CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Site Manager Developer
ELTTEL

COREMEDR
c

CoreMedia Site Manager Developer Manual |

CoreMedia Site Manager Developer Manual

Copyright CoreMedia AG © 2015
CoreMedia AG
Ludwig-Erhard-Strake 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwdhnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehorigen Programme diirfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfdltigt werden. Unberiihrt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

CoreMedia DXP 8

CoreMedia Site Manager Developer Manual |

T PrEIACE i 1
1.7. Structure of the Manualcoovviiiiiiiiiii e, 2
1.2 AUAIENCE Lo e 3
1.3. Typographic Conventionscccoevviiiiiiiieiieieeeinenen, 4
1.4. CoreMedia SErVICEScuiviiiiieieieee e ee e 6

T.4.7.Registrationccoviiiiiiiiiie e 6
1.4.2. CoreMedia Releasescoveviviviiiniinnennnnne. 6
1.4.3. DOCUMENtAtiON .ovuiveiiiiiii e 7
1.4.4. CoreMedia TraiNiNg ...ccvovniviiiiiieiieiieeeeeeneaes 9
1.4.5. CoreMedia SUPPOItovviniiiiieieeeeeeee 10
1.5. Change Chapter ..o 13

2. Site MaNAZEr OVEIVIEW ...uvviriieiieiniteieeeie et eeee e e eeaeeaanas 14
2.7. The BEANPArSEr . .cuuiiiiieieiee e 15
2.2. Description of the CoreMedia editor.dtd 17

3. Operation and Configurationccooviviieiiiiiiiie e, 18
3.1. Defining The User LOZiNccoivviiiiiiniiiiiiiieiieeaes 19
3.2. Define the Localeoouvinviniiiiiiiiii e 21
3.3. Starting the Editorccoeiviiiiii e 22
3.4. Defining XML Files For Configuration 23
3.5. Defining Group Specific Configuration Files 29
3.6. Configuration Using coremedia-richtext-1.0.css 32

3.6.1. Supported CSS Attributesccoeeveininnnen. 32
3.6.2. Extend the coremedia-richtext-1.0.css file 33
3.6.3. Localize the New Styles and Style Groups 34
3.6.4. Add to Content Eitorccovviviniiiiniinennnnn. 36
3.7. Configuring the Struct Editorccooviviiiiiieininnns. 39
3.8. Disable WOrkflowccveuviuviiiiiiiiiiiiiiiiiei e 40
3.9. Enable Direct Publicationccocovevinviviiiniieeenns 41
3.10. Define the Browser for Web Extensions 42
3.11. Enable the Spell Checkerccoiiiiiiiiiine 45
3.12. Troubleshootingcoooiviiiiiiiiiii e, 47
3.12.1. Taking a Thread DUMPcovvviviiniiiiieienene. 49

4. Programming and Customizationcccoeviiiiiiniiniiiiieinenss 50

AT HOW TO et et e 51

4.1.1. How To Access Arbitrary Resources 51
4.2. Program Own Initializersccocoeviviiiiiiiiieieeen 52
4.3, Program Own Validatorscocvviiiiiiiiiiiieeens 54
4.4, Program Own Language Resolver Factories 56
4.5. Program Own PropertyEditorscccoeeveviiiiiiniinnnns. 58
4.6. Program Own Predicate Classescoceevviviininennnnn. 60
4.7. Program OWN RENAErersccoevviniriiieiiieieeaieennns 62

CoreMedia DXP 8

CoreMedia Site Manager Developer Manual |

4.8. Program Own COmMmMandsceueviinereinineieneienennennn. 64
4.8.1. Register Commandscceeviviiiiniiiiniieinannnns 65
4.8.2. Localize CommMaNdsceevvenviniiniineieineennnnns 66
4.8.3. Add Command to Document View 67
4.8.4. Add Command to Explorer View 68
4.8.5. Add Command to Context Menuc.ueen.. 69
4.8.6. Add Action to RichTextPanecccceenvennnn. 70

4.9. Program Own ResourceNamingFactory Classes 72

4.10. LOCAliZatioN t.vvviiiiiii e 73
4.10.1. Localize the EAitorcvevviviniiiiieieeeenn 73
4.10.2. Localize for Use with WebStart 75

D APPENAIX et s 76

5.1. Classes Delivered for Site Manager Configuration 77
5.1.7. Property Eitorsccoviviiiiriiiiiiiiiieeieeene 77
5.7.2. VIeW ClaSSES ..vuivniiniiiieieieieineieeieeieieins 96
5.1.3. Predicate Classescccoeuvevieiniineineieineaneen 97
5.7.4. Column ClassSes ...c.uvuuiiniiniiniieieieieieieanes 101
5.1.5. Renderer Classescceuvveuvineinieneinnineinnenns 104
5.1.6. Initializer Classescceevvivvinviviniiniiennennes 106
5.1.7. Validator Classescccvevuveniieiniineineineannnn. 107
5.1.8. Comparator Classesccceeveveviinineinennnnnn. 109

5.2. Configuration Possibilities in the XML Files 112
5.2.7. General Configurationcccoeeiiiiinninnn.. 113
5.2.2. Defining Group Specific Configuration
FIlES et 126
5.2.3. Configuring Document TYpesSccceeveenennnnn. 129
5.2.4. Configuring Document Windows 136
5.2.5. Configuring Table Viewscccoeviiiinnn. 139
5.2.6. Configuring the Spell checker 146
5.2.7. Configuring the Workflowcoocooiinils 149
5.2.8. Configuring Web Extensions 153
5.2.9. Example Configuration of the Document Over-

VIBW ittt e et 156
5.2.10. Example Configuration of the Document Win-
QOW et 159

5.3. Configuration Possibilities in editor.properties 162

5.4. Configuration Possibilities in proxy.properties 165

5.5. Configuration of The Site Manager in capclient.proper-

CoreMedia DXP 8

CoreMedia Site Manager Developer Manual |

5.7. Configuration Possibilities in language-mapping.proper-

LIS i e 169
GlOSSAMY .ttt et ittt ettt ettt e e e e e e e e 170
X ettt e 177

CoreMedia DXP 8 \Y

CoreMedia Site Manager Developer Manual |

List of Figures

2.1. The Explorer window of the Site Managerc.cccceeennnn.

3.1. The localized style group
3.2. The tabbed Struct editor
5.1. Configured file creation dialog
5.2. Example of a tabbed document view
5.3. Configured Query window
5.4. Dish document without special configuration
5.5. Dish document after the configuration

CoreMedia DXP 8

CoreMedia Site Manager Developer Manual |

List of Tables

1.7. Typographic CONVENLIONSuivniiiiiiieiiiee e 4
L T (o= - 1o) P 4
1.3. CoreMedia MaNUAISuivniiiieieee e 7
1.4. Log files check listiviiiie e, 11
1.5, CRANEES et 13
3.1. Some attributes of the element Editorcccovvviiiiinnns. 20
3.2. Attributes of element <Locale>ccoovivviiiiiiiiiiieieienns 21
3.3. Attributes of the <ConfigGroup> elemento.... 31
3.4. Attribute of the <Configuration> element 31
3.5. Attributes of StyleGroup elementc.covvviiiiiiiiiiinnnnnen. 37
3.6. EAItOr ClaSSeS ..vuvuiiniiniiniieie e 39
3.7. An attribute of the element EQitorcoeovviiiiiiiiiiinann, 40
3.8. An attribute of the element EQitorccoevvviiiiiiiininnns, 41
3.9. The attributes of the <WebBrowser> element 43
3.10. Attribute of the element SpellCheckercooeiiiai. 45
4.1. Parameters of the getlnitialvalue method 52
4.2. Return values of the getinitialvalue method 52
4.3. Parameters of the validate methodccooviiiiiiiinnnnn.. 54
4.4, Default types of the propertiesccoceviviiieiiiiieiieiieieennen. 54
4.5. Parameters of the getLanguageResolver method 56
4.6. Commands to subclass fromcccviiiiiiiiiiiiiiee e 64
4.7. Register a new ComMmandcouvveuiiineiieineieeie e 65
4.8. Steps to extend GenericDocumentView.cooevvenineennn... 68
4.9. How to integrate your command into the explorer view 68
4.10. Add command to context Menuc.coeviiiiiiiiiiinenininenns 69
4.11. How to integrate actions into the RichTextPane................... 70
5.1. Property editors for the workflowcoooeiiiiiiiiiinininns, 77
5.2. Property editors for Stringsccvvveiiiiiiiiiiii e 78
5.3. Property editors for integerscoeuvviviiiiiiiieiieiieeeeeeeanes 80
5.4. Property editors for datesccoveiiiiiiiiiiiii e, 82
5.5. Some attributes of the RichTextPanecccceevvviiiiiinnns. 83
5.6. Attributes of NewDocumentDialogSettingsccccuvevnenne. 87
5.7. The attribute of the PasteTransformation element 89
5.8. The attributes of the TransformElement element 89
5.9. Attributes of the IgnoreElement elementccceveneenenn. 89
5.10. Attributes of the Attribute elementc.cooiiiiiiiiininn, 90
5.11. Editors for blob fieldscooviiiiiiiiii e 91

CoreMedia DXP 8

CoreMedia Site Manager Developer Manual |

5.12. Attributes of NewDocumentDialogSettings and Docu-

MeNtCho0SErSettingS ..ovuieii e 94
5.13. More attributes of NewDocumentDialogSettings 95
5.4 VIBW CIaSSES .ouiniiiiiiiie ittt 96
5.15. Predicate classes for filtering documents types. 98
5.16. Predicate classes for filtering folderscccoviiiiinin. 98
5.17. Predicate classes for filtering workflowsoll 99
5.18. Predicate classes for filtering documentsul 99
5.19. Programming own predicatesccceeveviiiriiineininnnns. 101
5.20. Column classes for workflowscccovviiviiiiiiiniinnnnnen. 102
5.21. Column classes for predefined columnscoeueel. 102
5.22. Column classes for user defined document properties 103
5.23. IMPIliCit PrOPEerties ...ovuiviiiiiiieeeee e 103
5.24. Provided Renderer classes of CoreMedia CAP 105
5.25. INItiAliZEr ClaSSES ..vvuivniiiieiii e 106
5.26. Validator Classesc.vvvviriiiiiiiiiieiiiie et 107
5.27. Comparators for document typesc.cccceviiiiniiiininnnnnn. 109
5.28. Server-side comparators for sorting rows 110
5.29. Client-side comparators for sorting rows 111
5.30. Comparators for sorting folderscccooceiviiiiiiiininnn.n. 111
5.31. Comparators for sorting workflowscccooeiiiiinnn, 111
5.32. The attributes of the element Editorccocovevviviiinninn. 114
5.33. Attribute of element <AuthenticationFactory> 116
5.34. Attributes of the DocumentTableLayout element. 116
5.35. Attributes of element <Localescoeviviiiiiiiiiniiinenn. 117
5.36. Attribute of the <Bundle> elementccoovviiiiiiniiinnn. 118
5.37. Attributes of the element Previewcccoovviiviiiiniinnnnn. 118
5.38. Attributes of the element Browserccovvvvvvinvinennnnn. 120
5.39. Attributes of the element RemoteControlc.ueeneee. 121
5.40. Parameters of the remote control URIccccovvviiinini. 121
5.41. Attributes of element <FrameFactory>ccceevevnenen. 123
5.42. Attribute of element <PropertyModelFactory> 124
5.43. The attributes of the <ResourceNamingFactory> ele-

[0 1T 3 PP PP PP 124
5.44. The attributes of the <WebBrowser> element 126
5.45. Attributes of the <ConfigGroup> elementcccoeevni. 128
5.46. Attribute of the <Configuration> elemento... 129
5.47. Attribute of the DocumentType elementc...... 130
5.48. Attributes of the <PropertyType> elementc.oevneeneen. 131
5.49. Regular patterns to use with the attribute validPattern 131
5.50. Attributes of the element <Validator>c.ooeeaee. 132

CoreMedia DXP 8 viii

CoreMedia Site Manager Developer Manual |

5.51. Attributes of the element <Initializer>oo.. 133
5.52. Attribute of the element ModelClassccccveiiininnnn. 133
5.53. Attribute of element <Comparator>cccceeveiniininnnn. 134
5.54. Attributes of the DocumentTypePredicate element 135
5.55. Attribute of the Predicate elementcooeiiiiinni. 136
5.56. Attributes of the Documents elementc.ceveene.e. 136
5.57. Attributes of element <Document>cccoeiiiiiienn... 137
5.58. Attributes of element <Property>coooviiiiiiiiiininnn, 138
5.59. Attributes of element <Tab>cooiiiiiiiiiiiin 139
5.60. Attributes of the <Explorer> elementccooeveninen. 139
5.61. Attributes of element <Filtersc.oveviviiiiininien, 142
5.62. Attribute of element <TableDefinition> 143
5.63. Attributes of element <ColumnDefinition> 143
5.64. Attributes of element <NamedDocumentVersionComparat-

0] PN 145
5.65. Attribute of the <Renderer> elementcccoeeivnnen. 145
5.66. Attributes of the <DisplayMap> element 146
5.67. Attribute of the element SpellCheckercooiill 146
5.68. Attributes of the MainDictionary element 147
5.69. Attribute of the <CustomDictionary> element 148
5.70. Attribute of the PropertyLanguageResolverFactory ele-

0 0T 31 PPN 149
5.71. Attribute of element <Process>ccoceevviviviinineinennnn.. 151
5.72. Attribute of the <Task> elementccooiiiiiiiiiiinn. 152
5.73. Attribute of <WorkflowStartup> element 152
5.74. Attributes of element <Variable>ccoeiiiiiiinl. 153
5.75. Attributes of <AggregationVariable> element 153
5.76. Attributes of the WebContext elementccoeeneln. 154
5.77. Attributes of the <WebExtension> element 155
5.78. Attributes of the <Pattern> elementcocoeivvininnnn.. 156
5.79. editOr.propertiesoeuiviieiieiii e 162
5.80. PrOXY.PrOPEITIES ©.ovivnieiiiiit et et e e eans 165
5.87. capclient.propertiescccoeviiiiiiiiiiiiiiee e 167
5.82. Parameters of the workflowclient.properties file 168

CoreMedia DXP 8

CoreMedia Site Manager Developer Manual |

List of Examples

2.1. Example of a BeanParser XML filecccooiiiiiiiiiin, 15
3.1. Example for the Locale elementccooeeiiiiiiiiiiiin... 21
3.2. Add files to Server.poliCyceeeviiiiiiiiiiiiiieiee e, 28
3.3. Add the style group to the editorccovvviiiiiiiniins 36
3.4. Disabling the workflow in the editorxmlccooeiinls 40
3.5. Disabling the Workflowcccooiiiiiiiiii e 41
3.6. Example of a Spellchecker elementcoooiiiiiiiiiiian.n. 45
4.1. Integrate Initializer in editor.Xmlcooviiiiiiiiiiiieene, 52
4.2. Example of an Initializerccoooviiiii 53
4.3. Integrate validator in editor.Xmlcoooviiiiiiiiiieeeeans 55
4.4, Simple customized validatorcooiiiiiiiii 55
4.5. Example of a language resolVercoevviiveieiiieieieeieeieanes 56
4.6. How to integrate a property editorccovevivieiniineennnnnn. 58
4.7. Example of a property editorcccoovvviviiieiiiiieieeieeean 58
4.8. How to integrate the Predicate classc.coeevviviivniinennnnnns 61
4.9. Example of a customized Predicate classc..ccoeeniveenn... 61
4.10. How to integrate a Renderer in the editorcu..... 62
4.11. Example of a customized Renderer classccceeuenene. 62
4.12. Localize COMMAN ...ouuivniiiiieiiiiiei et e e e e 67
473, Integrate bundle ..o 67
4.14. How to integrate into editor.Xmlccoooviiiiiiiiiineeeen, 68
4.15. How to integrate a resource naming factoryc........... 72
4.16. Example of a resource naming factoryc.coevvevinvennnnn. 72
5.1. Example for the use of a property editorc.coceviiinnans. 77
5.2. Example of PasteTransformationccoooiiiiiiins. 90
5.3. PlainXmIPropertyEditor configuration example 90
5.4. Example for the configuration of a document view 96
5.5. Example for the use of afilter ..o, 97
5.6. Example for the use of a column classc.oceeinnnin. 101
5.7. Example for the use of a renderer classcccccoeenenn... 104
5.8. Example for the use of an initializer 106
5.9. Example for the use of a validatorcoonn. 107
5.10. Example for the use of a Comparatorccooeeeenenn.n. 109
5.11. Example for the Editor element in editor-startup.xml 113
5.12. Example of the DocumentTableLayout element 116
5.13. Example for the Locale elementcccooeiiiiiiinininn... 117
5.14. Example for the Bundle elementcoooiiiiiiiiin... 117
5.15. Example for the Preview elementccoooiiiiiiiinn.. 118

CoreMedia DXP 8 X

CoreMedia Site Manager Developer Manual |

5.16. Example for the Browser elementccoevviiiiiiinnnn.. 119
5.17. Example for the RemoteControl element 120
5.18. Example of the FrameFactory elementccceenene. 123
5.19. Example for the PropertyModelFactory element 123
5.20. Example of the ResourceNamingFactory element 124
5.21. Example for the DocumentTypes element 129
5.22. Example of a DocumentType elementcccoeeivienen... 130
5.23. Example of a PropertyType elementcccoeviiniininnnn, 131
5.24. Example of the Validator element.cccooeviiiiiiiinnn, 132
5.25. Example of the Initializer elementcooiiiiininnnin. 132
5.26. Element ModelClassc.ovuueiniiiiniieiieee e, 133
5.27. Example for sorting the offered document types and the

folders in the folder View.cooviiiiiiiiiiii e 133
5.28. Example for the DocumentTypePredicate element 134
5.29. Example for the Predicate element used in a Filter ele-

[0 1TSS PP PP 135
5.30. Example for the Documents elementcccoevveninnennn. 136
5.31. Example for the Document elementcc.ceeveviiennn.. 136
5.32. Example for the Property elementccccooviviiiinnn... 138
5.33. Example forthe Tab elementcccoeiiiiiiiiiniiiiinn. 138
5.34. Example for the Explorer elementcccoeeviviiininnn.n. 139
5.35. Example for the ResourceChooser element 140
5.36. Example for the Query elementccooeiiiiiiiiiinnn... 141
5.37. Example of the Search elementccooiiiiiiin. 141
5.38. Example for the Treesorter elementcccoveviniiinnnnn. 141
5.39. Example for the TreeFilter elementcccovviininnn.n. 142
5.40. Example for the Filter elementcccoeviiiiiiiiiininnn.. 142
5.41. Example for the TableDefinition element 143
5.42. Example for the ColumnDefinition element 143
5.43. Example for the NamedDocumentVersionComparator 144
5.44. Example for the Renderer elementcocoviiiiiinnn.n. 145
5.45. Example for the DisplayMap elementcccceeviininnnn, 145
5.46. Example of a Spellchecker elementcccoeviiiienini. 146
5.47. Example of a MainDictionary elementc.ocvenenen. 147
5.48. Example of a CustomDictionary element 148
5.49. Example of a PropertyLanguageResolver Factory ele-

[0 1T 3 PP PP PP 149
5.50. Example of the Workflow elementccooeviiininnn.n. 149
5.51. Example for the Processes elementccooevveninennn.. 150
5.52. Example for the Process elementcccoevviviniiininnnnn.. 150
5.53. Example for the Code elementccooeiiiiiiiiiiniiiinnn, 151

CoreMedia DXP 8

CoreMedia Site Manager Developer Manual |

5.54. Example for the Task elementc.cooviiiiiiiiiiiiiinin, 151
5.55. Example for the WorkflowStartup element 152
5.56. Example for the Variable elementccooeviiienino. 152
5.57. Example for the AggregationVariable element 153
5.58. The QUETY tagS . euvvniiniiieineiei e ae e 157
5.59. Example configuration for document type display 157
5.60. Example configuration for document name display 158
5.61. Example configuration for the structured text column 158
5.62. Creation of two filters ..o, 159
5.63. Code example for configuration of the editor 161

CoreMedia DXP 8

Preface |

1. Preface

The CoreMedia CMS is the future-proof standard software solution for production,
administration and distribution of multimedia content for digital services.

Content applications such as high-volume web sites and device-independent multi-
channel services are implemented cost-effectively in minimal time using CoreMedia
CMS.

This Site Manager Developer Manual is written for developers and administrators -
people who set up and tune, who integrate and implement CoreMedia CMS. It de-
scribes how to make all the features of the Site Manager work well and create a
unique workplace fitting the customers demands.

Out-of-the-box functions for complete editing processes in the easily used Site
Manager, rapid prototyping features, an acclaimed architecture and a matching,
proven process for content application projects guarantee excellent results and
high, sustained customer satisfaction.

CoreMedia DXP 8 1

Preface | Structure of the Manual

1.1 Structure of the Manual

This manual provides information on the customizing of the Site Manager.

Chapter 2, Site Manager Overview [14] outlines a Site Manager overview,

Chapter 3, Operation and Configuration [18] describes the customization and
operation of the editor,

Chapter 4, Programming and Customization [50] shows how to use the editor
API for own extensions,

Chapter 5, Appendix [76] contains a reference of all XML elements and de-
livered classes for customization.

CoreMedia DXP 8 2

Preface | Audience

1.2 Audience

This manual is addressed to developers of CoreMedia projects who want to config-
ure and customize the Site Manager.

For an even more detailed documentation, this manual is augmented by the com-
prehensive Site Manager Javadoc pages.

CoreMedia DXP 8 3

Preface | Typographic Conventions

1.3 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:

Element Typographic format Example Table 77 Typographic
conventions

Source code Courier new cm systeminfo start

Command line entries

Parameter and values

Class and method names

Packages and modules

Menu names and entries Bold, linked with | Open the menu entry

Format|Normal

Field names Italic Enter in the field Heading
CoreMedia Components The CoreMedia Component
Applications Use Chef

Entries In quotation marks Enter "On"
(Simultaneously) pressed Bracketed in "<>", linked with Press the keys <Ctrl>+<A>
keys "

Emphasis Italic It is not saved

Buttons Bold, with square brackets Click on the [OK] button
Code lines in code examples \ cm systeminfo \
which continue in the next

Iine —u user

Mention of other manuals Square Brackets See the [Studio Developer

Manual] for more information.

In addition, these symbols can mark single paragraphs:

Pictograph Description Table 1.2. Pictographs
ﬁ Tip: This denotes a best practice or a recommendation.
C Warning: Please pay special attention to the text.

CoreMedia DXP 8 4

Preface | Typographic Conventions

Pictograph Description

% Danger: The violation of these rules causes severe damage.

CoreMedia DXP 8 5

Preface | CoreMedia Services

1.4 CoreMedia Services

This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.4.1,
“Registration” [6] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners ﬁ
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

Section 1.4.1, “Registration” [6] describes how to register for the usage of
the services.

Section 1.4.2, “CoreMedia Releases” [6] describes where to find the
download of the software.

Section 1.4.3, “Documentation” [7] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

Section 1.4.4, “CoreMedia Training” [9] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

Section 1.4.5, “CoreMedia Support” [10] describes the CoreMedia support.

1.4.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.4.5, “CoreMedia Support” [10]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.4.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

CoreMedia DXP 8 6

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

Preface | Documentation

If you encounter a 404 error then you are probably not logged in at GitHub or ﬁ
do not have sufficient permissions yet. See Section 1.4.1, “Registration” [6]

for details about the registration process. If the problems persist, try clearing

your browser cache and cookies.

Maven artifacts
CoreMedia provides its release artifacts via Maven under the following URL:
https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual.

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.4.5, “CoreMedia Support” [10]) to get your licences.

1.4.3 Documentation

CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia

Manual Audience Content manuals
CoreMedia Utilized Open- Developers, ar- This manual lists the third-party software used
Source Software chitects, admin- by CoreMedia and lists, when required, the li-

istrators cence texts.

Supported Environments Developers, ar- This document lists the third-party environ-
chitects, admin- ments with which you can use the CoreMedia

istrators system, Java versions or operation systems for

example.
Studio User Manual, Eng- Editors This manual describes the usage of CoreMedia
lish Studio for editorial and administrative work. It

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

CoreMedia DXP 8 7

https://repository.coremedia.com
livecontext-en.pdf#CoreMediaManual
http://documentation.coremedia.com/dxp8

Preface | Documentation

Manual Audience Content

LiveContext for IBM Web- Developers, ar- This manual gives an overview over the struc-
Sphere Manual chitects, admin- ture and features of CoreMedia LiveContext.
istrators It describes the integration with the IBM

WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

Operations Basics Manual Developers, ad- This manual describes some overall concepts
ministrators such as the communication between the
components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

Adaptive Personalization Developers, ar- This manual describes the configuration of and
Manual chitects, admin- development with Adaptive Personalization, the
istrators CoreMedia module for personalized websites.
You will learn how to configure the GUI used

in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-

sions.
Analytics Connectors Developers, ar- This manual describes how you can connect
Manual chitects, admin- your CoreMedia website with external analytic
istrators services, such as Google Analytics.

