
have to be already published or included in the change set. This is because
a publication that would cause dead links will not be performed. This rule
does not apply for weak link properties.

➞ a document which is going to be deleted must not be linked to from other
documents or these documents have to be deleted during the same public-
ation. This rule does not apply for weak link properties.

357CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Publication

Table 6.23. Publishing
documents: actions
and effects

Effect on the Live Server on publicationStatus and action on the Content Manage-
ment Server

The approved version is copied to the Live
Server.

A version of the document does not yet exist
on the Live Server. The document is not
marked for deletion.

You approve the version.

No effect on the Live Server.The last approved version of a document
already exists on the Live Server. The docu-
ment is not marked for deletion.

You start a new publication without any fur-
ther preparation.

The document is renamed.The document is published and is not marked
for deletion. It therefore exists on both serv-
ers.

You rename the document and approve the
change.

The document is moved.The document is published and is not marked
for deletion. It therefore exists on both serv-
ers.

You move the document and approve the
change.

The document is destroyed on the Live Server.The document is published. It therefore exists
on both servers. No links to this document
exist.

You mark the document for withdrawal and
approve the change.

The document is destroyed on the Live Server.
The document is moved into the recycle bin
on the Content Management Server.

The document is published. It therefore exists
on both servers. No links to this document
exist.

You mark the document for deletion and ap-
prove the change.

The deletion cannot be published, since an
invalid link would be created. A message is

The document is published. It therefore exists
on both servers. Links to this document from
other published documents exist. displayed in the publication window. Remove

You mark the document for deletion and ap-
prove the change.

the link in the other document and publish
again.

The document is destroyed on the Live Server.
The document is moved into the recycle bin
on the Content Management Server.

The document is published. It therefore exists
on both servers. Weak links to this document
from other published documents exist.

358CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Publication

Effect on the Live Server on publicationStatus and action on the Content Manage-
ment Server

You mark the document for deletion and ap-
prove the change.

Table 6.24. Publishing
folders: actions and ef-
fects

Effects on the Live Server on publicationStatus and action on the Content Manage-
ment Server

The folder is renamed.The folder is published and is not marked for
deletion. It therefore exists on both servers.

You rename the folder and approve it.

The folder is moved.The folder is published and is not marked for
deletion. It therefore exists on both servers.

You move the folder and approve the change.

The folder is created on the Live Server.The folder is not published and not marked
for deletion.

You approve the folder.

The folder is destroyed on the Live Server. The
withdrawal can only succeed if all resources

The folder is published.

You mark it for withdrawal. When queried,
you acknowledge the mark for withdrawal of

on the Live Server or Content Management
Server that are contained in the folder, and all

all contained resources. You approve the
change.

published resources that link to this folders
content via a non-weak link property, are also
contained in the change set.

The folder is destroyed on the Live Server. The
folder is moved to the recycle bin on the

The folder is published.

You mark it for deletion. When queried, you
acknowledge the mark for deletion of all
contained resources. You approve the change.

Content Management Server. The deletion can
only succeed if all resources on the Live Server
or Content Management Server that are con-
tained in the folder, and all published re-
sources that link to this folders content via a
non-weak link property, are also contained in
the change set.

Special casesSpecial cases

Please keep in mind that:

➞ Older versions cannot be published.

359CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Publication

Example: if a version No. 4 had already been published it is not possible to
publish version No. 3 thereafter. To do so, create a version No. 5 from No.
3.

➞ During a deletion, a resource that has not been published yet is moved to
the recycle bin immediately.

In addition, consult the previous tables for effects of a publication depending on
the state of the resource. For all examples it is assumed that you have appropriate
rights to perform the action.

Delete and withdraw
resources

Withdrawing Publications and Deleting Resources

There is only one fundamental difference between withdrawal of publications and
deletion: a withdrawal affects only the Live Server, whereas the deletion of a resource
- folder or document - causes the resource to be moved into the trash folder on
the Content Management Server.

Before a withdrawal or deletion can be published as described before, a mark for
withdrawal or for deletion must be applied using the appropriate menu entries or
tool bar buttons. In the case of folders, the contained resources are affected, too.
If you have marked a resource for deletion and withdrawal, then the deletion will
be executed.

➞ When a folder is marked for deletion, all contained published resources are
marked for deletion, too. Not published resources are immediately moved
into the recycle bin without requiring you to start a publication.

➞ When a folder is marked for withdrawal, all contained published resources
are marked for withdrawal, too.

➞ When a mark for withdrawal or deletion of a folder is revoked, this also affects
all contained resources with the same mark.

➞ If you use direct publication and approve a folder that is marked for with-
drawal deletion, that approval is implicitly extended to the contained re-
sources that are also marked for withdrawal or deletion.

➞ Disapprovals extend to contained resources in the same way.

Predefined Publication Workflows

The predefined workflows for the approval and publication of resources are de-
scribed in the following table. These workflows can be uploaded using cm upload
-n <filename>. You can examine their definition and use them as examples for
your own definitions, by downloading an uploaded definition using cm download
<ProcessName>.

Table 6.25. Predefined
publication workflow
definitions

360CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Publication

Definition nameWorkflow

ProcessStudioSimplePublication defined instudio-
simple-publication.xml

simple publication

Process StudioTwoStepPublication defined in stu
dio-two-step-publication.xml

2-step publication

Publication workflow steps

The following table compares the working steps which are covered by the pre-
defined workflows.

Table 6.26. Predefined
publication workflow
steps

2-step publicationsimple publicationStep

A user creates the workflow with all neces-
sary resources.

A user creates the workflow with all ne-
cessary resources.

1.

A second user (needs 'approval' and
'publish' rights) can explicitly approve re-

The resources are published (and impli-
citly approved) in one step, performed

2.

sources. In Studio, the second user may
also modify the resources before

by the same user, who needs 'approve'
and 'publish' rights.

Publication will be executed when finish-
ing the task after all resources in the
change set have been approved.

3.

(If not, the workflow is returned to its 'com-
poser')

4.

Features of the Publication Workflows

The predefined publication workflows have some features in common, which are
described in the following:

Users and Groups

In order to execute tasks within workflows, users have to be assigned to special
groups. In the predefined publication workflows, these are the following:

1. composer-role: to be able to create (and start) a publication workflow and com-
pose a change set

2. approver-role: to be able to approve the resources in the change set

3. publisher-role: to be able to publish the resources in the change set

361CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Publication

Special groups can be defined and linked to the workflow via the Grant element
in the workflow definition file. Read more about users, groups and administration
in the Content Server Manual.

Note that, when all eligible users for a task reject that task, the task is again offered
to all eligible users. So if you are the only user for an approver-role group and you
start a publication workflow, the second step of the workflow will be escalated.
That is because you cannot be the composer and the approver of a resource - and
there is no other user than you.

Basic Steps in a Publication Workflow

After a user has created one or more documents, these documents should be
proofread, approved and published in a workflow:

1. The user (not necessarily the user who did the editing) starts a workflow. If he
selects resources at starting time, these resources will be added to the change
set and the compose task will be accepted automatically. Otherwise, he has to
add the resources to the change set later.

2. The user completes the 'compose' task.

3. The task 'approve' is automatically offered to all appropriate users (members
of the approver-role group, but not to the composer - even if he is a member of
this group). Somebody accepts the task and approves the resources.

The user has the following options:
Table 6.27. User op-
tions.option Doption Coption Boption A

The user accepts the
task but delegates it
to somebody else.

The user rejects the
task.

The user accepts the
task, does not ap-
prove all resource(s)
and finishes the task

The user accepts the
task, approves the re-
source(s)and finishes
the task. All resources
are approved.

The task is automatic-
ally accepted by this
user.

The task is offered all
other members of the
group approver-role.

The change set is sent
back to the user who
completed the 'com-
pose' task.

The task 'Publication'
is offered to all mem-
bers of the group
publisher-role.

6.6.2 Predefined Translation Workflow
A translation workflow can be used to communicate changes in the project of a
master site to the derived sites.

CoreMedia Blueprint provides one template translation workflow named Translation
in the file translation.xml in the wfs-tools-application module. The

362CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Predefined Translation Workflow

workflow is built around an empty action, the SendToTranslationServiceAc-
tion in the workflow-libmodule, which is supposed to implement the sending
/ receiving of contents to / from a translation agency. Without an implementation
of this action, the workflow can still be used for manual in-house translation, pos-
sibly in conjunction with XLIFF download/upload.

Roles and Rights

The translation workflow process is based on two roles defined for CoreMedia DXP 8's
Multi-Site concept:

1. The group translation-manager-role contains all users that are allowed to start
a translation workflow. The name of this group has to be configured in the
property translationManagerRole of the SiteModel (see section “Site
Model” [342]). After changing this property, you have to upload the workflows
again, because uploading persists the current property value.

2. The site manager group defines the users who may accept translation workflows
for the content of a site. Groups and Rights Administration for Localized Content
Management [338] describes how to set this property for every site.

Workflow Lifecycle

As described in section “Roles and Rights” [363], the translation managers start the
translation workflow for a set of new or changed contents from the Control Room.
Therefore, a new Process instance will be created for every site that has been
selected as a translation target.

At first, the Process instances both run two AutomatedTasks that retrieve the
manager group and collect / create the derived contents for the target site. For
details see Section “Predefined Translation Workflow Actions” [364].

The following UserTask called Translate is used to let the user choose a next
step. This is done by selecting a next step in the radio group of the workflowForm.
The selected value will then be set as value for the translationAction process
variable. This variable is then used in a Switch task to choose the successor task.

These successor tasks are:

➞ SendToTranslationService: Send / retrieve content to / from translation
agency (has to be implemented in the project)

➞ Rollback: Cancel the translation and rollback changes that may have been
made to the target content. (E.g.: The GetDerivedContentsAction may
have created content in the target site derived from the provided master
content.)

363CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Predefined Translation Workflow

➞ Complete: Update the masterVersion of the target content to indicate,
that the translation is completed. This can be used, for example when the
user translated the content manually.

While the Rollback and Complete tasks finish the process, the SendToTrans
lationService task has another UserTask successor called Review. This task
simply gives the user an opportunity to check the content imported from the
translation agency. For details on the Actions behind these tasks see Section
“Predefined Translation Workflow Actions” [364].

Configuration and Customization

The example translation workflow is meant to be configured to your needs. You
might define multiple translation workflows, like translation via translation agency
or manual translation performed by the site managers. The only restriction is that
every translation workflow needs a process variable subject of type String,
which will be set by the framework.

In order to reliably track content that is currently "in translation", you also need to
define, configure and regularly invoke an instance of the com.coremedia.trans
late.workflow.impl.CleanInTranslation class. An example definition is
included in the blueprint source in the workflowserver-springcontextman
ager.xml file, which you may have to adapt.

Be aware, that changes in the process definition will probably lead to changes in
the UI, too. If you want to change only small bits of the provided translation
workflow like adding another user-selectable translationAction and Task,
this can be done pretty easily through configuration of the defaultTranslation-
WorkflowDetailForm inside the ControlRoomStudioPlugin.

But if want to use a workflow completely different to the one provided, be prepared
to write your own implementations of the workflowForms and start panel used
to display your workflow in Studio.

For details on customizing workflows see the [CoreMedia Workflow Manual]. For
details on customizing the Studio UI for the translation workflows see Section
“Translation Workflow Studio UI” [353].

Predefined Translation Workflow Actions

This section describes various actions that can be used to define a translation
workflow.

➞ Section “GetDerivedContentsAction” [365] describes an action that computes,
and if necessary creates derived contents from a given set of master contents.

➞ Section “GetSiteManagerGroupAction” [366] describes an action that determ-
ines a site manager group and stores it in a process variable.

364CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Predefined Translation Workflow

➞ Section “ExtractPerformerAction” [366] describes an action that identifies
the user who executes that current task and stores a user object in a process
variable.

➞ Section “CompleteTranslationAction” [367] describes an action that finishes
a manual translation process.

➞ Section “RollbackTranslationAction” [368] describes an action that rolls back
a translation process, possibly deleting spurious content.

GetDerivedContentsAction

This action retrieves all derived contents from a given list of master contents. If a
document already exists in the target site and its masterVersion equals to the
current version of the master content, it will be ignored for the workflow. Docu-
ments that do not exist will be created in the corresponding folder of the target
site. All derived contents will be marked as being in translation.

Table 6.28. Attributes
of GetDerivedContents-
Action

targetSiteIdVariable

yesRequired

The name of the variable that contains the id of the target siteDescription

masterContentObjects

yesRequired

The name of the variable that contains the list of content objects in the
master site

Description

derivedContentsVariable

noRequired

The name of the variable into which a list of all derived contents is storedDescription

createdContentsVariable

noRequired

The name of the variable into which a list of all newly created contents
is stored. If the workflow is subsequently aborted, these contents can be

Description

deleted by the action described in Section “RollbackTranslationAc-
tion” [368]

Example 6.27. Usage
of GetDerivedContents-
Action

<Variable name="siteId" type="String"/>
<AggregationVariable name="masterContentObjects" type="Resource"/>
<AggregationVariable name="derivedContents" type="Resource"/>
<AggregationVariable name="createdContents" type="Resource"/>
...

<AutomatedTask name="GetDerivedContents" successor="FollowUpAction">

365CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Predefined Translation Workflow

<Action
class="com.coremedia.translate.workflow.GetDerivedContentsAction"

masterContentObjects="masterContentObjects"
derivedContentsVariable="derivedContents"
createdContentsVariable="createdContents"
targetSiteIdVariable="siteId"/>

</AutomatedTask>

GetSiteManagerGroupAction

This action is used to determine the user group that is responsible for managing
the site. The name of this group is defined in the property siteManagerGroup
of every site indicator. As this property is not required, the group administratoren
will be used per default.

Table 6.29. Attributes
of GetSiteManager-
GroupAction

siteVariable

yesRequired

The name of the variable that contains the id of the siteDescription

siteManagerGroupVariable

noRequired

The name of the variable into which the site manager group is storedDescription

Example 6.28. Usage
of GetSiteManager-
GroupAction

<Variable name="siteId" type="String"/>
<Variable name="siteManagerGroup" type="Group"/>
...

<AutomatedTask name="GetTargetSiteManagerGroup"
successor="FollowUpAction">
<Action

class="com.coremedia.translate.workflow.GetSiteManagerGroupAction"
siteVariable="siteId"
siteManagerGroupVariable="siteManagerGroup"/>

</AutomatedTask>

ExtractPerformerAction

To perform an AutomatedTask with the same performer used in a previous
UserTask, you can store the performer of the UserTask to the given workflow
variable.

Table 6.30. Attributes
of ExtractPerformerAc-
tion

performerVariable

noRequired

366CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Predefined Translation Workflow

The name of the variable into which the performer of the current user
task is stored

Description

Example 6.29. Usage
of ExtractPerformerAc-
tion

<Variable name="performer" type="User"/>
...

<UserTask name="Translate" successor="FollowUpAction">
...
<EntryAction

class="com.coremedia.translate.workflow.ExtractPerformerAction"
performerVariable="performer"/>

...
</UserTask>

CompleteTranslationAction

After successfully completing a translation workflow, the masterVersion of all
translated contents will be set to the current version of their masters.

Table 6.31. Attributes
of CompleteTranslation-
Action

performerVariable

yesRequired

The name of the variable that contains the user in whose name this action
performed. Typically, the user has been retrieved previously by the action
described in Section “ExtractPerformerAction” [366].

Description

derivedContentsVariable

yesRequired

The name of the variable that contains all translated documents.Description

masterContentObjectsVariable

yesRequired

The name of the variable that contains all master content objects.Description

Example 6.30. Usage
of CompleteTranslation-
Action

<Variable name="performer" type="User"/>
<AggregationVariable name="targetContents" type="Resource"/>
...

<AutomatedTask name="Complete" successor="Finish">
<Action

class="com.coremedia.translate.workflow.CompleteTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
performerVariable="performer"/>

</AutomatedTask>

367CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Predefined Translation Workflow

RollbackTranslationAction

If the master content is not needed in the target site, the translation workflow can
be aborted with the RollbackTranslationAction. In this case all documents
and folders that were created by the Section “GetDerivedContentsAction” [365] will
be deleted. In addition, all target contents will be marked as no longer being in
translation.

Table 6.32. Attributes
of RollbackTranslation-
Action

contentsVariable

yesRequired

The name of the variable that contains all documents and folders that
have to be deleted during while rolling back the translation

Description

The
name

noderivedContents-
Variable

of
the
vari-
able
that
con-
tains
all
trans-
lated
doc-
u-
ments.
De-
faults
to
"de-
rived-
Con-
tents".

The
name

nomasterContentO-
bjectsVariable

of
the
vari-
able
that
con-
tains
all
mas-
ter

368CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Predefined Translation Workflow

con-
tent
ob-
jects.
De-
faults
to
"mas-
ter-
Con-
tentO-
b-
jects".

Example 6.31. Usage
of RollbackTranslation-
Action

<AggregationVariable name="createdContents" type="Resource"/>
...

<AutomatedTask name="Rollback" successor="Finish">
<Action

class="com.coremedia.translate.workflow.RollbackTranslationAction"
derivedContentsVariable="derivedContents"
masterContentObjectsVariable="masterContentObjects"
contentsVariable="createdContents"/>

</AutomatedTask>

6.6.3 Deriving Sites
A predefined workflow exists to derive an entire site from an existing site. The
derive-site workflow cannot be adapted and is available as a built-in workflow from
the module translate-workflow. To upload the derive-site workflow, use cm
upload -n /com/coremedia/translate/workflow/derive-site.xml on the com-
mand line.

Typically, the derive site workflow is started as a background process from the
sites window of CoreMedia Studio. The workflow can be started by all members of
the translation manager group, as configured in the property translationMan
agerRole of the SiteModel (see section “Site Model” [342]). After changing this
property, you have to upload the workflow again, because uploading persists the
current property value.

369CoreMedia DXP 8

CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites | Deriving Sites

7. CoreMedia DXP 8 Brand
Blueprint - Functionality for
Websites

This chapter describes the CoreMedia DXP 8 Brand Blueprint

The content of Chapter 6, CoreMedia DXP 8 e-Commerce Blueprint - Functionality
for Websites [244] also applies to Brand Blueprint unless noted differently.

370CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites |

7.1 Overview
The Brand Blueprint is an extension to the CoreMedia e-Commerce Blueprint. It
provides a modern, appealing, highly visual website template that can be used to
start a customization project. It demonstrates the capability to build localizable,
multi-national, non-commerce web sites.

Based on a fully responsive, mobile-first design paradigm, the Brand Blueprint
leverages the Twitter Bootstrap Grid and Design framework for easy customization
and adaptation by frontend developers.

It scales from mobile via tablet to desktop viewport sizes and uses the CoreMedia
Adaptive and Responsive Image Framework to dynamically deliver the right image
sizes in the right aspect ratios and crops.

The responsive navigation visualizes 3 levels, even though the navigation structure
can be arbitrary deeply nested. The floating header and the footer can be configured
and re-ordered in content settings. Navigation nodes with URLs to external sites
can be added via content.

Four new site-specific page types are introduced:

Brand Homepage A long-scroller page with a "Super Hero" full
screen teaser module at the top and visual
"gap" headings that span the screen width.
Several default placements demonstrate
how layout settings can be done either dir-
ectly on a placement or on a collection.

Brand Hero Page A secondary navigation page with a large,
emotional header image that spans the
content width and several placements.

Corporate Detail Page Corporate Detail Page: A simple, standard
page with header, footer, main as well as
above-main and below-main placements.

Corporate Detail Page with Side-
bar

Corporate Detail Page with Sidebar: A vari-
ant of the Detail Page that displays a sidebar
in a second column (desktop) or below the
main placement (tablet, mobile). Useful for
sections of a website with contact person
teasers that can be inherited to detail article
pages.

371CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Overview

Figure 7.1. Corporate
detail page for differ-
ent devices

To simplify editorial use-cases for Brand casual users, a simplified page-centric
editing model is supported via configuration:

➞ All centralized assets are stored in the "Assets" folder.

➞ Both navigation (Pages) and content are stored in the same repository folder
structure that resembles the actual navigation structure of the site.

➞ The "Create page from Template" feature enables users to quickly create
pages of the above layout variants. The new page is added to the navigation
parent and adds a new default article and an image is cloned that can be
replaced by right-clicking in the preview and by directly uploading a new
image and pasting text from Word.

➞ Pages are now directly "teasable" and can be added as teasers to placements
without the creation of a Teaser placeholder document.

372CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Overview

➞ Any teaser can have a freely editable "Call-to-Action" button.

Figure 7.2. Teasable
page with customized
call-to-action button

Articles are also enhanced:

➞ Richtext with embedded images

➞ In-page carousel for multiple images with full-screen lightbox view

➞ Related content teasers

➞ They show a sidebar when defined in embedding page

➞ Configurable "Externally Visible Date" that remains unmodified upon re-
publication

Several teaser types for different use cases:

Superhero A large full-screen image, text and call-to-action
button

Hero A content-width spanning image, with text and
call-to-action button

Default Alternating left/right teaser module

Carousel Touch-enabled carousel of teasers

Square Square image teaser module

Claim/Claim (Circle) A row with of three thumbnails and teaser texts,
with optional round image CSS effect

Media List Analogous to the Twitter Bootstrap style

Text A text only teaser, for example, for press releases

Detail Showing the actual content of an item, for ex-
ample, to place a full article into a page

373CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Overview

CMTeasable.ftl is the teaser template that will always be used as a fallback
for any document type that has no specific override.

Figure 7.3. Different
teasers on the Brand
homepage

Multi-Language/Multi-Site features:

➞ Demo content in both English and German

➞ Language chooser in front-end that allows directly switching between lan-
guage variations of the same content item

374CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Overview

➞ All Studio translation, workflow and multi-site functionality is supported

SEO and conversion optimization:

➞ Call-To-Action Buttons

➞ Editable HTML Description Text

➞ Editable HTML Title Suffix (for example, " | Chef Corp.")

➞ Sitemap in both HTML and XML

Dynamic Content features:

➞ News and news list based on search-based lists

➞ Events and events list based on search-based lists

3rd Party Integrations:

➞ Google Universal Analytics integration with optimization feedback loop

➞ Optimizely Integration for A/B-Testing

➞ Full support for embedding dynamic third-party HTML/Javascript modules
with examples for the following web services:

➞ SurveyMonkey, Google Calendar, Google Forms, Pinterest, Twitter

Template creation

➞ Twitter Bootstrap is used as the layout foundation

➞ All frontend code is based on Freemarker templates

➞ CSS is built using the Sass and Grunt frameworks

➞ A simple Print.css is supplied

➞ Design and HTML were tested and optimized for Accessibilty

Studio configurations:

➞ Configurable repository folder structure for Create dialogs

➞ Certain form elements can be site-specifically enabled or disabled through
settings

CAE extensions:

375CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Overview

➞ Shared template sets for teaser layout on both Placements and Collections
via "Container" facade

➞ Specific Preview.css for Studio preview only

376CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Overview

7.2 Website Features
This section describes general features of the Brand Blueprint website.

Long-scrolling pages

Long-scrolling pages
with "Gap" dividers.

Brand Blueprint adds support for long-scrolling pages. Such pages usually have
visual dividers to highlight different content sections - also called "Gaps" - that can
have a parallax scrolling effect, that is, the picture inside the gap scrolls slower
than the remainder of the page around it.

To configure gaps in the content, you have to add local settings.

Defining gaps for pages

For pages, you define placements for which the first item is rendered as a gap.
Add the placement name to a Struct String List placementsWithFirstItemAsHeader
in Local Settings or a Linked Settings content.

For example, on the Brand Homepage, "placement2" containing the "For Profes-
sionals" section is configured and consequently, the first item "Professionals Page"
is not rendered as a regular teaser, but as a gap.

Figure 7.4. Define
gaps for pages

377CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Features

Defining gaps for collections

For collections, you can define if the first item of the collection should be rendered
as a gap. In Local Settings or a Linked Settings content, set a Boolean property
firstItemAsHeader to true.

For example, in Placement 3 of the homepage, the first item is "For Consumers
Collection" (Square). This collection has a settings document linked that sets the
"firstItemAsHeader" to true.

Figure 7.5. Setting
content for collection
with gap

Teaser rendering behavior for Placements and Collections

Teaser rendering beha-
vior for placements
and collections

Brand Blueprint allows to set a viewType on a placement of a page grid. This can
be used to ease editorial tasks - any item added to a pre-configured placement
automatically gets the desired rendering viewType applied.

Examples on the Homepage:

➞ The "Hero" placement is set to "Superhero", which automatically renders any
added content item as a full-size Superhero teaser.

➞ The "Placement 1" is set to "Claim", which automatically renders any added
content item as Claim teasers.

➞ The "Placement 3" is set to "Default", so that contained Collections can set
their own viewTypes specifically.

These are default settings. You are free to customize the page grid to your needs.

Any setting on the placement in a page takes precedence over a setting on a col-
lection that is inside the placement.

Example:

➞ A placement with viewType="Square" contains a Collection with view-
Type="Claim"

"Square" wins, collection items are rendered as "Square".

378CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Features

➞ A placement with viewType="Default" contains a Collection with view-
Type="Claim"

"Claim" wins, collection items are rendered as "Claim".

Additionally, through the Container facade, the same rendering templates also
apply to Collections that are often used to define layout-specific rendering of
teasers.

In the current Brand Blueprint release, it is not possible to set viewTypes directly
on Teasers or other single content items. This can be achieved by creating additional
viewType templates. Technically, the "Container" Facade only applies to lists of
items, not to single items.

Collection view type lookup

Collection View Type
Lookup

In order to avoid duplication of layout templates for both Page Placements and
Collections, a joint View Type Lookup is implemented via interface com.core
media.blueprint.common.layout.Container. Just create a CMViewtype in
Options/Viewtypes/CMChannel/ for your Layout Variant, and it will be available
for both Placements and Collections.

Configurable HTML Title Suffix

Configurable HTML
title suffix

A site-specific HTML Title Suffix can be set by a technical editor via a Struct Setting.

For example, all page titles get appended " | Chef Corp.", and pages inside the Press
Release page structure get appended " | News | Chef Corp."

/Settings/Options/Bundles/Corporate_en

➞ customTitleSuffixText (String)

Editable HTML description meta tag

Editable HTML Descrip-
tion Meta Tag

Each content item can now have a specific text editorially configured for the HTML
Description Meta Tag via Studio.

For articles that are embedded directly on a page in Detail view, the HTML De-
scription of the CMChannel is used, not the one of the CMArticle. For articles
that are rendered in Detail view as "leaf" content in the context of another page,
the HTML Description of the CMArticle is used.

379CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Features

Configurable auto-shortening of teaser texts

Configurable Teaser
text lengths

As unedited teaser text is inherited directly from the detail body text, automatic
shortening of too long teaser texts can be set for each teaser type with a site-spe-
cific Struct setting. The algorithm tries to shorten the text at word breaks.

Options/Settings/CAEConfig

➞ teaser.max.length (Integer) - as in CM8

➞ text.max.length (Integer)

➞ claim.max.length (Integer)

➞ hero.max.length (Integer)

➞ superhero.max.length (Integer)

➞ square.max.length (Integer)

If the settings are not present, default values defined in templates will be used.

Configurable breadcrumb navigation

Breadcrumb display
can be configured to
omit first and last ele-
ment

The breadcrumb display can be configured to omit first and last elements. For ex-
ample, for a site you may want to suppress "Home" as a first breadcrumb element,
or you might want to exclude "leaf content" (such as articles or other content items
rendered in detail view) from the breadcrumb due to length and/or design con-
straints.

/Settings/Options/Bundles/Corporate_en

➞ breadcrumbHideRootElement (boolean)

➞ breadcrumbHideLastElement (boolean)

If the last navigation element is a page itself, it will be rendered in the bread-
crumb, even if breadcrumbHideLastElement is set to "true".

Configurable Call-To-Action text for teasers

Configurable Call-To-
Action Text for teasers

For each teasable content item, an editor can set a specific "Call-To-Action" (CTA)
text that is displayed as a clickable button. The default text for the CTA is pre-
configured per document type in the language Bundle document (for example,

380CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Features

Learn More for Articles). Users can override the default text or suppress the CTA
button completely for each teaser.

The Studio forms for CMTeasable are extended for the Brand Blueprint to handle
the CTA text. The CTA configuration is stored in the "localSettings" struct property
with the following settings:

➞ callToActionCustomText (String)

➞ callToActionDisabled (Boolean)

381CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Features

7.3 Website Search
This section describes the configuration of the search functionality of the Brand
Blueprint website.

Configuring search in content settings

Some aspects of website search are configurable in a site-specific Settings docu-
ment. The site's root channel links to the Settings document SearchConfigura
tion with the settings used for that site.

Figure 7.6. SearchCon-
figuration Settings
document

It contains the following settings:
Table 7.1. Brand web-
site search settingsDescriptionSettings Property

The channel used to render the search result page.searchChannel

Content of type CMAction with ID "search".searchAction

The number of hits shown on the search result page.search.result.hitsPerPage

The content types that appear in the search result.
Subtypes must be listed explicitly.

search.doctypeselect

382CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Search

DescriptionSettings Property

Contains the value corporate to select the CAE
Feeder Brand Blueprint configuration for indexing con-

caefeederSiteConfiguration

tent of the site. This enables page grid indexing as de-
scribed in the next section.

Configuring page grid indexing

The Brand Blueprint CAE Feeder feeds CMChannel documents to the search engine
so that pages can be found on the website. To this end, the CAE Feeder configura-
tion specifies which parts of a page grid need to be indexed. This includes the
configuration of relevant page grid sections, content types of linked contents and
their properties.

Read section Section 6.3.4, “Page Assembly” [269] for an introduction to page
grids.

The Brand Blueprint CAE Feeder is configured in the Spring bean definition file
component-corporate-caefeeder.xml and its accompanied properties file
corporate-caefeeder.properties in directorysrc/main/resources/META-
INF/coremediaof the Blueprint modulemodules/extensions/corporate/cor
porate-caefeeder-component. The Spring XML file imports the content bean
definitions and defines the following FeedablePopulators to index the page grid:

The PageGridFeedablePopulator takes properties from content linked in the
page grid and adds them to the textbody index field when feeding a CMChannel.
It is configured to feed the teaser properties of linked documents except for articles
linked with view type "Detail" in which case the full article text is indexed with the
channel. ThePageGridInlineContentFeedablePopulator ensures that articles
that are linked with view type "Detail" are not returned by the website search in
addition to their page. To this end, it sets the index field notsearchable to true
for such articles.

If a page grid placement contains a CMCollection document, then the contents
linked in its items property are included as well - just as if they were linked directly
in the page grid.

The mentioned FeedablePopulators are only used for documents if their site has
a settings document that defines the setting caefeederSiteConfiguration
with value corporate. This is the case for Brand Blueprint sites. The Spring applic-
ation context file component-corporate-caefeeder.xml configures the site-
specific activation of page grid feeding by adding the FeedablePopulators to the
bean siteSpecificFeedablePopulatorMap for the value corporate.

383CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Search

https://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/FeedablePopulator.html

The Brand Blueprint comes with a default configuration for indexing page grids of
CMChannel documents. If needed, you can change the configuration in compon
ent-corporate-caefeeder.xml and corporate-caefeeder.properties.
The following table describes the used Spring properties. All properties start with
the prefix corporate.search.pageGrid which is abbreviated with [c.s.p]
below.

Table 7.2. Page Grid
Indexing Spring Proper-
ties

DescriptionProperty

The type of the contents with indexed page grid.

Default: CMChannel

[c.s.p].contentType

The name of the struct property that contains the page grid.

Default: placement

[c.s.p].name

Comma-separated list of ignored page grid sections.

Default: header, footer, sidebar

[c.s.p].excludedSections

Comma-separated list of content types of considered page
grid items. Contents of other types that are linked in the
page grid are ignored and not indexed with the page grid.

[c.s.p].itemContentTypes

Default: CMChannel, CMArticle, CMTeaser,
CMCollection, CMVideo, CMDownload,
CMExternalLink, CMProduct

The content properties of page grid items with a view type
other than "Detail" that are indexed in the index field

[c.s.p].itemTextProperties

textbody of the page. This property takes a space separ-
ated string of document type properties. For each con-
figured document type, the name of the type followed by
an equal sign and a comma-separated list of property names
is given. The configuration for the most specific document
type of an item decides which item properties are used.
The property lists are not merged with configurations for
super types. This makes it possible to ignore properties in
subtypes.

Default: CMTeasable=teaserTitle,teaserText
CMProduct=productName,shortDescription

The name of the date properties for visibility as described
in Section 6.3.17, “Content Visibility” [301]. Content that is

[c.s.p].itemValidFromProperty
[c.s.p].itemValidToProperty

not currently visible is not indexed with the page. The CAE
Feeder automatically reindexes after visibility has changed.

Default: validFrom / validTo

Comma-separated list of content types used in the page
grid with view type "Detail" for which the text properties

[c.s.p].inlineContentTypes

384CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Search

DescriptionProperty

are indexed with the page grid instead of the teaser prop-
erties.

Default: CMArticle

The technical name of the "Detail" view type.

Default: full-details

[c.s.p].inlineContentViewType

The content properties of page grid items with view type
"Detail" that are indexed in the index field textbody of

[c.s.p].inlineContentTextProper-
ties

the page. This property takes a space separated string of
document type properties. For each configured document
type, the name of the type followed by an equal sign and
a comma-separated list of property names is given. The
configuration for the most specific document type of an
item decides which item properties are used. The property
lists are not merged with configurations for super types.
This makes it possible to ignore properties in subtypes.

Default: CMArticle=title,detailText

The content type of collection documents used in the page
grid.

[c.s.p].collectionContentType

Default: CMCollection

The link property of collection documents to get the items
of a collection.

[c.s.p].collectionItemsProperty

Default: items

The link property of collection documents to get the view
type for the items of a collection.

[c.s.p].collectionViewTypeProp-
erty

Default: viewtype

An identifier that represents the configuration options.

Default: corporate

[c.s.p].configId

Note that you must reindex from scratch with empty CAE Feeder database to
apply the changes of the above configuration properties to all indexed docu-
ments. If it is okay to just apply the changes to newly indexed documents and
if you don't reindex with empty CAE Feeder database, then you need to change
the value of the [c.s.p].configId property to some other string constant,
if you've changed one of the following properties (all starting with [c.s.p].):
name, excludedSections, itemContentTypes, itemValidFromProperty,
itemValidToProperty.

385CoreMedia DXP 8

CoreMedia DXP 8 Brand Blueprint - Functionality for Websites | Website Search

8. CoreMedia DXP 8 Editorial and
Back-end Functionality

CoreMedia Digital Experience Platform 8 enhances CoreMedia CMS with additional
functionality that is described in the following sections:

➞ Section 8.1, “Studio Enhancements” [387] describes extensions to CoreMedia
Studio as the unified editing platform. The editorial usage of the features is
described in the [Studio User Manual].

➞ Section 8.2, “CAE Enhancements” [414] describes extensions to the Content
Application Engine the delivery module of CoreMedia Digital Experience Platform
8.

➞ Section 8.3, “Elastic Social” [418] describes extensions to CoreMedia Elastic
Social that are integrated in CoreMedia Digital Experience Platform 8. The
standard functionality of Elastic Social is described in the [Elastic Social
Manual]

➞ Section 8.4, “Adaptive Personalization” [431] describes extensions to Core-
Media Adaptive Personalization that are integrated in CoreMedia Digital Exper-
ience Platform 8. The standard functionality of Adaptive Personalization is
described in the [Adaptive Personalization Manual]

➞ Section 8.5, “Third-Party Integration” [440] describes the integration of third-
party components, such as Optimizely, into CoreMedia Digital Experience
Platform 8.

➞ Section 8.6, “WebDAV Support” [442] describes the standard integration of
WebDAV to browse and create CMS content in the filesystem.

These modules are integrated into CoreMedia DXP 8 and the example websites and
add extended functionality to their default features.

386CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality |

8.1 Studio Enhancements
CoreMedia Blueprint enhances CoreMedia Studio with plugins for better usage. This
ranges from improved content editors such as the image list editor, which shows
a preview of a selected image, up to a complete taxonomy management.

➞ Image list editor, see Section 8.1.1, “Image Link List Editor” [387].

➞ Content chooser, see Section 8.1.2, “Content Chooser” [388].

➞ Document editors

Content query editor, see Section 8.1.3, “Content Query Editor” [390].

➞ Library, see Section 8.1.6, “Library” [394].

➞ Bookmarks, see Section 8.1.7, “Bookmarks” [395].

➞ External preview, see Section 8.1.9, “External Preview” [398].

➞ Content creation, see Section 8.1.11, “Content Creation” [400].

➞ Create content from template, see Section 8.1.12, “Create from Tem-
plate” [405].

➞ Site selection, see Section 8.1.14, “Site Selection” [408].

➞ Upload dialog, see Section 8.1.15, “Upload Files” [408].

8.1.1 Image Link List Editor
The image link list editor (<bp:imageLinkListPropertyField>) is a simple
extension to the standard link list editor. You can use it when you have a linklist
that is primarily used to link images to a content item. It can show a thumbnail
preview image of the linked content item holding the image. The image link list
editor is able to deal with images in Articles, Collections, or related content within
content items.

The actual thumbnail displayed for each linked content item depends on the type
of the linked content item. The following rules apply:

Table 8.1. Image
Thumbnail selection
rules

Image chosenType

Content item linked in the defaultContent linklistCMSelectionRules

First content item linked in the items linklist for which a
selection rule applies

CMCollection

First content item linked in the pictures linklist for which
a selection rule applies

CMTeasable

387CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Studio Enhancements

Image chosenType

Image stored in the data propertyCMPicture or CMImage

Note that the rules above are applied in order, recursively, and each rule applies
for more generic document types as well. For example, consider a situation where
you have a CMArticle "A1" that has two content items linked in its related
property, one CMCollection "C", and another CMArticle "A2". The collection
in turn links to yet another two CMArticles, "A3" and "A4". For the first item
linked in the article (a CMCollection), the respective rule applies that chooses
the first item linked in the collection's items property, which is A2, a CMArticle.
For this article, the rule for CMTeasables applies, since CMArticle inherits from
CMTeasable. Therefore, the first item in the article's pictures property is inspec-
ted, which is a CMPicture. So ultimately, you will see thumbnails for

➞ The picture linked to from A3

➞ The picture linked to from A2

If you need to implement custom rules for thumbnail rendering for your own
content types, you can do so by using the ImageLinkListRenderer.register
Renderer(type_name, function)method. See the API documentation of this
class for details.

<bp:imageLinkListPropertyField propertyName="{PICTURE_PROPERTY_NAME}"

maxCardinality="{config.maxCardinality}" />

Figure 8.1. Image link
list

The image link list editor of the image property of an article document.

8.1.2 Content Chooser
The content chooser allows the user to fill a link list by selecting documents from
a list of checkboxes. The checkable items are documents read from a configurable
folder and a configurable content type. The selection will be applied to the corres-
ponding link list afterwards.

388CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Chooser

Figure 8.2. Content
chooser

The content chooser is used for the settings property of the article document form.

How to configure a content chooser

Several usages of the content chooser can be found in the document forms of
Blueprint. The AdditionalToolbarItems plugin is used to link the OpenCon-
tentChooserAction to the toolbar of linklist and provide a selection for it. The
folder names where the selection items should be read from are passed to the action
via the parameter folders. An example configuration of the content chooser action
is shown below.

<ui:iconButton
tooltip="{Blueprint_properties.INSTANCE.Features_action_tooltip}">
<baseAction>
<contentchooser:openContentChooserAction

rootNodeName="{Blueprint_properties.INSTANCE.Features_root_name}"

dialogTitle="{Blueprint_properties.INSTANCE.Features_dialog_title}"

iconCls="btn-linked-settings"
bindTo="{config.bindTo}"
valuesExpression="{config.bindTo.extendBy('properties',

'features')}"

folders="/Sites/Corporation-en/Editorial/Products/_Product Features"

contentType="CMArticle"

389CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Chooser

singleSelection="false"/>
</baseAction>

</ui:iconButton>

In this example all CMArticle documents of the folder /Sites/Corporation-
en/Editorial/Products/_Product Features are shown in the content
chooser. Additional folder names can be set, using comma separated values.

8.1.3 Content Query Editor
Rather than having to maintain a collection of content items manually, you might
want to just specify a search rule that updates a list of content items dynamically
as new content gets added to the system. The content query editor provides a
convenient interface to edit such rules.

For example, you can specify a rule that finds the latest five articles from your
site's sports subsection, and displays them on a "latest sports news" section of your
site's front page.

In the standard configuration of Blueprint, you can use the query editor to filter
for content items according to the following aspects:

➞ the content item's document type

➞ the channel the content item belongs to

➞ the content item's modification date

➞ whether the content item is tagged with a given location or subject taxonomy

Furthermore, you can order the result set by different criteria, and you can specify
a maximum number of hits in order to ensure proper layout on a column-based
page design, for example.

Support for dynamic content queries is bundled in the Studio plugin, and the main
component to use is ContentQueryEditor.exml. You can use the editor as
shown in the following example.

Example 8.1. Using the
content query editor<dcqe:contentQueryEditor bindTo="{config.bindTo}"

queryPropertyName="localSettings"
documentTypesPropertyName="documenttype"
sortingPropertyName="order">

<dcqe:conditions>
<dcqe:modificationDateConditionEditor bindTo="{config.bindTo}"

propertyName="freshness"
group="attributes"

documentTypes="{['CMArticle', 'CMVideo', 'CMProduct', 'CMPicture']}"

390CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Query Editor

sortable="true">
<dcqe:timeSlots>
<exml:object name="sameDay"

text="{QueryEditor_properties.INSTANCE.DCQE_text_modification_date_same_day}"

expression="TODAY"/>
<exml:object name="sevenDays"

text="{QueryEditor_properties.INSTANCE.DCQE_text_modification_date_seven_days}"

expression="7 DAYS TO NOW"/>
<exml:object name="thirtyDays"

text="{QueryEditor_properties.INSTANCE.DCQE_text_modification_date_thirty_days}"

expression="30 DAYS TO NOW"/>
</dcqe:timeSlots>

</dcqe:modificationDateConditionEditor>
...

</dcqe:conditions>
</dcqe:contentQueryEditor>

In the example, the editor is configured to allow only for a single condition (a
content item's modification date). You may combine the existing condition editors
- there are predefined conditions for context, date ranges, and taxonomy links -
or even write your own condition editors by extendingConditionEditorBase.as.
Each condition editor provides the user interface for editing the respective condi-
tion, and must persist the actual search query fragment in a string property that
will be written to the respective struct property. Also, all condition editors support
the configuration of a list of document types that this condition may apply to. See
the API documentation for the package com.coremedia.cms.studio.queryed
itor.conditions for details.

When rendering the result of a search query in your CAE application, you can use
SettingsStructToSearchQueryConverter.java to convert the search
component that the editor stores in the struct property to an actual search query.
See CMQueryListImpl.java for an example.

391CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Query Editor

Figure 8.3. Content
Query Editor

8.1.4 Call-to-Action Button
If you use teasers in your website, you want to animate the users to a specific action.
To make this more explicit, Brand Blueprint renders a button on a teaser with a
configurable text (see Figure 8.5, “ Call-to-Action button in teaser view ” [393]). By
default, this text reads "Learn more".

Figure 8.4. Call-to-Ac-
tion-Button editor

You can either use the default text, define a content specific text or render no
button.

392CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Call-to-Action Button

Figure 8.5. Call-to-Ac-
tion button in teaser
view

8.1.5 External Date

CoreMedia Corporate Blueprint feature

You may want to show a fixed publication date for a content, even when you change
and republish this content later. To do so, Studio in Brand Blueprint contains an
editor for an externally displayed date for all CMLinkable types:

Figure 8.6. Externally
displayed date editor

You can either choose that the publication date is used or that a fixed date is shown.

Figure 8.7. Setting an
external date

393CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | External Date

8.1.6 Library
The library plugin uses the extension points of the Studio library to extend some
basic features of it and to add some new ones.

Figure 8.8. Image Gal-
lery Creation Button

Figure 8.9. Image Gal-
lery Creation Dialog

The image gallery creation dialog allows the user to create a new gallery document
from an image selection. The images selected in the library are shown as thumbnails
in the dialog when the 'Create Image Gallery' button is pressed. After the creation
of the gallery, these images are automatically assigned to the list property of the
document.

394CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Library

Figure 8.10. Library
List View

The library plugin uses the library list view extension point to show some additional
columns in the list view/search results. Additional columns are a site column, where
the site name of a content item is displayed and a preview column, where images
are shown as thumbnails. If the content item itself is not an image item, a refer-
enced image is shown, such as the first picture of a gallery.

8.1.7 Bookmarks
The user can add and remove bookmarks using the bookmark action available on
the preview toolbar, the library toolbar or the library list view's context menu.

Figure 8.11. Book-
marks

8.1.8 External Library

Feature is only supported in e-Commerce Blueprint.

The external library previews data that is not located in the content repository. By
using a separate REST extension, any data can be displayed by writing a provider
class for it. Currently the external library supports RSS feeds and access to the
video platform 'Kaltura'. The user can create new content using the external library

395CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Bookmarks

by using the New Content action. Depending on the data type, a new document is
created and initialized with data of the selected library item.

Figure 8.12. External
library showing RSS
feed items

How to configure the existing RSS source

The external sources that are available in the external library are configured via
properties for each site in a settings document and in a global configuration settings
document. The path information is configured for the class ExternalLibraryRe
source in the file component-external-library-common-rest-exten
sion.xml. The name of the settings document that is located in these settings
folders is ExternalLibrary.

To configure different source entries for a specific site, open the ExternalLibrary
settings document using CoreMedia Studio and use the Struct editor to edit the
configuration. Additional RSS sources can be added by cloning the corresponding
<Struct> element and adept the URL of the feed. It is import that each configuration
entry has a unique index value.

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">
<StructListProperty Name="externalLibraries">
<Struct>
<IntProperty Name="index">1</IntProperty>
<StringProperty Name="name">RSS Feed - CNN.com - Top

Stories</StringProperty>
<StringProperty

Name="dataUrl">http://rss.cnn.com/rss/edition.rss</StringProperty>
<StringProperty

Name="providerId">rssProvider</StringProperty>
<StringProperty Name="previewType">html</StringProperty>

<StringProperty Name="contentType">CMArticle</StringProperty>

<BooleanProperty Name="markAsRead">true</BooleanProperty>
</Struct>

396CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | External Library

</StructListProperty>
</Struct>

For a detailed description about the elements and attributes see table below.
Table 8.2. Database
SettingsDescriptionProperty

The unique id entity of the entry as a numeric value.index

The display name of the source, this name will be shown in the
source combo box of the external library.

name

The data URL of the external source. It can be a HTTP URL or a
database URL. It's up to the corresponding provider implement-
ation to interpret this value.

dataUrl

The provider ID must match the Spring bean ID valueproviderId

Describes the type of content to displayed, possible values are
'html' and 'video'. If required, the preview panel of the external
library can be extended with additional view types.

previewType

The type of document that should be created when the "New
document" button of the external library preview toolbar is
pressed.

contentType

If true, the external library will remember if the user has read
the entry.

markAsRead

How to implement an additional external data source

Additional data providers for the external library can be implemented using the
development workspace extensions mechanism or using the existing workspace
structure located in the module external-library-rest-extension. The
following steps describe how to create and configure a new extension as a submod-
ule of external-library-rest-extension.

➞ Open the pom.xml of the external-library-rest-extension

➞ In the module section, create a new module element with the name of the
new extension, such as sample-extension

➞ Create the corresponding Maven submodule, ensure that the pom.xml file
of the sample extension is configured the same way like the RSS or video
extension's pom.xml.

➞ In the sample module create a new class that implements the interface Ex-
ternalLibraryProvider. Have a look on the existing provider implement-
ation for help.

397CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | External Library

➞ Create the Spring configuration file component-sample-extension.xml

➞ Configure the provider in the XML file, for example like this:

<bean id="sampleProvider" class="
com.coremedia.blueprint.studio.externallibraryproviders.SampleProvider"
/>

➞ Add the new module as a dependency to the Studio web application module.

➞ Open the (site specific) settings content type ExternalLibrary in Studio
and add the configuration entry for your library data provider. Ensure that
the providerId value matches the bean ID of your provider class, in this
case 'sampleProvider'. Use the preview type html and content type
CMArticle for the configuration. It will fit most of your needs.

➞ Rebuild and restart the Studio web application and it's dependencies.

8.1.9 External Preview
The external preview is a Studio utility that allows you to use one or more additional
displays for Studio's preview based editing. When working with CoreMedia Studio,
the external preview can be started by clicking on the 'open external preview'
button that is located on the toolbar of the preview and following the instruction
steps which are:

1. Insert the following URL in the address bar of the browser on your desktop
computer or on your mobile device.

Figure 8.13. External
Preview Dialog

2. Enter the 4-digit number to open the external preview. The code is mandatory
to identify the corresponding user session and to prohibit monitoring the work
of other users.

398CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | External Preview

Figure 8.14. External
Preview Login

The dialog shows the URL of the external preview. It can be invoked on any browser
and device, including tablets to see how the document would look like on this
device.

8.1.10 Settings for Studio
In order to use content-based settings not only for Content Application Engine
usage but also for Studio, a new utility class StudioConfigurationUtil was
introduced. Now you can, for example, configure paths used for the Create Content
dialog (see Section 8.1.11, “Content Creation” [400]) in CMSettings content items.

The StudioConfigurationUtil class searches for bundles located at
<SITE_ROOT_FOLDER>/Options/Settings, and falls back to /Settings/Op
tions/Settings if no site-specific configuration bundle is found there. Bundle
content items can be placed anywhere below these paths, and must be of type
CMSettings.

You can use the #getConfiguration(bundle, configuration, context)
method, where bundle is the name of the CMSettings document, and config
uration is a path to a respective struct property. Optionally, you can also specify
a context. The latter can be either a Content or a Site. If you provide Content,
the site this content item belongs to is resolved, otherwise, the given site is used
as the lookup context. If you omit the context, the current user's preferred site
is used.

The utility class is fully dependency tracked, which means that you should wrap a
FunctionValueExpression around returned values and bind the UI components
that depend on the setting to this expression.

399CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Settings for Studio

8.1.11 Content Creation
CoreMedia Blueprint provides additional buttons and actions to create new content
besides the regular content creation action in the library. The user can click on the
"Create content" menu on the favorites toolbar to open a selection of documents
to create. The action is also available for link lists and several dialogs, like the
'Create' dialog of the external library.

Figure 8.15. New con-
tent menu on the favor-
ites toolbar

The user selects a content to create from the Create content menu of the favorites
toolbar. Afterwards, a dialog opens where (at least) the document name and folder
can be set.

Figure 8.16. New con-
tent dialog

The user can decide if the content should be opened in a tab afterwards. The
checkbox for this is enabled by default. The Name and Folder properties are the
mandatory fields of the dialog. Depending on the content type the dialog shows
different property editors, for example for Page content items, the additional field
Navigation Parent is configured so that the user can select the navigation parent
of the new page.

400CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Creation

Figure 8.17. New con-
tent dialog for pages

The dialog can be extended in several ways and plugged into existing components
using the predefined menu item or button components which will invoke the dialog.
Also, the dialog provides a plugin mechanism for new property editors and allows
you to customize the post-processing after the content creation, depending on the
type of the created content. The following "How To" sections describe how to
configure and customize the dialog.

How to add a 'New Content' menu item to the favorites toolbar

There are already some entries defined for this menu, most of them configured in
the class BlueprintFormsStudioPlugin.exml. The menu can be extended
using the quickCreateMenuItem:

<bp:newContentMenu>
<plugins>
<ui:addItemsPlugin>

<ui:items>
<bpb-components:quickCreateMenuItem contentType="MyDocumentType"/>

...