Content Application De- Developers, ar- This manual describes concepts and develop-

veloper Manual chitects ment of the Content Application Engine (CAE).
You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

Content Server Manual Developers, ar- This manual describes the concepts and admin-
chitects, admin- istration of the main CoreMedia component,
istrators the Content Server. You will learn about the

content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

CoreMedia DXP 8 8

Preface | CoreMedia Training

Manual Audience Content

Elastic Social Manual Developers, ar- This manual describes the concepts and admin-
chitects, admin- istration of the Elastic Social module and how
istrators you can integrate it into your websites.

Importer Manual Developers, ar- This manual describes the structure of the in-
chitects ternal CoreMedia XML format used for storing

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

Search Manual Developers, ar- This manual describes the configuration and
chitects, admin- customization of the CoreMedia Search Engine
istrators and the two feeder applications: the Content

Feeder and the CAE Feeder.

Site Manager Developer Developers, ar- This manual describes the configuration and
Manual chitects, admin- customization of Site Manager, the Java based
istrators stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

Studio Developer Manual Developers, ar- This manual describes the concepts and exten-
chitects sion of CoreMedia Studio. You will learn about
the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

Unified API Developer Developers, ar- This manual describes the concepts and usage

Manual chitects of the CoreMedia Unified API, which is the re-
commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

Workflow Manual Developers, ar- This manual describes the Workflow Server. This
chitects, admin- includes the administration of the server, the
istrators development of workflows using the XML lan-

guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.4.4 CoreMedia Training

CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

CoreMedia DXP 8 9

mailto:documentation@coremedia.com

Preface | CoreMedia Support

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training
Contact the Training department at the following email address:

Email: training@coremedia.com

1.4.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.4.1, “Registration” [6]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, virtual

machines, class libraries and customized code in many different combinations.

That's why CoreMedia needs detailed information about the environment for a

support case. In order to track down your problem, provide the following informa-

tion:

Which CoreMedia component(s) did the problem occur with (include the
release number)?
Which database is in use (version, drivers)?

Which operating system(s) is/are in use?

Which Java environment is in use?

Which customizations have been implemented?

A full description of the problem (as detailed as possible)

Can the error be reproduced? If yes, give a description please.

How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

CoreMedia DXP 8

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Preface | CoreMedia Support

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
. extensive and sufficient system specifications
. detailed error description

. log files for the affected component(s)

v A W N

. if required, system files

An essential feature for the CoreMedia system administration is the output log of Log files
Java processes and CoreMedia components. They're often the only source of in-

formation for error tracking and solving. All protocolling services should run at the

highest log level that is possible in the system context. For a fast breakdown, you

should be logging at debug level. The location where component log output is

written is specified in its < appName>-1logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia. log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do | Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the 1ogs/ directory of the servlet
container. See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files

Component Problem Log files
check list

CoreMedia Studio general CoreMedia-Studio.log
coremedia.log

CoreMedia Editor general editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre- coremedia.log

view (Content Management Server)
coremedia.log
(Master Live Server)

CoreMedia DXP 8

Preface | CoreMedia Support

Component Problem Log files

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

Server and client communicationerrors editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.Jjpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

Server not starting coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

CoreMedia DXP 8

Preface | Change Chapter

1.5 Change Chapter

In this chapter you will find a table with all major changes made in this manual.

Section Version Description Table 1.5. Changes

CoreMedia DXP 8

Site Manager Overview

2. Site Manager Overview

This manual describes the customization of the Site Manager by means of predefined
or self-implemented classes. The Site Manager is a Java Swing application which
offers a full-grown editor API to the developer. The editor consists of four main
windows which are all subject to configuration except the Query window:

The Explorer window in which you can inspect and edit the folder and docu-
ment structure.
The Document window in which you can edit the documents.

The Query window in which you can retrieve information.
The Workflow window in which you can create and edit workflows.

Configuration of the first three windows is covered in this manual but the
Workflow window is covered in the Workflow Manual.

The next figure shows the Explorer window of the CoreMedia Site Manager.

Figure 2.1. The Ex-

plorer window of the
Foders d Site Manager
{‘W—_ @ Fish Term || L4, search
Horme:
ko Type < .. [ware |wversion [pate |
internet [isn < SalmonCtrus & 3 (demousert) 22.02.2005 11:05
intranet [bish < Salectrus 8 3 (erousera) 22.022005 11:05
Me?izn: [bist < SpicyTrout & 2(wemousert)
et B e 4 Jsoecis o i
Paultry [picture < SalmonCirus_pic & 3 (demousert) 22022005 11:05
System [picture <l FreshCod_pic adi 22.02.2005 11:05
[picture <l SpicyTrout_pic wdz 22.02.2005 11:08
Zd&= B 26

[Jpictwre &8 ecitable |8 1 Currert version =

3 narme: [Sale with crus fruts

& image:

q v

perines. SoleCirus_pic | 1yve tescanming H Mo fiter |

For more details on the editor GUI please refer to the [CoreMedia User Manual].

CoreMedia DXP 8

Site Manager Overview | The BeanParser

2.1 The BeanParser

The XML files used to configure CoreMedia CMS components are processed by the
BeanParser, which is a basic part of the system. As such, it is used to

configure document views,

configure editor.

The BeanParser processes the XML files as follows:

For each XML element it tries to instantiate an object of a class, which is
determined by a factory or via the c1ass attribute. The object is created via
Java Reflection and a zero-argument constructor.

If the XML element occurs inside another XML element, it tries to set the
object created by the inner element on the object created by the outer ele-
ment. For this, it calls a setter method and passes the object. The setter
method may be named set<Element Name> (), add<ElementName> ()
or simply set () oradd () .

For each attribute of an element it calls a setter method on the object that
was created when parsing the element start tag. The setter method may be
named set<AttributeName> (), add<AttributeName> () or simply
set () oradd() .

Example:

Assume the following XML file:

Example 2.1. Example

<FirstElement class="com.example.FirstElement" Qfa BeanParser XML
attributel="Ho"> file
<SecondElement class="com.example.SecondElement"
attribute="Hi"/>
</FirstElement>

The BeanParser will execute the following steps:

1. Create an instance of class com.example.FirstElement.
. Call setAattributel ("Ho") on that instance.
. Create an instance of class com.example.SecondElement.

. Call setAttribute ("Hi") on that second instance.

v A W N

. Call firstElement.setSecondElement (secondElement), thatis, set the
object created in step 3 on the object created in step 1.

Advanced features:

CoreMedia DXP 8

Site Manager Overview | The BeanParser

The class attribute has a special meaning as it determines the name of the class
to instantiate objects from. For this attribute, no setter methods has to be defined
inside the class.

The BeanParser works without an XML Document Type Definition (DTD), but in
connection with a DTD, it makes use of 1D and IDREF feature of the XML Parsers.
The object, that has been created by the element with the IDREF attribute, is
substituted by the object that is defined the corresponding 1D attribute. Again, no
setter methods have to be defined inside the involved classes.

CoreMedia DXP 8

Site Manager Overview | Description of the CoreMedia editor.dtd

2.2 Description of the CoreMedia editor.dtd

The elements and corresponding attributes allowed in the XML configuration files
are defined in the coremedia-editor.dtd file, in fact a (pseudo) DTD. The DTD
is called "pseudo” because it contains positions at which it can be extended, de-
pending on the classes used. These points are shown by the placeholder $varies;
You find the DTD in the 1ib/cap-schema-bundle-<version>.7jar file in the
zipped xm1 folder of your CoreMedia Content Server installation.

In Section 5.2, “Configuration Possibilities in the XML Files” [112] the meaning of
elements and of the corresponding attributes is described. In addition, a short ex-
ample for the syntax of each element is given.

CoreMedia DXP 8

Operation and Configuration |

3. Operation and Configuration

The administrator can configure the Site Manager using two types of files. Property
files, which are mainly used for technical concerns like the connection to the
server or the logging of the editor and XML files which are mainly used to configure
the appearance of the Site Manager, for example which information is shown in
the document overview, which buttons are shown in the toolbar or which fields
are hidden in the document window. Some of the tasks you can do with the property
and XML configuration files are described in this chapter but you will find an ex-
haustive summary of all elements in Chapter 5, Appendix [76].

The following property files exist:

capclient.properties
editor.properties
proxy.properties
Optional mime.properties

language-mapping.properties

CoreMedia DXP 8

Operation and Configuration | Defining The User Login

3.1 Defining The User Login

You can shorten the login time if you predefine the user name, password and do-
main of the user. The login window of the Site Manager is automatically filled with
these data. You can even skip this window completely, so that the user will login
immediately.

will be used.

Configure in one of the following files: &

editor.properties

Not mandatory: By default, the user set in the environment of the computer ﬁ

editor-startup.xml

The settings of editor.properties will be overwritten by the editor-
startup.xml settings.

Predefine login data
editing.properties
Inthe editor.properties file use the following properties:

Enter the name of the user into the 1ogin.username property.
Enter the password of the user into the 1ogin.password property.
Enter the domain of the user into the 1ogin.domain property.

For immediate login enter "true" into the 1ogin.immediate property.

editor-startup.xml

Inthe editor-startup.xml file use the following properties:

Enter the name of the user into the attribute 1oginName of the <Editor>
element.

Enter the password of the user into the attribute 1oginPassword of the
<Editor> element.

Enter the domain of the user into the attribute 1oginDomain of the <Edit
or> element.

For immediate login enter "true" into the attribute 1oginImmediate of the
<Editor> element.

CoreMedia DXP 8

Operation and Configuration | Defining The User Login

The <Editor> element has more attributes that can be used. They are shown in the
following table:

Table 3.1. Some attrib-
utes of the element Ed-
itor

Attribute Description

class This attribute is used to enter the editor class to use. Default is
hox.corem.editor.generic.GenericEditor.

loginName This attribute is used to enter the default name for login. If no name is
entered, the name from the environment is used. You can always change
the name during login, it is just a preset. If a login name should be pre-
defined, it must be set in the editor-startup.xml file. If a global
editor.xml fileis used for all users it might be sensible to set the login
name in the editor.properties file.

loginPass— This attribute is used to enter the default password for login. If no pass-

word word is entered, the login name is used. You can always change the
password during login, it is just a preset. If a login password should be
predefined, it must be set in the editor-startup.xml file. If a
global editor.xml file is used for all users it might be sensible to set
the login password in the editor.properties file.

loginDomain Thisattribute is used to enter the default domain for login. You can always
change the domain during login, it is just a preset. If a login domain
should be predefined, it must be set in the editor-startup.xml
file.

loginImmedi- If this attribute is set to "true”, an attempt is made to connect directly to
ate the server with the login data given above. The login window does not
appear. The default value is "false".

showCur- If this attribute is set to "true", the name of the current user of the editor
rentUser is shown at the top of the window. Default is "false", that is, the user
name is not shown.

startup This attribute defines the Site Manager window to start with. Possible
values are "OpenExplorer” "OpenQuery", "OpenWorkflow", "OpenUser-

Manager” which will open the respective window. As default, the Site

Manager starts with the explorer window ("normal” user) or with the user

manager window ("administrator" user).

startupMode This attribute defines the start-up mode for administrators. If set to "4.2",
the super user with ID "0" always starts with the User Manager window.
All other users will start with the window defined using "startup”.

If set to "5.0" the super user with ID "0" and all members of the adminis-
tration group start with the User Manager window. All other users will
start with the window defined using "startup”. Default setting is "5.0".

CoreMedia DXP 8

Operation and Configuration | Define the Locale

3.2 Define the Locale

<Locale>
Child elements:
Parent elements: <Editor>

You can select the language and country settings which should be used by the Site
Manager with the element <Locale>. These settings determine the language used
in the GUI of the Site Manager. The locale that you set in editor-startup.xml
will be used for the Login screen you can overwrite this setting with a <Locale>
elementin the editor.xml file. So you can define group specific localizations for
example.

<Editor>
<Locale language="de" country="DE"/>

</Editor;

Attribute Description

language The language used in the program. At present, there are locales for English
("en") and German ("de"). The locales follow the usage in
java.util.Locale

country Country-specific settings. At present, there are locales for the United

States ("US") and Germany ("DE"). The locales follow the usage in
java.util.Locale.

CoreMedia DXP 8

Example 3.1. Example
for the Locale element

Table 3.2. Attributes of
element <Locale>

Operation and Configuration | Starting the Editor

3.3 Starting the Editor

As a developer you will start the Site Manager from the workspace using Maven as
follows:

mvn install
cd editor-components\editor\target\editor
bin\cm.exe editor

A Site Manager that is installed under Windows can be started directly via the link
in the menu setup during installation.

If you don't use Java Web Start and multiple LAN connections are active under
windows you can select the IP address of the LAN connection with which the CM
Editor should communicate. For this, use the Java Virtual Machine Parameter
ooc.boa.host=<ip-address> inthefile editor.jpif.

If the editor should start under Unix for administration purposes, the following
must be entered in the bin directory of the CoreMedia installation:

cm editor &

CoreMedia DXP 8

Operation and Configuration | Defining XML Files For Configuration

3.4 Defining XML Files For Configuration

The Site Manager can be configured using different XML files. The names of these
files are defined in the editor.properties file. The files are a small bootstrap
file (editor.startup.configuration) necessary for some settings before the
actual start of the editor, and the XML files for the customization of the editor. The
following use cases are supported:

Everyone uses the same configuration file. This file is defined by the property
editor.configuration.

Everyone uses the same common configuration file with additional group
(group.configuration) and/or user (user.configuration) specific
configuration files.

Each group has its own configuration files defined by group.configura
tion andthe <ConfigGroups> element in the editor startup file. Additional
user specific configuration files can be used. The groups might share config-
uration files but they do not have to.

When a user is member of more than one group, for which specific configuration
files exist, then the system chooses an arbitrary group for which the configuration
file is taken. So, it is good practice, to have only one group for each user for which
a configuration file exists. If this is no option, you can define your own selection
scheme as described in this manual.

The files are evaluated in a specific order:
No <ConfigGroups> element used
1. Bootstrap file defined by editor.startup.configuration,

. Common configuration file defined by editor.configuration

. Group specific files defined by group.configuration

A oW N

. User specific files defined by user.configuration.
<ConfigGroups> element used

1. Bootstrap file defined by editor.startup.configuration,

2. Group specific files defined by group.configuration and in <Con
figGroups> in the editor-startup.xml file (see Section 3.5, “Defining
Group Specific Configuration Files” [29] for details).

3. User specific files defined by user.configuration.

Be aware, that you need to define afilein editor.configuration in both cases,
even if it will not be used in the second case, otherwise an error occurs.

CoreMedia DXP 8

Operation and Configuration | Defining XML Files For Configuration

Example for a configuration without a <ConfigGroups> element

You have made the following settings in editor.properties:

editor.startup.configuration=editor-startup.xml
editor.configuration=editor.xml
group.configuration=editor-group-{0}.xml
user.configuration=editor-user-{0}.xml

A user named "Axel" who is only member of the group "editors" logs in and the
following configuration files are applied in the shown order:

1. editor-startup.xml
. editor.xml

. editor-group-editors.xml

AW N

. editor-user-Axel.xml

Example for a configuration with a <ConfigGroups> element

You have made the following settings in editor.properties:

editor.startup.configuration=editor-startup.xml
editor.configuration=editor.xml
group.configuration=editor-group-{0}.xml
user.configuration=editor-user-{0}.xml

And these settings in editor-startup.xml:

<ConfigGroups>
<ConfigGroup name="editors">
<Configuration name="common"/>
<Configuration name="editor"/>
</ConfigGroup>
</ConfigGroups>

The same user as before logs in and the following configuration files are applied
in the shown order:

1. editor-startup.xml

. editor-goup-common.xml

. editor-group-editor.xml

A oW N

. editor-user-Axel.xml

CoreMedia DXP 8

Operation and Configuration | Defining XML Files For Configuration

How files merge

All elements which can occur only once - due to the coremedia-editor.dtd -
will be overwritten by the settings of the succeeding configuration file. The following
elements use inheritance:

Bundle and Explorer elements will be added.

Existing Document and Process definitions of Documents and Processes
elements, will be overwritten, new definitions will be added.

Existing DocumentType definitions of DocumentTypes elements use inher-
itance on the PropertyType element level. That is, existing PropertyType
definitions (for example a validator set for the property Name) will be
overwritten and new definitions will be added.

Example:

The interesting parts of the editor.xml look as follows:

<Bundle name="first/bundle"/>
<SpellChecker enabled="true"/>
<Documents>
<Document type="Article">
<Property name="Headline" editorClass="FirstClass"/>
</Document>
</Documents>
<DocumentTypes>
<DocumentType name="Article">
<PropertyType name="Editor">
<Validator class="NotEmpty"/>
<Initializer class="SetChiefEditor"/>
<PropertyType/>
</DocumentType>
</DocumentTypes>

The interesting parts of the group specific editor definition look as follows:

<Bundle name="second/bundle"/>
<SpellChecker enabled="false"/>
<Documents>
<Document type="Image">
<Property name="Caption" editorClass="SecondClass"/>
</Document>
</Documents>
<DocumentTypes>
<DocumentType name="Article">
<PropertyType name="Editor">
<ModelClass class="MyModel"/>
<Initializer class="SetEditor"/>
<PropertyType/>
</DocumentType>
</DocumentTypes>

CoreMedia DXP 8

Operation and Configuration | Defining XML Files For Configuration

Applying both editor definitions will result in the following behavior:

Both bundles will be used.
The spell checker will be disabled.

Article documents will use the property editor FirstClass with the
property Headline and Image documents the property editor SecondClass
with the property caption.

Article documents will use the validator class NotEmpty, the initializer
class setEditor and the model class MyModel with the property Editor.

See Section 5.2, “Configuration Possibilities in the XML Files” [112] for a detailed
description of the properties.

You can either use locally stored files for each client or administrate these files
centrally on the Content Server and deliver them to the clients.

For locally stored files adding the path relative to <CoreMediaHome>.

For centrally stored files adding the URL to the Content Server as described
below.

Not mandatory: You only need to do this configuration if you want to use group ﬁ
or user specific configuration files or if you want to administrate the files centrally

on the Content Server. Otherwise, the following files in the folder <CoreMedi
aInstall>/properties/corem are used by default:

editor-startup.xml

editor.xml

Configure in the following file: &

editor.properties

Defining the XML configuration files

1. Enter the name of the XML file with the path relative to <CoreMediaHome>
into the appropriate properties.

editor.startup.configuration

CoreMedia DXP 8

Operation and Configuration | Defining XML Files For Configuration

editor.configuration

Defining user or group specific configuration files

1. Enter the name of the XML files with the path relative to <CoreMediaHome>
into the appropriate properties.

group.configuration

user.configuration

You must add the wildcard {0} to the name of the XML file. This wildcard
will be replaced by the group name or the user name of the user. If the user
belongs to multiple groups, the system will choose an arbitrary group.

2. If required configure the <ConfigGroups> element in the editor startup file
as described in Section 3.5, “Defining Group Specific Configuration Files” [29].

Example:

gpoup.configuration=http://localhost:44441/core
media/files/properties/corem/editor-{0}.xml.

The user belongs to the groups Editors and CvD. Thus, the files with the URL
http://localhost:44441/coremedia/files/properties/corem/ed
itor-Editors.xml and http://localhost:44441/core
media/files/properties/corem/editor-CvD.xml Wwill be loaded in
an arbitrary order.

Note, that you can define multiple configuration files for a specific group, which
will be evaluated in a specific order. See the Site Manager Developer Manual for
a description of the XML element <ConfigGroups> for details.

Administrating the XML files on the server

1. Store the XML files in the properties/corem directory of the Content Server.
2. Enter the following URL into the configuration property of the XML file in the

editor.properties file:

http://<ServerHost>:<ServerPort>/coremedia/files/proper
ties/corem/<editor-xmlfilename>

Replace <serverHost> with the host name of the Content Server and
<ServerPort> with the port of the Content Server.

CoreMedia DXP 8

Operation and Configuration | Defining XML Files For Configuration

3. Enter the names of the XML files inthe properties/policy/server.policy

file of the server in order to allow the server to deliver the files. The entry
must look as shown in the next code example:

Example 3.2. Add files

grant codeBase "http://localhost/servlets/fileservlet" ({ tosen@npthy

permission java.io.FilePermission
"properties${/}corem${/}editor.xml",
permission java.io.FilePermission
"properties${/}corem${/}editor-CvD.xml",

"read";

"read";

CoreMedia DXP 8

Operation and Configuration | Defining Group Specific Configuration Files

3.5 Defining Group Specific Configuration Files

The Site Manager is configured with XML files. It is possible to define special con-
figuration files for distinct groups or users of the CoreMedia system. To configure
the usage of special configuration files you may adapt the following properties in
the editor.properties file (see Section 3.4, “Defining XML Files For Configur-
ation” [23] for details):

editor.startup.configuration
editor.configuration
group.configuration

user.configuration

If you only use group.configuration, you can define one specific configuration
file for each group. To have multiple configuration files for one group, you may
configure the set of files and in which order they are parsed in editor-star
tup.xml (default) orin the file configured by editor.startup.configuration.
Mind that group configuration in editor-startup.xml overrides the mechanism
one configuration file per group which especially means: If users are not member
of any group configured in <ConfigGroups> no group configurations are applied
to these users.

In both cases, that is either with one configuration file per group or with multiple
configuration files per group you have to set the property group.configuration
to point to configuration files with a path relative to <CoreMediaHome> or to the
URL where to find the files. The path/URL defined has to contain a wildcard {0}
which will be replaced either by the group name or by the names as defined in the
<Configuration> element (see below).

Example:

group.configuration=properties/corem/editor-{0}.xml

The Content Server will look in the properties/corem directory for a file called
editor-<PlaceHolder>.xml Where <PlaceHolder> will be replaced by the
values of the name attribute of the <Configuration> element described below
or by the group name if no <ConfigGroups> element is used.

If a user is member of more than one group, the exact behavior reading group
configuration files is undetermined. If multiple matching <ConfigGroup> exist,
one of them is chosen by random. If <ConfigGroups> configuration is not used
but direct mapping groups to configuration files all matching configuration files
are read but in an undetermined order. To determine the exact behavior you have
to implement your own selection scheme. Proceed as follows:

CoreMedia DXP 8

Operation and Configuration | Defining Group Specific Configuration Files

1. Extend GenericEditor

2. Override the getConfigurationGroupNames (UserModel user) method
which is inherited from AbstractEditor with your own selection scheme.
The default implementation of the method either returns the configuration file
names as configured in the <Configuration> element (first case) and if no
<ConfigGroups> element is used the unordered list of groups a user is
member of. You might want to use the convenience method getUserCon
figGroups (UserModel user) tocreate your own implementation. For further
reference see the Javadoc.

3. Add your class to the class attribute of the <Editor> elementin the editor-
startup.xml file.

<ConfigGroups>
Child elements: <ConfigGroup>
Parent elements: <Editor>

<Editor>
<ConfigGroups>

</ConfigGroups>
</Editor>

This element combines the elements for the group configuration.

The element has no attributes. If <ConfigGoups> is not used but group.config
uration is set, only the general editor configuration file (default: editor.xml)
and the matching group specific configuration files will be applied. See the Site
Manager chapter in the Administration and Operations Manual for details.

<ConfigGroup>
Child elements: <Configuration>

Parent elements: <ConfigGroup>

<ConfigGroups>
<ConfigGroup name="editor" domain="main">

</ConfigGroup>

</ConfigGroups>

This element defines for which group and domain the configuration should be
used. It groups the <Configuration> elements.