Separators can be added by:

<menuseparator cls="fav-menu-separator"/>

How to add a 'New Content' menu item to link list

There are two ways to add the content creation dialog to link lists. First is using
the QuickCreateToolbarButton class and apply it to an existing link list using
the additionalToolbarItems plugin. This will add one button to the toolbar
of the link list to create a specific content type, for example creating a new child
for the CMChannel document hierarchy:

401CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Creation

Example 8.2. Add con-
tent creation dialog to
link list with quick-
CreateLinkList-
Menu

<bp:extendedLinkListPropertyField bindTo="{config.bindTo}"
propertyName="children">

<bp:additionalToolbarItems>
<tbseparator/>
<bpb-components:quickCreateToolbarButton contentType="CMChannel"

/>
</bp:additionalToolbarItems>

</bp:extendedLinkListPropertyField>

Figure 8.18. New con-
tent dialog as button
on a link list toolbar

The second variant is that you apply a complete dropdown menu with several
content types in it. By default, these content types are configured in the file
QuickCreateSettings.properties that is part of the blueprint-base and
overwritten with the file NewContentSettingsStudioPlugin.properties
(see BlueprintFormsStudioPlugin.exml). The file contains a property de-
fault_link_list_contentTypeswhich contains the document types to display
in a comma separated value format. This default can be overwritten by adding the
contentTypes attribute to the quickCreateLinklistMenu element when the
dropdown elements are declared in exml. The attribute value can have a comma
separated format to support multiple content types too:

<bp:extendedLinkListPropertyField bindTo="{config.bindTo}"
propertyName="header">
<bp:additionalToolbarItems>
<tbseparator/>
<bpb-components:quickCreateLinklistMenu bindTo="{config.bindTo}"

contentTypes="CMArticle,CMTeaser,..."

propertyName="children" />
</bp:additionalToolbarItems>

</bp:extendedLinkListPropertyField>

Figure 8.19. New con-
tent dialog menu on a
link list toolbar

402CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Creation

How to link new content to a link list

When the dialog is added to the toolbar of a link list by using the button component
of the menu, the newly created content is automatically linked to the list. The dialog
checks during the post-processing if the parameters propertyName" and bindTo
have been passed to it and will link the new content to the existing ones. The dialog
always assumes that if these two parameters have been passed, the corresponding
property is a link list, so using other properties with other types here will raise an
error here.

How to add an event handler to the button or menu item

Both components, the quickCreateLinkListMenu and the quickCreateTool-
barButton provide a configuration parameter called onSuccess. The method
passed there will be executed after a successful content creation and must provide
the signature:

method(content:Content, data:ProcessingData, callback:Function)

The ProcessingData instance "data" contains all the data entered by the user
for the mandatory and optional properties of the dialog. The object is a Bean in-
stance, so the values can be accessed by using data.get(<KEY>) calls. Since the
new content dialog has already applied all dialog properties to the content, the
retrieved new content instance already contains all inputted data.

Ensure that the callback handler is called once the post-processing is finished.
Otherwise, the post-processing of the content can not terminate correctly and
steps may be missing.

How to add a content property to the new content dialog

A new property editor that should be mapped to a standard content property can
be defined in the file NewContentSettingsStudioPlugin.properties. The
configuration entry supports a comma separated format in order to apply multiple
property fields to the dialog. For example when the configuration entry
item_CMArticle=title,segment is added to the properties file, each time the
dialog is opened for a CMArticle document the String properties "title" and
"segment" are editable in the dialog and will be applied to the new content.

Currently only text fields are supported, so do not configure a content property
here that has a different format than "String".

403CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Creation

How to add an event handler for a specific content type

The new content dialog allows you to apply a content type depending success
handlers that are executed for every execution of the dialog. The success handler
must implement the following signature:

method(content:Content, data:ProcessingData, callback:Function)

and is applied to the dialog by invoking:

QuickCreate.addSuccessHandler(<CONTENT_TYPE>, <METHOD>);

Unlike the onSuccess handler described in the previous section, these types of
event handlers will be executed for every content creation of a specific type, no
matter how and where the new content dialog is invoked from.

How to add a custom property to the new content dialog

Sometimes it is necessary to configure a value for the dialog that is not a content
property. Instead, the value should be processed in the success handler. The dialog
allows you to apply new editors to the dialog that are mapped to a specific field
in the ProcessingData instance.

To apply a custom editor a corresponding factory method has to be implemented
that will create the editor every time the dialog is created. This factory method is
applied to the dialog then by invoking:

QuickCreate.addQuickCreateDialogProperty(<CONTENT_TYPE>,
<CUSTOM_PROPERTY>,
function (data:ProcessingData, properties:Object):Component {
...
//for example return new CustomEditor(customEditor{properties});
});

The ProcessingData instance is a bean, so it can be used to create ValueEx-
pressions that are passed as parameters to the component. The predefined
parameters are already applied to the properties object that is passed to the
factory method. Additional properties can be added to this object, like the
emptyText of an input field.

Make sure that the name of the custom property is unique and does not match
an existing property of the given content type.

Since the new editor is shown for each dialog creation of the specific type, a success
handler must be applied to the dialog too that processes the value:

404CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Content Creation

QuickCreate.addSuccessHandler(<CONTENT_TYPE>,
<myPostProcessingHandler>);

The processing handler must implement the same method signature like the ones
defined for menu items or buttons:

method(content:Content, data:ProcessingData, callback:Function)

The custom property can be access in the handler by invoking:

data.get(<CUSTOM_PROPERTY>)

The post-processing of the dialog will execute the following steps:

1. create missing folders

2. create the new content

3. apply values to property fields (default processing)

4. invoke success handlers for custom processing (methods that have been ap-
plied through QuickCreate.addSuccessHandler)

5. invoke success handler configured for the button or menu items (methods
that have been applied by declaring a value for the onSuccess attribute)

6. link content to a link list if parameters are defined

7. open created content

8. open additional content in background

Where do I find some examples?

Check the class CMChannelExtension.as. The class adds a successHandler
for the creation of new CMChannel documents that is used to apply a value for
the title property. Additionally the newly created CMChannel document is also
linked to a parent (if available) that may have been provided by the Navigation-
LinkFieldWrapper component that also has been added to the dialog.

8.1.12 Create from Template
As described in Section 8.1.11, “Content Creation” [400] when you create a Page
content item in the Create content menu or from a link list, you will get a new and
empty content item. If you want, on the other hand, create a Page with predefined
content, or even a complete navigation hierarchy, you can use the Create content
→ Create from Template menu item. This will open a dialog where you can choose
your Page from predefined templates.

405CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Create from Template

Figure 8.20. Create
from template dialog

As with the standard Create Page dialog you can choose a name, the destination
folder for the page and the navigation parent. The Create from Template dialog adds
a template chooser from which you can select the template and a new combo box
(Editorial Content Folder) where you can select a destination folder for the editorial
content. The folder defined in the Page Folder combo box must not exist.

The suggested target paths for editorial content and content used to model the
navigation are taken from a content-based setting from the bundle Content
Creation (see Section 8.1.10, “Settings for Studio” [399] for an explanation of the
content-based settings mechanism). You can modify the settings paths.editor-
ial and paths.navigation to match your specific content tree.

Location of new template folders

By default, templates will be looked up in the following folders:

➞ Global: /Settings/Options/Settings/Templates/CMChannel/

➞ Site specific: Options/Settings/Templates/CMChannel/

➞ User's home folder: {USER_HOME}/Templates/CMChannel/

406CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Create from Template

The lookup path is configurable in the Studio properties file CreateFromTem-
plateStudioPluginSettings.properties by changing the property
pagegrid_template_paths. Additional entries can be added in a comma separ-
ated format.

Keep care when you configure a template path outside the site hierarchy or
when you use the global templates location. It is possible that the preconfigured
layout of a global template may not be available for the active site. Therefore,
the page grid extending mechanism won't work anymore, since the page grid
editor can't find the layout definitions of other pages.

How to add a new template folder

Descriptor contentTemplate folders must have a specific format to be detected as template folders.
Each template is defined in a separate folder inside the Templates/CMChannel
folder. The folder must contain a CMSymbol document named "Descriptor" that
might contain an additional icon and description for the template. The icon is used
as a preview in the template chooser and the description will be shown as the
template name in the template chooser.

Each template folder must contain exactly one page document at root level, other-
wise the folder will be ignored. If the template consists of several pages, the sub
pages should be placed within a subfolder of the template. Editorial content (Article,
Images ...) that is contained in these folders and is linked by Page templates will
be copied to the destination, defined in the Create from Template dialog.

LocalizationIf the name and the description should be internationalized, create an additional
Descriptor document next to the original descriptor and append the locale to
the document name, "Descriptor_de" for the German version, for instance.

8.1.13 Site-specific configuration of Document Forms
With the SiteAwareVisibilityPlugin, you can show or hide document form
elements (for example, property fields) depending of the activation of a "feature"
for a specific site.

The SiteAwareVisibilityPlugin takes a parameter called "feature", which is
a name for the feature. You can group two or more plugins by giving them the
same feature name.

If you configure any ExtJS Component to use this plugin, that component only be-
comes visible when this feature is configured to be active for the site that the
current content belongs to.

By default, the configuration for features of a site is done in a CMSettings docu-
ment, which has to be named <SITE_ROOT_FOLDER>/Options/Settings/Stu
dio Features

407CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Site-specific configuration of Document Forms

This settings bundle consists of a StringList named "features" and contains the
string values that in turn need to be configured as desired in the SiteAwareVis
ibilityPlugin.

Example Usage

This plugin is used in the demo content of the Brand Blueprint. It hides the property
editors for the "Call-To-Action-Button" and "Externally Displayed Date" in the Perfect
Chef site, because these properties are not used in these templates, but are only
used in the Brand Blueprint.

8.1.14 Site Selection
Since CoreMedia Blueprint provides multisite editing, a default working site can be
configured in the settings dialog. If you select from Preferred Site for example 'Chef
Corp. - German (Germany)' and then create a new article, it will be moved
to a folder like this /Sites/Chef Corp./Germany/....

Figure 8.21. The site
selector on the prefer-
ence tab

8.1.15 Upload Files
The upload files dialog can be invoked from the new content menu or the library.
The dialog shows a drop area and the folder combo box the uploaded documents
will be imported into. Files can be dragged and dropped here from the desktop or
the file system explorer. After the drop, the files are enlisted with a preview (if
supported by the OS), a name text field and a mime type combo box. The mime
type is automatically determined by the OS, but can be changed by selecting an-
other value. After pressing the confirmation button the files are uploaded and
corresponding documents are created. The user may choose to open the documents
automatically after the upload is finished. Otherwise, the generated documents
are checked-in.

408CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Site Selection

Figure 8.22. The up-
load files dialog

How to configure the upload settings

The upload settings are stored in the settings document UploadSettings in
folder /Settings/Options/Settings. The default configuration has the follow-
ing format:

<Struct xmlns="http://www.coremedia.com/2008/struct"
xmlns:xlink="http://www.w3.org/1999/xlink">

<StringProperty Name="defaultFolder">Editorial</StringProperty>

<StringProperty
Name="defaultContentType">CMDownload</StringProperty>

<StringProperty
Name="defaultBlobPropertyName">data</StringProperty>

<IntProperty Name="timeout">300000</IntProperty>
<StringListProperty Name="mimeTypes">
<String>application/octet-stream</String>
...more mime types...

</StringListProperty>
<StructProperty Name="mimeTypeMappings">
<Struct>
<StringProperty Name="image">CMPicture</StringProperty>
<StringProperty

Name="application">CMDownload</StringProperty>
<StringProperty Name="audio">CMAudio</StringProperty>
<StringProperty Name="video">CMVideo</StringProperty>
<StringProperty Name="text">CMDownload</StringProperty>
<StringProperty Name="text/css">CMCSS</StringProperty>
<StringProperty

Name="text/javascript">CMJavaScript</StringProperty>
<StringProperty Name="text/html">CMHTML</StringProperty>

</Struct>
</StructProperty>

409CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Upload Files

<StructProperty Name="mimeTypeToMarkupPropertyMappings">
<Struct>
<StringProperty Name="text/css">code</StringProperty>
<StringProperty

Name="text/javascript">code</StringProperty>
<StringProperty Name="text/html">data</StringProperty>

</Struct>
</StructProperty>

</Struct>

For a detailed description about the elements and attributes see table below.
Table 8.3. Upload Set-
tingsdefaultFolder

StringFormat

Defines the default folder that is selected in the folder combo box of the
dialog. The value supports site specific relative folders.

Description

defaultContentType

StringFormat

The default content type to create if the mime type of a file has no cor-
responding mime type mapping.

Description

defaultBlobPropertyName

StringFormat

The default blob property name to which the file blob is written to.Description

mimeTypes

String ListFormat

The available mime types for the mime type combo box.Description

mimeTypeMappings

StructFormat

Depending on the mime type the content type to generate is mapped
here. Here the primary type or the whole mime type can be specified.

Description

mimeTypeToMarkupPropertyMappings

StructFormat

Depending on the mime type the markup property name to which the
file is written

Description

timeout

IntegerFormat

The timeout in milliseconds for uploads, default value is 300000.Description

410CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Upload Files

How to intercept the content's properties before creation

There is an example of a Content Write Interceptor contained in the Upload REST
extension:

<bean id="pictureUploadInterceptor"
class="com.coremedia.blueprint.studio.rest.intercept.PictureUploadInterceptor">

<property name="type" value="CMPicture"/>
<property name="imageProperty" value="data"/>
<property name="blobTransformer" ref="blobTransformer"/>
<property name="extractor" ref="imageDimensionsExtractor"/>
</bean>

It is a Content Write Interceptor for CMPicture content type which scales an up-
loaded image blob to a configurable max dimensions and writes the image dimen-
sions to the width and height String property of the image document. See the
[CoreMedia Studio Developer Manual] for Content Write Interceptor.

8.1.16 Studio Preview Slider

Introduction

CoreMedia Studio's preview features a slider tool. The slider tool was build to let
the user choose between devices with different resolutions in order to let the
preview perform a responsive transformation of the page in the preview window.
This means, that the preview will show the page as if it was to be viewed on a
device with a different resolution than a "conventional" desktop display (that is a
mobile device for instance).

Figure 8.23. The slider
of the Studio Preview

Configuration of preview CAE

In order to enable the responsive slider functionality, you have to enable the use
of metadata tags within the JSP templates. These tags are used for communica-
tion between the CAE and CoreMedia Studio in order to exchange meta information
about the previewed page. (See CoreMedia Studio Developer Manual for
more details about metadata tags). The following listing illustrates the enabled
setting within the file cae-preview-webapp/src/main/webapp/WEB-
INF/application.properties:

metadata.enabled=true

411CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Studio Preview Slider

Integration of metadata tags in Freemarker templates

The following list illustrates the use of metadata tags in the Page.body.ftl
template.

<#ftl strip_whitespace=true>

<#-- responsive design slider information for studio -->
<#assign sliderMetadata={

"cm_preferredWidth": 1281,
"cm_responsiveDevices": {

<#-- list of the devices.
naming and icons see: BlueprintDeviceTypes.properties
the default icons are in studio-core, but you can define
your own style-classes in slider-icons.css.
-->
<#-- e.g. iphone4 -->
"mobile_portrait": {
"width": 320,
"height": 480,
"order": 1,
"isDefault": true
},

<#-- e.g. iphone4 -->
"mobile_landscape": {
"width": 480,
"height": 320,
"order": 2
},

<#-- e.g. nexus7 -->
"tablet_portrait": {
"width": 600,
"height": 800,
"order": 3
},

<#-- e.g. ipad -->
"hybrid_app_portrait": {
"width": 768,
"height": 1024,
"order": 4
},

<#-- e.g. nexus7 -->
"tablet_landscape": {
"width": 960,
"height": 540,
"order": 5
},

<#-- e.g. ipad -->
"hybrid_app_landscape": {
"width": 1024,
"height": 768,
"order": 6
}

}
}

/>

To introduce new devices with even different resolutions, simply extend the content
of the file appropriately.

412CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Studio Preview Slider

Configuration in Studio

The configuration in Studio has to be made in the appropriate bundle files. The
following listing shows the content of the file modules/studio/blueprint-
components/src/main/joo/com/coremedia/blueprint/studio/Blue
printDeviceTypes.properties.

Device_mobile_portrait_icon=mobile-portrait-icon
Device_mobile_landscape_icon=mobile-landscape-icon
Device_tablet_portrait_icon=tablet-portrait-icon
Device_tablet_landscape_icon=tablet-landscape-icon
Device_notebook_icon=notebook-icon
Device_desktop_icon=desktop-icon

Device_mobile_portrait_text=Mobile
Device_mobile_landscape_text=Mobile
Device_tablet_portrait_text=Tablet
Device_tablet_landscape_text=Tablet
Device_notebook_text=Notebook
Device_desktop_text=Desktop

The configuration, which is relatively straightforward, consists of two parts. The
top part of the configuration deals with the appropriate icons, that will be displayed
for the according device type in the slider. The bottom part defines the text, that
will be shown next to the slider. This configuration can be extended to introduce
new device types with new device icons. For configuring the device icons, perform
the following step:

➞ Declare a new class for the configured icon name in the file modules/stu
dio/blueprint-components/src/main/resources/META-INF/re
sources/joo/resources/css/slider-icons.css.

413CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Studio Preview Slider

8.2 CAE Enhancements
This section describes enhancements of the Content Application Engine.

➞ Section 8.2.1, “Using Dynamic Fragments in HTML Responses” [414] describes
how context dependent HTML snippets can easily be used in a Content Ap-
plication Engine application.

➞ Section 8.2.2, “Image Cropping in CAE” [416] describes how you can use
cropped images in the CAE.

8.2.1 Using Dynamic Fragments in HTML Responses

Basic concept

Fragments of responses generated by the Content Application Engine may depend
on a context, for example session data or the time of day. If fragments of a response
may not be valid for every request, and responses are cached by reverse proxies
(like Varnish or a CDN), it's necessary to exclude those parts from the response
and load them separately using techniques like AHAH / Ajax or ESI.

To load the fragments, a link scheme and a matching handler handling the bean's
type are needed.

CAE Implementation

In order to support loading of fragments in a generic and almost transparent way,
beans are wrapped in a (com.coremedia.blueprint.cae.view.DynamicIn-
clude) bean when they are included in the view layer. Whether the bean is wrapped
or not is decided using Predicate<RenderNode> implementations that are called
with the current RenderNode. A RenderNode represents the current "self" object
and the view it's supposed to be rendered in. If any of the available predicates
evaluate to true, the bean and view is wrapped as described above.

Example 8.3. Predicate
Examplepublic class DynamicPredicate implements DynamicIncludePredicate {

//only use DynamicInclude if view matches.
private static final String VIEW_NAME="myView";

public boolean apply(RenderNode input) {

if (input == null) {
return false;

} else if (input.getBean() instanceof MyBean
&& VIEW_NAME.equals(input.getView())) {

return true;
}

return false;
}

}

414CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | CAE Enhancements

The predicate has to be added to a predefined Spring bean in order to be evaluated:

Example 8.4. Predicate
Customizer Example<customize:append id="addMyDynamicPredicates"

bean="dynamicIncludePredicates">
<list>
<bean id="myPredicate“

class=“DynamicPredicate"/>
</list>

</customize:append>

Render fragment placeholder

After wrapping the bean, the DynamicInclude is then rendered by the Content
Application Engine.

DynamicInclude beans are rendered just as other beans by the Content Application
Engine. By default, the view DynamicInclude.ftl is used to render the beans.
It will either add a placeholder DOM element that can be used to load the fragment
using AHAH, or an <esi:include> tag, depending on whether there is a reverse
proxy telling the CAE to do so using the Surrogate-Capability header. This is
described in the Edge Architecture Specification.

Links to dynamic fragments

In order to generate a link for either AHAH or ESI, a separate link scheme must be
created for each bean type that should be included dynamically.

If the fragment depends on the context (for example, Cookies, session or the time
of day), the link scheme must have the prefix/dynamic/ (seeUriConstants$Pre-
fixes) so that a preconfigured interceptor will set all Cache headers necessary
that downstream proxies never cache those fragments. Matching Apache and
Varnish rewrite rules are provided by CoreMedia Blueprint.

Example 8.5. Dynamic
Include Link Scheme
Example

@Link(type = MyBean.class,
view = "fragment",
uri = "/dynamicfragment/mybean")

public UriComponents buildFragmentLink(Cart cart,
UriTemplate uriPattern,
Map<String, Object> linkParameters,
HttpServletRequest request) {

UriComponentsBuilder result =fromPath(uriPattern.toString());
//parameter "targetView" needs to be added
result.queryParam("targetView",linkParameters.get("targetView"));

return result.build();
}

415CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Using Dynamic Fragments in HTML Responses

http://www.w3.org/TR/edge-arch

Handling dynamic fragments

These links have to be handled by using a handler. The handler has to use the Re-
questParam "targetView" to be able to construct a ModelAndView matching
the values as originally intended in the include including the original bean.

Example 8.6. Dynamic
Include Handler Ex-
ample

@RequestMapping(value="/dynamicfragment/{mybean}")
public ModelAndView handleFragmentRequest(

@PathVariable("mybean") String mybean,
@RequestParam(value = "targetView") String view) {

Object myBean = resolve(mybean);

//do not create Page, return bean directly (!)
ModelAndView modelWithView = createModelWithView(myBean, view);
return modelWithView;

}

8.2.2 Image Cropping in CAE
As described in the [CoreMedia Studio Developer Manual] in chapter Enabling
Image Cropping, there are predefined crops, which can be applied to image ren-
dering in the CAE. CoreMedia Blueprint comes with nine predefined cropping
definitions as shown in the PerfectChef and Aurora sites.

➞ portrait_ratio20x31

➞ portrait_ratio3x4

➞ portrait_ratio1x1

➞ landscape_ratio4x3

➞ landscape_ratio16x9

➞ landscape_ratio2x1

➞ landscape_ratio5x2

➞ landscape_ratio8x3

➞ landscape_ratio4x1

The necessary settings for the image will be set by Studio once you open the image
in Studio. To render images correctly even if they were not imported through Studio
but for example by the Importer or WebDAV, the CAE provides a default cropping
configuration for those images, which don't have the settings explicitly set. You
will find these default settings in

/modules/shared/image-transformation/src/main/resources/framework/spring/mediatransform.xml

416CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Image Cropping in CAE

https://documentation.coremedia.com/cm7/20/manuals/studio/2.0.15/studio-developer-en/webhelp/content/ch07s03s04.html
https://documentation.coremedia.com/cm7/20/manuals/studio/2.0.15/studio-developer-en/webhelp/content/ch07s03s04.html

In this file, there is a list of the transformations mentioned above. Please refer to
the Javadoc of com.coremedia.cap.transform.Transformation for all
configuration possibilities. New Spring bean definitions of this class will be auto-
matically injected to the TransformImageService that is responsible for all
variant definitions.

Site Specific Image Variants

The features requires template changes. Examples for this are currently not
supported by the CoreMedia Blueprint.

For the CAE, the class TransformImageService is responsible for loading site
specific cropping information. The feature can be enabled by changing/adding the
Spring property imageTransformation.dynamicVariants to true.

The TransformImageService requires a lookup of the Struct that contains the
information about the image variants. Therefore, it must be injected with an in-
stance of VariantsStructResolver which resolves the global and site specific
image variants. The implementation of this interface is part of the sharedmodule
image-transformation, since the lookup is content type specific and therefore
can not be part of the core.

417CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Image Cropping in CAE

8.3 Elastic Social

Feature is only supported in e-Commerce Blueprint.

CoreMedia Elastic Social is integrated into CoreMedia Blueprint. It includes the follow-
ing features:

➞ Comments and Reviews

Comments and reviews are supported for any kind of editorial CMS content
items, for example articles and products. It is possible to configure for a
context if writing comments or reviews is enabled and if it is allowed for
anonymous or registered users. A review includes 5-star ratings with title
and text.

Elastic Social provides aggregations like "Most Commented" or "Top Re-
viewed" content in a defined time interval for a certain context.

➞ User Profiles

User profiles can be created using a registration flow and can be managed
in the CAE by the user or in the Studio plugin "User Management".

➞ Moderation

In the moderation of Elastic Social comments, reviews and user profiles can
be edited, approved or rejected. In case of rejecting, a preconfigured tem-
plate-based email can be sent directly or be modified by the moderator before
sending it. A prioritization for comments, reviews or user profiles can be set.
For all items that have to be moderated, premoderation, post-moderation
or no moderation can be configured.

➞ Password Reset

Password reset is available for registered users who authenticate directly
with Elastic Social.

➞ User Management

The Elastic Social user management in Studio includes a search for community
users. The user management allows editing, searching, approving, blocking,
ignoring and deleting users.

➞ All Contributions

In the All Contributions section in Studio a list of all comments and reviews
can be displayed. The list can be filtered by user, type, status or search term.
Selected comments/reviews can then be edited, remoderated and marked
for later editorial use.

418CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Elastic Social

➞ Display custom information in Studio

Custom information about users, comments or reviews can easily be integ-
rated into the Studio moderation and user management via extension points.

➞ Emails

An email for a specific event can be sent by implementing the corresponding
listener. Email templates can be created and edited in Studio.

8.3.1 Configuring Elastic Social
This section describes the configuration of the Elastic Social plugin.

Context settings for Elastic Social are defined in the following contexts:

➞ Root channel: Application context settings can only be defined in the root
channel and can not be overwritten

➞ Every Channel: Channel context settings can be defined in every channel
and are inherited or can be overwritten by child channels

Root Channel

The following context settings are defined for the root channel and can not be
overwritten:

Table 8.4. Root Chan-
nel Context Settingstenant

String propertyType

The tenantDescription

elasticExample

Default Value

trueRequired

userModerationType

String PropertyType

Moderation type for usersDescription

PRE_MODERATION, POST_MODERATION, NONEExample

NONEDefault Value

falseRequired

The context setting tenant is needed to define which tenant is used for a site.

419CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Elastic Social

Example 8.7. Root
Channel Context Set-
tings

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.org/1999/xlink">
<StructProperty Name="elasticSocial">
<Struct>
<StringProperty Name="tenant">
elastic

</StringProperty>
<StringProperty Name="userModerationType">
POST_MODERATION

</StringProperty>
</Struct>

</StructProperty>
</Struct>

Every Channel

The following context settings can be defined per channel and are inherited or can
be overwritten by child channels:

Table 8.5. Context Set-
tings for Every ChannelDefault

value
ExampleDescriptionTypeName

falsetrue, falseEnable/disable feed-
back for the channel.

Boolean Prop-
erty

enabled

If disabled, all other
settings are ignored

DIS-
ABLED

DISABLED,
READONLY, RE-

Disable commenting
generally by settings

String PropertycommentType

GISTERED, ANONYM-
OUS

this property to DIS-
ABLED. Enable read-
ing comments by
setting this property
to READONLY. En-
able only registered
users to write com-
ments by settings
the property to RE-
GISTERED. Enable all
users (registered and
anonymous) to write
comments by set-
tings the property to
ANONYMOUS. This
property is only
available if enabled
is true.

DIS-
ABLED

DISABLED,
READONLY, RE-

Disable reviewing
generally by settings

String PropertyreviewType

420CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Elastic Social

Default
value

ExampleDescriptionTypeName

GISTERED, ANONYM-
OUS

this property to DIS-
ABLED. Enable read-
ing reviews by set-
ting this property to
READONLY. Enable
only registered users
to write reviews by
settings the property
to REGISTERED. En-
able all users (re-
gistered and anonym-
ous) to write reviews
by settings the prop-
erty to ANONYM-
OUS. This property is
only available if en-
abled is true.