CoreMedia DXP 8

Operation and Configuration | Defining Group Specific Configuration Files

Attribute Description Table 3.3. Attributes of
— - - the <ConfigGroup>
name The name of an existing group in the CoreMedia user manage- element
ment for which the configuration will be used.

domain The domain of the group.
<Configuration>
Child elements:
Parent elements: <ConfigGroup>

<ConfigGroups>

<ConfigGroup name="editor">
<Configuration name="common"/>
<Configuration name="special"/>
</ConfigGroup>
</ConfigGroups>
This element defines the name with which the placeholder in group.configura
tion will be replaced and the order in which multiple configuration files are applied.
In the example above the placeholder will first be replaced with "common" and
then with "special”, if the user is member of the "editor" group. This especially
means that in case of conflicting settings the settings from the special file will
override the settings in the common file.
Attribute Description Table 3.4. Attribyte of
the <Configuration>

name Name which will replace the placeholder in the group.configura element

tion property of editor.properties. In general, this is not the
name of an existing group, but it can be.

CoreMedia DXP 8

Operation and Configuration | Configuration Using coremedia-richtext-1.0.css

3.6 Configuration Using
coremedia-richtext-1.0.css

The Site Manager offers a lot of formatting options in the RichText pane. Neverthe-
less, you might want to have your own formatting options ready to hand. For this
purpose, it is possible to extend the existing options and to add new ones. To do
so, three steps are sufficient that will be described in the subsequent paragraphs:

1. Extend the file coremedia-richtext-1.0.css to your needs as described
in Section 3.6.2, “Extend the coremedia-richtext-1.0.css file” [33].

2. Localize the new styles and style groups in a bundle file (optional) as described
in Section 3.6.3, “Localize the New Styles and Style Groups” [34].

3. Add the new style groups to your Site Manager as described in Section 3.6.4,
“Add to Content Editor” [36].

The formatted inline text or block element will be marked as follows:

inline text

Inline text will be embedded in the tag with the attribute class
containing the format option. Example:
My big text

block element

Block elements will have an additional class attribute containing the format
information. Example:
<p class="background-color--black">My test paragraph</p>

3.6.1 Supported CSS Attributes

As opposed to the usual browsers the CSS support in Java/Swing is limited and
does not cover the complete CSS attributes. Therefore, Java/Swing will display
some CSS attributes flawed or not at all. See the Javadoc of the
javax.swing.text.html.CSS class of your used JVM for the supported CSS
attributes.

Because of these limitations you should always use the preview function of the
Site Manager for a check of the used CSS styles.

Don't merge the attributes in the coremedia-richtext-1.0.css file. For ﬁ
example don't write "border: solid 1px red" but "border-style:solid; border-width:
1px; border-color: red;". If you edit coremedia-richtext-1.0.css with tools
like Microsoft Frontpage, take care that the attributes are not merged on saving.

CoreMedia DXP 8

Operation and Configuration | Extend the coremedia-richtext-1.0.css file

3.6.2 Extend the coremedia-richtext-1.0.css file

The aim of the coremedia-richtext-1.0.css file is twofold. First, it defines
the look of the XML elements in the RichText pane according to the CSS definitions
(see http://www.w3c.org), but secondly it is used as the definition of the possible
attributes.

The RichText pane supports only a subset of CSS. &

You can use well known CSS syntax to define your own style groups and styles.
Nevertheless, the RichText pane of the Site Manager does not support the display
of all possible CSS formats. Some formats will be displayed in a WYSIWYG style
(such as bold, italic, understroke ...) others will be displayed symbolic (color, value
of a Style group etc.). The actual layout of the text depends on the definitions and
structure of the generated website and can only be seen in the HTML preview of
the browser.

Getting the file and add it to the editor

The coremedia-richtext-1.0.css fileis included in a JAR file. So in order to
add your extensions you have to get the file and put the changed file to a new
location. Proceed as follows:

1. Build the editor-components module in the development workspace of
CoreMedia Project.

2. Extract the coremedia-richtext-1.0.css file from the cap-editor-re
sources.jar fileinthe target/../1ib directory.

3. Customize the file to your needs.
4. Put the file into the properties/css directory of the editor module.

5. Configure the property editor.richtext.css.locationineditor.prop
ertiestotheproperties/css/coremedia-richtext-1.0.css location
in order to override the default CSS file.

Define new style groups

A style group is a list of CSS style classes, that share a common prefix ending with
"--". For example, [font-name--arial, font-name--times] is a style group
font-name consisting of the two styles classes font-name--arial and font-
name--times. You can limit the usage of your style group to single elements by
adding the name of the element in front of the style group separated by a dot.

Due to limitations in the Swing CSS class use only lower case letters for the &
names of style groups and style classes.

CoreMedia DXP 8

http://www.w3c.org

Operation and Configuration | Localize the New Styles and Style Groups

Simply add the new StyleGroup to the coremedia-richtext-1.0.css file fol-
lowing the naming pattern given above. The following example adds a new style
group inlineformat with the two style classes code and glossary to the CSS
file. Text marked as code will be displayed with red background, text marked as
glossary with blue background.

.inlineformat--code { background-color: red; }
.inlineformat--glossary { background-color: blue; }
Define new style classes

The style classes are defined as described above. Simply add an entry following
the scheme:

<LimitedElement>.<StyleGroupName>--<StyleClassName> { <layout
definition> }

Define free text style group

If you want to define a style group without predefined style classes where the user
can enter own text proceed as follows:

1. Define a style group without style classes, for example:
.freetext {background: blue;}

2. Add the style group to the Content Editor as explained in Section 3.6.4, “Add to
Content Editor” [36].

This style sheet group will only appear in the attribute editors but not in the tool
bar.

3.6.3 Localize the New Styles and Style Groups

After defining the new style group and style classes you can localize it for use in
the Content Editor. Follow these steps:

1. Add a Bundle element to the editor-startup.xml file. The Bundle element
defines the localization file to use.

2. Create the localization file in the resource section of a JAR module, for example
in the editor-customizations module of the developer workspace.

3. Enter the localization entries.
4. Restart the Content Editor.
If you do not localize your entries, the names will be taken from the CSS file.

Please read Section 4.10, “Localization” [73] for more details on localization.

CoreMedia DXP 8

Operation and Configuration | Localize the New Styles and Style Groups

Enter the localization entries

The following keys can be used to localize your StyleGroup:

richtext-stylesheet-<StyleGroupName>Label=<Label of the
StyleGroup used in menus>
richtext-stylesheet-<StyleGroupName>ToolBarLabel=<Label of
the StyleGroup in the tool bar, usually empty, since icons are used mostly>
richtext-stylesheet-<StyleGroupName>Mnemonic=<Key Mnemonic
for the StyleGroup»
richtext-stylesheet-<StyleGroupName>ToolTip=<Tooltip shown
OoNn mouse over>
richtext-stylesheet-<StyleGroupName>Image=<URL of a small
(16*16) icon used in menus>
richtext-stylesheet-<StyleGroupName>ToolBar3Image=<URL of
asmall (16*16) icon used in the tool bar>

The following keys can be used to localize each style option:

richtext-stylesheet-<StyleGroupName>--<StyleOption>La
bel=<Label of the style option>
richtext-stylesheet-<StyleGroupName>--<StyleOption>Tool
Tip=<Tooltip of the style option>
richtext-stylesheet-<StyleGroupName>--<StyleOption>Im
age=<URL of a small (16*16) icon used for the style option>
richtext-stylesheet-<StyleGroupName>--removeClassAttrib
uteValueLabel=<Label of the style option which removes the formatting,
usually "---"is used>
richtext-stylesheet-<StyleGroupName>--removeClassAttrib
uteValueToolTip=<The tool tip of the remove option>

Example:

Here you see the localization of the inline-format style group with the code
style option defined previously. The image options have been omitted.

richtext-stylesheet-inlineformatLabel=Text format
richtext-stylesheet-inlineformatToolBarLabel=
richtext-stylesheet-inlineformatMnemonic=i

richtext-stylesheet-inlineformatToolTip=Selects special
options for inline text
richtext-stylesheet-inlineformat--codeLabel=Code

richtext-stylesheet-inlineformat--codeToolTip=Formats text
as code

CoreMedia DXP 8

Operation and Configuration | Add to Content Editor

richtext-stylesheet-inlineformat--removeClassAttribute
ValueLabel=---
richtext-stylesheet-inlineformat--removeClassAttribute
ValueToolTip=Removes inline formatting

In Figure 3.1, “The localized style group” [36] you can see the result of the localized
style group.

Z&SalmonCitrus - Fish - Docum
Fle Edt Format Link i

gl Figure 3.1. The local-

Lhn B vh 200 O I6 &0 BIAS G ¥ ized style group
—) - = g =]

3.6.4 Add to Content Editor

If you have defined your style groups, you need to add them to the Site Manager.
The right place is the editor. xml file using the attribute addstyleSheetGroups
of the Property element. The following example shows how to add your newly
defined style group inlineformat and the predefined style group 1ist-item
to the property RichText of the "Article" document:

Example 3.3. Add the

<Documents> style group to the edit-

<Document type="Article"> or
<Property name="RichText" editorClass="RichTextPane"
addStyleSheetGroups="inlineformat (inline) list-style(ol,ul)
freetext:string(inline) ">
<Toolbar>
<StyleGroup name="inlineformat" show="button"/>
</Toolbar>
</Property>
</Document>

</Documents>

After you have restarted the Content Editor the style group inlineformat will
appear in the formatting button of the toolbar and the tab Inline text of the attribute

editor and the style group 1ist-style will appear in the List tab of the attribute
editor.

The attribute addStyleSheetGroups

As you can see from the example above, multiple style groups can be added to the
addStyleSheetGroups attribute, simply separated by blanks. The element names
in the brackets are optional. They limit the offering of the style group to the ele-
ments in brackets. Therefore, the example style group inline-format will only
be offered for inline text but not, for example, for paragraphs and the style group
list-style will be offered to bullet and numbered lists. You can use the p, table,

CoreMedia DXP 8

Operation and Configuration | Add to Content Editor

tr, td, 1i, ul, ol, a and img elements of the coremedia-richtext-1.0.dtd
file and the additional keywords inline, block or flow.

inline: The style group will be offered for all inline elements.
block: The style group will be offered for all block elements.

f1ow: The style group will be offered for all elements.
If you use one of these additional keywords, you cannot add any other element or
keyword to the style group. For example inline-format (ul, block) isforbidden.

If you want to add a style group for free text you have to add the attribute string
or identifier:

string: Enter free text.

identifier: Enter free text with characters which are valid for very strict
CSS identifiers.

freetext:string(inline), for instance
The elements Toolbar and StyleGroup

You can use the elements Toolbar and StyleGroup to configure the appearance
of the style groups in the toolbar of the RichTextPane. You can define for each
style group,

to be displayed as a combo box (default),
to be added to the A button,

not to be shown in the toolbar.

Add the element Toolbar as a child element of the element Property and the
element styleGroup as a child of Toolbar. StyleGroup has the following two

attributes:

Attribute Description Table 3.5. Attributes of
StyleGroup element

name Name of the style group to configure.

show How to display the style group. The following options exist:

button: Add style group elements to the A button.

combobox: Add as a combo box to the toolbar.

CoreMedia DXP 8

Operation and Configuration | Add to Content Editor

Attribute Description

false: Do not show style group in toolbar.

CoreMedia DXP 8

Operation and Configuration | Configuring the Struct Editor

3.7 Configuring the Struct Editor

The Struct editor offers a convenient way to edit Struct properties. The Struct editor
comes in two flavors, one with tabs to switch between an XML view and a
formatted view and the default editor only offering the formatted view.

You have to configure the editors in the editor.xml file. In order to configure

the editors, simply add the appropriate class to the editorClass attribute of the
<Property> element

Editor Class Table 3.6. Editor

classes
hox.corem.editor.toolkit.prop
erty.StructRichTextPane

Default Struct editor

Tabbed Struct editor hox.corem.editor.toolkit.property.Tabbed

StructPropertyEditor

english_tutorial - fSites/English tutorial - Document :3 Figure 3.2. The tabbed
File Edt Binary data '7' ot ? Struct editor

E english_tutorial

IS4 HZ &

03.07.2008 16:24 checked out | 2

113 Hidden: d

(@ contextsettings: Richtert| 9L |

[<Struct zmins="http:, oremedia, comy2008/ struct” "ty
<StringProperty Name="teaserTargetLinkText >more. .. < StringProperty >
<StringProperty Na eadcrumbs Jabel' >You are here: <[StringProperty >
<StructPraperty Name="navigation">

<S>

113 Hidden in sicemap: [

1>

1999 xlink">

<EnoleanProperty Name="expandal">false <jBooleanfraperty>
<IntProperty Name="startl evel" =1 IntFroperty >
<fStruck»
<fStructProperty >
<StructProperty Name="lacales">
<Struck>
<StringProperty Name="de_DE" >German</StringProperty >
<StringProperty Name="en_Us" >English=StringProperty >
<fStruck»
<fStructProperty:>
< fStruct >

3 Language: fen

3 150 Country Code: [US
v
ardinality: Single, Type: String Pos0 0 Chars

CoreMedia DXP 8

Operation and Configuration | Disable Workflow

3.8 Disable Workflow

In some cases, users are not required to use workflows. You can completely hide
all references to the workflow component in the editor by setting the attribute
enableWorkflow of the <Editor> element.

Example 3.4. Disabling

<HEieE ?he workflow in the ed-
enableWorkflow="false"> itorxml
</Editor;
Attribute Description Table 3.7. An attribute
of the element Editor

enableWork- If "false”, removes all references to the workflow component from the
flow GUI and ensures that no connection to the workflow server is established.
Default is "true".

CoreMedia DXP 8

Operation and Configuration | Enable Direct Publication

3.9 Enable Direct Publication

By default, the approve and publication buttons are only enabled for users of the
administrator(0) group. You can enable the feature for all users by setting some
attributes of the <Editor> element, thereby supporting publications without
workflows.

Example 3.5. Disabling

<Editor the workflow

enableDirectPublication="false">

</Editor;

Attribute Description Table 3.8. An attribute
- — of the element Editor

enableDir- If "true", ensures that the buttons for approval, disapproval, publication,

ectPublica- and publication preview are displayed as buttons and included as menu

tion items in all relevant windows for all users. Default is "false".

CoreMedia DXP 8

Operation and Configuration | Define the Browser for Web Extensions

3.10 Define the Browser for Web Extensions

You can define the browser for the web extensions using the element
<WebBrowsers>. Multiple browsers for different locales and operating systems
can be defined. The browser for the preview can be chosen from the File|Preview
menu of the overview window. If you do not define any browser, the web extensions
cannot be executed.

<WebBrowsers>
Child elements: <WebBrowser>

Parent elements: <Editor>

<Editor>
<WebBrowsers>
</WebBrowsers>

</Editor>

You can use the <webBrowsers> element to configure web browser definitions
for Web Extensions such as the preview with the <webBrowser> child element.
The <webBrowsers> element has no attributes.

<WebBrowser>»

Parent elements: <WebBrowsers>

<WebBrowsers>
<!-- Standard Windows IE installation -->
<WebBrowser id="Internet Explorer" os="win"
command="c:\\Program Files\\Internet Explorer\\Iexplore.exe %$s"/>

<!-- IE installation in german locale on Windows -->

<WebBrowser id="Internet Explorer" os="win" language="de"

command="c:\\Programme\\Internet Explorer\\Iexplore.exe %s"/>
</WebBrowsers>

This element configures web browser installations for a given locale of the Site
Manager and operating system. Web extensions (see <WebExtension>) may open
several web browsers (Preview) or the first matching web browser. Therefore, the
order of <WebBrowser> elements is important.

The example above configures two Windows web browsers, one with language
attribute set to ‘de’. If a web extension running on German locale wants to select

CoreMedia DXP 8

Operation and Configuration | Define the Browser for Web Extensions

a browser, it should open the German browser. A precedence list defines which
browser is selected.

1. os
2. language
3. country

4. no attribute

In the example above, for both browsers the os attribute has been set but the
German browser is selected because it has a 1anguage attribute that matches the
language of the German locale. If you delete the os attribute in the German browser
configuration, the other browser will be opened.

In rare conditions a matching browser can not be opened. Take, for example, the
configuration above and call a preview web browser from a Site Manager with a
German locale on a French Windows system. The command c: \\Programme\\ In
ternet Explorer\\Iexplore.exe %s can not be executed on the French
system because "Programme" will not be found. In this case, the first browser is
taken that can be opened, independently of any os or 1anguage settings.

Attribute Description Table 3.9. The attrib-
utes of the
id The name of the browser, such as Internet Explorer. Use the <WebBrowsers ele-

same id for the same browser application, like FireFox for all

-) . ment
Firefox configurations.

os The name of the operating system or a prefix thereof. It must
equal or be a prefix of the Java system property os . name. This
attribute is optional. If not set, the command must be executable
on all operating systems your Site Manager runs on.

language The language of the locale. The value must conform to a valid
language in a Java java.util.Locale instance. For the
English language the valid value is ‘en’ for the German language
the valid value is ‘de’. This attribute is optional.

country The country of the locale. The value must conform to a valid
countryinajava java.util.Locale instance. For the USA
the valid value is ‘US’ for Germany the valid value is ‘DE’. This
attribute is optional.

command The command to start a browser with a given URL on the con-
figured operating system. For the Internet Explorer on an English
Windows installation the command looks as follows:

c:\\Program Files\\Internet Explorer\\
Iexplore.exe %s

CoreMedia DXP 8

Operation and Configuration | Define the Browser for Web Extensions

Attribute Description
The suffix s is the placeholder for the URL to load in to the
browser.

optional Specifies whether this browser is optional. This feature is used

by the Preview web extension when doing a preview with all
configured browsers (for example by clicking the Preview button
in the toolbar or by selecting File|Preview|All). The Site Manager
only shows errors for non-optional browsers or if no browser
could be started at all.

Allowed values are true and false. Default is false

CoreMedia DXP 8

Operation and Configuration | Enable the Spell Checker

3.11 Enable the Spell Checker

You can activate the Spellchecker using the <spellchecker> element in the ed
itor.xml file.

<Spellchecker>
Child elements:<MainDictionary>, <CustomDictionary>

Parent elements: <Editor>

<kEditor>
foooll
<SpellChecker enabled="false" />

<SpellChecker enabled="true" os="Windows">
<MainDictionary class=
"com.coremedia.spellchecker.Bridge2JavaWordDictionary"/>

<CustomDictionary class=
"hox.corem.editor.spellchecker.Dictionary"/>
</SpellChecker>

[...]
</Editor>

If you have activated the CoreMedia Spellchecker on your computer, and you want
to use Word afterwards, you have to start Word with the "/w" option. Otherwise,
all macros contained in a Word document that you want to edit later, would be
executed without any warning.

This is because the CoreMedia Spellchecker starts a Word instance from an auto-
mation client for spell checking. This disables the macro security settings of
Word. To circumvent this security problem, you have to start word with the "/w"
option (see http://support.microsoft.com/kb/210565 for details).

Attribute Description

enabled This attribute determines whether the spellchecker should be used (“true")
or should be disabled ("false"). By default, "false" is used.

os Restricts the configured spellchecker to a given operating system. The
value is compared to Java's system property os . name. Common value
is for example Windows. The configuration with the best (that is, longest)
match wins. So for example if you have a spellchecker configured with
os="Windows" and another with os="Windows 7" and you are
running on Windows 7 the second one will be taken. Default is to match

CoreMedia DXP 8

Example 3.6. Example
of a Spellchecker ele-
ment

i

Table 3.10. Attribute
of the element
SpellChecker

http://support.microsoft.com/kb/210565

Operation and Configuration | Enable the Spell Checker

Attribute Description

all operating systems. So the example above says: Disable the
spellchecker on all operating systems but on Windows.

CoreMedia DXP 8

Operation and Configuration | Troubleshooting

3.12 Troubleshooting

The Site Manager does not start under Windows.
Possible cause:

When redirecting the log outputs to a file (OUTPUT REDIRECT=1log), under Win-
dows it can occur that the Site Manager does not start. The reason for this can be
another process (Site Manager, Text Viewer or similar), which has opened the log
file in the meantime. Under Windows a file can only be opened by one process at
any one time. The Site Manager does not start, when it cannot open and write to
its log file.

Possible solutions:

a) Close the program which is accessing the log file of the Site Manager. Restart
the Site Manager.

b) If it cannot be determined which program is accessing the log file, the user must
log off the Windows system and log in again. Afterwards, the Site Manager can be
restarted.

After installation of the Site Manager on the client computer, only an empty
root directory appears after logging in.

Possible causes:
a) No subfolders have been set up.

b) The server cannot reach the client computer. The server (as well as the client)
must be able to resolve the name of the computer to contact in the network.

Possible solutions:
a) Set up subdirectories.

b) If you are using DNS, the correct client computer name must be entered. After
this, check that the local client computer name (machine name) matches the client
computer name entered in the DNS.

If you are not using DNS, the computer name of the client must be entered in the
file /etc/hosts on the server. Correspondingly, the server name must be entered
under SWINNT/system32/drivers/etc/Hosts on the client.

Publishing resources apart from workflow

In case of emergency it might become necessary to publish documents apart from
a workflow. As administrator, you can publish as follows:

Select Publication from the File menu.

CoreMedia DXP 8

Operation and Configuration | Troubleshooting

Click on the publication symbol.

In the Overview window or in the Publication window, select Publish from
the context menu. The document has been published. The status is shown
by the symbol for 'published'.

I cannot write to the Word dictionary/the spell checker does not use my user
dictionary for suggestions

It's not possible to write from the Site Manager to the Word user dictionary.
Whether Word uses the Word user dictionary or not depends on the configuration
of Microsoft Word and can not be influenced by the Site Manager. Spelling sugges-
tions are computed by Word only using Word dictionaries.

Cross-language installations

If OS and Microsoft Office have been installed in different language versions, this
might cause errors when using the spell checker with the CM Editor.

Example: Your computer runs on a German Windows, your Office application is
an English one - as are your Site Manager and the language of your CoreMedia
project.

Explanation: The default language had been set to German - no matter if dictionary
nor grammar available - automatically due to the user profile of the German oper-
ating system. This problem can be abstracted for any cross-language installations,
so proceed in analogy for other languages. It is a genuine Microsoft problem, likely
to occur with both Windows XP and Windows 2000.

Solution: It is not sufficient just to change the Language Settings within your
Office application. You have to go Programs | Microsoft Office Tools | Microsoft
Office Language Settings. Set the default language to English and remove German
from the list of enabled languages. This does not change the installed Office com-
ponents themselves.

The Site Manager does not start under Windows because msvcr100.d11 is
missing

Possible cause:

When you start the Site Manager by executing the cm editor command in the
bin directory, and use Java 7 32-bit it can occur that the Site Manager does not

start. The reason for this is that the file msvcr100.d11 is missing from your
computer.

Possible solutions:

a) Install the Microsoft Visual C++ 2010 Redistributable Package (x86) on your com-
puter.

CoreMedia DXP 8

Operation and Configuration | Taking a Thread Dump

b) Replace the provided msvcr100.d11 in the bin directory of the Site Manager
with msvecr100.d11 32-bit.

3.12.1 Taking a Thread Dump

When the Site Manager does not respond, or is performing poorly, you can take a
thread dump to identify the problem or attach it as a file to a support ticket.

There are three options to take a thread dump depending on how the Site Manager
was started and what version of Java you are running.

Point your web browser to the URL: http://localhost:<port>/core
media/threaddump (the default port is 44444). This generates a thread
dump in the browser window. You can copy and paste it into an email for
example. Additionally, the thread dump is written to a file in your user home
directory. The filename matches the pattern threaddump.edit
or.<timestamp>. This file can be attached to a support ticket to help de-
termine the cause of the problem. For this option the minimum required
Java version is JRE 5.0 and the remote control of the Site Manager must be
enabled but it is independent of how the editor was started.

When you started the editor via bin/cm editor in the bin directory of
the CoreMedia installation, you can also take a thread dump by pressing
Ctrl-Break (Windows) or Ctrl-\ (Unix, Linux, Mac OS X) in the console you
used to start the editor. A thread dump will be generated in the console.

When you started the CoreMedia Editor via the web browser using Java Web
Start and the Java Console window is enabled, (on Windows, this can be
done by going to the Windows Control Panel, and double-clicking the Java
icon, then enabling the Java Console on the Advanced Tab) you can press 'v'
in the Java Console window. A thread dump will be generated in the console.
For this option the minimum required Java version is JRE 6.0.

CoreMedia DXP 8

Programming and Customization |

4. Programming and Customization

This chapter deals with the customization of the Site Manager by programming Components to custom-
own extensions. You will find chapters covering the following topics: ize

Tasks useful for different customization
Validators

Initializer

Language resolvers

Property editors

Predicates

Implement commands

Add buttons to the toolbar

Add menu items to menus

Please refer to the Site Manager API for more details on the classes described in
the following sections. For workflow issues you may find more information in the
CoreMedia Developer Manual.

The [CoreMedia DXP 8 Manual] provides further information how to configure the
editor as a part of CoreMedia Project. You will find an example integration of the
Site Manager in the development workspace. Start with the editor-components
module in the development workspace.

CoreMedia DXP 8

Programming and Customization | How To ...

4.1 How To ...

This chapter describes tasks that can be used for different customizations of the
editor.

4.1.1 How To Access Arbitrary Resources

Question:
How can | access arbitrary resources?

Answer:
1. Get the root folder of the repository:

FolderModel rootFolder=Editor.getEditor().getResourceFact
ory.getRootFolder () ;
This returns a FolderModel which can be used for further processing.

2. Get the resource you are looking for:

ResourceModel myResource=rootFolder.pathLookup (new String
[] ({"myFolderName", "myDocumentName"}));

or

ResourceModel myResource=rootFolder.pathLookup (new
String ("myFolderName/myDocumentName")) ;

This will return a ResourceModel of the searched resource or null if the
resource does not exist.

CoreMedia DXP 8

Programming and Customization | Program Own Initializers

4.2 Program Own Initializers

Initializers fill the fields of a newly created document with default values.
Interface to implement

For own initializers you need to implement the interface hox.corem.editor.initial-
ization.Initializer with the method getInitialvalue.

Parameters to use
The getInitialvalue method gets the following parameters:
Table 4.1. Parameters

of the getinitialValue
document DocumentModel The document which contains method

the property to initialize.

Parameter Type Description

propertyType PropertyTypeModel The property to initialize.

Return Type

Depending on the property type for which the initializer is intended to use the
method may return the following values (return type is Object):

Property Default PropertyModel Value Table 4.2. Retur .’Tva/ i
: : ues of the getinitial-

String StringModel String Value method

Integer IntegerModel Integer

Date CalendarModel Calendar

LinkList LinkListModel ResourceHolder[]

SgmlText SgmlTextModel org.w3c.Document

Blob BlobModel byte[]

Integrate your Initializer into the Site Manager using editor.xml

You can integrate your Initializer into the Site Manager using the element Initial
izer of the editor.xml file as shown in example.

Example 4.1. Integrate
<DocumentTypes> P : :
<DocumentType name="SomeType"> Initializer in editor.xml
<PropertyType name="SomeProperty">
<Initializer
class="com.customer.example.editor.SimpleInitializer"/>
</PropertyType>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/initialization/Initializer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/initialization/Initializer.html

Programming and Customization | Program Own Initializers

</DocumentType>
</DocumentTypes>

Example:

The next example shows a simple Initializer which checks whether the property to

initialize is of type String or not. If it is, the property will get the name of the creator
of the document as the initial setting.

Example 4.2. Example
import hox.corem.editor.initialization.Initializer; Qfanlnhkuher
import hox.corem.editor.proxy.*;
public class SimplelInitializer implements Initializer {

public Object getInitialValue (DocumentModel doc,
PropertyTypeModel p) {
String result = "";
try {
int ver = doc.getLatestVersion();
PropertyModel pm = doc.getPropertyModel (ver, p.getName()) ;
if (pm instanceof StringModel) {
result = doc.getCreator ().getName () ;
}
} catch (Exception e) { }
return result;
}
}

CoreMedia DXP 8

Programming and Customization | Program Own Validators

4.3 Program Own Validators

Validators are used to check the values of document properties at check-in time.
If the validator throws a ValidationException, a window pops up which shows a
message containing the exception message.

Interface to implement

Own validators must implement the interface hox.corem.editorvalidation.vValidator2
with the method validate. Validator2 replaces the deprecated Validator interface
which was memory consuming when it comes to the validation of Blobs.

Parameters to use
The validate method gets the following parameters:

Table 4.3. Parameters

Parameter Type Description :
of the validate method
document Document- The document with the property to validate. The Document-
Model Model is for read access only, do not try to modify any docu-
ment here

property- Property- The property type of the property to validate

Type TypeModel

value Object The value of the property, not a PropertyModel but the value
of the PropertyModel (see table below for the default types)

allProper—- Map A map indexed by property name of all the documents prop-

ties erties

Return types

The method returns a value. The type depends on the property which has been
validated.

The properties have the following types:

Table 4.4. Default

Property Default PropertyModel Value .
types of the properties

String StringModel String

Integer IntegerModel Integer

Date CalendarModel Calendar

LinkList LinkListModel Object[] containing Resource-

Holder objects

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/ValidationException.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator.html

Programming and Customization | Program Own Validators

Property Default PropertyModel Value
XmiText XmlPropertyModel org.w3c.Document
Blob BlobModel hox.corem.edit-

or.proxy.BlobValue

General hints

Use the SimpleValidationException instead of ValidationException since
ValidationException is abstract. The constructor takes parameters for error
messages and hints for problem resolution, these parameters are in fact
property names for the property file bundles (see the [CAP Editor API] for
details).

Don't try to change any documents in the validator. Violating this rule may
lead to deadlocks, inconsistent states, swallowed events etc. since the check-
in locks the proxy, which prevents events from the server to be processed.
Thus, you see inconsistent states in your validator.

Integrate your validator into the Site Manager using editor.xml

You can integrate your validator into the Site Manager using the element validator
of the editor.xml file as shown in Example 4.3, “Integrate validator in edit-
or.xml” [55].

Example 4.3. Integrate
<DocumentTypes> ; ; p
<bocument Type name="Dish"> validator in editorxml
<PropertyType name="Price" initialValue="30"/>
<PropertyType name="Name">
<Validator
class="com.customer.example.editor.SimpleValidator" />
</PropertyType>
</DocumentType>
</DocumentTypes>

Example:
The next example shows a validator which simply returns the value to be validated.

Example 4.4. Simple
package.com.cu;tomer.example.editor; customized validator
import java.util.Map;
import hox.corem.editor.proxy.*;
import hox.corem.editor.validation.*;
public class SimpleValidator implements Validator2 ({

public Object validate (DocumentModel doc, PropertyTypeModel pte,

Object value, Map props) throws ValidationException ({
return value;
}
}

CoreMedia DXP 8

../../../../hox/corem/editor/proxy/BlobModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/SimpleValidationException.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/ValidationException.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/ValidationException.html

Programming and Customization | Program Own Language Resolver Factories

4.4 Program Own Language Resolver Factories

A property language resolver factory is used to determine the language of a property
which will be used for the spell checker.

Interface to implement

Own property language resolver factories must implement the interface hox.cor-
em.editor.PropertyLanguageResolverFactory with the method getLanguageResolv
er. In addition, an inner class must be created which implements the interface
LanguageResolver (see Example 4.5, “Example of a language resolver” [56]).

Parameters to use

The getLanguageResolver method is called with the following parameters:

Parameter Type Description Table 4.5. Parameters
= of the getLan-
document DocumentModel The dgcument for which the language resolver should guageResolver method
be built.
property- Property- The property of the document for which the language
Type TypeModel resolver should be built.

Return types
The getLanguageResolver method returns a hox.gui.LanguageResolver.

Integrate your PropertyLanguageResolverFactory into the Site Manager using
editor.xml

You can integrate your PropertyLanguageResolverFactory into the Site Manager
using the PropertyLanguageResolverFactory element.

Example

The following example shows a language Resolver which returns locale_US as the
language.

Example 4.5. Example

package com.coremedia.customer.example.editor; ofalanguagelesower

import java.util.Locale;
import hox.gui.LanguageResolver;

import hox.log.Log;

import hox.corem.editor.Editor;

import hox.corem.editor.proxy.DocumentModel;

import hox.corem.editor.proxy.PropertyTypeModel;

import hox.corem.editor.PropertylLanguageResolverFactory;

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/PropertyLanguageResolverFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/PropertyLanguageResolverFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/gui/LanguageResolver.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/gui/LanguageResolver.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/PropertyLanguageResolverFactory.html

Programming and Customization | Program Own Language Resolver Factories

public class EnglishlLanguageResolverFactory implements
PropertyLanguageResolverFactory {

private static class EnglishPropertylLanguageResolver
implements LanguageResolver ({

public Locale getLanguage () {
Editor.getLog() .write (Log.LEVEL_DEBUG,
"EnglishLanguageResolverFactory: "+Locale.US);
return Locale.US;

}

}

private static LanguageResolver englishPropertylLanguageResolver =

new EnglishPropertylLanguageResolver () ;

public LanguageResolver getLanguageResolver (DocumentModel document,
PropertyTypeModel propertyType) {

return englishPropertylLanguageResolver;

}

CoreMedia DXP 8

Programming and Customization | Program Own PropertyEditors

4.5 Program Own PropertyEditors

Property editors are used to edit properties in the document view of the Site Man-
ager. There are a lot of property editors provided by CoreMedia (see Section 5.1.1,
“Property Editors” [77]) but sometimes it might be useful to extend the editors
due to own needs.

Interface to implement

All property editors implement the interface PropertyEditor or one of its subinter-
faces (see Javadoc). Nevertheless, you will normally subclass one of the existing
property editors instead of implementing PropertyEditor or its subinterfaces. If
you want to support search and replace within the property, then the property
editor must implement the additional interface SearchableTextComponent and its
method isSearchable () mustreturn true. Search and replace affects the search
and replace dialogs and the Global-Search-and-Replace-Workflow. The file cap-
examples.jar contains a simple example for a property editor with search and
replace functionality: BasicStringEditor.

Classes to subclass

The most common way to write own property editors is to subclass one of the ex-
isting editors. See Section 5.1.1, “Property Editors” [77] for a list of supplied
property editors.

Integrate your Property Editor into the Site Manager using editor.xml

You can integrate your property editor into the Site Manager using the attribute
editorClass of the Property element as shown in Example 4.6, “How to integ-
rate a property editor” [58].

Example 4.6. How to
integrate a property
editor

<Documents>

<Document type="SomeType">
<Property name="Locale"
editorClass="com.customer.example.editor.LocaleEditor"/>
</Document>

</Documents>

Example

The following example shows a property editor which extends the ComboBoxStrin-
gEditor. The property editor adds all available locales to the combo box from which
the user can select one.

Example 4.7. Example
package com.customer.example.editor;
import java.util.Locale; of a property editor

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/PropertyEditor.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/PropertyEditor.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/document/SearchableTextComponent.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/ComboBoxStringEditor.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/ComboBoxStringEditor.html

Programming and Customization | Program Own PropertyEditors

import hox.corem.editor.toolkit.property.ComboBoxStringEditor;
public class LocaleEditor extends ComboBoxStringEditor {

public LocaleEditor() {
super.setFixedChoice (true) ;
Locale[] 1 = Locale.getAvailablelocales();
for (int i = 0; i<l.length; i++)
{ addHistoryItem(l[i].toString()); }
} // LocaleEditor ()

public void setFixedChoice (boolean b) { /* ignore! */ }

CoreMedia DXP 8

Programming and Customization | Program Own Predicate Classes

4.6 Program Own Predicate Classes

Predicate classes enable selective view of objects. They can filter different types
of objects.

Interface to implement

For own predicates you need to implement the interface com.coremedia.com-
mon.util.Predicate<Object> with the method include.

Parameters to use

The include method gets only one parameter of type Object. Depending on the
element of the editor.xml file where the predicate is used, the method can be
called with different object types.

<Filter>

If the <Predicate>elementis used ina<Filter>element, the documents
shown in the document overview of the Site Manager can be filtered, due to
different conditions. Thus, the objects to be filtered are documents of the
type hox.corem.editor.proxy.DocumentTypeModel.

<Treefilter>

If the <Predicate> element is used in a <Treefilter> element, the
folders shown in the folder view of the Site Manager can be filtered. The ob-
jects to be filtered are folders of the type hox.corem.editor.proxy.Resource-
Holder.

<DocumentTypes>

If a <Predicate> Or <DocumentTypePredicate> element is used in a
<DocumentTypes> element, the document types which can be created,
moved, copied or selected in document choosers are filtered. Thus, the ob-
jects to be filtered are document types hox.corem.editor.proxy.Document-
TypeModel.

<Processes>

If the <Predicate> element is used in a <Processes> element, the
workflows offered for initiating in the Menu File|New Workflow... are
filtered. The objects to be filtered are workflows of the type com.core
media.workflow.WfProcess.

Integrate your predicate into the Site Manager using editor.xml

You can integrate your predicate into the Site Manager using the element Predic
ate Or DocumentTypePredicate Of editor.xml as shown in example.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html

Programming and Customization | Program Own Predicate Classes

<Explorer name="configurable-explorer-factory">
<Filter name="ownFilter>

<Predicate class="mySimplePredicate"/>

</Filter>
<Editor>

Example

The next example shows a predicate which simply returns "false" for all input. As
aresult, all items are filtered!

package com.customer.example;

import com.coremedia.common.util.Predicate;
import hox.corem.editor.Editor;

public class NewPredicate implements Predicate<Object> {
public boolean include (Object obj) {
boolean result = false;
Editor.getLog () .debug ("NewPredicate.include () : "+obj);
return result;
}
}

CoreMedia DXP 8

Example 4.8. How to
integrate the Predicate
class

Example 4.9. Example
of a customized Predic-
ate class

Programming and Customization | Program Own Renderers

4.7 Program Own Renderers

A renderer is used to render the table cells of the document table view in the Ex-
plorer, Workflow, Query and ResourceChooser window.

Class to subclass

In order to create your own renderer class you need to subclass the abstract
hox.corem.editor.toolkit.table.columnrenderer.LayoutColumnRenderer class and
implement the following two methods:

getComponent

This method returns the Jcomponent which will be used for the table cell.
The method is called without parameters.
customizeComponent

This method is called with the JComponent returned from getComponent
and an Object which contains the data to render. The actual object which
will be passed to the method depends on the window for which the renderer
is defined. In the Explorer window a ResourceHolder is passed and in the
Workflow window a Wflnstance is passed to the method.

Integrate your renderer into the Site Manager using editor.xml

You can integrate your renderer into the Site Manager using the element Renderer
which can be used within the element ColumnDefinition.ColumnDefinition
can be used within TableDefinition which can be used within the elements
Explorer, Query, Workflowand ResourceChooser.

Example 4.10. How to
integrate a Renderer in
<TableDefinition> the editor

<Explorer name="configurable-explorer">

<ColumnDefinition class="StringColumn"
name="" width="40" weight="0.0">
<Renderer class=
"com.customer.example.editor.ConstantLayoutColumnRenderer"/>
</ColumnDefinition>
</TableDefinition>
</Explorer>

Example

The following example shows a very simple renderer which inserts a JLabel saying
"Hello" in each cell of the table column independent of the column type.

Example 4.11. Ex-
ample of a customized
Renderer class

package com.customer.example.editor;

CoreMedia DXP 8 62

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfInstance.html

Programming and Customization | Program Own Renderers

import javax.swing.JComponent;

import javax.swing.JLabel;

import
hox.corem.editor.toolkit.table.columnrenderer.LayoutColumnRenderer;

public class ConstantLayoutColumnRenderer extends
LayoutColumnRenderer {

public JComponent getComponent () {
return new JLabel () ;

}
public void customizeComponent (JComponent component, Object data)

{
JLabel label = (JLabel)component;
label.setOpaque (true) ;
label.setText ("Hello") ;
}
}

Why returning the JLabel first and entering the text ("Hello") later? This is because
customizeComponent Will be called later, short before the rendering. It is good
practice to execute "expensive" operations at this place.

CoreMedia DXP 8

Programming and Customization | Program Own Commands

4.8 Program Own Commands

In this chapter, you will learn how to extend the Site Manager with buttons and
menu entries which call commands on the current selection. A command is called
with a target as a parameter and it executes an operation on this target following
the Command Pattern. Therefore, you need to register your command at a Com-
mandManager.

Interface to implement

All commands implement the Command interface. You need to implement (or
overwrite) the execute and the isExecutable methods. The execute method
gets the Context and target as parameters (see Editor API for details).

Classes to subclass

There are a different predefined commands for different tasks. You can subclass
each of them (or its subclasses) for your needs. Please refer to the Editor API for
details.

Name Description Table 4.6. Commands

= = = to subclass from
CommandSequence A command which consists of a sequence of simple commands.

CreateProcessIn- A command which creates a new WfProcessInstance from a WfPro-

stance cess.

EnumerationCom- A command which operations on enumerations and executes the

mand given Command.

GlobalCommand A GlobalCommand works on global, that is, application wide targets.
It provides convenience methods to allow small and simple Com-
mands.

MapCommand A generic command which works on a map.

ResourceCommand A command which works on resources.

ResourceEnumeration- A command which works on a set of resources.
Command

ResourceHolderCom- A command which works on resource holders.
mand

SearchText A command which searches for the text in text components.

StringSelectionCom- A command which acts on string selections.
mand

TextActionCommand A command which bridges from commands to actions on text com-
ponents.

WflnstanceCommand A command which works on a Wflnstance.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/Command.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/Context.html

Programming and Customization | Register Commands

Integrate your command into the Site Manager using editor.xml

There are no elements in the editor.xml to integrate the commands directly.
You need to subclass an editor or view class.

Integrate the command into the document view

In this case you need to extend the hox.corem.editor.generic.Gener
icDocumentView class. The class can be added to the editor.xml file
using the attribute viewClass of the element Document. See Section 4.8.3,
“Add Command to Document View” [67] for an example.

Integrate the command into the explorer view

You simply need to set your own explorer view using the attribute explorer
ViewClass of the element FrameFactory in the editor.xml file. See
Section 4.8.4, “Add Command to Explorer View” [68] for an example.

4.8.1 Register Commands

After you have written your command, you need to register it at the Command-
Manager, at the ListenerManager and at the manager of the chosen GUI element.
This will make the command usable and visible. Optionally, you may associate your
command with an activation model. These models activate or deactivate the com-
mand depending on a specific condition. See the field summary in the Javadoc of
the DocumentView for the available activation models. To register your command
proceed as follows:

Step Description Table 4.7. Register a

new command
1. Extend the view class.

class MyView extends hox.corem.editor.generic.GenericDocumentView

2. Get a CommandManager.

CommandManager commandMgr = getCommandManager () ;

3. Register your command at the CommandManager.
commandMgr.registerCommand ("my-first-command", new
com.coremedia.extensions.MyFirstCommand ()) ;

4. If you want to associate your command with an activation model you have to call
the associateActivationModel () method. See the field summary of the
DocumentView class for the available activation models.

commandMgr.associateActivationModel ("my-first-command",
approveModel) ;

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/CommandManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/CommandManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/ListenerManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/document/DocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/CommandManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/CommandManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/document/DocumentView.html

Programming and Customization | Localize Commands

Step Description

5. Get a manager for the GUI component in which you want to insert your command.
Possible are:

ToolBarManager
MenuBarManager

PopupMenuManager

ToolBarManager toolBarMgr = getToolBarManager () ;
MenuBarManager menuBarMgr = getMenuBarManager () ;
PopupMenuManager popupMenuMgr = getPopupMenuManager () ;

6. Get a ListenerManager in order to make your command live.

ListenerManager listenerMgr = getListenerManager();

7. If you want to insert your command in the tool bar or in a pop-up menu you need
to get one.
JToolBar toolBar = toolBarMgr.getToolBar(); or JPopup

Menu popUpMenu = popupMenuMgr.getPopupMenu () ;
8. Add your command to the ListenerManager and to the GUI component at once.

toolBarMgr.addIemBefore (toolBar, null, listenerMgr.cre
ateToolBarButton ("my-first-command")) ;

or

menuBarMgr.addItemBefore ("edit-menu", null, listenerM
gr.createMenultem ("my-first-command")) ;

or

popupMenuMgr.addItemBefore ("linklist-menu", moveBottom
Command, listenerMgr.createPopupMenultem ("my-first-
command")) ;

4.8.2 Localize Commands

You can define some attributes for your command in a properties file. The attributes
are shown in the GUI and the names must follow the scheme:

<command-name><suffix>=<value>

<Suffix> can take the following values:

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/ToolBarManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/MenuBarManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/PopupMenuManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/ListenerManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/ListenerManager.html

Programming and Customization | Add Command to Document View

Label: The text which is shown in the menus.
MenulItemLabel: The text of a menu item.

Image: The icon which is shown in the toolbar.
ToolTip: The text which is shown as a tooltip.

Mnemonic: The shortcut which can be used to start the command.

Please notice that <command-name> is not the class name of your command but
the name registered at the CommandManager. So it is possible to register several
commands with the same name.

Example:
You have created a command called MakeCheaper:

Example 4.12. Localize
MakeCheaperMenultemLabel=Reduce Price command
MakeCheaperToolTip=Reduces all prices by 10 percent
MakeCheaperImage=/com/customer/cap/reduce.gif

The name of this file is <Myname>.properties. You can integrate it using the
Bundle element of the editor-startup.xml file. The file name must be entered
without file extension. It must appear at the right position of the classpath.

Example:

Example 4.13. Integ-
e s rate bundle
<Locale language="de" country="DE"/>
<Bundle name="com/customer/cap/mybundle"/>
</Editor>

Localization of the attributes can be done as described in Section 4.10, “Localiza-
tion” [73]. Simply add the language suffix after the <mybundle> part of the name.

Example:
The name of the french version would be:

mybundle fr.properties

4.8.3 Add Command to Document View

The document view of the Site Manager is created by the class hox.corem.editor.gen-
eric.GenericDocumentView. This class builds a container for a menu bar, a tool bar
and a property section which contains the data of the document. If you want to
use own commands in the menu bar or tool bar of the document view you need

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/CommandManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html

Programming and Customization | Add Command to Explorer View

to extend GenericDocumentView and overwrite the method getComponent which

returns a JComponent. Follow the steps described in the next table.

Table 4.8. Steps to ex-
tend GenericDocu-

1 Extend GenericDocumentView mentView.

Step Description

publicclassMyGenericDocumentView extends GenericDocumentVie
2 Get the standard components from the superclass
JComponent component= super.getComponent ()

3 Now you can get references on the manager components and register your com-
mand as described in Section 4.8.1, “Register Commands” [65]

CommandManager commandMgr

getCommandManager () ;

4 Return the new JComponent

return component

After you are finished with your view class, you can insert it into the attribute
viewClass of the element Document of the editor.xml file.

Example 4.14. How to

<Documents>

<Document type="dish" viewClass="com.custom.cap.MakeCheapClass"> Hﬁegnﬂelntoedﬂ-
. orxml
é/Document>

</Documents>

4.8.4 Add Command to Explorer View

If you want to use own commands in the menu bar or tool bar of the explorer view

you simply need to extend the ExplorerView class and add it to the editor using

the attribute explorerviewClass of the FrameFactory element. Follow the

steps described in the next table.

Step Description Table 4.9. How to integ-

rate your command in-

1. Extend ExplorerView. to the explorer view

public class MyExplorerView extends ExplorerView
2. Overwrite the getComponent method.

public JComponent getComponent () {

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/explorer/ExplorerView.html

Programming and Customization | Add Command to Context Menu

Step Description

3. Get references to the CommandManager the ListenerManager and/or the ToolBar-
Manager and/or the MenuBarManager.

CommandManager commandMgr = getCommandManager () ;
ListenerManager listenerMgr = getListenerManager () ;
ToolBarManager toolBarMgr = getToolBarManager () ;
MenuBarManager menuBarMgr = getMenuBarManager () ;

4. Now you can get references on the manager components and register your com-
mand as described in Section 4.8.1, “Register Commands” [65].

commandMgr.registerCommand ("makecheaper", new
com.coremedia.extensions.MyFirstCommand) ;

5. Call the super method getComponent (). It'simportant to call this method after
you have associated the command with an activation model.

super.getComponent ()
6. Return the ExplorerView.

return this;

}

4.8.5 Add Command to Context Menu

You can find context menus in each view of the Site Manager. In this chapter, you
will learn how to add a command to a context menu which belongs to a property
editor. The steps shown in the next table will add the command to a menu belonging
to a link list editor. The name of the menu is "linklist-menu" and your command
will be added at the end of the menu.

Table 4.70. Add com-

Step Description
mand to context menu

1 Extend the property editor for which you want to add your command

public class MyLinkListEditor extends GenericLinkListEd
itor {

2 Overwrite the getComponent method
public JComponent getComponent () {

3 Call the getComponent method of the parent class to create the default beha-
vior

super.getComponent () ;

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/CommandManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/ListenerManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/ToolBarManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/ToolBarManager.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/MenuBarManager.html

Programming and Customization | Add Action to RichTextPane

Step Description

4 Get the references to the manager components and register your command as
described in Section 4.8.1, “Register Commands” [65].