NONEPRE_MODERA-
TION,POST_MOD-
ERATION, NONE

Moderation Type for
comments.

String PropertycommentModera-
tionType

NONEPRE_MODERA-
TION,POST_MOD-
ERATION, NONE

Moderation Type for
reviews.

String PropertyreviewModera-
tionType

Configures filter op-
tions for the com-

LinkListProp-
erty

filterCategories

ment moderation
list. You can add
navigation and tax-
onomy documents.

Context Settings for Every Channel

Example 8.8. Context
Settings for Every
Channel

<?xml version="1.0" encoding="UTF-8"?>
<Struct xmlns="http://www.coremedia.com/2008/struct"

xmlns:xlink="http://www.w3.org/1999/xlink">
<StructProperty Name="elasticSocial">
<Struct>
<BooleanProperty Name="enabled">
true

</BooleanProperty>
<StringProperty Name="commentType">
ANONYMOUS

</StringProperty>
<StringProperty Name="reviewType">
REGISTERED

</StringProperty>
<StringProperty Name="commentModerationType">
PRE_MODERATION

421CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Elastic Social

</StringProperty>
<StringProperty Name="reviewModerationType">
PRE_MODERATION

</StringProperty>
</Struct>

</StructProperty>
</Struct>

8.3.2 Displaying Custom Information in Studio
You can show additional information inside the moderation tab and user manage-
ment window of CoreMedia Studio by extending the Studio web application (server
side) and modifying the ElasticSocialStudioPlugin.exml (client side).

Server Side: REST JsonCustomizer

Provide a JsonCustomizer to the Studio web application that adds the additional
information to the data that is transferred from the REST back-end to the Studio
app for users:

@Named
public class MyCommunityUserJsonCustomizer implements
JsonCustomizer<CommunityUser> {
public void customize(CommunityUser communityUser, Map<String,

Object> serializedObject) {
serializedObject.put("additional",

communityUser.getProperty("information", String.class));
}

}

or for comments:

@Named
public class MyCommentJsonCustomizer implements
JsonCustomizer<Comment> {
public void customize(Comment comment, Map<String, Object>

serializedObject) {
serializedObject.put("additional",

comment.getProperty("information", String.class));
}

}

Client Side (1): Display Custom Properties

Three extension points are provided for displaying custom properties for comments
or users.

1. Extend the commentExtensionTabPanel to add components for comments
that are displayed above the approve and reject buttons inside the modera-
tion/archive tab (useactiveContributionAdministration in the expression

422CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Displaying Custom Information in Studio

for the elasticPluginLabel in order to reference the active contribution
administration, depending on whether the moderation or the archive tab is
active):

<ui:pluginRules>
...
<ui:rules>
...
<elastic:commentExtensionTabPanel>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<panel title="additionalInformation" layout="form"

autoHeight="true" cls="elastic-extensionTab">
<items>

<es:elasticPluginLabel fieldLabel="additional"

expression="activeContributionAdministration.displayed.additional"/>

</items>
</ui:items>

</ui:addItemsPlugin>
</plugins>

</elastic:commentExtensionTabPanel>
...

</ui:rules>
...

</ui:pluginRules>

2. Extend the userProfileExtensionTabPanel to add components for user
profiles that are displayed above the approve and reject buttons inside the
moderation tab:

<ui:pluginRules>
...
<ui:rules>
...
<elastic:userProfileExtensionTabPanel>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<panel title="additionalInformation" layout="form"

autoHeight="true" cls="elastic-extensionTab">
<items>
<es:elasticPluginLabel fieldLabel="additional"

expression="contributionAdministration.displayed.additional"/>
</items>

</panel>
/ui:items>

</ui:addItemsPlugin>
</plugins>

</elastic:userProfileExtensionTabPanel>
...

</ui:rules>
...

</ui:pluginRules>

3. Extend the customUserInformationContainer to add components that
are displayed below the user meta information panel inside the user manage-
ment view:

423CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Displaying Custom Information in Studio

<ui:pluginRules>
...
<ui:rules>
...
<elastic:customUserInformationContainer>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<container layout="form" autoHeight="true">
<items>
<es:elasticPluginLabel fieldLabel="additional"

expression="userAdministration.edited.additional"/>
</items>

</container>
</ui:items>

</ui:addItemsPlugin>
</plugins>

</elastic:customUserInformationContainer>
...

</ui:rules>
...

</ui:pluginRules>

Client Side (2): Edit Custom Properties

For all three extensions points described above it is also possible to not just display
but to edit/moderate custom properties. Instead of elasticPluginLabel just
use elasticPluginPropertyField. This provides a text field for editing the
property. Number or Boolean fields are not provided but can be constructed ana-
logously. When you construct your own property field it is important to register
the corresponding property as being moderated. This can either be done directly
by your property field (c.f. ElasticPluginPropertyFieldBase) or you use the
registerModeratedPropertiesPlugin for this purpose.

8.3.3 Adding Custom Filters for Moderation View
The list of moderated items of the Moderation View includes a filter section (see
chapter Using Elastic Social of the CoreMedia Studio User Manual). By default, this
section encompasses a filter for showing/hiding comments and users and for fil-
tering comments in terms of comment categories.

It is possible to add further filters. You have to add your custom filterFieldset
to the container moderatedItemsSearchFilters via the addItemsPlugin.

Each filterFieldset has to implement the method buildQuery(). For the
case of moderation list filters, it has to return a string denoting comment/user
properties and their desired values for filtering. Comment properties have to be
prefixed with "comments_". User properties have to be prefixed with "users_".

424CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Adding Custom Filters for Moderation View

For instance, if your filter returned "comments_authorName=Nick", only com-
ments written by an author named Nick would show up. You can combine multiple
property-value pairs by separating them with "&"

Note that you probably have to provide appropriate indexes for your database in
order to prevent your custom filters to have a negative effect on query performance.

8.3.4 Emailing
Emailing is supported by Elastic Social and can easily be incorporated for common
use cases in a project. Elastic Social provides listeners which can be implemented
to send emails (see Elastic Social documentation).

The MailTemplateService allows you to generate and send emails with a tem-
plate name and parameters. The parameters define variables which can be used
in the mail templates. Locale specific mail templates are used if a locale specific
variant is available (locale specific suffixed name).

Per default all properties of a CommunityUser (the model for a user) are available
as variable in a mail template. For example you can use $givenName to include
the given name of a user (if you use FreeMarker for templating as CoreMedia Blueprint
does). Additional parameters must be provided programmatically by passing them
as map additionalParameters to the MailTemplateService.

In CoreMedia Blueprint, the following mail templates for the user and moderation
processes are already provided with the example content. For each mail template,
the template name and additional parameters are described.

If you want to use different additional parameters, redefine the variable in the
mail template and pass the corresponding parameter in the additionalParamet
ers map. All properties of the CommunityUser can be used in the templates
without changing the code.

Table 8.6. Mail Tem-
platesAdditional ParametersTemplate NameUse case

baseUrl (reset password link)passwordresetReset Password

replyText, replyAuthorName, reply-
Date,commentText,commentDate,com-
mentUrl

commentRepliedComment Replied

Mail Templates

425CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Emailing

8.3.5 Curated transfer
Contributions can be transformed into content objects for further use. In CoreMedia
Blueprint the curatedTransferExtensionPoint must be configured to define
the type of content:

<ui:pluginRules>
...
<ui:rules>
...
<elastic:curatedTransferExtensionPoint>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<spacer width="10" height="100%"/>
<tbseparator/>
<button itemId="createArticleBtn" height="100%"

width="30">
<baseAction>
<ui:openDialogAction>
<ui:dialog>
<bp:newContentDialog folders="{['Editorial']}"

skipInitializers="true"
contentType="CMArticle"

onSuccess="{CuratedUtil.postCreateArticleFromComments}"
openInTab="false">

</bp:newContentDialog>
</ui:dialog>

</ui:openDialogAction>
</baseAction>

</button>
<tbseparator/>

</ui:items>
</ui:addItemsPlugin>

</plugins>
</elastic:curatedTransferExtensionPoint>
...

</ui:rules>
...

</ui:pluginRules>

The content property can be configured in CuratedTransferResource.java:

private static final String CONTENT_PROPERTY_TO_COPY_TO =
"detailText";

8.3.6 Elastic Social Demo Data Generator
The Elastic Social Demo Data Generator is a standalone web application that generates
the following entities:

➞ Comments

426CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Curated transfer

➞ Reviews

➞ Users

➞ Blacklist entries

The generator simulates the online community of your website. You can, for ex-
ample, simulate to have a comment written every 30 seconds and see how this
affects the moderation list in the Studio plugin.

The demodata-generator web application is not started per default. To start the web
application, start the es-demodata-generator-webapp or add a dependency
to es-demodata-generator-component to your Preview CAE web application
(Maven profile preview-cae-with-es-demodata-generator).

Once the web application is started, further control is provided either via a controller
based JSP page or via manager based JMX access. Both ways provide functionality
to start, stop and check the status of the generator. The JMX access enables fine
grained configuration of the actual generation process.

In the demodata-generator web application, a demo data generator can be started
simultaneously for each tenant.

The demo data generator initially generates a number of users (about 4000), images
(about 30) and blacklist entries (about 20). Further data is generated incrementally
depending on the comment generation frequency (Interval configuration
property) and in relation to his value the frequency of other generated data like
users, ratings, likes, etc (configuration properties ending with Rate).

Example 1: If the Interval property is 30, then a comment is generated every
30 seconds.

Example 2: If the Interval property is 30 and the NewUserRate property is 5,
then a comment is generated every 30 seconds and a new user is generated each
fifth iteration, that is every 5 * 30 = 150 seconds.

Additionally, some rates depend on other rates.

Example 3: If the NewUserRate property is 5 and the AnonymousUserRate
property is 4, then a new anonymous user is created only if a new user is generated
in this iteration, that is each 20th iteration.

See Table 8.8, “ Elastic Social Demo Data Generator configuration ” [428] for a de-
scription of the rate properties which can be reconfigured via JMX.

JSP

Start the demo data generator for a tenant, such as 'corporate', with:

427CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Elastic Social Demo Data Generator

http://localhost:40088/es-demodata-generator-webapp/servlet/generate?tenant=corporate

To start the demo data generator for another tenant, change the tenant parameter.
If no tenant is given, the default tenant is used.

The following parameters are available:

➞ interval (optional): Defines frequency of data generation in seconds. De-
fault interval is 30 seconds. Effective only on startup.

➞ stop (optional): Stops the demo data generator for the given tenant.

➞ tenant (optional): Starts or stops the demo data generator for the given
tenant. The tenant will be registered, if unknown. If omitted, the default
tenant is used.

JMX

To manage the demo data generator via JMX for a specific tenant, navigate to the
corresponding operation for the tenant and invoke it. The tenants are located in
folder com.coremedia.DemoDataGeneratorManager.blueprint. If the JMX
MBean is not available for a tenant, start the demo data generator via HTTP with
the tenant parameter. The tenant will then be registered and the MBean becomes
available.

The following operations are available via JMX:
Table 8.7. Elastic Social
Demo Data Generator
operations

DescriptionName

Starts the demo data generatorstart

Stops the demo data generatorstop

Restarts the demo data generatorrestart

Gets the status of the demo data generatorgetStatus

Resets all settings to default valuesresetAllSettings

The following configuration is available via JMX:
Table 8.8. Elastic So-
cial Demo Data Gener-
ator configuration

Interval

Defines the frequency of demo data generation in seconds. A comment
will be generated each interval.

Description

30Default

428CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Elastic Social Demo Data Generator

AnonymousCommentRate

Defines the anonymous comment rate of newly created commentsDescription

2Default

AnonymousLikeRate

Defines the anonymous like rate of newly created likesDescription

4Default

AnonymousRatingRate

Defines the anonymous rating rate of newly created ratingsDescription

4Default

AnonymousUserRate

Defines the anonymous user rate of newly created usersDescription

10Default

CommentComplaintRate

Defines the comment complaint rateDescription

50Default

CommentReplyRate

Defines the rate for comment repliesDescription

5Default

CommentWithAttachmentsRate

Defines the rate for comment attachments of newly created commentsDescription

5Default

LikeRate

Defines the new like rateDescription

2Default

NewUserRate

Defines the new user rateDescription

5Default

RatingRate

Defines the rating rateDescription

2Default

UserChangesRate

Defines the rate for changing usersDescription

429CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Elastic Social Demo Data Generator

7Default

UserComplaintRate

Defines the rate of complaints about a userDescription

49Default

UserModerationType

Defines the moderation type used for user creation (PRE_MODERATION,
POST_MODERATION or NONE)

Description

POST_MODERATIONDefault

Statistics are provided about the generated content and also about the number of
available targets for comments that are available in your content repository. The
following table only includes statistics which require parameters. For all other
statistic data like the number of created comments just take a look at the available
attributes when using the JConsole.

Table 8.9. Elastic Social
Demo Data Generator
statistics

DescriptionName

Returns the number of teasables with commenting
enabled with the given moderation type or of all teas-

getNumberOfTeasablesFor-
Commenting(String moder-
ationType) ables if no moderation type is given (PRE_MODERA-

TION, POST_MODERATION or NONE)

Returns the number of teasables with commenting
enabled for anonymous users with the given modera-

getNumberOfTeasablesFor-
AnonymousComment-

tion type or of all teasables if no moderation type ising(String moderation-
Type) given (PRE_MODERATION,POST_MODERATION or

NONE)

430CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Elastic Social Demo Data Generator

8.4 Adaptive Personalization

Feature is only supported in e-Commerce Blueprint.

CoreMedia Adaptive Personalization is integrated in CoreMedia Blueprint. It extends
CoreMedia Studio and the CAE with the following features:

➞ Specific content types for personalized content, personalized search, user
segments and test user profiles. See Section 6.2.2, “Adaptive Personalization
Content Types” [253] for details.

➞ Specific editors in CoreMedia Studio for the content types.

➞ Different context sources to access taxonomy keywords, time related inform-
ation and many more.

➞ Different search functions that can be used in personalized searches.

ContextA main concept of Adaptive Personalization is context. When speaking about a
context in terms of CoreMedia Adaptive Personalization, "a piece of data associated
with a HTTP request" is meant. What data this is, is determined by the data sources
you grant access to, for example a Geo Location service, your CRM or CoreMedia
Elastic Social. CoreMedia Adaptive Personalization is a framework that manages these
contexts and makes them available within your CoreMedia application. See the
[Adaptive Personalization Manual] for detailed information, about how contexts
work.

In the file personalization-context.xml in module p13n-cae you can see
which contexts are used in CoreMedia Blueprint.

The following sections describe details of the integration, the module structure,
key integration points and some details on context.

➞ Section 6.2.2, “Adaptive Personalization Content Types” [253] gives an
overview over the content types introduced by Adaptive Personalization.

➞ Section 8.4.1, “Key Integration Points” [432] describes key integration points
of Adaptive Personalization

➞ Section 8.4.2, “Adaptive Personalization Extension Modules” [432] summarizes
where to find Adaptive Personalization related source code in CoreMedia
Blueprint.

➞ Section 8.4.3, “CAE Integration” [433] shows how Adaptive Personalization
is embedded into the CAE.

➞ Section 8.4.4, “Studio Integration” [437] presents the Studio integration.

431CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Adaptive Personalization

8.4.1 Key Integration Points

➞ CoreMedia Elastic Social

As one example of providing context information that doesn't originate from
the CMS, CoreMedia Blueprint comes with a ready-to-use integration for
CoreMedia Elastic Social. As a result an editor can create Conditions in docu-
ments of type Personalized Search and User Segment that make use of a
CommunityUser's number of written comments, likes and ratings and/or
simply information about the user himself (for example his given name).

Note that these features are only available when using CoreMedia Adaptive
Personalization in combination with CoreMedia Elastic Social.

➞ Taxonomies

As depicted in Section 6.2.3, “Tagging and Taxonomies” [254], each HTTP
request against the CAE is augmented with Taxonomies. For example if a
page with Content related to sport is shown, a "Sport" Taxonomy is associated
with the request. CoreMedia Blueprint is configured to make these semantic
classifications accessible to editors, that is, they can define Conditions on
them in documents of type Personalized Search and User Segment.

8.4.2 Adaptive Personalization Extension Modules
CoreMedia Adaptive Personalization is integrated into the CAE using the CoreMedia
project extension mechanism.

Adaptive Personalization Extensions

➞ p13n

This is the basic CoreMedia Adaptive Personalization module. It provides es-
sential implementation based on Adaptive Personalization, like definitions of
contexts, custom content types and corresponding ContentBeans.

➞ es-p13n

This extension combines CoreMedia Elastic Social with CoreMedia Adaptive
Personalization. It offers ContextSources that publish properties of Elastic
Social's CommunityUser to the user's context collection so that it is available
for Adaptive Personalization. This extension also offers convenience imple-
mentations for accessing and modifying user context, for example, the
com.coremedia.blueprint.personalization.elastic.In
terestsService which reads and writes contexts that refer to Subject
Taxonomies.

See the [Blueprint Concept Guide] to learn more about Taxonomies.

432CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Key Integration Points

➞ lc-p13n

This extension combines CoreMedia LiveContext with CoreMedia Adaptive
Personalization. It consists of the CAE extension lc-p13n-cae and the Studio
extension lc-p13n-studio.

Adaptive Personalization's Main Module in Detail
Table 8.10. Adaptive
Personalization's main
Maven module in de-
tail

ContentDescriptionModule

ContentBean implementations
for Adaptive Personalization content
types, data view/Spring bean defin-
itions, JMX configuration, ...

Generic CAE Pluginp13n-cae

XML schema for Adaptive Personal-
ization's rule grammar, localization
properties, ...

Runtime dependencies for
CoreMedia Site Manager

p13n-editor-lib

Customizations specific to Preview
CAE for example code to handle the
evaluation of Test User Profiles

Preview CAE Pluginp13n-preview-cae

XML schema for Adaptive Personal-
ization's rule grammar, Adaptive
Personalization content types, ...

Bundles runtime depend-
encies for Content Manage-
ment Server

p13n-server

See the [Blueprint Concept Guide]
for a description of the content
types

DocumentForms corresponding
to content types, custom UI compon-
ents, localization properties, ...

Studio pluginp13n-studio

DocumentForms corresponding
to content types, custom UI compon-
ents, localization properties, ...

Runtime dependencies for
CoreMedia Studio

p13n-studio-lib

A prepared XML repository used
during test execution, ...

Encapsulates content and
code for testing purposes

p13n-test-content

Wrapper for the rule property editor
of a personalized content document,
...

Wrappers for Adaptive Per-
sonalization's Studio UI
components and the UI
tests themselves

p13n-uitesting

8.4.3 CAE Integration
This section covers which contexts and SearchFunctions are available in Core-
Media Blueprint.

433CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | CAE Integration

For a basic understanding of Adaptive Personalization's key concepts and how to
instrument them to fulfill project specific needs, please refer to the Adaptive Per-
sonalization Manual. To learn about CAE development in general see the [CAE
Developer Manual].

Configured Contexts

To make use of Adaptive Personalization a CAE must be configured with contexts.
In order to deliver personalized content these contexts will be analyzed at runtime
each time a request is being processed.

CoreMedia Blueprint is shipped with the following contexts configured:
Table 8.11. Adaptive
Personalization con-
texts configured for
CoreMedia Blueprint

DescriptionContext

Cookie based ContextSource to track
keywords associated with a Page.

cookieSource_keyword

Cookie based ContextSource to track
Subject Taxonomies

cookieSource_subject_taxonom
ies

See the [Blueprint Concept Guide] to learn
more about Taxonomies.

Cookie based ContextSource to track
Location Taxonomies

cookieSource_location_taxonom
ies

See the [Blueprint Concept Guide] to learn
more about Taxonomies.

Cookie basedContextSource to track the
referrer URL of the first request of a session.

referrerSource

Provides access to time related information.systemDateTimeSource

Cookie based ContextSource to track a
user's visited Pages.

lastVisitedSource

Have a look at personalization-context.xml in module p13n-cae to see
what kind of data is contained in the contexts. Especially, notice the used Con
textCoDec implementations.

Refer to the [Blueprint Concept Guide] to learn about contexts in general and the
[Adaptive Personalization Manual] to see how to implement a ContextSource.

Configured SearchFunctions

CoreMedia Blueprint comes with a content type called Personalized Search that
represents a parametrized search query. You can use SearchFunctions to enrich
the query String, which will be evaluated at request processing time. After evalu-

434CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | CAE Integration

ation, the SearchFunctions are replaced with values from contexts resulting in
a personalized search query.

CoreMedia Blueprint is shipped with the following SearchFunctions configured:
Table 8.12. Predefined
SearchFunctions
in CoreMedia Blueprint

DescriptionSearch Function

A search function that adds the value of a single context property
to a search string.

contextProperty

You can use the following parameters:

➞ property - the property of the context. Should be in
the form: <context>.<property>

➞ field - the search engine field in which you want to
search.

Example:

The context named "bar" contains a property "foo" which has a
value "42". Then, the search function contextProp
erty(property:bar.foo, field:field) will be
evaluated to 'field:42'. That is, the Search Engine searches in the
field named "field" for the value "42".

A search function that selects from a user's context a set of keys
that fulfill a weight constraint.

userKeywords

You can use the following parameters:

➞ limit - Limits the number of returned keys (a negative
or missing value means no limit)

➞ field - The search engine field which should be
searched

➞ threshold - The minimum weight of keys to be re-
turned

➞ context - The context containing the keys

Example:

The context object named myContext contains the properties
(foo, 0.8), (bar, 0.5), (zork, 0.1). Then, the search function
userKeywords(threshold:0.5, limit:-1,
field:field, context:myContext) will be evaluated
to field:(foo bar) and the search function user
Keywords(threshold:0.5, limit:1,
field:field, context:myContext) will be evaluated
to field:(foo).

435CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | CAE Integration

DescriptionSearch Function

A search function that selects the set of user segments the active
user belongs to.

userSegments

You can use the following parameters:

➞ field - The search engine field which should be
searched

➞ context - The context that contains segment properties

Example:

The context object named "myContext" contains the properties
('content:42', true), ('content:44', false), ('content:46', true).
Then, the search functionuserSegments(field:field,
context:myContext) will be evaluated to "field:(42 46)".
This function is intended to be used with the user segmentation
feature of CoreMedia Adaptive Personalization, which uses prop-
erty keys of the form content:<segmentId> (where
segmentId is the numeric content id of a user segment) to
represent segments in a user's context.

See the [Blueprint Concept Guide] and the [Adaptive Personalization Manual] for
more information on SearchFunctions and the content type Personalized Search.

Enabling Test User Profiles in the Preview CAE

To make the Test Profile Selector work, the Preview CAE is provided a special context
configuration: Its ContextCollector extends all properties of the generic CAE
ContextCollector, but also adds a TestContextSource (see p13n-preview-
cae-context.xml in p13n-preview-cae). This TestContextSource makes
contexts from Test User Profile documents available by extracting the following
information from a Test User Profile:

➞ Arbitrary contexts held in a plaintext blob using the PropertiesTestCon
textExtractor

➞ Subject/Location Taxonomies determined in a Struct property using the
TaxonomyExtractor

The activation of the TestContextSource is triggered by passing a special URL
parameter - TestContextSource.QUERY_PARAMETER_TESTCONTEXTID - to
the Preview CAE.

Further reading:

436CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | CAE Integration

➞ See Section “Using Personas” [438] for the Test Profile Selector's usage

➞ Refer to the [Blueprint Concept Guide] to learn more about documents of
type Test User Profiles and Personalized Content

➞ The [Adaptive Personalization Manual] explains how to specify contexts in
a Test User Profile document

8.4.4 Studio Integration
This section covers which Conditions are configured in CoreMedia Blueprint and
how to use the Test Profile Selector.

For a basic understanding of Adaptive Personalization's key concepts and how to
instrument them to fulfill project specific needs, please refer to the [Adaptive
Personalization Manual]. To learn about Studio development in general see the
[Studio Developer Manual].

Configured Conditions

To make use of contexts in documents of type Personalized Content or User Seg-
ment corresponding Conditions have to be implemented in Studio. CoreMedia
Blueprint provides Conditions for all contexts listed in Table 8.11, “Adaptive
Personalization contexts configured for CoreMedia Blueprint” [434].

Figure 8.24. Conditions
in Personalized Con-
tent and User Segment
documents

Have a look at CMSelectionRulesForm.exml and CMSegmentForm.exml in
module p13n-studio to get an idea about how to plug in Conditions.

437CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Studio Integration

Using Personas

A Persona is a collection of artificial context properties under the control of the
editors. The type of properties to use depends on the configured contexts. For ex-
ample the name of a visitor is a String while the number of likes performed is a
numeric value.

Figure 8.25. Defining
artificial context proper-
ties using Personas

See Table 8.11, “Adaptive Personalization contexts configured for CoreMedia
Blueprint” [434] for an overview of configured contexts.

Using the Persona Selector an editor is able to test a Personalized Content docu-
ment. By choosing a specific Persona all its contexts are activated within the Preview
CAE. As a result, the Preview CAE renders content as if corresponding contexts
were available at request processing time.

438CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Studio Integration

Figure 8.26. Selecting
Personas to test Person-
alized Content and
User Segment docu-
ments

See section Section “Enabling Test User Profiles in the Preview CAE” [436] to learn
how Personas are integrated into the Preview CAE. The Adaptive Personalization
Manual describes in detail how to create and use Personas.

439CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Studio Integration

8.5 Third-Party Integration
CoreMedia Blueprint comes with default integrations of third-party software.

8.5.1 Optimizely
Optimizely is a service which offers A/B testing for your website. You can define
different rules for A/B testing using the editor on the Optimizely website.

CoreMedia Blueprint integrates Optimizely to perform A/B testing for channels.
To enable this for a certain channel:

1. Open the target channel in CoreMedia Studio.

2. Open the Settings tab.

3. Create a struct property of type Boolean in the "Local Settings" section with the
name optimizely.enabled and set it to true.

4. Create a struct property of type String in the "Local Settings" section with the
name optimizely.id.external.account and enter the project id you got
from Optimizely.

Now the JavaScript provided by Optimizely will be included in each site of this
channel and you can measure your website improvements. The "Local Settings"
will be inherited to sub channels. That means, the project id can be set, for example
for the root channel once and you can disable Optimizely using optimizely.en-
abled for each sub channel individually.

Remember also, if you adjust target links on your website the target site must be
available in the channel, too. Otherwise, the Optimizely script will not be included
on the target site and clicks cannot be tracked.