CommandManager commandMgr = Services.getCommandMan
ager (context) ;

PopupMenuManager popupMenuMgr = Services.getPopupMenu
Manager (context) ;

ListenerManager listenerMgr = Services.getListenerMan
ager (context) ;

commandMgr.registerCommand ("My-Command", new My
Command ()) ;

5 Add a separator and your command to the end of the pop-up menu

popupMenuMgr.addItemAfter ("linklist-menu", moveBottom
Command, listenerMgr.createMenuSeparator ("Custom"));

popupMenuMgr.addItemAfter ("linklist-menu", "Custom",
listenerMgr.createPopupMenultem ("My-Command")) ;

6 Return the JComponent to the Site Manager

return this;

}

4.8.6 Add Action to RichTextPane

You can use custom actions to perform some actions in the RichTextPane. To this
end, you have to perform the following steps:

Step Description Table 4.11. How to in-
tegrate actions into the
1 Create the command. RichTextPane
public class InsertElementCommand extends TagActionCom
mand {
public static String COMMAND NAME = "insert-element";

public InsertElementCommand () {
super (COMMAND NAME) ;

}

}

CoreMedia DXP 8

Programming and Customization | Add Action to RichTextPane

Step Description
2 Register the command (see Section 4.8.1, “Register Commands” [65] for details):

3 Create the action you want to perform. The name of the action must match the
name of the command above. The following code shows an example action which
inserts an image into the RichTextPane.

public class InsertElementAction extends AbstractLinkAc
tion {

public InsertElementAction() {

super (InsertElementCommand.COMMAND NAME) ;

}

public void actionPerformed (ActionEvent event) {
JEditorPane editor = getEditor (event);
StyledEditorKit kit = getStyledEditorKit (editor);
XHTMLDocument document = getXHTMLDocument (editor);
document.removeSelection (editor) ;

String uri = getReferenceTolnternalDocument (12) +
"/"™ + "blobDataPropertyName";

document.insertImage (kit, editor, uri);

}

4 Subclass hox.corem.editor.toolkit.property.RichTextPane (for example as
MyRichTextPane) and override the createDefaultEditorKit ()
method to return your own RichTextEditorKit.

5 Define your Action in the EditorKit class and override getActions to add
your custom action to the action array.

private final Action insertElementAction = new Inser
tElementAction () ;

public Action[] getActions () {

return TextAction.augmentList (super.getActions (), inser
tElementAction) ;

}

6 Configure your MyRichTextPane in the editor.xml file as described in
Section 4.5, “Program Own PropertyEditors” [58].

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/RichTextPane.html

Programming and Customization | Program Own ResourceNamingFactory Classes

4.9 Program Own ResourceNamingFactory
Classes

A resource naming factory creates and modifies names of resources and folders.
This is intended to enable customization of how resources and folders are named
or renamed in different projects.

Interface to implement

Own resource naming factories must implement hox.corem.editor.ResourceNam-
ingFactory. Please read the Editor API for more details.

Classes to subclass

The easiest way to write own resource naming factories is to subclass BasicRe-
sourceNamingFactory and to overwrite the appropriate methods. Please read the
Editor API for more details.

Integrate your resource naming factory into the Site Manager using editor.xml

You can integrate your resource naming factory into the Site Manager using the
attribute class of the ResourceNamingFactory element as shown in Example 4.15,
“How to integrate a resource naming factory” [72].

Example 4.75. How to
integrate a resource
naming factory

<Editor>
<ResourceNamingFactory class="MyResourceNames" />

</Editor>

Example:

The following example shows a simple resource naming factory which allows only
documents with the name "image" within the Test directory.

Example 4.16. Ex-

public MyResourceNames extends BasicResourceNamingFactory { anuﬁeofaltsoume

public boolean isValidResourceName (FolderModel folder,

ResourceTypeModel resourceType, naming factory
String name) {
return ! (!folder.getName () .equals ("Test") || "image".equals (name))

&& super.isValidResourceName (folder, resourceType, name) ;
}
}

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/ResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/ResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/BasicResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/BasicResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/ResourceNamingFactory.html

Programming and Customization | Localization

4.10 Localization

The Site Manager is internationalized and is therefore prepared for configuration
to different languages. Within a localization, program texts in menus, dialogs etc.,
as well as the names of the document types and properties which are shown, can
be adjusted.

The language and the country-specific settings which the Site Manager displays on
the user interface are configured with the attributes

language="en"
and
country="UK"

of the Locale element in the file properties/corem/editor-startup.xml.
Details for configuring the language settings are given in the Administration
Manual.

Internationalization of the Site Manager is based on the class java.util.Locale.
On program start, the default locale of the Java environment is set to the value
given in the configuration file properties/corem/editor-startup.xml. For
identification of the locale, the ISO 639 language codes are used (see ht-
tp://www.ics.uci.edu/pub/ietf/http/related/iso639.txt). New locales should use
these language codes in order to remain compatible.

4.10.1 Localize the Editor

For localization of texts and names and custom icons shown in the Site Manager
defined in the CoreMedia Server, a file following the naming scheme name[_<loc-
ale>].properties can be used. It can be located in either class path or a JAR file
located in the 1ib/ directory.

Example for the naming:

German: com/customer/cap/editor.properties
English: com/customer/cap/editor en.properties
French: com/customer/cap/editor fr.properties

The Bundle name com/customer/cap/editor is configured with the Bundle
element of the editor-startup.xml.

<Bundle name="com/customer/cap/editor"/>

Within the files, name/value pairs define the localized names. For each object a
name and a tooltip text can be configured. The naming scheme is as follows:

CoreMedia DXP 8

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Programming and Customization | Localize the Editor

<Name of the object defined in the CoreMedia Server>[/<Name
of the property>]Label Or

<Name of the object>[/<Name of the property>]ToolTip.
The value is the localized name.

If you want to change the embedded labels of the Site Manager (for example a
menu item or the label of a button) you need to know the keys of these labels. You
will find the keys in the file hox/corem/editor/toolkit/property/prop
erty de.properties which is located in the cap-editor-resources.jar
file of an editor installation.

Example:

To localize some German names for use in English language, create a file $CoOr
EM HOME/classes/com/customer/cap/editor en.properties. In order
to rename a document type called Bi1ld to Image, define:

BildLabel=Image

To rename the property Piktogramm to Thumbnail and to add a tooltip saying
"Preview Image" define:

Bild/PiktogrammLabel=Thumbnail
Bild/PiktogrammToolTip=Preview Image

It can be seen that properties are designated via the preceding document type
name and are separated by a slash. Therefore, the names of document types must
not contain slashes for proper localization of properties. This file can be stored in
a JAR file to make distribution easier.

Adding or Changing Document Type Icons

Out-of-the-box the Site Manager comes with only a few icons for predefined docu-
ment types (Query, document...). In order to improve the usability of your custom-
ized editor, you should add own document type icons. The editor supports icon
sizes of 16x16 and 32x32 pixels that are used in different views. The icons can be
in GIF and PNG file formats. You have to add the images to your custom proper
ties file using the keys <doctypename>Image for 16x16 icons and <doctype
name>TitleImage for 32x32 images. In order to make the icons available, proceed
as follows:

1. Store your icons in a directory, for example com/customer/cap/icons

2. Add the icon names to your property file using the keys described above.

3. Pack these directories in a JAR file and put this file into the 1ib/ directory of
your editor installation.

CoreMedia DXP 8

Programming and Customization | Localize for Use with WebStart

4. Add the name of the bundle to the editor-startup.xml file.
That's it. The editor will automatically use your new icons.
Example:

You already have an editor.properties file with some customizations of the

editor. The file is stored in com/custom/cap and therefore the entry in editor-
startup.xml is:

<Bundle name="com/custom/cap/editor"/>

Now you want to add new icons for the Query document and your custom Teaser
document. Store the images Query.png, QueryLarge.png, Teaser.png and
TeaserLarge.png inthe com/custom/cap/icons directory and add the follow-
ing lines to the editor.properties file:

QueryImage=/com/custom/cap/icons/Query.png
QueryTitleImage=/com/custom/cap/icons/QuerylLarge.png
TeaserImage=/com/custom/cap/icons/Teaser.png
TeaserTitleImage=/com/custom/cap/icons/Teaserlarge.png

At last, you create a JAR file from the files and put it into the 1ib/ directory of
your editor.

4.10.2 Localize for Use with WebStart

Localization of the Site Manager for use with WebsStart is similar to the standard
localization described before. You only have to provide the property file as a signed
JAR file to WebStart. Proceed as follows:

1. Create a property file, here editor.properties, with the localized properties
in the resources directory of the editor-customizations module.

2. Build the editor with Maven in the workspace. Maven will automatically build
and sign a JAR file and put it into the editor.jnlp file.

Now, the editor can use the localized properties.

CoreMedia DXP 8

Appendix |

5. Appendix

In this chapter you will find all predefined classes usable for the editor configuration
and a reference view of all XML elements of the editor DTD.

CoreMedia DXP 8

Appendix | Classes Delivered for Site Manager Configuration

5.1 Classes Delivered for Site Manager
Configuration

To configure the Site Manager for your specific needs the Editor API is available.
You can use it to program your own editor, filter or validator classes. To keep the
effort for the user as small as possible, the Site Manager is delivered with a series
of classes which already enable configuration. These delivered classes are described
in the following sections.

5.1.1 Property Editors

Property editors are connected with fields in document types or with variables in
workflows. In this way, for example, you can apply a combo box to a field.

Example 5.1. Example
<Property name="Author" editorClass="ComboBoxStringEditor">

<HistoryItem value="TestEditor"/> jbrtheyseofalva-
<HistoryItem value="Editor"/> erty editor
</Property>
Workflow Editors
The following property editors are available for variables in workflows.
Class Description Table 5.1. Property ed-
itors for the workflow
JCheckbox-— A check box. "True" is shown as checked, "False" as unchecked.
BooleanEditor

ComboBoxDocu- A combo box with the allowed document types.
mentTypeEditor

GroupChooserEd- A window which shows the available group.
itor

Re- A resource chooser window, like the one in the editor window.
sourceChooserEd-
itor

UserChooserEd- A window which shows the available users.
itor

String Editors

The following property editors are available for string fields:
Table 5.2. Property ed-
itors for strings

CoreMedia DXP 8

Appendix | Property Editors

Class Description

JTextFieldStrin- Simple text field. This is the default editor.

Editor
& The JTextFieldStringEditor can be configured with the following attributes:

fontName="Name of the font"

This property is used for setting the font of the Text field in the Site
Manager. It should be noted that the fonts depend on the particular
configuration of the Java environment. If the font entered does not
exist, all available fonts are shown in the log.
fontSize="Size of the font"

This parameter adjusts the font size of Text field in the Site Manager.
The size can be set between 10 and 24. If there is no exactly
matching character set for this font size, the font is scaled accord-
ingly. This can cause an awkward appearance of the font.
spellCheckingEnabled="false"

This parameter disables spell checking for the Text field in the Site
Manager. Spell checking is enabled by default.

ComboBoxStrin- A selection list. You can enable own entries in the combo box using the

gEditor attribute fixedChoice with the <Property> element. "false” will
allow you to type own entries in the combo box. "true" is default and will
allow only the predefined items. You can limit the number of characters,
which are allowed to be entered, by using the attribute columns.

Example:

<Property name="CopiesTo" editorClass="ComboBox
StringEditor" columns="15">

If you are using the columns attribute you have to take care for two
things:

1. Do not enter a <HistoryItem> or <FunctionItem> witha
length longer than defined in columns.

2. Be sure that no strings longer than defined in columns have been
stored in the repository before. The best practice would be to configure
a validator to guarantee correct server side storage.

You can disable spell checking using the attribute spel1CheckingEn
abled="false". Spell checking is enabled by default.

The selection options can be added with three different multiple child
elements:

<HistoryItem value="abc"/>:Shows and uses exactly
the values that are defined in the va lue attribute of this element.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/JTextFieldStringEditor.html

Appendix | Property Editors

Class Description

<FunctionItem: You can use the attribute class to define
the class which should be used when you select the entry. The at-
tribute label (optional) defines the name of the function item which
is shown in the combo box. Own classes must extend the abstract
class hox.gui.editor.combobox.Functionltem.

<LabeledItem value="60" label="One minute"/>
Use the label attribute to define the text shown in the combo box.
You will see the localized version of the value of the label attribute
(localized via classes/hox/corem/edit
or/toolkit/property/property.properties). The
value used is the one defined in the attribute value.

Examples:

<Property name="Name" editorClass="ComboBoxStrin
gEditor">

<HistoryItem value="60"/>
</Property>

Will show 60 in the combo box and will write 60 into the property when
you select it.

<Property name="Name" editorClass="ComboBoxStrin
gEditor">

<FunctionItem class="myFunctionItems.MyString
Class" label="Select Me"/>

</Property>

Will show "Select Me" in the combo box and will write the result of the
class MyStringClass into the property when you select the entry.

<Property name="Name" editorClass="ComboBoxStrin
gEditor">

<LabeledItem value="60" label="One minute"/>
</Property>
Will show "One minute" in the combo box and will write 60 into the
property when you select the entry.
JCheckBoxStrin- A check box. If the box is chosen, "true" will be saved, otherwise "false".
gEditor

JPasswordField- Text field which allows you to enter a password. Thus, the input characters
StringEditor will be displayed hidden.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/gui/editor/combobox/FunctionItem.html

Appendix | Property Editors

Class Description

JTextPaneStrin- Text field with more than one line. That is, if the length of your string

gEditor exceeds the width of your string text field a new line will be started. In-
ternally, this will not be stored as a line break. You can insert line breaks
hitting the <Return> key. The length of the text is limited to the length
defined in the document-type . xml file.

The JTextPaneStringEditor can be configured with the following
attributes:

fontName="Name of the font"

This property is used for setting the font of the Text field in the Site
Manager. It should be noted that the fonts depend on the particular
configuration of the Java environment. If the font entered does not
exist, all available fonts are shown in the log.
fontSize="Size of the font"

This parameter adjusts the font size of Text field in the Site Manager.
The size can be set between 10 and 24. If there is no exactly
matching character set for this font size, the font is scaled accord-
ingly. This can cause an awkward appearance of the font.
spellCheckingEnabled="false"

This parameter disables spell checking for the Text field in the Site
Manager. Spell checking is enabled by default.

Integer Editors

The following property editors are available for integer fields:
Table 5.3. Property ed-

Class Description itors for integers
JTextFieldIn- Simple integer field. This is the default editor.

tegerEditor

JCheckBoxIn- A check box. If the box is checked, "1" will be saved, otherwise "0".

tegerEditor

ComboBoxIn- Selection list. If this class is used, the attribute fixedChoice can be

tegerEditor added to the <Property> element. "false” will allow you to type own

entries in the combo box. "true" is default and will allow only the pre-
defined items. You can limit the number of digits which are allowed to
enter, by using the attribute columns.

Example:

CoreMedia DXP 8

Appendix | Property Editors

Class Description

<Property name="Copies" editorClass="ComboBoxIn
tegerEditor" columns="3">

If you are using this attribute you have to take care for two things:
1. Do not enter a <HistoryItem> with alength longer than defined
inmaximumSize.

2. Be sure that no integers longer than defined in columns have been
stored in the repository before. The best practice would be to configure
a validator to guarantee correct server side storage.

The selection options can be added with two different multiple child
elements:

<HistoryItem value="123"/>

The values defined in this element are shown as a combo box.
<LabeledItem value="60" label="One minute"/>

The values defined in this element are shown as a combo box. In
the combo box you will see the localized version of the value of
the 1abel attribute (localized via classes/hox/corem/ed
itor/toolkit/property/property.properties).The
value used is the one defined in value.

<FunctionItem>

The attribute c1lass defines the class which should be used. The attribute
label (optional) defines the name of the function item.

Own classes must implement the interface hox.gui.editor.combobox.Func-
tionltem.

Example:

<Property name="Value" editorClass="ComboBoxIn
tegerEditor">

<FunctionItem class="myFunctionItem.MyInteger
Class"/>

</Property>

GroupChooserIn- This editor shows all groups defined in the CoreMedia system. One group
tegerEditor can be chosen and the ID of the group will be stored.

UserChooserin- This editor shows all users defined in the CoreMedia system. One user
tegerEditor can be chosen and the ID of the user will be stored.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/gui/editor/combobox/FunctionItem.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/gui/editor/combobox/FunctionItem.html

Appendix | Property Editors

Date Editors

The following editors are available for entering dates:

Class
DatePickEditor

|TextFieldDateEd-
itor

ComboBoxD-
ateEditor

Table 5.4. Property ed-

Description !
itors for dates

A graphical date selector.

Simple text field. This is the default editor. Using the attribute format,
the date format can be defined. The default is 'dd . MM. yyyy HH:mm'"

This editor is used to configure predefined dates which can be chosen
from a combo box. If this class is used, the attribute fixedChoice can
be added to the <Property> element. "false” will allow you to type
own entries in the combo box. "true" is default and will allow only the
predefined items. Two different sub elements of <Property> can be
chosen:

<HistoryItem>

The attribute value can be used to define a specific date. The date
format of these entries can be configured with the attribute format of
the element <Property>, with default 'dd . MM. yyyy HH:mm'. All
letters defined in the class java.text.SimpleDateFormat can
be used to define the format.

Example:

<Property name="Date" editorClass="ComboBoxDateEd
itor" format="dd.MM.yyyy">

<HistoryItem value="01.01.2001"/>
</Property>
Thus, "01.01.2001" is shown in the selection list of the combo box.

<FunctionItem>

The attribute c1ass can be used to define some variable dates which
depends on the actual date. The attribute 1abel (optional) defines the
name of the function item. To do so, the following classes can be used:

NotApplicable: No date is shown.
Tomorrow: The date of tomorrow is chosen.
Today: The date of today is chosen.

NextWeek: The date of today in a week is chosen.

CoreMedia DXP 8

Appendix | Property Editors

Class Description
NextMonth: The date of today in a month is chosen.
NextYear: The date of today in a year is chosen.
EndOfMonth: The date of the end of this month is chosen.

EndOfYear: The date of the end of this year is chosen.

The whole qualified name of the class must be used (see example below).
Own classes can be written, which must implement the interface
hox.gui.editor.combobox.Functionltem.

Example:

<Property name="Date" editorClass="ComboBoxDateEd
itor" format="dd.MM.yyyy">

<FunctionItem class="hox.corem.editor.toolkit.prop
erty.items.Tomorrow"/>

</Property>

Thus, "Tomorrow" is shown in the combo box. If you choose this entry,
the date of tomorrow is shown in the format defined in <Property>.

XML Editors

The following editors are available for XML fields:

RichTextField Editors for XML text

Text component for editing text in only one line. The text must correspond to the
coremedia-richtext-1.0.dtd. All the attributes from RichTextPane are valid.

RichTextPane

Text component for editing text which corresponds to the CoreMedia Rich Text
DTD (1ib/xml/coremedia-richtext-1.0.dtd). You can configure the Rich-
TextPane with the following attributes:

Attribute Value Default Description Table 5.5. Some attrib-
; , , : utes of the RichText-
addStyleSheet <StyleSheet Using this attribute, you can assign a Pane
Groups GroupName> style sheet group defined in the core
(<UsedOnEle media-richtext-1.0.css fileto

a property. The added style groups ap-

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/gui/editor/combobox/FunctionItem.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/gui/editor/combobox/FunctionItem.html

Appendix | Property Editors

Attribute Value Default Description
ment>, <Use pear automatically in the corresponding
dOnElement> attribute editor and in the toolbar. You
P T need to replace <StyleSheetGroup

Name> with the name of the style sheet
group as defined in the CSS file and
<UsedOnElement> with the name of
the element to which the style should be
applied. The elements p, table, tr, td, Ii,
ul, ol, a, img from the coremedia-
richtext-1.0.dtd can be used. In
addition, the special keywords inline,
block and flow can be used. inline stands
for any inline element, block for any
block element and flow for any possible
element (see Section 3.6.4, “Add to
Content Editor” [36] for details). A spe-
cial keyword cannot be combined with
any other element or keyword.

If you want to use a free text field to
enter the value of a style sheet group,
you have to add : string behind the
name of the style sheet group. Be aware,
that this free text will not be rendered
specifically, because it is not defined in
the coremedia-richtext-
1.0.css file. It will appear as ordinary
text. But you can define additional
combo box entries, for example for some
default values which will be rendered as
defined in the CSS file.

Example: addStyleSheetGroups=""
myGroupl:string(td) my
Group2:string"

showUnknown true, false true If this attribute is "true" unknown styles

Styles will be shown in the attribute editor
along with a button to remove them from
the element. If set to "false", the un-
known styles will not be shown.

nes true, false true If this attribute is set "true" you are al-
tedTablesAl lowed to use nested tables in the RichTex-
lowed tPane.

maximumTable Integer 250 This attribute defines the maximum
Cells number of table cells allowed for a newly

created table.

CoreMedia DXP 8

Appendix | Property Editors

Attribute Value Default Description

spellCheckin true, false true This attribute enables or disables spell

gEnabled checking for the rich text pane.

internallLink Document type Using this attribute, you can set a default

DocumentType document type used for the internal link
chooser. For example, if youset intern-
allLinkDocumentType="Art-
icle" only Article documents will be
shown in the chooser by default.

internallink new, replace, em- replace Using this attribute, you can configure

Target bed, other, none the default targets for internal links in
the RichTextPane

externalLink new, replace, em- new Using this attribute, you can configure

Target bed, other, none the default targets for external links in
the RichTextPane

imageDocu Document type Using this attribute, you can set a default

mentType document type used for the image docu-

ment chooser. For example, if you set
imageDocumentType="Image"
only Image documents will be shown in
the chooser by default.

The following attributes disable the respective menu items of

the RichText pane.

enableTableAttributes="false"

enableTableModifying="false"
enableTableCellModifying="false"
enableInsertTables="false"
enableTables="false"
enableClassAttributes="false"
enableTextAlignment="false"
enableNumberedLists="false"
enableBulletList="false"
enablelLists="false"

enableLanguages="false"

CoreMedia DXP 8

Appendix | Property Editors

enablelListIndention="false"
enablelListOutdention="false"
enableInternallLinks="false"
enableExternallLinks="false"
enableLinks="false"
enableInsertImages="false"
enableSubScript="false"
enableSuperScript="false"
enableStrikeThrough="false"
enableUnderline="false"
enableBold="false"
enableItalic="false"
enableRemoveTextFormatting="false"
enableFontSize="false"
enableFontColor="false"
enableFont="false"
enableBackgroundColor="false"
enableHeadings="false"

enableBlockQuote="false"

If these attributes are set "false", you can disable the respective menu items
and tools of the RichText pane. Default is "true". You must not use enab
leTables with other table settings (for example enableTableModifying),
enablelLinks with other link settings and enablelLists with other list
settings

In the following, you will find child elements of the <property> element with the
editor class RichTextPane. You can use these elements to define the transform-
ation of HTML elements of text in the clipboard into elements of the coremedia-
richtext-1.0.dtd (see Example 5.2, “Example of PasteTransformation” [90])
and to configure the file creation dialog.

This configuration affects copying within a RichtText pane as well as between an
external application and a RichText pane. HTML elements which are neither con-
figured using <PasteTransformation> norincluded in the standard configuration
(see Javadoc com.coremedia.cap.gui.richtext.RichTextPasteConfig) will be ignored.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/gui/richtext/RichTextPasteConfig.html

Appendix | Property Editors

The file creation dialogs of the RichText pane is used when you move a blob
from the file system into a RichText pane. Use the child element < NewDocument
DialogSettings> for your settings.

<NewDocumentDialogSettings>
Child elements:
Parent element: <Property>

Use the <NewDocumentDialogSettings> element if you want to customize the
file creation dialog.

Table 5.6. Attributes of

Attribute Value De- Description :
fault NewDocumentDialog-
- - Settings
createPres- true, false false If true, the preselected folder defined with
elected- preselectedResource will be created
Folder if it does not exist yet. Ignored if

preselectedResourceld isset.

preselected- Document type Name of the preselected document type. If

Type no preselected type is defined or the
preselected type is not able to store the blob
data, the first matching type will be used in

a new dialog.
preselec- Resource path Absolute path or path relative to the current
tedResource document, which defines the preselected re-

source. Alternative tothe preselectedRe
sourceld attribute. When both attributes
are given, thepreselectedResourceld
takes precedence unless no resource with the
given id exists.

preselec- Integer ID of the preselected resource. Alternative to
tedRe- the preselectedResource attribute.
sourceld Additional feature available only using the id:

Instead of specifying a folder id you may also
specify a document id. In this case the docu-
ment with the given id serves a kind of token
where new documents will be created be-
cause the document will be created in the
very same directory where the referenced
document is in.

rootFolder Folder path Name of the folder which defines the root of
the file chooser dialog. Alternative use to the
rootFolderIdattribute. If both attributes

CoreMedia DXP 8

Attribute

rootFol-
derId

upperBound

lowerBound

typePredic-
ate

resource-
Name

openDocu-
ment

fieldName

Appendix | Property Editors

De-
fault

Value

Integer

Document type

Document type

Class path

Name

true, false true

Field name

<PasteTransformation>

Description

are given, the root FolderId takes preced-
ence.

ID of the folder which defines the root of the
file chooser dialog. Alternative use to the
rootFolder attribute.

Configures the sub type of the shown docu-
ment types. That is, you will only see docu-
ment types which are super types of the
defined document type (including the spe-
cified document type unless it is abstract).
typePredicate overrides any bounds set.

Configures the super type of the shown doc-
ument types. That is, you will only see docu-
ment types which are sub types of the defined
document type (including the specified docu-
ment type unless it is abstract). typePre
dicate overrides any bounds set.

A class of type com.coremedia.com-
mon.util.Predicate<Object> with a no-argu-
ment constructor which filters the shown
document types. If you seta typePredic—
ate it overrides any upperBound or
lowerBound set.

The name of the new document. If no re-
source name is defined, the name field will
be empty. For all subsequent calls, the previ-
ously entered name will be used.

Defines the state of the Open document check
box in the dialog. If true, the newly created
document will automatically be opened.

Name of the preselected document field
where the blob should be stored. If no name
is defined or the document field is not able
to store the blob data, the first matching field
of the document type is shown.

Child elements: <TransformElement>*, <IgnoreElement>*

Parent element: <Property>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html

Appendix | Property Editors

Use the <PasteTransformation> element if you want to customize the paste
operation of the RichText pane.

Attribute Description Table 5.7. The attribute
of the PasteTransform-

extendDefault If this attribute is set to "true", the standard paste configuration ation element

will be extended by the new configuration. If it's set to "false",
the standard configuration will be replaced by the new config-
uration. Default is "true".

<TransformElement>
Child element: <Attribute>*
Parent element: <PasteTransformation>

Use this element to match the HTML element from the clipboard with the element
of the coremedia-richtext-1.0.dtd to insert.

Attribute Description Table 5.8. The attrib-

utes of the Trans-
name The name of the HTML element which should be transformed. formElement element
to The name of the element into which the HTML element should

be transformed/which will be inserted into the RichText pane.
If to is not set, the name of the HTML element will be used.
Please notice, that only elements according to the coremedia-
richtext-1.0.dtd are allowed.

<IlgnoreElement>
Child element:
Parent element: <PasteTransformation>

Use this element to define HTML elements which should not be inserted into the
RichText pane.

Attribute Description Table 5.9. Attributes of
- the IgnoreElement ele-
name Name of the HTML element to ignore. ment
recursive "false" (Default): Only the element defined in name will be ig-
nored.

"true": The element defined in name and all contained elements
will be recursively be ignored.

CoreMedia DXP 8

Appendix | Property Editors

<Attribute>
Parent element: <TransformElement>

Use this element to define an attribute of an HTML element which should be inser-
ted into the RichText pane. Attributes of an HTML element which are not matched
by an <attribute> element will be ignored. The only exception is the class at-
tribute which will always be taken over.

Attribute Description

name Name of the attribute to be taken over.

value Value, which should be assigned to the attribute defined in
name. If no value is defined, the value from the HTML element
will be used.

The following example shows how to extend the standard configuration with two
changed rules. <#1> elements will be transformed into a paragraph (<p> element)
with font size 20 and <H2> elements will be ignored.

<Documents>
<Document type="Article">
<Property name="Content" editorClass="RichTextPane">
<PasteTransformation>
<TransformElement name="H1" to="P">
<Attribute name="class" value="font-size--20"/>
</TransformElement>
<IgnoreElement name="H2" recursive="false"/>
</PasteTransformation>
</Property>
</Document>
</Documents>

PlainXmlPropertyEditor

A component to edit raw XML of arbitrary grammar with a simple plain text editor.
It's useful for debugging, troubleshooting and small modifications without comfort.
The editor displays XML tags and content as simple text. When the user tries to
save invalid XML, a detailed XML error message appears.

<Documents>
<Document type="XmlExample">
<Property name="Xml" editorClass="PlainXmlPropertyEditor"/>

</Document>
</Documents>

<DocumentTypes>
<DocumentType name="XmlExample">
<PropertyType name="Xml">
<ModelClass

CoreMedia DXP 8

Table 5.170. Attributes
of the Attribute ele-
ment

Example 5.2. Example
of PasteTransforma-
tion

Example 5.3. PlainXml-
PropertyEditor configur-
ation example

Appendix | Property Editors

class="hox.corem.editor.toolkit.property.richtext.

impl.ConcurrentXmlPropertyModel" />
</PropertyType>
</DocumentType>
</DocumentTypes>

Blob Editors
The following editors are available for blob fields:

Table 5.11. Editors for

Class Description
blob fields

Aggregatinglm- This editor displays blobs of type image/gif, image/png or image/jpeg

ageBlobEditor in the property as an image. In addition, you can define other properties
which contain scaled versions of the blob. This blobs will be computed
from the original blob by the CoreMedia Server. The size and type of the
scaled images is defined in the imageconverter.properties file.
The property defaultExtensionin imageconverter.proper
ties defines the type of the scaled image. jpeg for example would create
a JPEG image, see the ImageMagick documentation for all supported
formats. You can use the following attributes to define scaled versions
of the blob:

onlineProperty="<PropertyName>": Sets the name of
the property which should be converted when the blob contained
in the property of the AggregatinglmageBlobEditor changes. The

size of the image is defined withthe onlineWidthand online
Heigth properties of the imageconverter.properties

file.

originalProperty="<PropertyName>": Sets the name
of the property which should be converted when the blob contained
in the property of the AggregatinglmageBlobEditor changes.

thumbnailProperty="<PropertyName>":Setsthe name
of the property which should be converted when the blob contained
in the property of the AggregatinglmageBlobEditor changes. The
size of the image is defined with the thumbnailWidth and
thumbnailHeight properties of the imageconvert
er.properties file.

Example:
<Document type="Photo">

<Property name="ScannedPhoto" editorClass="Aggreg
atingImageBlobEditor" thumbnailProperty="Preview"
onlineProperty="0Online" />

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/AggregatingImageBlobEditor.html

Appendix | Property Editors

Class Description
</Document>

BasicBlobEditor ~ Generic editor which only displays blob size and content type. Files from
the file system can be loaded and saved. Using the property WebDAVUr i
Prefix, the blob can be opened directly in the associated WebDAV ap-
plication. For this, the property has to be set to the URL prefix for the
WebDAV server. If a prefix like http://Server:8001/webdav/ is
used on a blob in a document /Inbox/Test.doc, thenan URL ht
tp://Server:8001/webdav/Inbox/Test.doc for WebDAV
lookup is used.

ImageBlobEditor Displays blobs of type image/gif, image/png or image/jpeg as an image.
If the size of an image exceeds the document window size, it will be
scaled down. You can use the attribute imageScaledForD
isplay="false" to disable the behavior.

TextBlobEditor Allows editing of blobs of type text/* in a text field.

LinkList Editors

The following editors are available for editing linklist fields:

ComboBoxLinkListEditor ;g;;‘;’sfo’ LinkList

Allows selection of a document from a ComboBox, whose content consists of the
documents of a folder. The path attribute determines the path of this folder.
Automatically, only documents of appropriate type are shown. The emptySelec
tion attribute configures the text displayed if no document is linked.

As with the GenericLinkListEditor, display is configured witha LinkListRenderer.

FolderLinkListEditor

A FolderLinkListEditor displays two JLists side by side. The left list contains the
resources from the link list of the document. The right list contains resources that
are determined by the path parameter which points to a CoreMedia folder. All
documents in this folder can be selected and thus be inserted into the documents
link list.

The following attributes can be used to configure the editor:

path: The path to the folder whose content will be displayed in the folder
list.

showFolderListOnCheckout: Indicates whether the folder list is shown
when the document is checked out (true). If set to false, only the link list is
displayed and the user must click a button to open the folder list.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/GenericLinkListEditor.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/FolderLinkListEditor.html

Appendix | Property Editors

listHeight: Sets the height in pixel of the two lists. If the lists are longer,
ascrollbar is displayed. The default value is 100 which displays approximately
five list entries with a standard font size. For ten lines set the value to 180.

In addition, you can configure the lists using the following sub elements. Use the
attribute class to define the classes to use:

LinkListRenderer: Define a renderer which renders the content of the
left link list.

FollderListRender: Sets the renderer for the right folder list. If not set, a
default render is used to display an icon and the document name.
FollderListPredicate : Sets a predicate to filter the right folder list. If
not set, all documents matching the given link list element type are displayed.
FolderListComparator : Sets a comparator to sort the right folder list.
If not set, the folder list is sorted by document name.

Example:

<Property name="TestLinkList" editorClass="FolderLinkListEditor"
path="/" listHeight="180" >

<LinkListRenderer class=
"hox.corem.editor.toolkit.property.ImageLinkListRenderer"
property="TestBlob"/>

</Property>

GenericLinkListEditor

Displays a list of the linked documents and allows links to be added/deleted/moved.
Display of the documents is determined by the LinkListRenderer. This can be
determined with a child element <LinkListRenderer class="Renderer
class">.

The default is DocumentTypeLinkListRenderer, which displays document type icon
and document name.

Other renderers are DocumentStateLinkListRenderer and ImageLinkListRenderer.
The DocumentStateLinkListRenderer displays a state icon and the document name.
The ImageLinkListRenderer displays B1ob properties of the linked documents. The
Blob property which should be used is determined by the property attribute of
the LinkListRenderer element.

Example:

<LinkListRenderer class="ImagelLinkListRenderer" prop
erty="small" />

You can configure the file chooser and file creation dialogs of the GenericLink
ListEditor. Use the child element <DialogSettings> with the two respective

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/DocumentTypeLinkListRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/DocumentStateLinkListRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/DocumentStateLinkListRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/property/ImageLinkListRenderer.html

Appendix | Property Editors

child elements <NewDocumentDialogSettings> OF <DocumentChooserSet
tings>. With the following attributes you can parameterize the dialogs:

Attribute

createPres-—
elected-
Folder

preselected-
Type

preselec-

tedResource

preselec-
tedRe-
sourceld

rootFolder

rootFolderId

upperBound

Value

true, false

Document type

Resource path

Integer

Folder path

Integer

Document type

Default Description

false

If true, the preselected Folder defined
withpreselectedResource will be
created if it does not exist yet. Ignored
if preselectedResourcelIdisset.

Name of the preselected document type.
If no preselected type is defined or it
does not match the LinkList require-
ments, the first matching type will be
used in a new dialog.

Absolute path or path relative to the
current document, which defines the
preselected resource. Alternative to the
preselectedResourceldattribute.
If both attributes are given, the
preselectedResourceId takes
precedence unless no resource with the
given id exists.

ID of the preselected resource. Alternat-
ive to the preselectedResource
attribute. Additional feature available
only using the id: Instead of specifying a
folder id you may also specify a docu-
ment id. In this case the document with
the given id serves a kind of token where
new documents will be created (or docu-
ments will be chosen from) because the
document will be created in (chosen
from) the very same directory where the
referenced document is in.

Name of the folder which defines the
root of the file chooser dialog. Alternative
usetothe rootFolderId attribute. If
both attributes are given, the rootFol
derId takes precedence.

ID of the folder which defines the root
of the file chooser dialog. Alternative use
to the rootFolder attribute.

Configures the sub type of the shown
document types. That is, you will only
see document types which are super

Table 5.12. Attributes
of NewDocumentDia-
logSettings and Docu-
mentChooserSettings

CoreMedia DXP 8

Appendix | Property Editors

Attribute Value Default Description

types of the defined document type (in-
cluding the specified document type un-
less it is abstract). typePredicate
overrides any bounds set.

lowerBound Document type Configures the super type of the shown
document types. That is, you will only
see document types which are sub types
of the defined document type (including
the specified document type unless it is
abstract). typePredicate overrides
any bounds set.

typePredic- Class path A class of type com.coremedia.com-

ate mon.util.Predicate<Object> with a no-
argument constructor which filters the
shown document types. If you set a
typePredicate it overrides any up
perBound or lowerBound set.

For the <NewDocumentDialogSettings> element you can also use the following

two attributes:

Table 5.13. More attrib-

Attribute Value De- Description
fault utes of NewDocument-
DialogSettings
resource- Name The name of the new document. If no re-
Name source name is defined, the name field will

be empty. For all subsequent calls, the previ-
ously entered name will be used.

openDocu- true, false true Defines the state of the Open document check
ment box in the dialog. If true, the newly created
document will automatically be opened.

Example

<Document type="Dish">
<Property name="pictures" editorClass="GenericLinkListEditor">
<DialogSettings>
<NewDocumentDialogSettings
preselectedType="Picture"
preselectedResource="/MenuSite/Fish"
rootFolder="/MenuSite"
upperBound="Picture"/>
</DialogSettings>
</Property>
</Document>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html

Appendix | View Classes

Figure 5.1. Configured
I Create a new document @ file creation dialog

Fleasze chooze the document type and enter
a harme far the nevy documert inthe folder
"Fizh".

Falder: |.fru1&nu5'rtEJFish | E]

Type:

Matre: | |

Open & dacument

| create | [cancel |

5.1.2 View Classes

Example 5.4. Example
<Documents>

<Document type="Article" viewClass="mypackage.MyViewClass"> ﬁrtheconﬁgguﬂonof
. a document view

</Document>
</Documents>

Document view classes define the look of the document window of the Site Manager.
You can write own document view classes, which must be a subclass of hox.cor-
em.editor.toolkit.document.AbstractDocumentView or hox.corem.editor.gener-
ic.GenericDocumentView. The following classes are predefined:

Table 5.14. View

Class Description classes
TabbedDocu- The class hox.corem.editor.generic.TabbedDocumentView defines a tabbed
mentView document view with different tabs. Figure 5.2, “Example of a tabbed

document view” [97] shows an example of a tabbed view. The tabs can
be configured using the subelement <Tab>. Using the attribute name,
a label can be attached to the tab. The properties of a document belonging
to a tab can be configured using <Property> as a subelement of
<Tab>. For an example, see the description of the element <Tab>. The
position of the tabs can be configured using the attribute tabPlace

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/document/AbstractDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/document/AbstractDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/TabbedDocumentView.html

Appendix | Predicate Classes

Class Description

ment of the element <Document>. The values top, bottom, left and
right are allowed.

Z: CarpDish - /MenuSite/Fish - Document :2
File Edt Format Links ation Window

Figure 5.2. Example of

Lhw B v 200 O 96 & 160 BIA = B % a.tabbed document
A AR = g k== view

[Coish @ checked ot lml
A calbies——— 3 price: [

A ingrecients: |

Grams |

Pos 0 0Chars

5.1.3 Predicate Classes

Example 5.5. Example

<Filter name="deleted-filter"> .
<Predicate class="DeletedPredicate"/> jbrtheusleaﬂ“?r
</Filter>

Predicate classes enable selective display of objects. Depending on the context in
which the <predicate> element is used, different object types can be selected:

<Filter>

If the <Predicate>elementis usedin a<Filter>element, the documents
shown in the document overview of the Site Manager can be filtered, due to
different conditions. Thus, the objects to be filtered are documents of the
type hox.corem.editor.proxy.DocumentTypeModel.

<Treefilter>

If the <Predicate> element is used in a <Treefilter> element, the
folders shown in the folder view of the Site Manager can be filtered. The ob-
jects to be filtered are folders of the type hox.corem.editor.proxy.Resource-
Holder.

<DocumentTypes>

If @ <Predicate> Or <DocumentTypePredicate> element is used in a
<DocumentTypes> element, the document types which can be created,
moved, copied or selected in the document choosers of the Site Manager are
filtered. Thus, the objects to be filtered are document types hox.corem.edit-
or.proxy.DocumentTypeModel.

<Processes>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html

Appendix | Predicate Classes

If the <Predicate> element is used in a <Processes> element, the
workflows offered for initiating in the Menu File|New workflow... are
filtered. The objects to be filtered are workflows of the type com.core
media.workflow.WfProcess.

<Workflow>

If the <Predicate> element is used in a <workflow> element, the work-
flows and tasks shown in the sub views My tasks, Offered tasks and My work-
flows of the Workflow window can be filtered, if the <Predicate> element
is used in a <Workflow> element. The objects to be filtered are com.core-
media.workflow.WfProcess and com.coremedia.workflow.WfTask.

Filtering can occur on both the client side and the server side. The predefined filters
only run on the server side, while customized filters must run on the client side.
This is determined by the remote attribute of the <Filter> element. The default
value "true" indicates server-side selection.

Predicates for filtering document types

Default Predicate Filtered objects Description Table 5.15. Predicate
classes for filtering

GenericDocument- Document types: The default predicate filters the document documents types

TypePredicate) types which are passed to the predicate class
hox.corem.edit- and sorts the remaining document types in
or.proxy.Document- 55hahetic order. Own predicates must imple-
TypeModel ment the interface com.coremedia.com-

mon.util.Predicate<Object>

Predicates for filtering folders

Default predicate Filtered objects Description Table 5.16. P rec?icate
classes for filtering
GenericTreePredicate Folders: The default comparator filters without read folders

rights. Own predicates must implement
com.coremedia.common.util.Predicate<Ob-
ject>.

hox.corem.edit-
or.proxy.Resource-
Holder

Predicates for filtering workflows and tasks

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfTask.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentTypePredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentTypePredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericTreePredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html

Appendix | Predicate Classes

Default predicate Sorted objects Description Table 5.17. Predicate
) . . . classes for filtering
GenericProcessPredic- Workflows: The default predicate filters workflows for workflows
ate . which no creation right is granted to the user.
com.coremediawork- - gy predicates must implement com.core-
flow.WfProcess media.common.util.Predicate<Object>.
DefaultWorklistPredic- Workflows: The default predicate filters tasks and work-
ate flows by the three categories: my tasks,

com.coremediawork- - oftered tasks and my workflows

flow.WfProcess

Own predicates must implement

java.lang.Cloneable and mustextend

com.coremediawork- hox.gorem.editor.workflow.AbstractWork!ist—

flow.WfTask Predicate and should extend the default filter
hox.corem.editor.workflow.DefaultWorklist-
Predicate for convenience.

Tasks:

Predicates for filtering documents

The following filters are predefined and can be configured without stating the ap-
propriate package. They can only be used for <Predicate> elements within the
<Filter> element. For each predicate, you need to define an attribute name in
the <Filter> element. Otherwise, no name for the filter will be shown in the
View|Filter menu. You will find the names to use in the next table.

Class Description Table 5.18. Predicate
classes for filtering

DatePredic- Filters out documents which are older than the current date minus an documents

ate offset which can be set, using the attribute relativeOffset. The
unitof relativeOffset is milliseconds. You have to set the name of
the document property to check, using the attribute name.

Example:
<Explorer name="my-configurable-explorer">
<Filter name="7-days-modified-date-filter>

<Predicate class="DatePredicate" name="modifica
tionDate " relativeOffset="604800000"/>

</Filter>

MapPredic- Filters out specially defined documents. To do so, two sub elements of
ate <Predicate> are provided.

<FilterMap>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericProcessPredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericProcessPredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/DefaultWorklistPredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/DefaultWorklistPredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfTask.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfTask.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/AbstractWorklistPredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/AbstractWorklistPredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/DefaultWorklistPredicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/DefaultWorklistPredicate.html

Appendix | Predicate Classes

Class Description

In this element, the attribute document can be used to assign the doc-
ument type which should be filtered and the attribute property can
be used to assign the property which should be evaluated.

<FilterSet>

In this element, the attribute £ilter can be used to define the string
which should be filtered. Only exact matches will be filtered, the check
is case-sensitive.

Example:
<Predicate class="MapPredicate">

<FilterMap document="Article" property="Head
line"/>

<FilterSet filter="Sports"/>
</Predicate>

All documents of type "Article" with exactly the string "Sports” in the
property Headline would be filtered.

If you define a name for this filter in the <Filter> element, you need
to create a custom bundle (see Section 4.10, “Localization” [73] for loc-
alization) containing this name.

Undeleted- Filters deleted documents.

Predicate
You need to set the attribute name of the <Filter> element to un-

deleted-filter.

Published- Only displays published documents.

Predicate
You need to set the attribute name of the <Filter> element to "pub-
lished-filter".
Unapprove- Displays documents which have been neither published nor approved.
dUnpub- .
lishedpre— You need to set the attribute name of the <Filter> element to "unap-
dicate provedunpublished-filter".
ToBe- Displays documents which have been moved, renamed, marked for dele-
ApprovedPre- tion or where the latest version has not been approved.
dicate
You need to set the attribute name of the <Filter> element to "tobe-
approved-filter".
ToBePub- Displays documents which have been moved, renamed, marked for dele-
lishedPre- tion or for which a new version exists. This has been approved but not
dicate published yet.

CoreMedia DXP 8

Appendix | Column Classes

Class Description

You need to set the attribute name of the <Filter> element to "tobe-
published-filter".

own Predicates for filtering documents

Table 5.19. Program-

Default Sorted objects Description ! :
predicate ming own predicates
None Documents: Own predicates must implement com.coremedia.com-

. mon.util.Predicate<Object>.
hox.corem.edit-

or.proxy.DocumentVer-
sionHolder

5.1.4 Column Classes

Example 5.6. Example

<TableDefinition>
<ColumnDefinition name="Text" class="StringColumn" for the use of a column
weight="1.0"> class

<DisplayMap document="Text" property="Headline"/>
<DisplayMap document="Image" property="AltText"/>
<DisplayMap document="*" property="name_ "/>

</ColumnDefinition>
</TableDefinition>

Column classes define how content is displayed in columns. A distinction can be
made between column classes for different content:

Predefined content

These classes display the content of predefined properties of a document,
such as DocumentTypeColumn, DocumentVersionColumn, ResourceDisplace-
mentColumn and PathColumn.

Different fields according to the document type

These classes display the content of document properties which are filled
by the user. The column classes are configured by means of multiple child
elements <DisplayMap document='document type' property='prop
erty name'/>. The type "*' specifies a field which should be shown for all
document types for which no field is explicitly given.

Content for workflows

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentVersionHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentVersionHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentVersionHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/DocumentTypeColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/DocumentVersionColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/PathColumn.html

Appendix | Column Classes

These column classes display predefined content of workflows. The classes
are shown in the following table.

Alternatively, a renderer can be set for each column class. The renderer carries out
the display itself. For this purpose, an element, <Renderer class="Renderer class"/>
must be embedded in the ColumnDefinition element. The renderer must be a
subclass of the class hox.corem.editor.toolkit.columnrenderer.LayoutColumnRen-
derer. See the APl documentation.

The standardized column classes (IntegerColumn, StringColumn, DateColumn, ...)
as well as DocumentTypeColumn, DocumentVersionColumn, ResourceDisplace-
mentColumn and PathColumn define which contents are held in the columns. Sort
criteria can be chosen by a click on the column title bar, indicating the content
type. Another click reverses the sort order.

Column classes for workflows

Class Description Table 5.20. Column
classes for workflows

hox.corem.edit- Shows some information about the Wflnstance (task or pro-

or.work-— cess) in the workflow list.

flow.columns.Work-

listDetailColumn

hox.corem.edit- Shows some process information in the workflow list. The

or.work- process is either the Wflnstance itself or the parent process

flow.columns.Work- incasethe Wfinstance is a task.

listProcessColumnn

Column classes for predefined columns

Class Field type Table 5.21. Column
classes for predefined

DocumentTypeColumn Type of the document. Exists implicitly in every document; columns

sorted according to document type.

DocumentVersion- Version of the document. Exists implicitly in every document.
Column

ResourceDisplace- State of the document. Exists implicitly in every document;
mentColumn sorted according to the importance.

PathColumn Path of the document. Exists implicitly in every document.

Column classes for user defined document properties

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/IntegerColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/StringColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/DateColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/DocumentTypeColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/DocumentVersionColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/ResourceDisplacementColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/PathColumn.html

Appendix | Column Classes

Class Field type Table 5.22. Column
Col fault cl N her class is defi classes for user defined
GenericColumn Default class when no other class is defined. Is not sorted. document properties
IntegerColumn, String- Basic properties; sorted according to value.
Column, DateColumn
SgmlTextColumn SgmlTextProperty; is not sorted.
BlobColumn BlobProperty; sorted according to the size of the blob.
ImageColumn BlobProperty with MIME type Image; sorted according to
size.
LinkListColumn LinkListProperty; sorted according to document type.