8.5.2 Open Street Map Integration
The Open Street Map project creates and distributes free geographic data. CoreMedia
Blueprint is prepared to include the project to display the location of location based
taxonomies, but map integration are not included in the default templates.

Figure 8.27. Example
for a Open Street Map
integration in a website

440CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Third-Party Integration

In order to use Open Street Map on your site, you have to create a settings docu-
ment and link it to the root channel of your site. The JavaScript for Open Street
Map will be loaded using an aspect that is only enabled if the corresponding settings
property is set. The available settings for Open Street Map are shown in the table
below and must be configured to enable the map in the CAE. A template renders
a map segment according to geographic coordinates stored in the string property
latitudeLongitude of a linked location content, and pinpoints the matching
location with a marker image (see CMTeasable.map.jsp for a usage example).

Table 8.13. Settings for
Open Street Map Integ-
ration

DescriptionMandatoryStruct TypeSetting

If true, the Open Street Map
aspect will be enabled.

notBoolean Propertydetail.show.map

The map zoom factor to use.noInt Propertymap.zoom

8.5.3 Google Analytics Integration

Brand Blueprint feature

Brand Blueprint integrates Google Analytics into the website to get performance
feedback. Have a look into the CoreMedia Operations Basics to learn about the
configuration.

Section 4.7.5, “Getting Analytics Feedback” in CoreMedia Studio User Manual and
Section 4.2.5, “Adding Site Performance Widget” in CoreMedia Studio User Manual
describe how to get the performance feedback in CoreMedia Studio.

441CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Google Analytics Integration

analytics-connectors-en.pdf#OperationBasicsManual
studio-user-en.pdf#analyticsFeedback
studio-user-en.pdf#analyticsFeedbackWidget

8.6 WebDAV Support
CoreMedia Blueprint provides WebDAV support both for browsing the content re-
pository and to create or modify content in the webdav.properties file. It is
possible to access the content repository by the WebDAV web application using a
browser or a connection to a network share.

To connect to the WebDAV web application using a network drive on Windows you
need a certificate issued for the WebDAV server, for example *<.my-dns-hostname>
(such as *.blueprint7.coremedia.com). This certificate must be part of the trusted
root certificates on the client Windows machine.

Using a network drive allows you to browse the repository and to simply create
content from files on your computer by drag and drop. In case of Windows you
can map a network drive to the WebDAV web application. Remember that Windows
only accepts connections over HTTPS and that the server certificate is part of the
trusted root certificates on the client machine.

CoreMedia Blueprint's WebDAV configuration chooses the type of the created content
depending on the MIME type of the files sent to the WebDAV application. The de-
fault configured types are:

➞ CMPicture for images

➞ CMAudio for audio files

➞ CMVideo for video files

➞ CMDownload for downloads

Required properties like title will automatically be set by a BlueprintWebDav
FileSystemListenerwhich can be configured for the WebDAV web application.

442CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | WebDAV Support

8.7 Advanced Asset Management

The CoreMedia Advanced Asset Management module needs to be licensed. If the
component is not licensed you are welcome to discover some functions of the
component in CoreMedia Studio. Be aware that CoreMedia Advanced Asset Man-
agement is not working in the live system. If you are interested in this component,
get in touch with your contact at CoreMedia.

If you want to remove the CoreMedia LiveContext Product Asset Management ex-
tension from your workspace follow the instructions described in Section “Re-
moving the Advanced Asset Management Extensions” [151].

CoreMedia Advanced Asset Management consists of two parts:

➞ An Asset management component with new content types where you can
manage your digital assets and licences.

➞ A connection with the IBM WCS system where you can display your assets
in the IBM system.

Managing AssetsCoreMedia Asset Management allows you to store and manage your digital assets
(for example, high-resolution pictures of products) and corresponding licenses in
the CoreMedia system. You can customize the storage of assets and the set of
available asset types and rendition formats.

A rendition is a derivative of the raw asset, suitable for use in output channels,
possibly with some further automated processing. A rendition might be, for ex-
ample, a cropped and contrast-adjusted image in a standardized file format
whereas the original file might be stored in the proprietary format of the image
editing software in use.

CoreMedia Asset Management integrates with Adobe Drive so you can, for instance,
edit images stored in CoreMedia DXP 8 directly in Photoshop.

443CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Advanced Asset Management

Figure 8.28. Overview
over asset manage-
ment part

Adobe Drive

Browser

CoreMedia
plugin

Adobe Drive Server

Content Management Server

Studio Webapp

CoreMedia
Studio

Asset Forms

Editing Software

Enhancing IBM WCS
pages

From such assets, you can create common content items, such as Picture or
Download which you can use to enrich products and product variants (products
for short) in the IBM WCS.

➞ CMS images and even individual image crops can be used as product images.

➞ CMS videos can be used as product videos. They will be displayed together
with the product images in a gallery.

➞ CMS content of type Download can be offered as additional content that can
be downloaded for a product. Any type of binaries are supported, like PDF
documents, ZIP archives or office documents.

Such product assets can be edited with CoreMedia Studio and will then be delivered
by the CMS to enrich, for example, a product detail page.

This section describes the necessary configuration steps for either configuring and
deploying CoreMedia Asset Management or for removing the contributing modules
from the CoreMedia Blueprint workspace.

8.7.1 Product Asset Widget

The Product Asset Widget can only be used with the e-Commerce blueprint.

444CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Product Asset Widget

To present CMS assets on product detail pages you can replace the default IBM
WCS Full Image Widget by the CoreMedia Product Asset Widget that displays images
in an attractive gallery. This makes it particularly easy to present multiple product
images and videos for a product.

Figure 8.29. Product
image gallery delivered
by the CMS

The CoreMedia Product Asset Widget can also be used to display a list of download
links that are associated with the product. The download links are shown together
with the product image gallery as Additional Downloads or alternatively in a separate
slot on the product detail page.

See Section 3.4.11, “Deploying the CoreMedia Widgets” [73] to get the information
how to deploy the CoreMedia Product Asset Widget and ??? to learn how to use it.

Assign Products to CMS Assets

CoreMedia DXP 8 allows you to manage assets in the CoreMedia system that will
be used for products and SKUs in the IBM WebSphere Commerce Server.

To achieve this Picture, Video and Download documents can be linked with products.
That means one picture, video or download can be (re)used for many products. All
images and videos that link to the same product act together as a gallery of images
and videos of the same product.

445CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Product Asset Widget

Figure 8.30. Assign a
product to a picture

The same applies to downloads. All Download documents that link to the same
product appear together in an Available Downloads list on the product detail page
(if the option was used in the CoreMedia Product Asset Widget). The order of the
images or downloads in the list is determined by the name (in alphabetic order).

You don't have to assign every existing SKU to an asset document, eg. an image,
in order to achieve that for each SKU, the same image is delivered. If a SKU is not
directly assigned the CMS searches for all asset documents that are assigned to
the master product of the SKU or uses the default image for the site (in case of an
image).

See Section “Adding Specific Content for Product Detail Pages (PDP)” in CoreMedia
Studio User Manual to learn how to assign products to images using the CoreMedia
Studio.

8.7.2 Replaced Product and Category Images
In addition to the Product Asset Widget you can replace images directly by replacing
the URL in the IBM system with a CoreMedia URL. The linking of product or category
images from IBM WCS to the CoreMedia CAE is done via Image URLs that you can
add to the Display tab of the product or category definition.

446CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Replaced Product and Category Images

studio-user-en.pdf#addPDPPage

Figure 8.31. Define
Product Image URLs in
Management Center

Regardless of the usage of the CoreMedia Product Asset Widget, once the image
URLs of a product are pointing to the CMS all occurrences of these product im-
ages (for example, on catalog overview pages) will be delivered by the CMS. If
multiple images are assigned to one product, then the first image is taken (in
alphabetical order).

The Image URL has the following format:

For a product:

http://[cmsHost]/blueprint/servlet/catalogimage/product/
<StoreId>/<Locale>/<Mapping>/<PartNumber>.jpg

For a category:

http://[cmsHost]/blueprint/servlet/catalogimage/category/
[storeId]/[Locale]/<Mapping>/<CategoryID>.jpg

Where the path segments have the following meaning:
Table 8.14. Path seg-
ments in the image
URL

DescriptionExampleSegment Name

The URL prefix of the server that can deliver
CMS images. Typically, you will enter here the

[cmsHost][cmsHost]

literal string [cmsHost] so the system can map
it to a concrete URL prefix. Since the images
are delivered from different servers depend-
ing on which side you are (preview or live)
the hostname can alter between the systems.

447CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Replaced Product and Category Images

DescriptionExampleSegment Name

The placeholder [cmsHost] will then be re-
placed by a URL prefix containing the live
host, provided the request comes from the
live side. See also the IBM WCS documentation
"Configuration properties for content manage-
ment system integration".

The ID of the IBM WebSphere Commerce
store for which the image is requested. An

10202storeId

IBM store is configured for a specific site in
the CoreMedia system and the mapping is
done via the ID.

The locale of the store.en_USLocale

The mapping between an image in the IBM
product and the named image variant that is
taken from the CoreMedia system.

thumbnailMapping

The product or SKU part number or category
ID.

GFR033_3301/PC_ToDrinkPartNumber/Category-
ID

Delivery of Images

The URL is resolved from the catalog picture handlers. The handlers map the "Named
image format" segment to a cropped variant of a picture (see Section 6.3.14, “Im-
ages” [298] for details of crops). CoreMedia Blueprint comes with the following
definition:

<bean id="productCatalogPictureHandler"
class="com.coremedia.livecontext.asset.ProductCatalogPictureHandler"

parent="catalogPictureHandlerBase">
...
<property name="pictureFormats">
<map>
<entry value="portrait_ratio20x31/200/310">
<key>
<util:constant static-field=

"com.coremedia.livecontext.asset.CatalogPictureHandlerBase.FORMAT_KEY_THUMBNAIL"/>

</key>
</entry>
<entry value="portrait_ratio20x31/646/1000">
<key>
<util:constant static-field=

"com.coremedia.livecontext.asset.CatalogPictureHandlerBase.FORMAT_KEY_FULL"/>

</key>
</entry>
</map>

</property>

448CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Replaced Product and Category Images

</bean>

<bean id="categoryCatalogPictureHandler"
class="com.coremedia.livecontext.asset.CategoryCatalogPictureHandler"

parent="catalogPictureHandlerBase">
...
</bean>

That is, a URL with a segment thumbnail maps to an image variant portrait_ra-
tio20x31 with the width "200" and the height "310" and a URL with segment full
maps to the same image variant portrait_ratio20x31 but with width "646" and
height "1000". These are the values required by the IBM Aurora Starter Store.

You can customize the configuration via a Spring configuration as described in
Section “Mapping of Custom Picture Formats” [451].

8.7.3 Extract Image Data During Upload
If your pictures files are enriched with the product codes as XMP/IPTC "artwork or
object in the picture", the system automatically tries to extract data during the
upload. How the data is used depends on the content item to which you upload
the image.

➞ Upload to a Picture: The product codes are extracted and the system tries
to add a reference to the product in the e-Commerce repository with this
product code.

➞ Upload to a Picture Asset: The product codes are extracted and are added
to the Picture Asset.

449CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Extract Image Data During Upload

Figure 8.32. Screenshot
from Adobe Photoshop
for a Picture contain-
ing XMP Data

Upload to a Picture
content item

While uploading the pictures via CoreMedia Studio into a Picture item, the system
automatically extracts the product codes and adds references to the assigned
products. At this process the product references contained in the original image
data will be remembered. You have the option to reset to the original imported
data after you have changed the assignments manually.

Figure 8.33. Picture
linked to XMP Product
Reference

450CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Extract Image Data During Upload

After an initial import the status of the Assigned Products section is set to "inherited".
All associated product references are shown as "read only" and can only be edited
if the Switch off inheritance button is pressed.

Each re-import of the same image data (with an update of the blob) leads to an
update of the associated product references unless the references have been
changed manually. In general, the rule applies, that no data will be overwritten
that have been changed manually.

8.7.4 Configuring Asset Management
In the following it is described how you can adapt CoreMedia Asset Management to
your specific needs:

➞ Define which crops of an image are used in IBM pages.

➞ Define from which CAEs the IBM system gets images.

➞ Define content types for your own assets.

➞ Define publication behavior for renditions of your assets.

➞ Define where large blobs should be stored.

➞ Define appropriate rights in the CoreMedia system for your asset content.

Mapping of Custom Picture Formats

This feature can only be used in the e-Commerce blueprint.

You can manage pictures in CoreMedia DXP 8 that are used in IBM products and
SKUs pages. You can use Spring configuration, to map URL path segments to spe-
cific crops.

CoreMedia Blueprint comes with a predefined mapping defined in the catalogPic-
tureHandler bean. If you want to define your own mapping you can overwrite
the default setting as follows:

<customize:replace bean="catalogPictureHandler"
id="customizeCatalogPictureHandler"

property="pictureFormats">
<description>
Your custom picture formats for the Catalog Picture Handler

</description>
<map>
<entry key="customFormat1" value="custom_crop1/300/410"/>
<entry key="customFormat2" value="custom_crop2/700/1200"/>

</map>

451CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Asset Management

</customize:replace>

The key attribute in the entry tag is the identifier that is used in the request URL
while value is the name of the crop of the image that will be used followed by the
size of the image as "/width/height/ in pixel. The definition of crops is explained
in Section 6.3.14, “Images” [298]

Placeholder Resolution for Asset URLs

This feature can only be used in the e-Commerce blueprint.

In the IBM WebSphere Commerce system you can use a placeholder in image URLs
which is resolved through a database lookup in the STORECONF table. See the IBM
documentation for more details at https://www.ibm.com/support/knowledgecen-
ter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/refs/rwccmsresolvecontent-
tag.htm?lang=en .

For example:

http://[cmsHost]:<CAEPort>/blueprint/servlet/catalogimage/product/
[storeId]/<Locale>/<Mapping>/<PartNumber>.jpg

The placeholders in the example above are [cmsHost] and [storeId].

To resolve [cmsHost] - see the IBM documentation for ResolveContentURLCm-
dImpl for more information. If you want to connect preview and live CAE to one
Management Center you can define different values for wc.resolveConten-
tURL.cmsHost and wc.resolveContentURL.cmsPreviewHost in the
STORECONF table.

If you use one extended sites catalog for mutliple shops you can specify a [stor-
eId] placeholder in your image URLs, which are dynamically resolved at runtime.

In a development setup you may share one WCS instance for preview and live de-
livery.

In order to identify the CAE (preview or live) from which the image should be de-
livered, the Blueprint workspace comes with a predefined Apache configuration.
Depending on the shop URL, for example, shop-helios.blueprint-box.vag
rant versus shop-preview-helios.blueprint-box.vagrant the Apache
server adds a request header X-FragmentHost which contains the value preview
or live. For more information about Apache configuration see chapter Section 3.5.4,
“Developing with Apache (optional for e-Commerce)” [91].

If you want to activate [cmsHost] resolution for a shared IBM WCS preview/live
environment, perform the following steps:

452CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Asset Management

https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/refs/rwccmsresolvecontenttag.htm?lang=en
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/refs/rwccmsresolvecontenttag.htm?lang=en
https://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/refs/rwccmsresolvecontenttag.htm?lang=en

1. Register and map the FragmentHostFilter servlet to work
space/Stores/WebContent/WEB-INF/web.xml of the IBM WCS to extract
the X-FragmentHost header information from the request.

...
<filter>
<filter-name>FragmentHostFilter</filter-name>

<filter-class>com.coremedia.livecontext.servlet.FragmentHostFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>FragmentHostFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
...

2. Register the CoreMediaResolveContentURLCmdImpl in the IBM WCS. This
command resolves [cmsHost] placeholder in image URLs depending on a
preview or live switch for the current request. It resolves [storeId] placeholder
as well. To register the command perform the following SQL statement:

insert into cmdreg (storeent_id, interfacename, classname)
values

(0,'com.ibm.commerce.content.commands.ResolveContentURLCmd',

'com.coremedia.commerce.content.commands.CoreMediaResolveContentURLCmdImpl');

Refer to the IBM documentation for more details about registering custom
command implementations in the command registry

To resolve [storeId] in Management Center, you have to register and map
the ImageFilter servlet to workspace/LOBTools/WebContent/WEB-
INF/web.xml of the IBM WCS.

...
<filter>
<filter-name>ImageFilter</filter-name>

<filter-class>com.coremedia.livecontext.servlet.ImageFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>ImageFilter</filter-name>
<url-pattern>/LoadImage</url-pattern>

</filter-mapping>
...

Content Types

Abstract content type
AMAsset

CoreMedia Advanced Asset Management stores its data in the content repository in
content items. CoreMedia DXP 8 contains the abstract root content type AMAsset
(see Chapter 4, Developing a Content Type Model in CoreMedia Content Server Manual
for a description of content types) as a starting point for assets. AMAsset defines
a property original to store the raw editable form of the asset and another
property thumbnail to store a thumbnail view. The thumbnail property can be

453CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Asset Management

contentserver-en.pdf#DocumentTypes

used for a uniform preview of assets. If there is no sensible thumbnail for an asset,
it can be left empty.

Concrete content types
AMPictureAsset and
AMDocumentAsset

Concrete content types for specific assets, such as pictures or documents, need to
extend the abstract content type AMAsset. Most probably, you will add more
properties for different renditions of the asset. Names of rendition properties must
be alphanumeric strings. By default, AMPictureAsset and AMDocumentAsset
are provided as a non-abstract asset type, defining rendition properties for web
delivery and for printing.

Defining your own as-
set types

You can modify existing asset types or define additional asset types in the file as
set-management-plugin-doctypes.xml in the am-servermodule. For each
asset type, you need an appropriate form in CoreMedia Studio. CoreMedia Blueprint
already defines suitable Studio forms for the AMPictureAsset and AMDocumen
tAsset. Change this form when you adapt the AMPictureAsset or AMDocument-
Type content type and add further forms for your own asset types.

Store large blobs in the
file system

When you add further rendition properties that hold very large blobs, modify the
blob store configuration as described in Section 3.4, “Configuring Blob Storage”
in CoreMedia Content Server Manual. Small renditions up to a few megabytes can
be stored in the Content Server database and do not need additional configuration.

To prevent large blobs like the original rendition from being published, you can
exclude them from publication process. For more information read Section “Con-
figure Rendition Publication” [454].

Configure Rendition Publication

Certain renditions can be excluded from publication. To do so the am-server-
component comes with an AssetPublishInterceptor which reads the
metadata property of assets to determine if a given rendition should be published
or not.

The AssetPublishInterceptor bean is added to the Content Server and to the
corresponding command-line tools. The following properties control the behavior
of the interceptor:

assetMetadataProperty The Struct property which contains the
information whether to publish a rendition
or not at path renditions.<rendition-
name>.show. If the Boolean property show
is true the rendition blob will be published.
Otherwise the blob will not be available on
the master server.

interceptingSubtypes Boolean flag to control whether also sub-
types of type should be intercepted or not.

454CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Asset Management

contentserver-en.pdf#ConfiguringBLOBStorage

removeDefault The default value to control whether a
rendition blob should be removed from
publication or not. If unset the default is to
remove blobs if nothing else is specified in
either the metadata struct or in the removal
overrides.

removeOverride Overrides any setting or default for a given
rendition. It contains a map from rendition
name to removal flag. Thus if you want the
rendition thumbnail to be published in
any case add an entry with key thumbnail
and value false.

type The document type the interceptor applies
to. For subtype processing set the flag in-
terceptingSubtypes accordingly.

Example 8.9, “Rendition Publication Configuration” [455] shows a possible config-
uration of the AssetPublishInterceptor.

Example 8.9. Rendition
Publication Configura-
tion

<beans ...>

<util:map id="removeOverride"
key-type="java.lang.String"
value-type="java.lang.Boolean">

<entry key="thumbnail" value="false"/>
</util:map>

<bean id="assetPublishInterceptor"
class=

"com.coremedia.blueprint.assets.server.AssetPublishInterceptor">

<property name="type" value="AMAsset"/>
<property name="interceptingSubtypes" value="true"/>
<property name="assetMetadataProperty" value="metadata"/>
<property name="removeDefault" value="true"/>
<property name="removeOverride" ref="removeOverride"/>

</bean>
</beans>

Blob Storage

Blobs of renditions can be stored in the database or in the file system. In general,
content in the CoreMedia CMS is stored in a database, but for large blobs, the file
system might be better suited for storage, because databases are not always op-
timized for this use case.

Blueprint default stor-
age behavior

Blueprint is configured in such a way, that WAR files for deployment, generated in
the packages directory, are configured to store the blobs of the default asset type
in the file system. However, when you start the Content Management Server using

455CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Asset Management

mvn tomcat7:run-war in module content-management-server-webapp of
the development installation, all blobs are stored in the database.

Configuration of blob
storage

Blob storage is controlled by an XML file (default is blobstore.xml), which
defines the storage configuration (see Section 3.4, “Configuring Blob Storage” in
CoreMedia Content Server Manual for details). With the property am.blob-
store.rootdir, you define the root directory for file system storage. The value
of the property is used in the XML file.

Blueprint default con-
figuration

In Blueprint you find the storage configuration in the file src/main/re
sources/framework/spring/blobstore/am/blobstore.xml of the am-
server module. The property am.blobstore.rootdir can be set in the file
application.properties of the Content Management Server web application
or as a system property. File and property must both be present, so that file system
storage works. In the packaged WAR files from the Blueprint packages directory,
the property am.blobstore.rootdir is set to DATA_ROOT/cm7-cms-tom
cat/blobstore/assets, where DATA_ROOT is the base directory for storing
long-lived application files. DATA_ROOT defaults to /var/lib/coremedia. These
properties can be adapted in the file blueprint/packages/pom.xml as needed.

If you want to store your own renditions in the file system, update the blob store
configuration accordingly. If you want to store them in a separate database, you
have to define an appropriate media store, as described in Section 3.4, “Configuring
Blob Storage” in CoreMedia Content Server Manual. If you want to store assets in
the content repository database, remove the configuration file and reset
am.blobstore.rootdir. If you want to store them in a separate database, define
an appropriate media store.

Keep in mind, that storing a blob in the file system might double the required
space, when you use the rendition in another content item, for example, in a
Picture.

This is because, when you store a blob in the database and the same blob is
used in different content items, then all the content items link to this blob. On
the other hand, when you have stored a blob in the file system and this blob is
used in another content item that does not define file system storage, then a
copy of the blob will be created in the database.

Rights

Assets in the form of AMAsset documents are placed in the /Assets folder by
default. Define rights rules for the content repository in such a way that only au-
thorized users can create and change assets and that assets can only be placed in
the folder /Assets. Note that access rights for the root content type Document_
automatically imply rights on assets.

456CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Asset Management

contentserver-en.pdf#ConfiguringBLOBStorage
contentserver-en.pdf#ConfiguringBLOBStorage
contentserver-en.pdf#ConfiguringBLOBStorage

Studio

The asset management extension of CoreMedia Studio is defined in the modules
am-studio and am-studio-component.

In am-studio you can find the form definition for picture forms in the file
AMPictureAssetForm.exml. Update this file if you change the set of renditions.
Create additional form when you add further asset types. Localizations of asset
types and rendition names can be added to the resource bundle AMDocumentTypes.

The module am-studio-component contains configuration information for the
Studio REST backend. In the file component-am-studio.xml you can find the
configuration of two write interceptors which update the asset metadata as
renditions are uploaded using Studio.

Asset Download Portal

CoreMedia Advanced Asset Management comes with an asset download portal. You
can configure the behavior of the portal in the Asset Management Configura
tion content item in Studio as shown in Figure 8.34, “ Configuration of the
download portal ” [457].

Figure 8.34. Configur-
ation of the download
portal

The properties in the download-portal struct have the following meaning:

457CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Configuring Asset Management

root-page A Page content item which defines the context of
the download portal. The root page contains the
AM Download Portal Placeholder in the Main place-
ment.

assets-per-page The number of assets that are shown in own page.

metadata-properties The properties from the asset's metadata that are
shown in the detail view of an asset.

The hierarchy of the assets in the download portal is determined by the Asset
Download Portal taxonomy. That is, an asset content item is shown on the download
portal, when it contains an asset category tag and a downloadable property.

Figure 8.35. Taxonomy
for assets

8.7.5 Using the Adobe Drive Connector
Assets can be presented in a virtual file system using the Adobe Drive integration.
Thus, you can access assets stored in the CoreMedia system from your Adobe ap-
plications. To make use of this feature, a server web application must be deployed
and the Adobe Drive installation must be configured.

Mapping CoreMedia content and folder on the file system

CoreMedia Asset Management stores assets as content in the content repository. All
assets are stored below a base folder, typically named /Assets.

File system mappingFor the file system mapping, CoreMedia folders are represented as directories with
the same name as the folder. Asset contents are represented as directories with a
special name prefix to distinguish them from folders. In the default configuration
each picture asset is prefixed with Asset Picture and each document asset with
Asset Document. For example, an asset Foowould be represented by the directory
Asset Picture Foo. Each asset directory contains one file for each rendition.
In the above example the directory might contain the files Foo_original.psd,

458CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Using the Adobe Drive Connector

Foo_thumbnail.jpg and Foo_web.jpg holding the original asset, the thumbnail
and the web rendition, respectively.

It is not supported to change the type of an asset by renaming the asset directory
using a different prefix. It is not supported that two different users check out
renditions of one asset at the same time. It is not supported to add further
rendition files that do not indicate one of the configured rendition properties
in their name.

Adobe Drive Web Application

The extension module am-adobe-drive-server-webapp contains the web ap-
plication that serves as the backend for the Adobe Drive integration. For a compact
deployment you add this web application to the Studio Tomcat, modifying the file
blueprint/packages/services/studio-tomcat/pom.xml to include a de-
pendency and a configuration of the context name. Alternatively, a new application
container can be created that is dedicated to the Adobe Drive connector web ap-
plication.

The file application.properties of the module am-adobe-drive-server-
webapp contains configuration information about the server location and the
content type model. In any case, you need to configure at least the reference to
the Content Management Server in the property repository.url and the password
of the webserver user in the property repository.password.

The property cm.assets.assetBaseFolderPath can be used to specify the
root folder of the content repository for storing assets. Typically the default /As
sets is appropriate.

Further properties in the file application.properties specify various aspects
of the content type model like the names of the properties storing thumbnails,
previews or metadata. See the configuration file for details about these properties.

Naming scheme for as-
set mapping

In the file src/main/webapp/WEB-INF/application.xml of the am-adobe-
drive-server-webapp module you can configure the naming scheme for indi-
vidual asset types. For each asset type you can configure the name of the content
type storing such assets, the name pattern for directories representing entire assets
and the name pattern for file representing individual renditions.

The following XML fragment shows the default configuration of the picture asset
type:

<bean id="pictureAssetMapping"
class="com.coremedia.cms.assets.drive.config.AssetTypeNameMapping">

<property name="contentType" value="AMPictureAsset"/>
<property name="folderPattern" value="Asset Picture {0}"/>
<property name="filePattern" value="{0}_{1}.{2}"/>

</bean>

459CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Using the Adobe Drive Connector

Placeholders for nam-
ing pattern

In the name patterns, the placeholder {0} refers to the asset document name. {1}
represents the name of the property storing the rendition. {2} is the user-chosen
file extension. When parsing file names, the parameters {1} and {2}match alpha-
numeric strings, only.

Directory patterns must be unambiguous, that is, no conceivable directory name
may match two different directory patterns. The file pattern must contain all three
placeholders, ending in the file extension placeholder {2}.

Modify the given pattern and add further patterns as needed. Update the mapping
when you update the content type schema.

Adobe Drive Connector

Before you can install Adobe Drive, you need to have an Adobe client installed,
such as Photoshop or Bridge. When you have installed Adobe Drive, add the
CoreMedia Drive Connector as follows:

1. Download thecom.coremedia.adobe.adobe-drive-client.bundle.jar
file from the CoreMedia Adobe Drive Connector REST back-end. Simply enter
the connection URL to the back-end into your browser. Click the Download Client
Bundle link on the Welcome page.

2. Stop Adobe Bridge or any other Adobe client application, Adobe Drive and the
background process AD4ServiceManager.

When the configuration of the CoreMedia Adobe Drive Connector REST back-
end was changed, or when the content IDs in the CoreMedia repository have
changed (for example, due to re-import in a development or QA system), delete
the following cache folders:

➞ Windows:

C:\Users\USERNAME\AppData\Roaming\Adobe\AD4ServiceMan
ager\database

C:\Users\USERNAME\AppData\Roaming\Adobe\AD4ServiceMan
ager\diskcache

➞ Mac:

/Users/USERNAME/Library/Application Support/Adobe/AD4Ser
viceManager/database

/Users/USERNAME/Library/Application Support/Adobe/AD4Ser
viceManager/diskcache

3. Add the file com.coremedia.adobe.adobe-drive-client.bundle.jar
to the plugin directory of Adobe Drive. The directory can be found at the follow-
ing locations:

460CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Using the Adobe Drive Connector

➞ Windows:

C:\Program Files\Common Files\Adobe\AD4ServiceMan
ager\plugins

➞ Mac:

/Library/Application Support/Adobe/AD4ServiceManager/plu
gins/

4. Restart Adobe Drive.

Now, you can add a new connection using the CoreMedia connector. You are asked
to configure a remote URL, which is the root URL of the Adobe Drive web applica-
tion. Also enter your user name and password for the CoreMedia system.

It is highly recommended to use a secure connection between the Adobe Drive
client and the Adobe Drive web application. In order to establish an SSL connec-
tion, the client needs to verify the full certificate chain of the server certificate.
If you encounter any issues with this verification, please refer to the Adobe Drive
Admin Guide (issued by Adobe).

When you do not use the official certificates, in a CI, for instance, the untrusted
certificate chains have to be added to the Java (v1.6) truststore (default password:
`changeit`) of the Adobe Drive client. The easiest way to retrieve the certificates
is using Firefox and the connection information dialog in the address bar View
Certificate|Details|Export. Add the certificates as follows (path for Mac OS,
replace the names in angle brackets with your own values):

Example 8.10. Adding
certificates to trust-
store

sudo keytool -import -file <mycertificate.cer> -alias <myalias> -keystore
/System/Library/Java/Support/CoreDeploy.bundle/Contents/Home/lib/security/cacerts

461CoreMedia DXP 8

CoreMedia DXP 8 Editorial and Back-end Functionality | Using the Adobe Drive Connector

9. Appendix

This chapter contains detailed information about some of CoreMedia Blueprint's
features:

➞ Section 9.1, “Port Reference” [463] shows the deployment of the CoreMedia
components in the boxes with their default ports.

➞ Section 9.2, “Typical LiveContext Deployment” [467] shows a typical LiveCon-
text deployment with the required ports.

➞ Section 9.3, “Linux / Unix Installation Layout” [468] shows the default file
installation layout of CoreMedia components.

➞ Section 9.5, “Maven Profile Reference” [475] shows the predefined profiles
in the CoreMedia Blueprint workspace.

➞ Section 9.6, “Content Type Model” [476] shows UML diagrams of CoreMedia
Blueprint content types.

➞ Section 9.7, “Link Format” [478] lists the controller, link schemes and link
post-processors of CoreMedia Blueprint.

➞ Appendix - Predefined Users [484] shows the predefined users that are
available in the system for log in to Studio.

➞ Section 9.9, “Database Users” [487] shows the database users that are needed
by the CoreMedia server components.

➞ Section 9.10, “Cookies” [488] lists all cookies delivered by CoreMedia DXP 8.

462CoreMedia DXP 8

Appendix |

9.1 Port Reference
For each application or component there is a two digit port prefix defined and for
each protocol or service there is a three digit port suffix defined.

The next figure shows the deployment of the CoreMedia DXP 8 components into
the boxes and the communication between the components. If you cannot read
the text of the figure in the online documentation, right-click the image and select
Open image in new tab from the context menu. You can also download the original
YEd file from the documentation overview page below Other Documentation named
CoreMedia DXP 8 Deployment Diagram.

463CoreMedia DXP 8

Appendix | Port Reference

Figure 9.1. Deployment
and communication
overview

D
el

iv
er

y-
To

m
ca

t

Li
ve

-C
A

E

H
T

T
P

:4
90

80
H

T
T

P
S

:4
94

43
S

hu
td

ow
n:

49
00

5
A

JP
:4

90
09

JM
X

R
eg

is
tr

y:
49

09
9

JM
X

S
er

ve
r:

49
09

8
C

O
R

B
A

:4
96

83
C

O
R

B
A

S
S

L:
49

68
4

S
ol

r-
S

la
ve

-T
om

ca
t

S
ol

r
S

la
ve

H
T

T
P

:4
50

80
H

T
T

P
S

:4
54

43
S

hu
td

ow
n:

45
00

5
A

JP
:4

50
09

JM
X

R
eg

is
tr

y:
45

09
9

JM
X

S
er

ve
r:

45
09

8
C

O
R

B
A

:4
56

83
C

O
R

B
A

S
S

L:
45

68
4

H
T

T
P

R
LS

-T
om

ca
t

R
ep

lic
at

io
n

Li
ve

S
er

ve
r

H
T

T
P

:4
80

80
H

T
T

P
S

:4
84

43
S

hu
td

ow
n:

48
00

5
A

JP
:4

80
09

JM
X

R
eg

is
tr

y:
48

09
9

JM
X

S
er

ve
r:

48
09

8
C

O
R

B
A

:4
86

83
C

O
R

B
A

S
S

L:
48

68
4

H
T

T
P

/C
O

R
B

A

C
A

E
F

ee
de

r-
P

re
vi

ew
-T

om
ca

t

C
A

E
F

ee
de

r
P

re
vi

ew

H
T

T
P

:4
60

80
H

T
T

P
S

:4
64

43
S

hu
td

ow
n:

46
00

5
A

JP
:4

60
09

JM
X

R
eg

is
tr

y:
46

09
9

JM
X

S
er

ve
r:

46
09

8
C

O
R

B
A

:4
66

83
C

O
R

B
A

S
S

L:
46

68
4

S
ol

r-
M

as
te

r-
To

m
ca

t

S
ol

r
M

as
te

r

H
T

T
P

:4
40

80
H

T
T

P
S

:4
44

43
S

hu
td

ow
n:

44
00

5
A

JP
:4

40
09

JM
X

R
eg

is
tr

y:
44

09
9

JM
X

S
er

ve
r:

44
09

8
C

O
R

B
A

:4
46

83
C

O
R

B
A

S
S

L:
44

68
4

H
T

T
P

H
T

T
P

W
F

S
-T

om
ca

t

W
or

kf
lo

w
S

er
ve

r

H
T

T
P

:4
30

80
H

T
T

P
S

:4
34

43
S

hu
td

ow
n:

43
00

5
A

JP
:4

30
09

JM
X

R
eg

is
tr

y:
43

09
9

JM
X

S
er

ve
r:

43
09

8
C

O
R

B
A

:4
36

83
C

O
R

B
A

S
S

L:
43

68
4

M
LS

-T
om

ca
t

M
as

te
r

Li
ve

S
er

ve
r

H
T

T
P

:4
20

80
H

T
T

P
S

:4
24

43
S

hu
td

ow
n:

42
00

5
A

JP
:4

20
09

JM
X

R
eg

is
tr

y:
42

09
9

JM
X

S
er

ve
r:

42
09

8
C

O
R

B
A

:4
26

83
C

O
R

B
A

S
S

L:
42

68
4 H

T
T

P
/C

O
R

B
A

C
M

S
-T

om
ca

t

C
on

te
nt

M
an

ag
em

en
tS

er
ve

r

C
on

te
nt

F
ee

de
r

H
T

T
P

:4
10

80
H

T
T

P
S

:4
14

43
S

hu
td

ow
n:

41
00

5
A

JP
:4

10
09

JM
X

R
eg

is
tr

y:
41

09
9

JM
X

S
er

ve
r:

41
09

8
C

O
R

B
A

:4
16

83
C

O
R

B
A

S
S

L:
41

68
4

H
T

T
P

/C
O

R
B

A

H
T

T
P

/C
O

R
B

A

H
T

T
P

/C
O

R
B

A

H
T

T
P

/C
O

R
B

A

H
T

T
P

S
tu

di
o-

To
m

ca
t

S
tu

di
o

P
re

vi
ew

-C
A

E

W
eb

D
A

V

E
di

to
r-

W
eb

st
ar

t

E
la

st
ic

W
or

ke
r

H
T

T
P

:4
00

80
H

T
T

P
S

:4
04

43
S

hu
td

ow
n:

40
00

5
A

JP
:4

00
09

JM
X

R
eg

is
tr

y:
40

09
9

JM
X

S
er

ve
r:

40
09

8
C

O
R

B
A

:4
06

83
C

O
R

B
A

S
S

L:
40

68
4

H
T

T
P

H
T

T
P

/C
O

R
B

A

H
T

T
P

/C
O

R
B

A

H
T

T
P

H
T

T
P

/C
O

R
B

A

H
T

T
P

/C
O

R
B

A

H
T

T
P

/C
O

R
B

A

C
A

E
F

ee
de

r-
Li

ve
-T

om
ca

t

C
A

E
F

ee
de

r
Li

ve
(T

om
ca

t)

H
T

T
P

:4
70

80
H

T
T

P
S

:4
74

43
S

hu
td

ow
n:

47
00

5
A

JP
:4

70
09

JM
X

R
eg

is
tr

y:
47

09
9

JM
X

S
er

ve
r:

47
09

8
C

O
R

B
A

:4
76

83
C

O
R

B
A

S
S

L:
47

68
4

E
di

to
r

U
se

r

S
tu

di
o-

A
pa

ch
e

H
T

T
P

:8
0

H
T

T
P

S
:4

43

M
yS

Q
L

M
on

go
D

B

JD
B

C
:3

30
6

H
T

T
P

:2
70

17

D
el

iv
er

y-
A

pa
ch

e

H
T

T
P

:8
0

H
T

T
P

S
:4

43

H
T

T
P

H
T

T
P

H
T

T
P

H
T

T
P

H
T

T
P

(S
)

A
JP

JD
B

C

JD
B

C

JD
B

C

JD
B

C

JD
B

C

JD
B

C

H
T

T
P

H
T

T
P

H
T

T
P

H
T

T
P

H
T

T
P

H
T

T
P

(S
)

A
JP

464CoreMedia DXP 8

Appendix | Port Reference

Table 9.1. Component
Port Prefix

Port PrefixComponent

40Studio

41Content Management Server

42Master Live Server

43Workflow Server

44Solr Master

45Solr Slave

46CAE Feeder Preview

47CAE Feeder Live

48Replication Live Server

49Delivery (Live CAE)

Table 9.2. Protocol /
Service Port Suffix

Port SuffixProtocol / Service

080HTTP

443HTTPS

005Tomcat Shutdown

009Tomcat AJP

099Tomcat JMX Registry Port (RMI)

098Tomcat JMX Server Port (RMI)

777Tomcat Debug Port

683CORBA

684CORBA SSL

Since the preview is always deployed together with Studio, there is no extra port
prefix reserved. When started with tomcat7:run from within the workspace,
the preview Tomcat process has its own HTTP port. If you want to access the
preview, you have to use the port 40081.

Table 9.3. Third-Party
ServicesPortService

3306MySQL

465CoreMedia DXP 8

Appendix | Port Reference

PortService

27017Mongo DB

Be advised, that this port schema's port range has its drawback of overlapping
with the default ephemeral port range on most operation systems. You can
however, decrease the ephemeral port range with the cost of not optimizing
your TCP/IP stack. In a setup with just one CAE running per host, decreasing the
range will likely not affect your systems performance, but if you are running
many CAEs on one host, you should rather adapt the port filtering to use a
smaller range of ports below the default ephemeral port range.

Changing the filtering can be done in root pom.xml using the port schema
properties or in the packages/pom.xml using the explicit properties. There
should be no hard coded ports beside the Chef test specs, which are only active
in the Vagrant virtualized development mode. If there are hard coded ports in
property files it is most likely, that there is also a configurable override in the
Tomcat plugin configuration of the pom.xml or in the override properties in the
packages hierarchy.

To decrease the ephemeral port range for CentOS, you just need to execute the
following commands as root on your system:

echo "50000 65535" > /proc/sys/net/ipv4/ip_local_port_range
echo -e "\n# Increase system IP port
limits\nnet.ipv4.ip_local_port_range = 50000 65535" >>
/etc/sysctl.conf

466CoreMedia DXP 8

Appendix | Port Reference

9.2 Typical LiveContext Deployment
Figure 9.2, “Typical deployment and ports of a LiveContext system” [467] shows a
typical deployment of CoreMedia DXP in combination with the IBM WebSphere
Commerce server in a commerce-led scenario (see Section 5.1, “Commerce-led
Integration Scenario” [176]).

If you cannot read the text of the figure in the online documentation, right-click
the image and select Open image in new tab from the context menu. You can also
download the original YEd file from the documentation overview page below Other
Documentation named CoreMedia DXP 8 Deployment Diagram.

Figure 9.2. Typical de-
ployment and ports of
a LiveContext system

CoreMedia
Management (Stage) Environment

Tomcat

Content
Management
Server (CMS)

Tomcat

Master Live
Server (MLS)

Tomcat

Workflow Server (WFS)

Tomcat

Preview CAE

Studio Server

CoreMedia

IBM Live WebServer

Content Admin Computer

SiteManager

IBM WebSphere
Commerce Live System

WWW

DevOps Server

Jenkins
(CoreMedia config)

Nexus
(CoreMedia config)

Git

CoreMedia & 3rd party packages
SSH: 22
HTTP/S: 80/443

CoreMedia
Delivery (Live) Environment (cluster)

Tomcat

Delivery
CAE

Tomcat

Replication
Live Server (RLS)

CM Content Replication

TCP-CORBA/s: 42683/84
HTTP: 42080

IBM WebSphere
Commerce Stage System

RDBMS

Publish
WCS Ports

Default DB port

(MySQL 3306)

Default DB port

(MySQL 3306)

Content Editor Computer

Studio

Inhouse Developer Computer

IDE
Git
...

Remote Developer Computer

IDE
Git
...

Inhouse IT Admin Computer

Monitoring
Client,...

Maintenance, monitoring etc.
SSH access to all CoreMedia

servers. All CoreMedia ports open

JMX monitoring:
(JMX ports for Registry/Server)
CAE Delivery: 49099/98
RLS: 48099/98
Solr Slave: 45099/98

JMX monitoring:
(JMX ports for Registry/Server)
Studio & CAE Preview: 40099/98
CMS: 41099/98
MLS: 42099/98
WFS: 43099/98
Solr Master: 44099/98
Feeder Preview: 46099/98
Feeder Live: 47099/98

IBM Stage WebServer

SSL endpoint
ReverseProxy for CM
Block /internal

IBM HTTP Server

WCS Data:
REST HTTP/s: 80/443
Search HTTP/s: 3737/38
Preview HTTP/s: 8007/6

IBM Live WebServer

SSL endpoint
ReverseProxy for CM
Block /internal

CM Stage Apache Server

Apache

CM virtual hosts (80/443):
editor.clientTLD
preview-helios.clientTLD
studio-helios.clientTLD
webdav.clientTLD

Handle CM webapp
segment "/blueprint/servlet"

Manage Code
SSH, Git: 22
Jenkins: 8080
Neuxs: 8081

JS/CSS/Images...
HTTP: 80

Content Fragments
HTTP:: 80

Manage Code
VPN
SSH, Git: 22
Jenkins: 8080
Nexus: 8081 Deploy code

SSH: 22

Manage WCS Content
WCS ports

CAE and Studio calls
HTTP: 40080 (or AJP: 40009)

Website Visitor Computer

Browser

Manage CM content

SiteManager configuration

Manage CM content

CMS:
HTTP: 41080 (IOR)
TCP-CORBA/s: 41683/84
MLS:
HTTP: 42080 (IOR)
TCP-CORBA/s: 42683/84
WFS:
HTTP: 43080 (IOR)
TCP-CORBA/s: 43683/84

WCS Data:
REST HTTP/s: 80/443
Search HTTP/s: 3737/38

Content Fragments
HTTP: 80

Solr Index Replication

HTTP: 44080

JS/CSS/Images...
HTTP: 80

IBM HTTP Server

Legend

3rd party Components / Connections

IBM Components / Connections

External Connections

CoreMedia Components / Connections

Load Web Pages

HTTP/s: 80/443

IBM WebSphere
Commerce Live System

Tomcat

Solr Master

CM LC Segments (reverse proxied):
/resource: images, jss, css, ...
/dynamic: AJAX, perso, ...
/service: RSS, sitemap, ...
/catalogimage: catalog images URLs
/internal: expensive internal calls (e.g. sitemap generation)

Manage Solr Search

Solr Master HTTP: 44080
Solr Slave(s) HTTP: 45080

Deploy code
SSH: 22

Load Balancer Live (CoreMedia)

Hostname: helios.clientTLD
Sticky sessions
X-Forwarded-Host
X-Forwarded-Proto
Handle "/blueprint/servlet"

CAE Calls
HTTP: 49080 (or AJP: 49009)

Load Balancer Live (IBM)

WCS
Ports

WCS
Ports

WCS
Ports

CM LC Segments (reverse proxied):
/resource: images, jss, css, ...
/dynamic: AJAX, perso, ...
/service: RSS, sitemap, ...
/catalogimage: catalog images URLs
/internal: expensive internal calls

Tomcat

Solr Slave

HTTP/s: 80/443

HTTP/s: 80/443

467CoreMedia DXP 8

Appendix | Typical LiveContext Deployment

9.3 Linux / Unix Installation Layout
Since RPM and other native packaging formats don't just archive files but merely
archive them with the target destination path, you have to think about the install-
ation layout at build time. You will find the layout directives in the pom.xml files
below the packages module hierarchy.

CoreMedia DXP 8 strives to standardize the file layout on a target machine. The
table below lists the common paths where configuration, log files or scripts can
be found.

Table 9.4. Default
Package LayoutUsageDefault Path

Each package will install and require a configuration property
file below this folder. To reconfigure a service use the service

/etc/coremedia

initialization script and its reconfigure option, for example
sudo service cm7-cms-tomcat reconfigure. To
reconfigure a tool a shell script will be provided in the tools in-
stallation directory. Although not recommended, to change the
default, modify the Maven propertyCONFIGURE_ROOT in the
packages/pom.xml.

The configuration file to configure or reconfigure a package./etc/coremedia/AP
PLICA
TION_NAME.proper
ties

The installation directory for all CoreMedia packages. To change
the default, modify the Maven property INSTALL_ROOT in
the packages/pom.xml

/opt/coremedia

The logging directory for all CoreMedia packages. To change the
default, modify the Maven property LOG_ROOT in the pack
ages/pom.xml

/var/log/coremedia

The directory where all Tomcat services will create their PID
files. To change the default, modify the Maven property
PID_ROOT in the packages/pom.xml

/var/run/coremedia

The common directory where Tomcat services will create their
temporary folders. To change the default, modify the Maven
property TMP_ROOT in the packages/pom.xml

/var/cache/core
media

The common directory where Tomcat services store persistent
data if the data is not put into a database. To change the default,

/var/lib/coremedia

modify the Maven property DATA_ROOT in the pack
ages/pom.xml

468CoreMedia DXP 8

Appendix | Linux / Unix Installation Layout

UsageDefault Path

The directory of the common Tomcat installation/opt/core
media/cm7-tomcat-
installation

The Tomcat service file. By default, the services file defines the
following methods (start, stop, status, restart, reload, reconfig-
ure).

/etc/init.d/APPLIC
ATION_NAME

The Tomcat standard out file./var/log/APPLICA
TION_NAME.out

The Tomcat service configuration. In this file you can modify
CATALINA_HOME, CATALINA_PID, CATALINA_TMPDIR
and CATALINA_OUT

/etc/coremedia/AP
PLICA
TION_NAME.conf

469CoreMedia DXP 8

Appendix | Linux / Unix Installation Layout

9.4 IBM WebSphere Commerce REST Services
used by CoreMedia
CoreMedia Digital Experience Platform 8 uses REST services of the IBM WebSphere
Commerce Server Management Center to access content. Here you find a list of URLs
used by Studio and CAE.

REST Services used by CoreMedia Studio

The following REST services are only used in combination with IBM WCS (FEP7+)

➞ http://<search_server>/search/resources/store/<stor
eId>/categoryview/@top

➞ http://<search_server>/search/resources/store/<stor
eId>/categoryview/%20?categoryIdentifier=<categoryIdenti
fier>

This search-based REST call allows slash character in the category identifier.

➞ http://<search_server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

➞ http://<search_server>/search/resources/store/<stor
eId>/categoryview/byParentCategory/<uniqueId>

➞ http://<search_server>/search/resources/store/<stor
eId>/productview/byCategory/<categoryId>

➞ http://<search_server>/search/resources/store/<stor
eId>/productview/bySearchTerm/<term>

The following REST services are only used in combination with IBM WCS (FEP6)

➞ http://<wc_server>/wcs/resources/store/<storeId>/cat
egoryview/@top

➞ http://<wc_server>/wcs/resources/store/<storeId>/cat
egoryview/<categoryIdentifier>

➞ http://<wc_server>/wcs/resources/store/<storeId>/cat
egoryview/byId/<uniqueId>

➞ http://<wc_server>/wcs/resources/store/<storeId>/cat
egoryview/byParentCategory/<uniqueId>

470CoreMedia DXP 8

Appendix | IBM WebSphere Commerce REST Services used by CoreMedia

➞ http://<wc_server>/wcs/resources/store/<storeId>/pro
ductview/byCategory/<categoryId>

➞ http://<wc_server>/wcs/resources/store/<storeId>/pro
ductview/bySearchTerm/<term>

The following REST services are used no matter what feature pack is used.

➞ http://<wc_server>/wcs/resources/store/<stor
eId>/spot/<spotId>

➞ http://<wc_server>/wcs/resources/store/<storeId>/spot

➞ http://<wc_server>/wcs/resources/store/<storeId>/seg
ment/<uniqueId>

➞ http://<wc_server>/wcs/resources/store/<storeId>/segment

➞ http://<wc_server>/wcs/resources/store/<storeId>/work
spaces/byall/Active

Only used if customer uses IBM WCS workspaces

➞ http://<wc_server>/wcs/resources/coremedia/cacheinvalida
tion/latestTimestamp

CoreMedia specific custom REST service

➞ http://<wc_server>/wcs/resources/coremedia/cacheinvalida
tion/<timestamp>

CoreMedia specific custom REST service

➞ http://<wc_server>/wcs/resources/coremedia/languagemap

Used to map langId to numeric value

➞ http://<wc_server>/wcs/resources/coremedia/storeinfo

Used to get the storeId and the catalog information from all available stores
in IBM WCS

REST Services used by the CAE

The following REST services are only used in combination with IBM WCS (FEP8+)

➞ http://<wc_server>/wcs/resources/store/<stor
eId>/price?q=byPartNumbers&partNumber=<partNumber>

471CoreMedia DXP 8

Appendix | IBM WebSphere Commerce REST Services used by CoreMedia

The following REST services are only used in combination with IBM WCS (FEP7+)

➞ http://<search_server>/search/resources/store/<stor
eId>/categoryview/%20?categoryIdentifier=<categoryIdenti
fier>

This search-based REST call allows slash character in the category identifier.

➞ http://<search_server>/search/resources/store/<stor
eId>/categoryview/<SeoSegment>

➞ http://<search_server>/search/resources/store/<stor
eId>/categoryview/byId/<uniqueId>

➞ http://<search_server>/search/resources/store/<stor
eId>/productview/%20?partNumber=<productIdentifier>

This search-based REST call allows slash character in the product identifier.

➞ http://<search_server>/search/resources/store/<stor
eId>/productview/byId/<uniqueId>

➞ http://<search_server>/search/resources/store/<stor
eId>/productview/bySearchTerm/<term>

The following REST services are only used in combination with IBM WCS (FEP7)

➞ http://<wc_server>/wcs/resources/store/<storeId>/price

The following REST services are only used in combination with IBM WCS (FEP6)

➞ http://<wc_server>/wcs/resources/store/<storeId>/cat
egoryview/<categoryIdentifier>

➞ http://<wc_server>/wcs/resources/store/<storeId>/cat
egoryview/byId/<uniqueId>

➞ http://<wc_server>/wcs/resources/store/<storeId>/pro
ductview/<productIdentifier>

➞ http://<wc_server>/wcs/resources/store/<storeId>/pro
ductview/byId/<uniqueId>

472CoreMedia DXP 8

Appendix | IBM WebSphere Commerce REST Services used by CoreMedia

➞ http://<wc_server>/wcs/resources/store/<storeId>/pro
ductview/bySeo/<languageIdentifier>/<siteIdentifier>/<pro
ductIdentifier>

The following REST services are used no matter what feature pack is used.