Some of the properties which exist implicitly in all documents can be addressed
using the field names in the property attribute given in the following table:

Property name Java type Description Table 5 : 23. Implicit
properties

id Integer Resource ID

name_ String Name of the resource in its folder

lastName String The last name of the resource, that is, the
name before the last renaming

folderId_ Integer ID of the folder in which the resource lies

baseFolderId Integer The ID of the move delimiting folder from
which this resource is a direct child of

creationDate Calendar Creation date of the resource

creator UserModel User who created the resource

creatorId Integer The ID of the creator of the resource

documenttype String The name of the document type of the docu-
ment

modificationD- Calendar Date of the last modification of the resource

ate_

modifier UserModel User who last modified the resource

modifierId Integer ID of the modifier

isDeleted Boolean Is the resource marked as deleted?

isCheckedOut Boolean Is the resource checked out for editing?

version Integer Version number

CoreMedia DXP 8

Appendix | Renderer Classes

Property name Java type Description

latestVersion_ Integer Same as version_

isToBeWith- Boolean Denotes if the resource is to be withdrawn

drawn_

isLive Boolean Is true if the resource exists on the Live
Server.

isNew Boolean Is true if the resource has never been present

on the Live Server.

isMoved Boolean Is false if the resource is not in the recycle
binand FOLDER_ID is different from
LAST_FOLDER_ID

isRenamed Boolean Is true if NAME is not equal to LAST NAME
isArchived Boolean Is true if the FOLDER 1D is the recycle bin
isUnarchived Boolean Is true if the LAST FOLDER_IDis the re-

cycle bin and current FOLDER_ID is notin
the recycle bin

latestApproved- Integer Dynamic property that is only valid for quer-
Version ies. Denotes the latest approved version.
latestPub- Integer Dynamic property that is only valid for quer-
lishedVersion_ ies. Denotes the latest published version.
placeApprovalD- Calendar The date of the place approval

ate_

place- Integer The 1D of the place approver
ApproverId

placeApprover UserModel Denotes the place approver

isPlace- Boolean Denotes if the place of the resource is ap-
Approved proved

syncDate Calendar The date of the last synchronization, that is,

publication to the Master Live Server

syncerId Integer The 1D of the syncer

5.1.5 Renderer Classes

Example 5.7. Example

<ColumnDefinition name="Image" class="ImageColumn"> _
<Renderer class="ImagelLayoutColumnRenderer" width="50" fbrtheuseofal?nder
height="50"/> er class

<DisplayMap document="Picture" property="thumbnail"/>
</ColumnDefinition>

CoreMedia DXP 8

Appendix | Renderer Classes

<ColumnDefinition name="Head">
<Renderer class="StringPropertyLayoutColumnRenderer"/>
<DisplayMap document="Article" property="headline"/>

</ColumnDefinition>

Renderer classes can be used to display the content of document fields in columns
of the Explorer window, Query window and Resource chooser window. The pre-
defined renderers are listed in the next table. For own renderer classes, you need
to extent the class hox.corem.editor.toolkit.table.columnrenderer.LayoutColum-

nRenderer.

Class

GenericPropertyLayoutColum-
nRenderer

StringPropertyLayoutColum-
nRenderer

SgmiTextPropertylLayout-
ColumnRenderer

BlobPropertyLayoutColum-
nRenderer

ImageLayoutColumnRenderer

LinkListPropertyLayoutColum-
nRenderer

DisplacementColumnRender-
er

ImpliedPropertyLayoutColum-
nRenderer

CoreMedia DXP 8

Description

Combines the ImageLayoutColumnRenderer, LinkListProper-
tyLayoutColumnRenderer, SgmliTextPropertyLayoutColum-
nRenderer and StringPropertyLayoutColumnRenderer.

Usable for string, integer, Boolean and date fields. Displays
plain text.

Usable for Sgm1Text fields. With the attribute dis
playLength, you can define the maximum length of the
text to display. Default is "80".

Usable for BlobProperty fields. The size of the blob in KB is
shown.

Usable for images of type . jpegand .gif upto 10kBsize.
The width and height (in pixel) of the image can be defined
with the attributes width and height.

Usable for LinkList fields. Two modes can be applied, using
the attribute displaySummary. "True" (the default) will
only show the number of links contained in the LinkList field.
"False" will display one or more links included in the field.
You can define the maximum number of shown links using
the attribute noRenderedLinks (default is "1"). If you
choose "0", all links will be shown.

Shows the displacement status of a document.

Usable for implied properties of the document (see the table
in this chapter above). Display the property as plain text and
optionally a state or document type icon using the attributes
displayStateIconanddisplayTypelcon respect-
ively. If you choose both icons to show, only the state icon
will be displayed.

Table 5.24. Provided
Renderer classes of
CoreMedia CAP

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/ImageLayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LinkListPropertyLayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LinkListPropertyLayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/SgmlTextPropertyLayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/SgmlTextPropertyLayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/StringPropertyLayoutColumnRenderer.html

Appendix | Initializer Classes

5.1.6 Initializer Classes

Example 5.8. Example

<DocumentType name="article"> PRy
<PropertyType name="Author"> for the use of an initial
<Initializer class="myInitializer" myattribute="MyValue"/> 1zer

</PropertyType>
</DocumentType>

Initializer fill the fields of a newly created document with default values. Thus, an
initializer is defined in the element <PropertyType> of the XML file. A Generi
cInitializer is provided which fills String, Integer, Date and SGML text fields
with a default value. In addition, an own initializer class can be used which must
be declared via the element <Initializer>. Own initializers can be written,
which must implement the interface hox.corem.editor.initialization.Ini

tializer.
Table 5.25. Initializer

Initializer Description classes

Genericlnitializer This initializer fills String, Integer, Date and SGML text fields with a default
value. The initializer is called implicitly, if the attribute initialvalue
of the element < PropertyType> is used. That is, the initializer is
not explicitly specified via the attribute class. Thus, it is not allowed
to use this initializer with the attribute class. If you want to initialize
a Date field, you can use the following date formats:

yyyy-MM-dd

An 1S08601 format according to java.text.SimpleDate

Format.
yyyy-MM-ddTHH:mm:ss

An 1SO8601 format according to java.text.SimpleDate
Format.
dd.MM.yyyy HH.mm

This format is locale dependent. It only works with a German locale.

Example:

A generic initializer that initializes the property "limit" with the value
"o

<DocumentType name="DynamicCollection">
<PropertyType name="1limit" initialValue="20"/>

</DocumentType>

LinkListInitializer This initializer fills a LinkList field with a document. Either the document
defined via the path attribute is used or - if you omit the document and

CoreMedia DXP 8

Appendix | Validator Classes

Initializer Description

enter only the folder - the first document with the appropriate document

type found in the folder given via the attribute path is used.

Example:

<Initializer class="LinkListInitializer"
path="/default"/>

5.1.7 Validator Classes

<DocumentType name="article">
<PropertyType name="Author">
<Validator class="NotEmpty2"/>
</PropertyType>
</DocumentType>

When a document is checked in, validators test whether certain conditions are
fulfilled. At the present time, four validators are delivered with the Site Manager.

These check, whether a field

is filled,
is filled with a certain pattern,
contains an integer in a specified range

A link list field can be checked for a minimal, maximal number of entries
and for unique entries. In addition, the allocation of a linklist field can be
checked.

Another class can be used to combine several validators and one always validates
to "true”.

In addition, own validator classes can be written. These classes implement the in-
terface hox.corem.editorvalidation.Validator2 and must be specified via the element
<Validator>.

Validator Description

SetValidat- Using this class several validators can be combined as subelements Val-
or2 idator of the element Validator. SetValidator2 uses the Validator2 interface
and replaces the deprecated SetValidator class.

Example:

CoreMedia DXP 8

Example 5.9. Example
for the use of a validat-
or

Table 5.26. Validator
classes

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/SetValidator2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/SetValidator.html

Appendix | Validator Classes

Validator

NotEmpty2

Genericval-
idator

MinMaxIn-
tegervalid-
ator

LinkListval-
idator

Description

<DocumentType name="Text">

<PropertyType name="Content">

<Validator class="SetValidator2">

<Validator class="my.very.own.TextValidator"/>
<Validator class="my.very.own.SpellValidator"/>
<Validator class="my.very.own.AddValidator"/>
</Validator>

</PropertyType>

</DocumentType>

This validator checks whether entries have been made in a field. If the
field is empty, an error message is created and the document is not ac-
cepted for checking in. The validator must be named as the value in the
Attribute class of the element <Validator>. NotEmpty2 uses the
Validator2 interface and replaces the deprecated NotEmpty class.

This validator checks whether a field is filled with the appropriate pattern.
If the entry is wrong, an error message is created and the document is
not accepted for checking in. The validator is called implicitly, if the at-
tribute validPattern of the element <PropertyType> is used.
As a valid Pattern, any regular expression can be used (see the element
<PropertyType> in Section 5.2.3, “Configuring Document

Types” [129]).

This validator checks whether a field is filled with an integer in the appro-
priate range. If the entry is wrong, an error message is created and the
document is not accepted for checking in. This validator must be set with
the class attribute within the element <vValidator>.The min and max
values can be provided with the attributes min and max.

Example: <Validator class="MinMaxIntegerValidator"
min="1" max="10"/>

This validator checks whether a linklist field is filled with a minimum
(attributeminLength) or a maximum (attribute maxLength) number
of entries. It also checks if a field is filled with unique entries only (attrib-
ute uniqueEntries) and if the entries are all below a specified path
(attribute path).

Example: <Validator class="LinkListValidator" min
Length="1" path="/looks">

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/NotEmpty2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/Validator2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/validation/NotEmpty.html

Appendix | Comparator Classes

Validator Description

Thus, at least one entry must be contained in the linklist field and the
documents belonging to the entries must be located below the folder

/looks.
Al- This validator always validates to "true". If you use multiple editor XML
waysTrueVal- configuration files (see Chapter 3, Operation and Configuration [18]), you
idator can use the validator to override other validators.

5.1.8 Comparator Classes

<Editor>
<DocumentTypes>
<Comparator class=
"hox.corem.editor.generic.GenericDocumentTypeComparator" />

</DocumentTypes>
<Explorer name="FirstExplorer">
<TreeSorter>
<Comparator class="my.comparator"/>
</TreeSorter>

</Explorer>
</Editor>

A comparator is used for sorting objects. There are different comparators for
sorting different object types:

Document types shown in the File|New resource menu in the Site Manager.

Columns
Folders shown in the folder view of the Site Manager.

Warkflows shown in the File|New workflow menu in the Site Manager.

Comparators for sorting document types

Default comparator Sorted objects Description
GenericDocument- Document types: The default comparator sorts the document
TypeComparator types in alphabetic order. Own comparators

hox.corem.edit-
or.proxy.Document-
TypeModel

must implement the interface
java.util.Comparator

Server side comparators for sorting rows

CoreMedia DXP 8

Example 5.70. Ex-
ample for the use of a
Comparator

Table 5.27. Comparat-
ors for document types

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentTypeComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentTypeComparator.html

Appendix | Comparator Classes

For rows, there exists no default comparator. A row can be sorted according to the
different columns which are shown. Own comparators must implement hox.cor-
em.editor.toolkit.table.NamedDocumentVersionComparator. The following table
shows the predefined column comparators which are implicitly used by the provided
column classes.

Comparator Sort order Table 5.28. Server-side
- — comparators for sort-
BlobComparator Size of file, if equal the MIME type. ing rows
BooleanComparator True > false
DateComparator Chronological
DocumentVersionComparator Version
IdComparator Numeric
IntegerComparator Numeric
LinkListComparator Document type in alphabetic order, if equal
the number of list entries.
NameComparator Alphabetical
DocumentPathComparator Alphabetical
ResourceDisplacementComparator Sort order:

1. Published and deleted

. Published and moved

. Published and removed

. New and marked for deletion
. Moved out of trash

New

. All others, if equal document type

StringComparator Alphabetical

DocumentTypeComparator Alphabetical

Client side comparators for sorting rows

For rows, there exists no default comparator. A row can be sorted according to the
different columns which are shown. Own comparators must implement hox.cor-
em.editor.toolkit.table.NamedDocumentVersionComparator. Client side comparators
get objects of types hox.corem.editor.proxy.DocumentVersionHolder. The following
table shows the predefined column comparators which can be used on the client
side.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/NamedDocumentVersionComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentVersionHolder.html

Appendix | Comparator Classes

Comparator
NameComparator
NullComparator
StringComparator

TypeComparator

Comparators for sorting folders

Default comparator Sorted objects

GenericTreeComparat- Folders:

or .
hox.corem.edit-

or.proxy.Resource-
Holder

Comparators for sorting workflows

Default comparator Sorted objects

GenericProcessCom- Workflows:

parator .
com.coremedia.work-

flow.WfProcess

CoreMedia DXP 8

Sort order

Alphabetical
Alphabetical
Alphabetical
Alphabetical

Description

The default comparator sorts the folders in
alphabetic order. Own comparators must im-
plement java.util.Comparator.

Description

The default comparator sorts the workflows
in alphabetic order. Own comparators must
implement java.util.Comparator

Table 5.29. Client-side
comparators for sort-
ing rows

Table 5.30. Comparat-
ors for sorting folders

Table 5.31. Comparat-
ors for sorting work-
flows

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/ResourceHolder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericTreeComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericTreeComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/workflow/WfProcess.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericProcessComparator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericProcessComparator.html

Appendix | Configuration Possibilities in the XML Files

5.2 Configuration Possibilities in the XML Files

The Site Manager can be configured with the settings in the XML files (see above).
Their default location is the directory <InstallDirectory>/properties/corem.
Customize the editor, by adjusting the following elements:

Enter a user name and a password for the login. See element <Editor>.

Select the language and country settings which should be used, preferably
located in editor-startup.xml. See element <Locale>.

Circumvent the standard login window with your own authentication factory.
See element <AuthenticationFactory>.

Determine which Web Extensions such as a preview should be used. See
element <wWebContext>.

Determine which browser should be used. See element <WebBrowser>.

Select and configure the appearance of the fields in the document overview
of the main window, of the query window and of the selection window for
internal links. See element <Explorer>.

Determine the filters used on the documents in the document overview of
the main window. See element <Filter>.

Determine the filters and sorting algorithms affecting the folders in the
folder overview. See elements <TreeSorter>, <TreeFilter>.

Set a factory for client side properties. See element <PropertyModelFact
ory>.

Define multiple views for the document overview of the main window, which
can be selected with the menu item View|Display. See element <Explorer>.
Determine which fields of a document type should be shown in the document
window. See element <Documents>.

Determine which document types should be shown in File|New. See element
<DocumentTypes>.

Define initializer and validators for the fields of newly created documents.
See element <DocumentTypes>.

Set certain conditions for these fields (editable, obligatory field ...). See ele-
ment <Property>.

Allocate certain editors to the fields and in this way, for example, define a
selection field with certain preset values. See element <Property>.
Enable or disable the spell checker. See element <SpellChecker>.

Configure the class for language determination of a property used by the
spell checker. See element <PropertyLanguageResolverFactory>.
Configure the appearance of the workflow. See elements <Workflow>,
<Processes>.

Enable or disable the remote control of the editor. See element <Remote
Control>.

CoreMedia DXP 8

Appendix | General Configuration

A formal description of the syntax of this XML file can be found in the corresponding
DTD in <InstallationDir>/1lib/xml/coremedia-editor.dtd. The XML
files must obey the DTD, but are not validated against the DTD. Find the default
editor.xml fileinthe editor-components/editor module in the development
workspace of CoreMedia Project.

In the following section, the configuration of the Site Manager via the file edit
or.xml is described.

The BeanParser, that is used to parse the Site Manager configuration allows you
to configure all bean properties of the beans that are introduced in the following.
Since not all configuration hooks will be explained, it's always a good idea to
consult the Javadoc and discover all configuration possibilities.

5.2.1 General Configuration
Using these elements, some general features can be configured.
<Editor>

Child elements: <AuthenticationFactory>, <DocumentTablelLayout>?,
<Locale>?, <Preview>, <PropertyModelFactory>?, <RemoteControl>?
<DocumentTypes>?, <Documents>?, <Explorer>*, <Re
sourceChooser>?, <Query>?, <Search>?, <SpellChecker>, <Proper
tyLanguageResolverFactory>, <ResourceNamingFactory>?, <Work
flow>?, <Processes>?, <FrameFactory>?, <WebBrowsers>, <WebCon
text>*

Parent elements:

Example 5.11. Ex-

: : —_n " : S =T " : —_n " .
<Editor loginName="test" loginDomain="test loginPassword="test anuﬂefbrtheEdnor
loginImmediate="true"> element in editor-star-
: tup.xml

</Editor>

You can enter user name and password using the element <Editor>. The login
window of the Site Manager is automatically filled with these data. If you set the
attribute loginImmediate="true", this login info will immediately accepted
and the login will proceed. The settings for the Editor element must be located in
editor-startup.xml.

CoreMedia DXP 8

Attribute

class

loginName

loginPass-
word

loginDomain

loginImmedi-
ate

showCur-
rentUser

startup

startupMode

enableEx-
plorer

enableDir-
ectPublica-
tion

Appendix | General Configuration

Description

This attribute is used to enter the editor class to use. Default is
hox.corem.editor.generic.GenericEditor.

This attribute is used to enter the default name for login. If no name is
entered, the name from the environment is used. You can always change
the name during login, it is just a preset. If a login name should be pre-
defined, it must be set in the editor-startup.xml file. If a global
editor.xml fileis used for all users it might be sensible to set the login
name in the editor.properties file.

This attribute is used to enter the default password for login. If no pass-
word is entered, the login name is used. You can always change the
password during login, it is just a preset. If a login password should be
predefined, it must be set in the editor-startup.xmnl file. Ifa
global editor.xml file is used for all users it might be sensible to set
the login password in the editor.properties file.

This attribute is used to enter the default domain for login. You can always
change the domain during login, it is just a preset. If a login domain
should be predefined, it must be set in the editor-startup.xml
file.

If this attribute is set to "true”, an attempt is made to connect directly to
the server with the login data given above. The login window does not
appear. The default value is "false".

If this attribute is set to "true", the name of the current user of the editor
is shown at the top of the window. Default is "false", that is, the user
name is not shown.

This attribute defines the Site Manager window to start with. Possible
values are "OpenExplorer" "OpenQuery", "OpenWorkflow", "OpenUser-
Manager" which will open the respective window. By default, the Site
Manager starts with the Explorer window ("normal” user) or with the user

manager window ("administrator" user).

This attribute defines the start-up mode for administrators. If set to "4.2",
the super user with ID "0" always starts with the User Manager window.
All other users will start with the window defined using "startup".

If set to "5.0", the super user with ID "0" and all members of the adminis-
tration group start with the User Manager window. All other users will
start with the window defined using "startup”. Default setting is "5.0".

This attribute is used to disable the Explorer window of the Site Manager
(false). Default is "true”, so the Explorer window can be opened.

This attribute is used to enable direct publication ("true"). Default is "false",
so no direct publication icons and menu items are shown.

CoreMedia DXP 8

Table 5.32. The attrib-
utes of the element Ed-
itor

Appendix | General Configuration

Attribute Description

enableWork- This attribute is used to disable all workflow related menu items and icons
flow ("false"). Default is "true", therefore workflow features are enabled.

removeEmpty— The Site Manager adds empty paragraphs around tables in order to enable

Paragraphs the user to enter content before or after the table (this circumvents a
Swing problem). By default, ("false") these empty paragraphs are saved
on the server. If you set this attribute to "true", empty paragraphs without
attributes will be removed in the following cases when writing rich text
back to the server:

At the beginning of rich text, if a table follows:
<div><p/><table>
At the end of rich text following atable: </ table><p/></div>

At the beginning of a table cell, if a table follows:
<td><p/><table>
At the end of a table cell following a table: </table><p/></td>

Warning: If enabled, the representation of rich text on the server will be
changed, if a document is saved in the Site Manager.

mayChoose- If set to "false” (default) only members of the administrator group are
MemberFro- allowed to search for users in other domains using the User Manager
mOtherDo- window. Non administrators can only search in their own domain. If set
main to "true”, every user may choose a domain for search.

<AuthenticationFactory>
Child elements:
Parent element: <Editor>

You can use this element in order to set your own authentication factory. The ele-
ment needs to be located in the editor-startup.xml file.

<Editor>
<AuthenticationFactory
class="com.myFactory.OwnAuthenticationFactory"/>

</Editor>

This factory circumvents the standard login dialog and fetches principal and cre-
dentials by custom means.

CoreMedia DXP 8

Appendix | General Configuration

Attribute

class

Description

The fully qualified name of your authentication factory. Your
class must implement hox.corem.editor.AuthenticationFactory
and needs a public no-argument constructor. See the Javadoc
for details.

<DocumentTableLayout>

Child elements:

Parent elements: <Editor>

You can globally define the appearance of document tables used in the explorer
view, query view, publication view and resource choosers. By default, the tables
are plain white without separators. See Section 5.2.5, “Configuring Table
Views” [139] for more specific table configuration.

<Editor>

<DocumentTablelLayout horizontalLines="true"
evenBgColor="FFFFFF" oddBgColor="FFCCCC"/>

</Editor>

The background color settings do not apply to publication views, because the
background colors of this view visualize the result categories of the publication

Attribute

horizontalLines

verticallLines

evenBgColor

oddBgColor

<Locale>

Child elements:

CoreMedia DXP 8

Description

With this attribute set to "true", you can enable horizontal sep-
arator lines between the table rows. Default is "false".

With this attribute set to "true”, you can enable vertical separator
lines between the table columns. Default is "false".

With this attribute, you can set a background color for even table
rows. Use hexadecimal values, representing RGB values, such
as FFCCCC for a light red. Default is white. The numbering of
rows starts with "0", so the first row is even.

With this attribute, you can set a background color for odd table
rows. Use hexadecimal values, representing RGB values, such
as FFCCCC for a light red. Default is white.

Table 5.33. Attribute
of element <Authentic-
ationFactory>

Example 5.12. Ex-
ample of the Document-
TableLayout element

Table 5.34. Attributes
of the Document-
TableLayout element.

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/AuthenticationFactory.html

Appendix | General Configuration

Parent elements: <Editor>

You can select the language and country settings which should be used by the Site
Manager with the element <Locale>. These settings determine the language used
in the GUI of the Site Manager. The locale that you set in editor-startup.xml
will be used for the Login screen you can overwrite this setting with a <Locale>
elementin the editor.xml file. So you can define group specific localizations for
example.

Example 5.13. Ex-

<Editor>
<Locale language="de" country="DE"/> anuﬁefbrtheLocak
element

</Editor>

Using this element of the XML file, details of the localization of the Site Manager
are given. If the element is not used, the environment settings are used. As a default,

this element is used in the editor-startup.xml file.
Table 5.35. Attributes

Attribute Description of element <Locale>
language The language used in the program. At present, there are locales for English

("en") and German ("de"). The locales follow the usage in
java.util.Locale.

country Country-specific settings. At present, there are locales for the United
States ("US") and Germany ("DE"). The locales follow the usage in
java.util.Locale.

<Bundle>
Child elements:
Parent elements: <Editor>

Example 5.14. Ex-

<Editor>
<Bundle name="my/bundle"/> ample for the Bundle
. element

</Editor>

The Bundle element of the XML file defines the bundle file to use for localizing
the Site Manager and for user defined properties. The file defined in the Bundle
element, will be looked up by the Site Manager and will overwrite the default values.
For the bundle shown in the example above, the following file has to be created
in the classpath (<cMInstallationDirectory>/classes):

CoreMedia DXP 8

Appendix | General Configuration

my/bundle.properties for German localization

my/bundle_en.properties for English localization

In this file, name/value pairs in the format my-column-title=My Column title
are used. If "my-column-title" matches the value of an attribute name in the element
<ColumnDefinition>, then "My Column title" would be the name of a column
shown in the Site Manager. It is also possible to store bundle files for other languages
simultaneously. For example, you can store the English names in a file
bundle en.properties. More details can be found in Section 4.10, “Localiza-
tion” [73]. As a default, this element is used in the editor-startup.xml file.

Attribute Description

name With this attribute, the name of the bundle file is entered. The name must
correspond to a file in the Classpath. You must obtain the name of the
bundle from your developers.