➞ http://<wc_server>/wcs/resources/store/<storeId>/espot/<eS
potIdentifier>

➞ https://<wc_server>/wcs/resources/store/<storeId>/login
identity

➞ https://<wc_server>/wcs/resources/store/<storeId>/preview
Token

➞ http://<wc_server>/wcs/resources/store/<storeId>/invent
oryavailability/<productIdsAsCSV>

➞ h t t p : / / < w c _ s e r v e r > : < s e a r c h p o r t > / s e a r c h / r e
sources/store/<storeId>/productview/%20?partNumber=<pro
ductIdentifier>

This search-based REST call allows slash character in the product identifier.

➞ http://<wc_server>/wcs/resources/store/<storeId>/usercon
text/@self/contextdata

Used by Elastic Social

➞ https://<wc_server>/wcs/resources/store/<storeId>/per
son/@self

Used by Elastic Social

➞ https://<wc_server>/wcs/resources/store/<storeId>/segment

Used by Adaptive Personalization

➞ h t t p : / / < w c _ s e r v e r > : < s e a r c h p o r t > / s e a r c h / r e
sources/store/<storeId>/sitecontent/keywordSuggestionsBy
Term/dres

➞ http://<wc_server>/wcs/resources/store/<stor
eId>/cart/@self

➞ http://<wc_server>/wcs/resources/coremedia/cacheinvalida
tion/latestTimestamp

CoreMedia specific custom REST service

➞ http://<wc_server>/wcs/resources/coremedia/cacheinvalida
tion/<timestamp>

473CoreMedia DXP 8

Appendix | IBM WebSphere Commerce REST Services used by CoreMedia

CoreMedia specific custom REST service

➞ http://<wc_server>/wcs/resources/coremedia/languagemap

Used to map langId to numeric value

➞ http://<wc_server>/wcs/resources/coremedia/storeinfo

Used to get the storeId and the catalog information from all available stores
in IBM WCS

474CoreMedia DXP 8

Appendix | IBM WebSphere Commerce REST Services used by CoreMedia

9.5 Maven Profile Reference
There are some profiles predefined in the workspace. Some are relevant for
building and some are relevant for starting components. To activate them simply
add them to your profiles list, such as mvn clean install -Pvagrant.

Table 9.5. Maven pro-
filesDescriptionProfile name

This profile activates integration tests. If activated, tests will run
that require a running system.

integration-test

This profile is used to package license files together with the
server web applications. It defines a dependency to a war arti-

internal-licenses

fact, which should contain a WEB-INF/properties/cor
em/license.zip. For more information see section “Config-
uring the licenses” [47]

This profile is located in the modules/cae/cae-perform
ance-test module and activates JMeter performance tests,
if configured.

performance

This profile is the counterpart of the preconfigure Profile,
it tells Maven to insert tokens into the configuration files of the

postconfigure

packages for post-configuration on the target machine at install-
ation time, see Section 4.3.9, “Configure Filtering in the Work-
space” [171] for a detailed description of this process.

This profile tells Maven to load the pack
ages/src/main/filters/preconfigure.proper

preconfigure

ties, to preconfigure the RPM or Zip files for deployment. Ar-
tifacts build this way can only be deployed on the system the
preconfigure.properties defines for.

To develop against the databases and servers installed on the
virtualized environment provided with Chef and Vagrant activate

vagrant

this profile. It overrides the default values for the host properties.

Creates ZIP archives for the RPM repository and the content and
uploads them to Amazon S3. This profile is only relevant for the

s3-upload

boxes module and only if you want to deploy a test system to
the cloud.

Collects and uploads the RPMs to a Maven repository. Use this
profile together with a Maven repository server that is capable

repository-upload

of serving Yum repositories. This profile is only relevant for the
boxes module and can be activated during the perform phase
of the Maven release process.

475CoreMedia DXP 8

Appendix | Maven Profile Reference

9.6 Content Type Model
This section shows the content types of CoreMedia Blueprint as UML diagrams. Since
the content type model exists of more than forty items it is split into the following
diagrams:

➞ Figure 9.3, “CoreMedia Blueprint Content Type Model - CMLocalized” [476]
shows the content types inheriting from CMLocalized.

➞ Figure 9.4, “CoreMedia Blueprint Content Type Model - CMNavigation” [477]
shows the content types inheriting from CMNavigation.

➞ Figure 9.5, “CoreMedia Blueprint Content Type Model - CMHasContexts” [477]
shows the content types inheriting from CMHasContexts.

➞ Figure 9.6, “CoreMedia Blueprint Content Type Model - CMMedia” [477]
shows the content types inheriting from CMMedia.

➞ Figure 9.7, “CoreMedia Blueprint Content Type Model - CMCollection” [477]
shows the content types inheriting from CMCollection.

The following diagrams contain most of the content types. The colors have the
following meaning:

➞ Blue items are part of the basis Blueprint content items

➞ Yellow items are part of the WebSphere Commerce integration

➞ Green Items are part of the Adaptive Personalization Integration

➞ Red items are part of the Elastic Social Integration

➞ Gray items are part of the Analytics Integration

You can download the complete diagram as a graphml file from the online docu-
mentation page below Other Documentation named CoreMedia DXP 8 Content Type
Diagram:

Figure 9.3. CoreMedia
Blueprint Content Type
Model - CMLocalized

<<abstract>>

CMObject

<<abstract>>

CMLocalized

locale: STRING {LENGTH=64}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLocalized}
masterVersion: INTEGER

CMSettings

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSettings}
settings: STRUCT {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true}
identifier: STRING {LENGTH=100}

<<abstract>>

CMLinkable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLinkable}
keywords: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=1024}
viewtype: LINK {MAX=1, LINK_TYPE=CMViewtype}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}
validFrom: DATE
validTo: DATE
extDisplayedDate: DATE
segment: STRING {LENGTH=64}
title: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
htmlmeta: STRING {LENGTH=512}
subjectTaxonomy: LINK {LINK_TYPE=CMTaxonomy}
locationTaxonomy: LINK {LINK_TYPE=CMLocTaxonomy}

CMViewtype

layout: STRING {LENGTH=64}CMJavaScript

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMJavaScript}
include: LINK {LINK_TYPE=CMJavaScript}

CMCSS

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCSS}
media: STRING {LENGTH=64}
include: LINK {LINK_TYPE=CMCSS}

CMSegment

description: MARKUP {GRAMMAR=coremedia-richtext-1.0}
conditions: MARKUP {GRAMMAR=coremedia-selectionrules-1.0}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSegment}

CMFolderProperties

contexts: LINK {LINK_TYPE=CMContext}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMFolderProperties}

<<abstract>>

CMAbstractCode

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMAbstractCode}
description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
code: MARKUP {GRAMMAR=coremedia-richtext-1.0}
ieExpression: STRING {LENGTH=64}
ieRevealed: INTEGER
include: LINK {LINK_TYPE=CMAbstractCode}
dataUrl: STRING {LENGTH=1024}

CMSymbol

description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
icon: BLOB {MIME_TYPE=image/*}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSymbol}

CMImage

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMImage}
data: BLOB {MIME_TYPE=*/*}
description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}

CMUserProfile

profileSettings: BLOB {MIME_TYPE=text/plain}
profileExtensions: STRUCT
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMUserProfile}

CMSite

id: STRING {LENGTH=32}
name: STRING {LENGTH=64}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSite}
root: LINK {MAX=1, LINK_TYPE=CMNavigation}
siteManagerGroup: STRING {LENGTH=64}

476CoreMedia DXP 8

Appendix | Content Type Model

Figure 9.4. CoreMedia
Blueprint Content Type
Model - CMNavigation

<<abstract>>

CMNavigation

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMNavigation}
children: LINK {LINK_TYPE=CMLinkable}
hidden: INTEGER
hiddenInSitemap: INTEGER
javaScript: LINK {LINK_TYPE=CMJavaScript}
css: LINK {LINK_TYPE=CMCSS}
favicon: BLOB {MIME_TYPE=image/x-icon}
placement: STRUCT

<<abstract>>

CMLinkable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLinkable}
viewtype: LINK {MAX=1, LINK_TYPE=CMViewtype}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}
resourceBundles: LINK {LINK_TYPE=CMSettings}
validFrom: DATE
validTo: DATE
extDisplayedDate: DATE
segment: STRING {LENGTH=64}
title: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
htmlTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
keywords: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=1024}
htmlDescription: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
subjectTaxonomy: LINK {LINK_TYPE=CMTaxonomy}
locationTaxonomy: LINK {LINK_TYPE=CMLocTaxonomy}

<<abstract>>

CMHasContexts

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMHasContexts}
contexts: LINK {LINK_TYPE=CMContext}

<<abstract>>

CMContext

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMContext}

CMChannel

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMChannel}
picture: BLOB {MIME_TYPE=image/*}
header: LINK {LINK_TYPE=CMLinkable}
footer: LINK {LINK_TYPE=CMLinkable}

<<abstract>>

CMAbstractCategory

pdpPagegrid: STRUCT

CMExternalChannel

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMExternalChannel}
externalId: STRING {LENGTH=256}

CMCategory

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCategory}
categoryName: STRING {LENGTH=256}
displayName: STRING {LENGTH=256}

CMExternalPage

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMExternalPage}
externalUriPath: STRING {LENGTH=256}
externalId: STRING {LENGTH=256}

<<abstract>>

CMTeasable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTeasable}
teaserTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
teaserText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
detailText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
pictures: LINK {LINK_TYPE=CMMedia}
notSearchable: INTEGER
related: LINK {LINK_TYPE=CMTeasable}

Figure 9.5. CoreMedia
Blueprint Content Type
Model - CMHasCon-
texts

<<abstract>>

CMLinkable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMLinkable}
keywords: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=1024}
viewtype: LINK {MAX=1, LINK_TYPE=CMViewtype}
localSettings: STRUCT
linkedSettings: LINK {LINK_TYPE=CMSettings}
validFrom: DATE
validTo: DATE
extDisplayedDate: DATE
segment: STRING {LENGTH=64}
title: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
htmlmeta: STRING {LENGTH=512}
subjectTaxonomy: LINK {LINK_TYPE=CMTaxonomy}
locationTaxonomy: LINK {LINK_TYPE=CMLocTaxonomy}

CMTaxonomy

value: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=256}
children: LINK {LINK_TYPE=CMTaxonomy}
externalReference: STRING {LENGTH=256}

<<abstract>>

CMHasContexts

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMHasContexts}
contexts: LINK {LINK_TYPE=CMContext}

<<abstract>>

CMTeasable

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTeasable}
teaserTitle: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
teaserText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
detailText: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
pictures: LINK {LINK_TYPE=CMPicture}
notSearchable: INTEGER
related: LINK {LINK_TYPE=CMTeasable}

CMExternalLink

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMExternalLink}
url: STRING {LENGTH=1024}

CMProduct

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMProduct}
contexts: LINK {LINK_TYPE=CMCategory}
downloads: LINK {LINK_TYPE=CMDownload}
productName: STRING {LENGTH=256}
shortDescription: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
longDescription: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}

CMDownload

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMDownload}
data: BLOB {MIME_TYPE=*/*}

CMPlaceholder

id: STRING {LENGTH=512}
master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMPlaceholder}

CMTeaser

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMTeaser}
target: LINK {MAX=1, LINK_TYPE=CMLinkable}

CMCollection

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCollection}
items: LINK {LINK_TYPE=CMTeasable}

<<abstract>>

CMMedia

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMedia}
caption: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
alt: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
copyright: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}

<<abstract>>

CMNavigation

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMNavigation}
children: LINK {LINK_TYPE=CMLinkable}
hidden: INTEGER
hiddenInSitemap: INTEGER
javaScript: LINK {LINK_TYPE=CMJavaScript}
css: LINK {LINK_TYPE=CMCSS}
favicon: BLOB {MIME_TYPE=image/x-icon}
placement: STRUCT

CMSitemap

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSitemap}
root: LINK {MAX=1, LINK_TYPE=CMNavigation}

CMProductTeaser

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMProductTeaser}
externalId: STRING {LENGTH=64}

CMArticle

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMArticle}

CMMail

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMail}
subject: STRING {LENGTH=255}
from: STRING {LENGTH=255}
text: BLOB {MIME_TYPE=text/plain}
contentType: STRING {LENGTH=255}

Figure 9.6. CoreMedia
Blueprint Content Type
Model - CMMedia

CMPicture

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMPicture}
data: BLOB {MIME_TYPE=image/*}

<<abstract>>

CMMedia

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMedia}
caption: MARKUP {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, GRAMMAR=coremedia-richtext-1.0}
alt: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}
copyright: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=128}

CMHTML

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMHTML}
description: STRING {{http://www.coremedia.com/2013/documenttypes-extensions}translatable=true, LENGTH=512}
data: MARKUP {GRAMMAR=coremedia-richtext-1.0}

CMAudio

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMAudio}
data: BLOB {MIME_TYPE=audio/*}
dataUrl: STRING {LENGTH=1024}

<<abstract>>

CMVisual

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMVisual}
data: BLOB {MIME_TYPE=*/*}
dataUrl: STRING {LENGTH=1024}
width: INTEGER
height: INTEGER

CMVideo

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMVideo}
data: BLOB {MIME_TYPE=video/*}

CMInteractive

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMInteractive}
data: BLOB {MIME_TYPE=application/*}

Figure 9.7. CoreMedia
Blueprint Content Type
Model - CMCollection

CMCollection

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMCollection}
items: LINK {LINK_TYPE=CMTeasable}

CMGallery

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMGallery}
items: LINK {LINK_TYPE=CMMedia}

<<abstract>>

CMDynamicList

maxLength: INTEGER

CMP13NSearch

documentType: STRING {LENGTH=256}
searchContext: LINK {LINK_TYPE=CMNavigation}
searchQuery: BLOB {MIME_TYPE=text/plain}
defaultContent: LINK {LINK_TYPE=CMTeasable}

CMSelectionRules

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMSelectionRules}
text: MARKUP {GRAMMAR=coremedia-richtext-1.0}
altText: MARKUP {GRAMMAR=coremedia-richtext-1.0}
rules: MARKUP {GRAMMAR=coremedia-selectionrules-1.0}
defaultContent: LINK {LINK_TYPE=CMTeasable}

<<abstract>>

CMALXBaseList

timeRange: INTEGER
analyticsProvider: STRING {LENGTH=64}

CMALXPageList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMALXPageList}
documentType: STRING {LENGTH=256}
baseChannel: LINK {MAX=1, LINK_TYPE=CMNavigation}
defaultContent: LINK {LINK_TYPE=CMTeasable}

CMALXEventList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMALXEventList}
category: STRING {LENGTH=512}
action: STRING {LENGTH=512}

CMQueryList

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMQueryList}

CMMarketingSpot

master: LINK {{http://www.coremedia.com/2013/documenttypes-extensions}weakLink=true, MAX=1, LINK_TYPE=CMMarketingSpot}
externalId: STRING {LENGTH=256}

ESDynamicList

channel: LINK {MAX=1, LINK_TYPE=CMChannel}
type: STRING {LENGTH=50}
interval: STRING {LENGTH=50}
aggregationType: STRING {LENGTH=50}

477CoreMedia DXP 8

Appendix | Content Type Model

9.7 Link Format
The following table summarizes most of the corresponding link schemes and con-
trollers of CoreMedia Blueprint as defined in framework/spring/blueprint-
handlers.xml. See the Javadoc of the respective classes for further details.

Table 9.6. CapBlobHand-
lerCapBlobHandler

Controller and link scheme for Blobs like Images in CSS or Images
that do not have any scaling information.

Description

com.coremedia.blueprint.cae.hand-
lers.CapBlobHandler

Class

/blob/1784/4fb7741a1080d02953ac7d79c76c955c/me
dia-data.ico for a CSS background image

Example

Table 9.7. CodeHand-
ler

CodeResourceHandler

Controller and link scheme for CSS and JavaScript stored in the
CMS.

Description

com.coremedia.blueprint.cae.hand-
lers.CodeResourceHandler

Class

/code/1214/5/responsive-css.css for a CSSExample

Table 9.8. Extern
alLinkHandler

ExternalLinkHandler

A Link scheme for external links stored in the CMS.Description

com.coremedia.blueprint.cae.handlers.Extern-
alLinkHandler

Class

http://www.coremedia.comExample

Table 9.9. PageAc-
tionHandler

PageActionHandler

Controller and link scheme for CMAction beans which are for
example used to perform a search.

Description

com.coremedia.blueprint.cae.handlers.Page-
ActionHandler

Class

478CoreMedia DXP 8

Appendix | Link Format

/action/corporate/4420/action/search for per-
forming a search

Example

Table 9.10. PageHand-
ler

PageHandler

Controller and link scheme for pages.Description

com.coremedia.blueprint.cae.handlers.Page-
Handler

Class

/corporate/for-professionals/services for an
service page.

Example

Table 9.11. Previe-
wHandler

PreviewHandler

Controller and link scheme previewing content in CoreMedia
Studio.

Description

com.coremedia.blueprint.cae.handlers.Previe-
wHandler

Class

/preview?id=coremedia:///cap/con
tent/3048%26view=fragmentPreview for pre
view content as a fragment

Example

Table 9.12. Static-
UrlHandler

StaticUrlHandler

Controller and link scheme for generating static URLs based on
Strings

Description

com.coremedia.blueprint.cae.handlers.Static-
UrlHandler

Class

/elastic/social/ratings for a ES Post Con
troller

Example

Table 9.13. Trans-
formedBlobHand-
ler

TransformedBlobHandler

Controller and link scheme for transformed blobsDescription

com.coremedia.blueprint.cae.handlers.Trans-
formedBlobHandler

Class

479CoreMedia DXP 8

Appendix | Link Format

/image/3126/landscape_ra
tio4x3/349/261/971b670685dff69cfd28e55177d886db/Pi/mom
basa-image-image.jpg

Example

Link Post Processors

While link schemes are responsible for the path and possibly the parameters of a
resource's URL, they are not aware of deployment aspects like domains, hosts,
ports, servlet contexts, rewrite rules and the like. The Blueprint uses Link Post
Processors to format links according to the particular environment.

The following link post processors are applied in com.coremedia.blue-
print.base.links.impl.BaseUriPrepender and com.coremedia.blue-
print.base.links.impl.LinkAbsolutizer.

➞ prependBaseUri

Prepends the "base URI" (web application and mapped servlet, for example
/blueprint/servlet) to ALL (annotation based) links. This is required
when the CAE web application is served directly by a web container with no
prior URL rewriting.

➞ makeAbsoluteUri

Adds a prefix that makes the URI absolute. There are several cases in which
URLs must be made absolute:

➞ a cross-site link: a URI pointing to a resource in a site that is served
on a different domain

➞ externalized URIs: a URI should be send by mail or become part of an
RSS feed

The prefixes for absolute URLs are specific for each site, therefore they are
maintained in each site's settings in a struct named absoluteUrlPrefixes.
The prefixes are different for the live and the preview CAE and must be
maintained independently. A typical absoluteUrlPrefixes struct looks
like this:

480CoreMedia DXP 8

Appendix | Link Format

Figure 9.8. A basic ab-
soluteUrlPrefixes Struct

The URL prefixes must be at least a scheme-relative URL (beginning with
"//").

The Blueprint features an application property link.urlPrefixType that
determines which absoluteUrlPrefixes entry is effective in a particular
application. You will find link.urlPrefixType set appropriately in the
application.properties of all components that use thebpbase-links-
impl module, e.g. for the cae-live-webapp:

Example 9.1. Configur-
ation of URL prefix
type

The live webapp builds live URLs
link.urlPrefixType=live

While the standard Blueprint distinguishes only between preview and live
URL prefixes, projects may add additional absoluteUrlPrefixes entries
of arbitrary names for special URL prefixes and applications.

Why do we need struct lists after all, if they have only one entry? The above
example is valid, but it does not show all configuration options. There are
some optional features, and the equivalent complete struct would look like
this:

481CoreMedia DXP 8

Appendix | Link Format

Figure 9.9. A complete
absoluteUrlPrefixes
Struct

You can declare special URL prefix rules for certain bean types or views, and
you can specify an order for ambiguous rules. The default Blueprint does
not make use of these options, but they reflect the format of the key field
of the old siteMappings entries, so that you do not lose any features when
upgrading to this mechanism.

When you start over with a fresh Blueprint and look at the SiteSettings
documents of our example content, the configuration looks yet a little differ-
ent:

482CoreMedia DXP 8

Appendix | Link Format

Figure 9.10. An initial
absoluteUrlPrefixes
Struct

We support a variety of deployments for various usecases like local develop-
ment, production, quickrun, to name just a few. The appropriate URL prefixes
in these setups vary from //localhost:40080 to //my.real.public.do
main. So there is no reasonable default to be hardcoded in the example
content. Therefore we support application properties in the values of url
Prefix and use the well known blueprint.site.mapping.* properties
which are declared in the CAEs' application.properties files. Initial
content deployment is the only reason why these properties still exist, so
you should not bother to maintain them for new sites in production reposit-
ories, but maintain the URL prefixes only in the content.

Force Scheme

In order to force a certain scheme (for example http, https, ftp) for a URL, two (cm)
parameters must be set for the link: absolute: true and scheme: <scheme-
name>.

483CoreMedia DXP 8

Appendix | Link Format

9.8 Predefined Users
CoreMedia Blueprint provides some default users and groups that represent typical
roles in an editorial staff. There are technical users with repository wide permissions
and editorial users whose permissions are predominantly limited to a particular
site or web presence (aside from a few exceptions like home folder access). The
editorial users and groups are only available if you activate the particular extension.
Depending on your specific processes and roles, the default groups may be a more
or less useful starting point for a production systems. The users, however, are
meant as examples only. You are supposed to replace them with users that match
your actual staff. The password of all default users is the same as the name.

In the Blueprint workspace you will find some test-data/users directories (one
global and some in the extensions). The XML files in those directories declare the
default users, groups and rules. They can be imported with the restoreusers com-
mand line tool. For the initial setup of your systems, you can adapt those files to
your needs. The test-data/content sets provide home folders with suitable
editor preferences documents for the users.

The following tables show the most important default users and groups in detail.

Global
Table 9.14. Global
groupsDescriptionGroup name

Root group, essential common read permissions, home folder
access

staff

All possible permissionsadministratoren

All possible permissions but user authorizationdeveloper

Editorial permissions for global themes and settingsglobal-manager

Publication workflow rolescomposer-role, approver-
role, publisher-role

While some of the global groups contain users directly, most of them serve only

Table 9.15. Global
users

as parent groups for the site-specific groups.

DescriptionGroupUser name

Administrator: IT operations, configuration,
user authorization, workflow maintenance,
recovery, performance analysis

administratorenAdam

484CoreMedia DXP 8

Appendix | Predefined Users

DescriptionGroupUser name

Online Marketing Manager: Analytics analysis,
campaign management, supervision

administratorenTeresa

Developer: Feature development, template
development, performance tuning

developerDave

Asset Manager: managing digital assetsasset-managerAmy

Since user and group names are unique within one repository, they differ for the
members of the various web presences of Blueprint. The following users and groups
reflect the e-Commerce web presence. The roles of the Brand web presence are
basically the same, and use similar names that you will easily recognize.

e-Commerce
Table 9.16. Site specific
groups e-CommerceDescriptionGroup name

All permissions for a web presenceglobal-site-manager

Editorial permissions for a site, read rights for the master sitemanager-en-US

Finegrained permissions for his particular tasksonline-editor-en-US

Table 9.17. Site specific
users e-Commerce

DescriptionGroupUser name

Global site manager: organization of internal
processes

global-site-managerRick

Local content manager: management of dy-
namic content, targeting rules, A-B-testing,
topic pages for their particular regions

manager-en-US, manager-
de-DE, manager-es-ES,
manager-fr-FR

Peter, Piet,
Pedro, Pierre (for
their respective
regions)

Online editor: writing articles, creating
slideshows, editing images, tagging contents

online-editor-en-USGeorge

Brand web presence
Table 9.18. Site specific
groups Brand web
presence

DescriptionGroup name

All permissions for a web presenceglobal-site-manager-c

Editorial permissions for a site, read rights for the master sitemanager-c-en-US

485CoreMedia DXP 8

Appendix | Predefined Users

DescriptionGroup name

Finegrained permissions for his particular tasksonline-editor-c-en-US

Table 9.19. Site specific
users Brand web pres-
ence

DescriptionGroupUser name

Global site manager: organization of internal
processes

global-site-manager-cRick C

Local content manager: management of dy-
namic content, targeting rules, A-B-testing,
topic pages for their particular regions

manager-c-en-US, man-
ager-c-de-DE, manager-c-
es-ES, manager-c-fr-FR

Peter C, Piet C,
Pedro C, Pierre C
(for their respect-
ive regions)

Online editor: writing articles, creating
slideshows, editing images, tagging contents

online-editor-c-en-USGeorge C, Marc
C

486CoreMedia DXP 8

Appendix | Predefined Users

9.9 Database Users
The following table shows the database users that are required for CoreMedia
components. For MySQL and Microsoft SQL server are scripts in the workspace,
that create these users.

Table 9.20. Database
UsersDescriptionUser nameComponent

This database user will manage the content
of the Content Management Server. This data-

cm7managementContent Management
Server

base will require most of the space, since
content is versioned.

This database user will manage the content
of the Master Live Server. Up to two versions
of each published content will be stored.

cm7masterMaster Live Server

This database user will manage the content
of the Replication Live Server. Up to two ver-
sion of each published content will be stored.

cm7replicationReplication Live Server

This database user will persist data for the
CAE Feeder working in the management envir-
onment. Content is not versioned.

cm7mcaefeederCAE Feeder for pre-
view

This database user will persist data for the
delivery environment. Content is not ver-
sioned.

cm7caefeederCAE Feeder for live site

487CoreMedia DXP 8

Appendix | Database Users

9.10 Cookies
Several customer facing modules of CoreMedia DXP 8 use cookies to fulfill their
tasks.

Blueprint delivery CAE

The Blueprint delivery CAE is configured to not write any cookies. However, session
cookies CM_SESSIONID and JSESSIONID are written, when a website visitor logs
into the Blueprint delivery CAE. The name of these cookies may vary, depending
on the deployment scenario.

Elastic Social

Elastic Social writes only one cookie:

guid A globally unique ID to identify the user's web browser

Adaptive Personalization

In the default configuration, CoreMedia Adaptive Personalization writes the cookies
described in the list. CoreMedia Adaptive Personalization can also be configured to
store data in CoreMedia Elastic Social user profiles.

cmKeywordCookie Scoring of keywords attached to the visited
contents.

cmLastVisited A fixed-sized list of the last visited contents.

cmLocationTaxonomiesCookie Scoring of location taxonomies attached to
the visited contents

cmReferrerCookie Search engine and search query that lead
the visitor to the site.

cmSubjectTaxonomiesCookie Scoring of subject taxonomies attached to
the visited contents.

e-Commerce

When you use e-Commerce, the IBM WebSphere Commerce Server writes cookies,
documented at http://www.ibm.com/support/knowledgecen-
ter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/concepts/cse_cookies.htm.

488CoreMedia DXP 8

Appendix | Cookies

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/concepts/cse_cookies.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/concepts/cse_cookies.htm

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in
other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content, that
is managed in CoreMedia CMS and third-party systems. Technically, a content
bean is a Java object that encapsulates access to any content, either to Core-
Media CMS content items or to any other kind of third-party systems. Various
CoreMedia components like the CAE Feeder or the data view cache are built
on this layer. For these components the content beans act as a facade that
hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is
delivered to the end-user.

It may contain any of the following modules:

➞ CoreMedia Master Live Server

➞ CoreMedia Replication Live Server

➞ CoreMedia Content Application Engine

➞ CoreMedia Search Engine

➞ Elastic Social

489CoreMedia DXP 8

Glossary |

➞ CoreMedia Adaptive Personalization

Content Feeder The Content Feeder is a separate web application that feeds content items of
the CoreMedia repository into the CoreMedia Search Engine. Editors can use
the Search Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following modules:

➞ CoreMedia Content Management Server

➞ CoreMedia Workflow Server

➞ CoreMedia Importer

➞ CoreMedia Site Manager

➞ CoreMedia Studio

➞ CoreMedia Search Engine

➞ CoreMedia Adaptive Personalization

➞ CoreMedia CMS for SAP Netweaver ® Portal

➞ CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is
stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

➞ Content Management Server

➞ Master Live Server

➞ Replication Live Server

490CoreMedia DXP 8

Glossary |

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it clients,
partners or CoreMedia employees. CoreMedia contributions are hosted on
Github at https://github.com/coremedia-contributions.

Controm Room Controm Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed
object standard which enables interoperation between heterogenous applic-
ations over a network. It was created and is currently controlled by the Object
Management Group (OMG), a standards consortium for distributed object-
oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all of the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exists.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the docu-
ment prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier.
The System Identifier is just that: a URL to the DTD. The Public Identifier is
an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can
moderate user generated content from their common workplace. Elastic Social
bases on NoSQL technology and offers nearly unlimited scalability.

491CoreMedia DXP 8

Glossary |

https://github.com/coremedia-contributions

EXML EXML is an XML dialect supporting the declarative development of complex
Ext JS components. EXML is Jangaroo's equivalent to Adobe Flex MXML and
compiles down to Actions Script.

Folder A folder is a resource in the CoreMedia system which can contain other re-
sources. Conceptually, a folder corresponds to a directory in a file system.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for all
subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engin-
eering Task Force (IETF). It includes the definition of IETF language tags, which
are an abbreviated language code such as en for English, pt-BR for Brazilian
Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using
traditional Han characters.

Importer Component of the CoreMedia system for importing external content of
varying format.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with which
a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
ActionScript as an input language which is compiled down to JavaScript. You
will find detailed descriptions on the Jangaroo webpage ht-
tp://www.jangaroo.net.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification are
already integrated with Java 5. JMX provides a tiered architecture with the
instrumentation level, the agent level and the manager level. On the instru-
mentation level, MBeans are used as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It re-
ceives the published content from the Content Management Server and makes
it available to the CAE. If you are using the CoreMedia Multi-Site Management
Extension you may use multiple Master Live Server in a CoreMedia system.

492CoreMedia DXP 8

Glossary |

http://www.jangaroo.net
http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part,
multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects A project is a collection of content items in CoreMedia CMS created by a
specific user. A project can be managed as a unit, published or put in a
workflow, for example.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content items depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers
and to improve the robustness of the Content Delivery Environment. The Rep-
lication Live Server is a complete Content Server installation. Its content is an
replicated image of the content of a Master Live Server. The Replication Live
Server updates its database due to change events from the Master Live Server.
You can connect an arbitrary number of Replication Live Servers to the Master
Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number of
key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes re-
ferred to as localized site. In CoreMedia CMS a site especially consists of a site
folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

493CoreMedia DXP 8

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a
site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users
and workflows.

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site and
that they accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined
by typically an administrative user a content editor can use this template to
quickly create a complete new page including, for example, navigation, pre-
defined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in
the Control Room, as a part of projects and workflows.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can
be declared with the weak attribute, so that they are not checked during
publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

WebDAV WebDAV stands for World Wide Web Distributed Authoring and Versioning
Protocol. It is an extension of the Hypertext Transfer Protocol (HTTP), which
offers a standardised method for the distributed work on different data via
the internet. This adds the possibility to the CoreMedia system to easily access
CoreMedia resources via external programs. A WebDAV enabled application
like Microsoft Word is thus able to open Word documents stored in the
CoreMedia system. For further information, see http://www.webdav.org.

494CoreMedia DXP 8

Glossary |

http://www.webdav.org

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the work-
flow software ensures that the individuals responsible for the next task are
notified and receive the data they need to execute their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environ-
ment. It comes with predefined workflows for publication and global-search-
and-replace but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated but
also metadata about the text. For example, the source and target language.
CoreMedia Studio allows you to export content items in the XLIFF format and
to import the files again after translation.

495CoreMedia DXP 8

Glossary |

Index

A
A/B testing, 440
access rights, 264
actions, 294

webflow, 297
Adaptive Personalization, 431

CAE, 433
CAE integration, 433
conditions, 437
content types, 253
context, 431
extension, 432
extension modules, 432
integration points, 432
search functions, 434
test user profiles, 436

AdaptivePersonalization
Studio, 437

addTranslationWorkflowPlugin, 353
Adobe Drive, 443
Application

Architecture, 107
artifact, 109
properties, 111

approver-role, 361
Asset Management, 443

Adobe Drive connector, 458
AMAsset, 453
Asset Widget, 444
blob storage, 455
catalogPictureHandler, 448
content types, 453
download portal, 457
metadata, 449

Asset Widget, 444
assets, 248, 264

B
b2b contract based personalization, 230
blueprint

Brand Blueprint, 29
e-Commerce Blueprint, 29
removal, 44

Brand Blueprint, 29

C
CAE, 161

Maven configuration, 163
Performance Tests, 164
Personalization, 433
start, 89
use local resources, 324

CAE Feeder, 165
start, 88

catalog, 223
Chef, 121, 128

Chef Development Kit, 41
Chef Server, 41
Chef Supermarket, 41
Encrypted Data Bags, 41
node.json, 129
solo.rb, 129

classify, 254
client code, 264, 291

merging, 293
minification, 293
performance, 292
preview, 292

cm.unescape
FreeMarker macro, 319

CMChannel, 266
CMCollection, 281
CMJavaScript, 291
CMLocalized, 348
CMSCSS, 291
CMSettings, 349
CMTaxonomy, 255

properties, 256
CMTeasable, 287, 348
CMViewtype, 282
commerce segment personalization, 228
common content

496CoreMedia DXP 8

Index |

types, 249
Component

Artifact, 108
Extension, 115
JMX, 168
Logging, 166
start locally, 86

composer-role, 361
Content

import, 87
content, 248

media, 252
content assets

properties, 251
content chooser configuration, 389
Content Feeder

start, 88
content lists, 280
Content Server

start, 86
content type

CMLocalized, 348
CMTeasable, 348-349

content type model, 476
extensions:translatable, 348-349
extensions:weakLink, 348

Content Types
extending, 155

content types, 264
assets, 264
client code, 264
navigation and page structure, 264
technical content types, 264

content visibility, 301
context, 266, 431

determine, 267
CoreMedia Blueprint

folder structure, 264
CoreMedia modules, 386
country

locale, 332
create content

add menu item, 401
create from template

dialog, 406
new template folder, 407

template locations, 406
CSS

Development, 323

D
Database

Configuration, 53
Prerequisites, 41
Users, 54

database
users, 487

demo data generator
configuration, 428
start, 427

document type model (see content type model)
Documentation, 39
Download, 39
dynamic templating, 288

add template to page, 289
upload templates, 289

E
e-Commerce API, 219
e-Commerce Blueprint, 29
Elastic Social

configuration, 419
curated transfer, 426
custom information, 422
Demo Data Generator, 426
emails, 425
features, 418
mail templates, 425

end user interactions, 294
Environments

supported, 42
extendingShopPages, 183
Extension, 115, 147

activation, 117, 147
component, 116
content types, 156
dependencies, 151
Elastic Social, 149
Nuggad, 149
Personalization, 149
ShoutEm, 149

497CoreMedia DXP 8

Index |

Extensions, 113
extensions:automerge, 349
extensions:translatable, 348-349
extensions:weakLink, 348
external content, 395
external library

configuration, 396
implement additional source, 397

F
FreeMarker, 288
FreeMarker macro

cm.unescape, 319

G
global site manager, 338
group, 361

approver-role, 361
composer-role, 361
publisher-role, 361

H
Hardware Prerequisites, 40
home page, 332-333, 333
Host Mappings

locally, 54
virtualized, 52

I
IETF BCP 47, 332
Images, 298

configure sizes, 298
default JPEG quality, 300
High Resolution/Retina, 300

Installation
ZIP, 136

J
Jangaroo, 113
JavaScript

Development, 323
JMeter, 164
JMX, 168
JNDI, 110

K
keywords, 254

L
language

locale, 332
layout

localization, 279
Library

catalog view, 223
library

Image Gallery, 394
License

configuration, 47
link

weak, 336, 348, 357, 359
link format, 478
local site manager, 334
locale, 332, 337

IETF BCP 47, 332
LocaleSettings, 337, 338
localization, 332
localized site, 332
Logging, 165

logback, 110, 165
slf4j, 166

M
mail templates, 425
MailTemplateService, 425
management center, 227
master site, 333
Maven

building the workspace, 82, 113
changing groupId, 46
coremedia-application, 113
Extension, 115, 147
override-properties, 173
Performance Tests, 164
scm, 47
settings.xml, 45

media content, 252
minification, 293
multi-site, 332

498CoreMedia DXP 8

Index |

administration, 337
CMLocalized, 348
CMTeasable, 348-349
content types, 347
derived site, 335
global site manager, 338
groups, 338
local site manager, 334
master site, 333, 335
permissions, 338
site, 332
SiteModel, 342, 363
SitesService, 342
structure, 334
translation manager role, 334, 338, 363

N
navigation, 265
navigation and page structure, 264
Nexus, 42
Nuggad, 149

O
Open Street Map, 440
OpenCalais

disable, 261
OpenJDK, 119
Optimizely, 440
Oracle JDK, 119
OutOfMemoryException, 140

P
Package

artifact, 111
page grid, 270

configure new layout, 275
editor, 271
incompatible changes, 274
inheriting placements, 271
layout locations, 274
lock placements, 271
predefined layout, 273

Performance Tests
CAE, 164

Personalization
content types, 150

placement, 270
placement editor, 274
placements

localization, 279
predefined user, 484
predefined workflows, 360
Properties, 170

Default values, 171
Filtering, 172
location, 170
RPM deployment, 171

Provisioning, 119
Publication

bulkpublish, 91
publisher-role, 361

R
rights concept, 264
robots.txt, 303

example configuration, 304
RobotsHandler, 304
RPM, 114

properties, 171

S
search, 308
Search Engine

start, 86
search functions, 434
search landing pages, 309

keywords, 309
ServerExport, 349
ServerImport, 349
Services

init scripts, 135
start, 135
Tomcat, 111

settings
linked, 268
local, 268

settings.xml, 45
shop configuration, 207
ShoutEm, 149

499CoreMedia DXP 8

Index |

site, 332
derived site, 335
global site manager, 338
home page, 332-333, 333, 335
interdependence, 336
local site manager, 334
locale, 332, 337
LocaleSettings, 337, 338
localized site, 332
master site, 333, 335
multi-site, 332
site folder, 332, 333, 335
site id, 333
site identifier, 333
site indicator, 332, 333, 335-336, 339, 341
site manager group, 333, 334, 339, 363
site name, 333
SiteModel, 339, 341-342, 342, 363
SitesService, 342
translation manager role, 334, 338, 363
translation workflow robot user, 339

Site Manager
start, 90

site manager group, 333, 334, 339, 363
sitemap, 302, 306

maximum number of URLs, 306
SiteModel, 342, 363
SitesService, 342
Software Prerequisites, 40
Solr, 309
Studio, 157

bookmarks, 395
content chooser, 388
create content, 400
create from template, 405
external library, 395
external preview, 398
image link list editor, 387
Jangaroo, 113, 159
library, 394
Maven, 159
Personalization, 437
plugin, 157
plugins, 387
query editor, 390
settings, 399

site selection, 408
start, 90
upload files, 408

Studio enhancements, 387
suggestion strategy, 260

T
taxonomies, 254

as conditions for dynamic lists, 255
hierarchical organisation, 256
implement new, 260
implement new suggestion strategy, 260
location, 256
related content, 255
site specific, 261

taxonomy editor, 256
taxonomy resolver strategy, 259
teaser management, 286
technical content types, 264
themes

descriptor, 313
working with, 311

Tomcat, 114
development mode, 324

translation, 332
addTranslationWorkflowPlugin, 353
configuration, 352
customization, 353, 354
localization, 355
Studio, 353
UI, 353
workflow, 362, 364
workflow action, 364
workflowForm, 353
XLIFF, 351

translation manager, 334, 338, 363
translation manager role, 334, 338, 363
translation workflow robot user, 339

U
upload files

configuration, 409
URLs, 300
User Changes web application, 23, 89
Users

500CoreMedia DXP 8

Index |

import, 87
users

predefined, 484

V
Vagrant, 120

destroy, 85
Installation, 50
provision, 85
resume, 85
suspend, 85
up, 83

validFrom, 302
Vanity URLs, 300
VCS, 47
view repositories, 290
view type selector, 282
view types, 282

localization, 280, 283
viewType, 252
Virtualization, 119

Chef, 121
Host Mappings, 52
Software, 41
Vagrant, 120

visibility, 301

W
wcs preview support, 227
wcs workspace support, 230
weak link, 336, 348, 357, 359
web development workflow, 321
web resources

editing, 323
import into repository, 326
local, 321
local resources, 323
preview, 326
release, 330
workspace structure, 323

WebDAV, 442
WebDAV Server

start, 90
Webflow actions, 297
website

navigation, 265
page assembly, 269
settings, 268
structure, 269

website search, 308
WebSphere

troubleshooting, 80
WebSphere Commerce System

preview support, 227
workspaces support, 230

workflow
action, 364
publication, 360
translation, 362, 364

workflow action, 364
CompleteTranslationAction, 367
ExtractPerformerAction, 366-367
GetDerivedContentsAction, 365
GetSiteManagerGroupAction, 366
RollbackTranslationAction, 368-369

Workflow Server
start, 88

workflowForm, 353
workspace

download, 39
Workspace

Build, 82
Configuration, 46
Structure, 112

X
XLIFF, 351, 351-352

emptyTransUnitMode, 352
ignorableWhitespaceRegex, 352
translation unit, 351

XML Localization Interchange File Format, 351

501CoreMedia DXP 8

Index |

	CoreMedia Digital Experience Platform 8 Developer Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Working with CoreMedia DXP 8
	1.4.1 Getting Started
	1.4.2 Getting an Overview
	1.4.3 Working with the GUI
	1.4.4 Operating the System
	1.4.5 Extending the System

	1.5 Change Chapter

	2. Overview of CoreMedia DXP 8
	2.1 Components and Architecture
	2.1.1 Content Management Environment
	2.1.2 Content Delivery Environment
	2.1.3 Shared Components
	2.1.4 Technologies
	2.1.5 Communication between the Components

	2.2 CoreMedia Blueprint Sites

	3. Getting Started
	3.1 Quick Start
	3.2 Prerequisites
	3.3 Configuration of the CoreMedia Workspace
	3.3.1 Removing Optional Components
	3.3.2 Configuring Maven
	3.3.3 Configuring the Workspace
	3.3.4 Configuring Vagrant Based Setup
	Networking
	Host Mappings
	Proxy Settings

	3.3.5 Configuring Local Setup
	3.3.6 In-Memory Replacement for MongoDB-Based Services
	In-Memory configuration for the Studio
	In-Memory configuration for the Workflow Server

	3.4 Customizing IBM WebSphere Commerce
	3.4.1 Preparing the RAD Workspace
	3.4.2 Copy Libraries
	3.4.3 Configuring the Search
	Extending Search Profiles
	Enabling Dynamic Pricing
	Customizing the IBM WCS Solr Index
	Adding New PARENT_PARTNUMBER Field to the Solr Index
	Adding New CM_SEO_TOKEN Field to the Solr Index

	3.4.4 Extending REST Resources to BOD Mapping
	3.4.5 Configuring the Cookie Domain
	3.4.6 Multiple Logon for the Same User
	3.4.7 Configuring REST Handlers
	3.4.8 Applying Changes to the Management Center
	3.4.9 Deploying the CoreMedia Fragment Connector
	3.4.10 Customizing IBM WebSphere Commerce JSPs
	3.4.11 Deploying the CoreMedia Widgets
	3.4.12 Setting up SEO URLs for CoreMedia Pages
	3.4.13 Event-based Commerce Cache Invalidation
	3.4.14 Deploying the CoreMedia Catalog Data
	3.4.15 Troubleshooting

	3.5 Using the CoreMedia Workspace
	3.5.1 Building the Workspace
	3.5.2 Working With the Box
	3.5.3 Locally Starting the Components
	Starting Management Components
	Starting the Editorial Components
	Starting the other Components

	3.5.4 Developing with Apache (optional for e-Commerce)
	Prerequisites
	Building the Web Applications
	Configuring the Network

	3.5.5 Developing with Components and Boxes
	3.5.6 Developing Against a Remote Environment

	4. Blueprint Workspace for Developers
	4.1 Concepts and Architecture
	4.1.1 Maven Concepts
	Packaging Types
	coremedia-application
	Jangaroo

	BOM files

	4.1.2 Blueprint Base Modules
	4.1.3 Application Architecture
	Library Artifacts
	Component Artifacts
	Application Artifacts
	Package Artifacts
	Redundant Spring Imports

	4.1.4 Structure of the Workspace
	4.1.5 Project Extensions
	4.1.6 Virtualization and Provisioning
	Boxes Overview
	Vagrant
	Chef

	4.2 Administration and Operation
	4.2.1 Performing a Release
	4.2.2 Deploying a System
	Deployment with Chef
	Using Chef-Solo
	Using PostgreSQL with Chef

	Deployment with Yum
	Deployment with Zip (Linux)

	4.2.3 Upgrade a System
	Upgrading with Chef
	Upgrade with Yum

	4.2.4 Rollback a System
	Rollback with Chef
	Rollback with YUM
	Rollback with rpm

	4.2.5 Troubleshooting

	4.3 Development
	4.3.1 Using Blueprint Base Modules
	Content Type Model Dependencies
	The Settings Service
	The setting* Methods
	Configuring the Default Settings Service via SettingsFinders
	Typed Settings Interfaces
	Content types Requirements

	4.3.2 Developing with Extensions
	Adding, Disabling or Removing an Extension
	Removing the Elastic Social Extension
	Removing the Adaptive Personalization Extension
	Removing the e-Commerce Blueprint
	Removing the Brand Blueprint
	Removing the Advanced Asset Management Extensions
	Extensions and Their Dependencies

	4.3.3 Extending Content Types
	4.3.4 Developing with Studio
	4.3.5 Developing with the CAE
	Running performance tests

	4.3.6 Customizing the CAE Feeder
	4.3.7 Adding Common Infrastructure Components
	The Logging Component
	The JMX Component
	The Base Component

	4.3.8 Managing Properties in the Workspace
	4.3.9 Configure Filtering in the Workspace

	5. IBM WebSphere Commerce Integration
	5.1 Commerce-led Integration Scenario
	5.1.1 Commerce-led Integration Overview
	5.1.2 Solutions for Same-Origin Policy Problem
	5.1.3 Extending the Shop Context in Commerce-led Integration Scenario
	5.1.4 Extending with Fragments
	CoreMedia Widgets
	The CoreMedia Include Tag

	5.2 Content-led Integration
	5.2.1 Content-led Integration Overview
	5.2.2 Status Synchronization in the Content-led Integration Scenario
	What Is The Users State?
	How does the CAE renders fragments without its own cookies?
	How does the browser deliver WCS cookies to the CAE?
	The CAE as WCS Cookie Source
	How are sessions between CAE and WCS are synchronized?

	Authentication Process
	Registration
	Edit User Details
	Password Reset
	Error Handling

	5.2.3 Configuring Protocol-less Links for WCS

	5.3 Communication
	5.4 Connecting with an IBM WCS Shop
	5.5 Link Building for Fragments
	5.6 Enabling Preview of Commerce Category Pages in Studio
	5.7 Enabling Contract Based Preview
	5.8 The e-Commerce API
	5.9 Commerce Cache Configuration
	5.10 Studio Integration of the IBM WebSphere Commerce Content
	5.10.1 Catalog View in CoreMedia Studio Library
	5.10.2 WCS Management Center Integration in CoreMedia Studio
	5.10.3 WCS Preview Support Features
	5.10.4 Working with WCS Workspaces
	5.10.5 Augmenting WCS Content
	Augmenting the Root Node
	Selecting a Layout for an Augmented Page
	Finding CMS Content for Category Overview Pages
	Finding CMS Content for Product Detail Pages
	Adding CMS Content to non-catalog Pages (Other Pages)

	6. CoreMedia DXP 8 e-Commerce Blueprint - Functionality for Websites
	6.1 Overview of e-Commerce Blueprint
	6.2 Basic Content Management
	6.2.1 Common Content Types
	6.2.2 Adaptive Personalization Content Types
	6.2.3 Tagging and Taxonomies

	6.3 Website Management
	6.3.1 Folder and User Rights Concept
	6.3.2 Navigation and Contexts
	6.3.3 Settings
	6.3.4 Page Assembly
	6.3.5 Overwriting Product Teaser Images
	6.3.6 Content Lists
	6.3.7 View Types
	6.3.8 CMS Catalog
	6.3.9 Teaser Management
	6.3.10 Dynamic Templating
	6.3.11 View Repositories
	6.3.12 Client Code Delivery
	6.3.13 Managing End User Interactions
	6.3.14 Images
	6.3.15 URLs
	6.3.16 Vanity URLs
	6.3.17 Content Visibility
	6.3.18 Content Type Sitemap
	6.3.19 Robots File
	6.3.20 Sitemap
	6.3.21 Website Search
	6.3.22 Search Landing Pages

	6.4 Website Development with Themes
	6.4.1 CoreMedia Themes
	Theme Structure
	CSS Files
	Saas Files
	JavaScript Files
	Images
	Templates

	6.4.2 Web Development Workflow
	Editing Source Files
	Creating a New Theme
	Preparing the Preview
	Committing (optional)

	Import Changes into Repository and Link to Content
	Release work

	6.5 Localized Content Management
	6.5.1 Concept
	Terms
	Sites Structure

	6.5.2 Administration
	Locales Administration
	Groups and Rights Administration

	6.5.3 Development
	Site Model and Sites Service
	Content Type Model
	ServerImport and ServerExport
	XLIFF Integration
	Translation Workflow
	Translation Workflow Configuration
	Translation Workflow Studio UI

	6.6 Workflow Management
	6.6.1 Publication
	Approval and Publication of Folders and Content Items
	Predefined Publication Workflows
	Features of the Publication Workflows

	6.6.2 Predefined Translation Workflow
	Predefined Translation Workflow Actions
	GetDerivedContentsAction
	GetSiteManagerGroupAction
	ExtractPerformerAction
	CompleteTranslationAction
	RollbackTranslationAction

	6.6.3 Deriving Sites

	7. CoreMedia DXP 8 Brand Blueprint - Functionality for Websites
	7.1 Overview
	7.2 Website Features
	7.3 Website Search

	8. CoreMedia DXP 8 Editorial and Back-end Functionality
	8.1 Studio Enhancements
	8.1.1 Image Link List Editor
	8.1.2 Content Chooser
	8.1.3 Content Query Editor
	8.1.4 Call-to-Action Button
	8.1.5 External Date
	8.1.6 Library
	8.1.7 Bookmarks
	8.1.8 External Library
	8.1.9 External Preview
	8.1.10 Settings for Studio
	8.1.11 Content Creation
	8.1.12 Create from Template
	8.1.13 Site-specific configuration of Document Forms
	8.1.14 Site Selection
	8.1.15 Upload Files
	8.1.16 Studio Preview Slider

	8.2 CAE Enhancements
	8.2.1 Using Dynamic Fragments in HTML Responses
	8.2.2 Image Cropping in CAE

	8.3 Elastic Social
	8.3.1 Configuring Elastic Social
	8.3.2 Displaying Custom Information in Studio
	8.3.3 Adding Custom Filters for Moderation View
	8.3.4 Emailing
	8.3.5 Curated transfer
	8.3.6 Elastic Social Demo Data Generator
	JSP
	JMX

	8.4 Adaptive Personalization
	8.4.1 Key Integration Points
	8.4.2 Adaptive Personalization Extension Modules
	Adaptive Personalization Extensions
	Adaptive Personalization's Main Module in Detail

	8.4.3 CAE Integration
	Configured Contexts
	Configured SearchFunctions
	Enabling Test User Profiles in the Preview CAE

	8.4.4 Studio Integration
	Configured Conditions
	Using Personas

	8.5 Third-Party Integration
	8.5.1 Optimizely
	8.5.2 Open Street Map Integration
	8.5.3 Google Analytics Integration

	8.6 WebDAV Support
	8.7 Advanced Asset Management
	8.7.1 Product Asset Widget
	8.7.2 Replaced Product and Category Images
	8.7.3 Extract Image Data During Upload
	8.7.4 Configuring Asset Management
	Mapping of Custom Picture Formats
	Placeholder Resolution for Asset URLs
	Content Types
	Configure Rendition Publication
	Blob Storage
	Rights
	Asset Download Portal

	8.7.5 Using the Adobe Drive Connector

	9. Appendix
	9.1 Port Reference
	9.2 Typical LiveContext Deployment
	9.3 Linux / Unix Installation Layout
	9.4 IBM WebSphere Commerce REST Services used by CoreMedia
	9.5 Maven Profile Reference
	9.6 Content Type Model
	9.7 Link Format
	9.8 Predefined Users
	9.9 Database Users
	9.10 Cookies

	Glossary
	Index