<Preview>
Child elements: <Browser>*

Parent elements: <Editor>

The <Preview> element is deprecated, use <webContext> instead.

<Editor>
<Preview host="zeus" port="8001"
uriPath="coremedia/generator/goto"/>

</Editor>

This element of the XML file is used to configure the Content Application Engine
used for preview. The request to the generator then occurs via the URL (if no user
defined pattern has been defined):

http://<host>:<port>/<uriPath>

Attribute Description
host The computer on which the Content Application Engine runs.
port The port via which the CAE is accessed.

CoreMedia DXP 8

Table 5.36. Attribute
of the <Bundle> ele-
ment

Example 5.75. Ex-
ample for the Preview
element

Table 5.37. Attributes
of the element Preview

Appendix | General Configuration

Attribute Description

uriPath The URI prefix for accessing the preview CAE. Default is core
media/generator/goto.

pattern You might configure individual URLs via a custom pattern. The following
strings are replaced within the pattern:

%p the protocol to use

%h the host with the preview server

%n the port on the host with the preview server
%u the URI prefix of the resource locator URI

%i the numeric id of the resource locator URI
%V the version of the resource locator URI

%f combines %u and ?id=%i&Version=%v

%s combines %u and ?id=%i

%l réturns the URL-encoded string id of the previewed resource

Default setting is: $p://%h:%n/%t

<Browser>
Child elements:

Parent elements: <Preview>

The <Browser> element is deprecated. Use <WebBrowsers> instead.

Example 5.16. Ex-

<Preview host="zeus" port="8000"
uriPath="coremedia/generator/goto"> anuﬂefbrthefhoumer
<Browser name="Netscape Navigator" element

command="c:\\Programme\\Netscape\\Communicator
\\Program\\netscape.exe %s"/>

</Preview>

You can select the browser for the preview using the element Browser. Multiple
browsers can be entered. You can choose the browser to use from the File|Preview
menu of the overview window. If you do not define any browser, the preview
cannot be executed.

CoreMedia DXP 8

Appendix | General Configuration

Table 5.38. Attributes

Attribute Description
of the element Browser

name Name of the browser to start.
Any number of names can be entered here.
command Command for starting the browser.

The string ¢s in the example is replaced by the URL of the document for
display.

pattern This attribute describes how the URL passed to the browser is constructed.
$p Protocol
$h Computer name
%n Port number
$u URI prefix
%1 URI postfix
$f combined $uand %1
Example: pattern="wap://%h:%n/wap/%f"
Default: $p://%h:%n/%£

optional Specifies whether this browser is optional when doing a preview with all
configured browsers (for example by clicking the Preview button in the
toolbar or by selecting File|Preview|All). The Editor only shows errors
for non-optional browsers or if no browser could be started at all.

Allowed values are true and false. Defaultis false.

<RemoteControl>
Child elements:
Parent elements: <Editor>

Example 5.17. Ex-

<Editor> -
<RemoteControl enabled="true" port="44444"/> anuﬁejbrtheRenuﬁe
Control element

</Editor>

This element is used to configure whether the CoreMedia can be remote controlled
or not and to set the port where to listen for requests.

The remote control of the Site Manager allows you to execute

allicommands which may be executed on resources in the explorer view,

CoreMedia DXP 8

Appendix | General Configuration

allicommands which may be executed on process and task instances in the
workflow view and

custom commands, which may be executed on resources, process and task
instances, or external parameters given to the command.

Technically, the remote control is realized via HTTP by an embedded web server
inside the Editor, which listens to remote control requests. Note that if you start
two editors on the same computer which use the same configuration, remote
control is disabled for the second editor, since it tries to use the same port. You
could use custom configuration files for different users, specifying different ports,

though.
Table 5.39. Attributes
Attribute Description of the element Remote-
enabled This attribute controls whether the Site Manager can be remote controlled Control
("true") or not ("false"). Default is "false".
port This attribute determines the port which will be used for the remote re-
quests. Default is "44444".
Editor Remote Control URLs
Requests have to be addressed to an URL of the pattern
http://localhost:<port>/coremedia/control?<parameters>
The port has to be the same as in the XML configuration.
The parameters determine, which command to execute and on which data to ex-
ecute it. There are some well-known parameters which ease the usage:
Parameter Description Table 5.40. Parameters
of the remote control
command Allows you to specify the name of the command class, which is executed URI

upon the request. Custom command classes have to implement the inter-
face hox.corem.editor.toolkit.Command or one of its subinterfaces. If
there is no dot in the command name, hox.corem.editor.com
mands is prepended.

resourceId Allows you to specify one or more resources or documents, on which a
or document- hox.corem.editor.commands.ResourceCommand is executed.
Id

processIn- Allows you to specify one process instance ID, on which a hox.corem.ed-
stanceId itorcommands.ProcessinstanceCommand is executed.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/Command.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/commands/ResourceCommand.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/commands/ProcessInstanceCommand.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/commands/ProcessInstanceCommand.html

Appendix | General Configuration

Parameter Description
taskIn- In conjunction with a processInstancelId, it allows you to specify
stanceId one task instance by its id, on which a hox.corem.editor.commands.TaskIn-

stanceCommand is executed.

If the command class is a hox.corem.editor.commands.MapCommand, all the
parameters are passed to the command as a Map.

Examples for remote control URLs are:

http://localhost:44444/coremedia/control?command=OpenResourceln
Explorer&resourceld=4712

Opens the document with the id 4712 in the explorer view

http://localhost:44444/coremedia/control?command=OpenDocu
ment&resourceld=4712

Opens the document with the id 4712 in a document view

http://localhost:44444/coremedia/control?command=ShowResourceln
formation&resourceId=4712

Opens the resource information view for the resource with the id 4712

http://localhost:44444/coremedia/control?command=OpenWfIn
stanceInWorkflow&processInstanceld=1&taskInstanceId=2

Opens the task instance 2 from the process instance 1 in the workflow view

http://localhost:44444/coremedia/control?command=StoreProper
ties&documentId=4712&Text=Test

Stores "Test" in the property Text of the document with id 4712

http://localhost:44444/coremedia/control?command=CreateDocu
ment&parentId=4711&type=Article&name=NewDocument&Text=Test

Creates a new document named NewDocument with the document type Article below
the folder with id 4711 and stores "Test" in the property Text of the document.

http://localhost:44444/coremedia/control?command=Create
Folderg&parentId=4711&name=NewFolder

Creates a new folder named NewFolder below the folder with id 4711

Prior to using the commands, you have to check the access control. Requests are
only accepted, if

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/commands/TaskInstanceCommand.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/commands/TaskInstanceCommand.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/commands/MapCommand.html

Appendix | General Configuration

their origin is the same computer as the one the Editor is running on and

their command is activated in the remote control policy file.

The remote control policy file $INSTALL DIR/properties/policy/edit
or.policy is a standard Java policy file and may be edited with the Java policy
tool. It grants execute rights to commands by specifying the name and the package
of the command.

<FrameFactory>»

Parent elements: <Editor>

Example 5.18. Ex-
<Editor>

<FrameFactory explorerViewClass="my.ExplorerView" ample of the Frame-
publishViewClass="my.PublishView" Factory element
workflowViewClass="my.WorkflowView"/>

</Editor>

You can use this element to add your own ExplorerView, PublishView,
QueryView Or WorkflowView classes to the editor.

Attribute Description Table 5.41. Attributes

: : : : : of element <FrameFact-
explorerView- Use this attribute to define your own explorer view for the editor.

ory>
Class v

publishView- Use this attribute to define your own publication view for the editor.
Class

queryViewClass Use this attribute to define your own query view for the editor.

workflowView— Use this attribute to define your own workflow view for the editor.
Class

<PropertyModelFactory>
Child elements: svaries;

Parent elements: <Editor>

Example 5.19. Ex-

Qalligon> ample for the Property-
<PropertyModelFactory class="my.propertyModelFactory"/> ModelFactory element
</Editor>

CoreMedia DXP 8

Appendix | General Configuration

This element of the XML file is used to specify a class which implements the inter-
face hox.corem.editor.proxy.PropertyModelFactory and which should be used in
the Site Manager. Here an own PropertyModelFactory class can be programmed
(see the APl documentation) and invoked by the attribute class.

Attribute Description
class This attribute is used for selecting a PropertyModelFactory for use with
the Site Manager.

<ResourceNamingFactory>

Parent elements: <Editor>

<Editor>
<ResourceNamingFactory class="MyResourceNames"/>

</Editor>

You can use this element to define your own ResourceNamingFactory. This factory
creates and modifies names of resources and folders. This is intended to enable
customization of how resources and folders are named or renamed in different
projects or to check for allowed resource names (see the API documentation for
details). Own resource naming factory classes must implement ResourceNaming-
Factory or extend BasicResourceNamingFactory.

Attribute Description

class This attribute is used to enter the ResourceNamingFactory to
use.

<WebBrowsers>

Parent elements: <Editor>

Child elements: <webBrowser>

<Editor>
<WebBrowsers>
</WebBrowsers>

</Editor>

CoreMedia DXP 8

Table 5.42. Attribute
of element <Property-
ModelFactory>

Example 5.20. Ex-
ample of the Resource-
NamingFactory ele-
ment

Table 5.43. The attrib-
utes of the <Resource-
NamingFactory> ele-
ment

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/PropertyModelFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/PropertyModelFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/PropertyModelFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/ResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/ResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/ResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/BasicResourceNamingFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/ResourceNamingFactory.html

Appendix | General Configuration

You can use the <webBrowsers> element to configure web browser definitions
for Web Extensions such as the preview with the <webBrowser> child element.
The <WebBrowsers> element has no attributes.

<WebBrowser>

Parent elements: <WebBrowsers >

<WebBrowsers>
<!-- Standard Windows IE installation -->
<WebBrowser id="Internet Explorer" os="win"
command="c:\\Program Files\\Internet Explorer\\Iexplore.exe %s"/>

<!-- IE installation in german locale on Windows -->

<WebBrowser id="Internet Explorer" os="win" language="de"

command="c:\\Programme\\Internet Explorer\\Iexplore.exe %s"/>
</WebBrowsers>

This element configures web browser installations for a given locale of the Site
Manager and operating system. Web extensions (see <wWebExtension>) may open
several web browsers (Preview) or the first matching web browser. Therefore, the
order of <WebBrowser> elements is important.

The example above configures two Windows web browsers, one with language
attribute set to ‘de’. If a web extension running on German locale wants to select
a browser, it should open the German browser. A precedence list defines which
browser is selected.

1. os

. language

. country

AW N

. no attribute

In the example above, for both browsers the os attribute has been set but the
German browser is selected because it has a 1anguage attribute that matches the
language of the German locale. If you delete the os attribute in the German browser
configuration, the other browser will be opened.

In rare conditions a matching browser can not be opened. Take, for example, the
configuration above and call a preview web browser from a Site Manager with a
German locale on a French Windows system. The command c: \\Programme\\In
ternet Explorer\\Iexplore.exe $%s can not be executed on the French
system because "Programme"” will not be found. In this case, the first browser is
taken that can be opened, independently of any os or 1anguage settings.

CoreMedia DXP 8

Appendix | Defining Group Specific Configuration Files

Table 5.44. The attrib-

Attribute Description

i N fih ‘ | | utes of the

id The name o the browser, for example !ntgrnet .Exp orer. Use <WebBrowsers ele-
the same id for the same browser application, like FireFox for ment

all Firefox configurations.

os The name of the operating system. This string must be a sub-
string of the value of the Java system property os . name (case-
insensitive). This attribute is optional. If not set, the command
must be executable on all operating systems your Site Manager
runs on.

language The language of the locale. The value must conform to a valid
language in a Java java.util.Locale instance. For the
English language the valid value is ‘en’ for the German language
the valid value is ‘de’. This attribute is optional.

country The country of the locale. The value must conform to a valid
countryinajava java.util.Locale instance. For the USA
the valid value is ‘US’ for Germany the valid value is ‘DE’. This
attribute is optional.

command The command to start a browser with a given URL on the con-
figured operating system. For the Internet Explorer on an English
Windows installation the command looks as follows:

c:\\Program Files\\Internet Explorer\\
Iexplore.exe $s

The suffix s is the placeholder for the URL to load in to the
browser.

optional Specifies whether this browser is optional. This feature is used
by the Preview web extension when doing a preview with all
configured browsers (for example by clicking the Preview button
in the toolbar or by selecting File|Preview|All). The Site Manager
only shows errors for non-optional browsers or if no browser
could be started at all.

Allowed values are true and false. Default is false

5.2.2 Defining Group Specific Configuration Files

The Site Manager is configured with XML files. It is possible to define special con-
figuration files for distinct groups or users of the CoreMedia system. To configure
the usage of special configuration files you may adapt the following properties in
the editor.properties file (see chapter "Defining XML Files for Configuration”
in the Administration and Operation Manual for details):

editor.startup.configuration

CoreMedia DXP 8

Appendix | Defining Group Specific Configuration Files

editor.configuration
group.configuration

user.configuration

If you only use group.configuration, you can define one specific configuration
file for each group. To have multiple configuration files for one group, you may
configure the set of files and in which order they are parsed in editor-star
tup.xml (default) orin the file configured by editor.startup.configuration.
Mind that group configuration in editor-startup.xml overrides the mechanism
one configuration file per group which especially means: If users are not member
of any group configured in <ConfigGroups> no group configurations are applied
to these users.

In both cases, that is either with one configuration file per group or with multiple
configuration files per group you have to set the property group.configuration
to point to configuration files with a path relative to <CoreMediaHome> or to the
URL where to find the files. The path/URL defined has to contain a wildcard {0}
which will be replaced either by the group name or by the names as defined in the
<Configuration> element (see below).

Example:

group.configuration=properties/corem/editor-{0}.xml

The Content Server will look in the properties/corem directory for a file called
editor-<PlaceHolder>.xml Where <PlaceHolder> will be replaced by the
values of the name attribute of the <Configuration> element described below
or by the group name if no <ConfigGroups> element is used.

If a user is member of more than one group, the exact behavior reading group
configuration files is undetermined. If multiple matching <ConfigGroup> exist,
one of them is chosen by random. If <ConfigGroups> configuration is not used
but direct mapping groups to configuration files all matching configuration files
are read but in an undetermined order. To determine the exact behavior you have
to implement your own selection scheme. Proceed as follows:

1. Extend GenericEditor

2. Override the getConfigurationGroupNames (UserModel user) method
which is inherited from AbstractEditor with your own selection scheme. The
default implementation of the method either returns the configuration file
names as configured in the <Configuration> element (first case) and if no
<ConfigGroups> element is used the unordered list of groups a user is
member of. You might want to use the convenience method getUserCon
figGroups (UserModel user) tocreate your own implementation. For further
reference see the Javadoc.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericEditor.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/AbstractEditor.html

Appendix | Defining Group Specific Configuration Files

3. Add your class to the class attribute of the <Editor> elementin the editor-
startup.xml file.

<ConfigGroups>
Child elements: <ConfigGroup>
Parent elements: <Editor>

<Editor>
<ConfigGroups>

</ConfigGroups>
</Editor>

This element combines the elements for the group configuration.

The element has no attributes. If <ConfigGoups> is not used but group.config
uration is set, only the general editor configuration file (default: editor.xml)
and the matching group specific configuration files will be applied. See the Site
Manager chapter in the Administration and Operations Manual for details.

<ConfigGroup>
Child elements: <Configuration>
Parent elements: <ConfigGroup>

<ConfigGroups>
<ConfigGroup name="editor" domain="main">

</ConfigGroup>
</ConfigGroups>

This element defines for which group and domain the configuration should be
used. It groups the <Configuration> elements.

Attribute Description Table 5.45. Attributes
of the <ConfigGroup>
name The name of an existing group in the CoreMedia user manage- element

ment for which the configuration will be used.

domain The domain of the group.

<Configuration>
Child elements:

Parent elements: <ConfigGroup>

CoreMedia DXP 8 1

Appendix | Configuring Document Types

<ConfigGroups>
<ConfigGroup name="editor">
<Configuration name="common"/>
<Configuration name="special"/>
</ConfigGroup>
</ConfigGroups>

This element defines the name with which the placeholder in group.configura
tion will be replaced and the order in which multiple configuration files are applied.
In the example above the placeholder will first be replaced with "common" and
then with "special”, if the user is member of the "editor" group. This especially
means that in case of conflicting settings the settings from the special file will
override the settings in the common file.

Attribute Description Table 5.46. Attribute
of the <Configuration >

name Name which will replace the placeholder in the group.configura element

tion property of editor.properties. In general, this is not the
name of an existing group, but it can be.

5.2.3 Configuring Document Types
Using these elements, the document types of CoreMedia CMS can be configured.

The documents usable in the editor (creating by the menu File|New Re-
source ..., Copy, move etc.) via the sub element <DocumentTypePredic
ate> 0Or <Predicate>.

The sorting of the document types shown in the query view, the resource
chooser and in the menu File|New Resource ... via the sub element <Com
parator>.

The initiators and validators which should be used with document fields via
the sub element <PropertyType>.

<DocumentTypes>

Child elements: <DocumentType>*, <DocumentTypePredicate>?, <Predic
ate>?, <Comparator>?

Parent elements: <Editor>

: Example 5.21. Ex-
<E§$§§£anypes> ample for the Docu-
. mentTypes element

</DocumentTypes>
</Editor>

CoreMedia DXP 8 1

Appendix | Configuring Document Types

This element of the XML file is used to combine the elements for the document
types configuration.

The element has no attributes. If no <DocumentTypes> element is defined, all
document types for which the user has the appropriate rights will be shown (except
of abstract document types) and will be arranged alphabetically.

<DocumentType>
Child elements: <PropertyType>*

Parent elements: <DocumentTypes>, <DocumentTypePredicate>, <Predic
ate>

Example 5.22. Ex-
<Editor>

<DocumentTypes> ample of a Document-

<DocumentType name="Article"> Type element
<PropertyType name="Text">

</PropertyType>
</DocumentType>

</DocumentTypes>
</Editor

This element of the XML file designates the following features:

The documents usable in the editor via the parent element <Predicate>.

The initiators and validators which should be used with document fields via
the sub element <PropertyType>.

The element has one attributes. If no <DocumentType> element is defined, all
document types will be shown (except of abstract document types) and will be
arranged alphabetically.

Attribute Description Table 5.47. Attribute

of the DocumentType
name The name of the document type. element
<PropertyType>

Child elements: <validator>?, <Initializer>?, <ModelClass>?

Parent elements: <DocumentType>

CoreMedia DXP 8

Appendix | Configuring Document Types

Example 5.23. Ex-
<DocumentType name="Article"> .
<PropertyType name="Source" initialValue="Internally"> anuﬁeofal%openy
<Validator class="NotEmpty2"/> Type element
</PropertyType>

</DocumentType>

This element is used to provide initializers (or initial values) and validators (or
valid pattern) for the properties of the document defined in <DocumentType>.

Attribute Description Table 5.48. Attributes
, . - — - of the <PropertyType>
name This attribute is used for configuring the name of the property which element
should be initialized or validated.
initial- Using this attribute, the value can be entered with which the property is
Value initialized. See Section 5.1.6, “Initializer Classes” [106] for more details.
validPat- This attribute is used for entering a regular expression against which the
tern content of the property is checked.

The following table shows the regular expressions which can be used with the at-
tribute validrattern.

Regular expres- Description Table 5.49. Regular

sion patterns to use with
Matches any character except newline. Eanattrlbute validpat

[a-z0-9] Matches any single character of the set.

[ra-z0-9] Matches any single character not in set.

\d Matches a digit, that is, [0-9].

\w Matches an alphanumeric character, that is, [a-zA-Z0-9_].

\W Matches a non-word, that is [*a-zA-Z0-9_].

\metachar Matches the character itself, that is, \|, *, \+.

x? Matches 0 or 1 x's, where x is any of the above.

xX* Matches 0 or more X's.

X+ Matches 1 or more Xx's.

x{m,n} Matches at least m x's but no more than n.

foo|bar Matches one of foo or bar.

(x) Brackets a regular expression.

CoreMedia DXP 8

Appendix | Configuring Document Types

<Validator>
Child elements: $varies;

Parent elements: <PropertyType>

Example 5.24. Ex-
<PropertyType name="Author"> :
<Validator class="MyValidator" myattribute="myvalue"/> afuﬂeifthevuhdator
o element.

</PropertyType>

This element is used for setting validator classes which tests, when a document is
checked in, whether certain conditions about the content of the document are
fulfilled. It is possible to hand over parameters to the class via attributes of the

element.
Table 5.50. Attributes
Attribute Description of the element <Valid-
class This attribute gives the name of the class which checks the content of ator>
the field for desired properties. This test is carried out when check in.
See Section 5.1.7, “Validator Classes” [107] for predefined classes.
$varies; This entity stands for further configuration possibilities which depend on

the API of the class . The specific configuration possibilities must be
obtained from your developers.

<Initializer>
Child elements: svaries;

Parent elements: <PropertyType>

Example 5.25. Ex-
<PropertyType name="Author">

<Initializer class="myInitializer" anuﬁeofthEInnm“Zer
myattribute="myvalue" /> element
</PropertyType>

Initializer fill the fields of a newly created document with default values. With the

element a class for initializing can be provided. Parameters can be handed to the

class via attributes of the element (see the code example above).
Table 5.51. Attributes
of the element <Initial-
izer>

CoreMedia DXP 8

Appendix | Configuring Document Types

Attribute Description

class This attribute gives the class which presets the fields on initialization of
the document. See Section 5.1.6, “Initializer Classes” [106] for predefined
classes.

$varies; This entity stands for further configuration possibilities which depend on

the API of the class . The specific configuration possibilities must be
obtained from your developers.

<ModelClass>
Child elements:

Parent elements: <PropertyType>

<PropertyType name="Time">
<ModelClass class="MyPropertyModel"/>

</PropertyType>

The ModelClass element allows you to configure the class from which instances
for property values are created. The class attribute is the class name of the property
model class, which must have a public no-arg constructor, that is, setting 'class' to
'xxx' corresponds to Class. forName ("xxx") on Which newInstance () is called
to create new property models. An unqualified ModelClass class will be looked
up in the package hox.corem.editor.proxy

Attribute Description

class This attribute defines the class which is used to instantiate objects of the
property value.

<Comparator>
Child elements: svaries;

Parent elements: <DocumentTypes>, <ColumnDefinition>, <TreeSorter>,
<Processes>, <NamedDocumentVersionComparator>

<Editor>
<DocumentTypes>
<Comparator
class="hox.corem.editor.generic.GenericDocumentTypeComparator"/>

</DocumentTypes>

CoreMedia DXP 8

Example 5.26. Element
ModelClass

Table 5.52. Attribute
of the element Model-
Class

Example 5.27. Ex-
ample for sorting the
offered document types
and the folders in the
folder view.

Appendix | Configuring Document Types

<Explorer name="FirstExplorer">
<TreeSorter>
<Comparator class="my.comparator"/>
</TreeSorter>
</Explorer>
</Editor

This element of the XML file is used for sorting items:

The document types shown when creating a new document in the Site
Manager when used in <DocumentTypes>.
The folders shown in the folder view when used in <TreeSorter>.

The elements shown in a column of the document view, when used in
<ColumnDefinition>.
The workflow menu entries when used in <Processes>.

The worklist when used in <ColumnDefinition> of <TableDefinition>
of <Wworkflow>.

Table 5.53. Attribute
of element <Comparat-
or>

Attribute Description

class Name of the class in which the sorting comparator is defined. The class
must contain a public constructor without arguments and must implement
an interface depending on the objects to sort (see the API documentation
and Section 5.1.8, “Comparator Classes” [109]).

<DocumentTypePredicate>
Child elements: <DocumentType>*, $varies;
Parent elements: <DocumentTypes>

Example 5.28. Ex-
<DocumentTypes> _
<DocumentTypePredicate class="MyPredicate"/> anu”efbrthepocu
. mentTypePredicate ele-

: ment
</DocumentTypes>

You can configure the predicate for filtering document types with the <Document
TypePredicate> element. The configured predicate defines the document types
which can be used in the editor (which can be created, copied, moved, for example).
Opposed to a predicate configured with the <predicate> element in the <Docu
mentTypes> element, the <DocumentTypePredicate> also affects abstract
types that can be selected in the editor's query and search views. Note, that you
must not use both <pPredicate> and <DocumentTypePredicate> elements in
the <DocumentTypes> element.

CoreMedia DXP 8

Appendix | Configuring Document Types

Section 5.1.3, “Predicate Classes” [97] describes the provided classes to filter
document types.

Attribute Description

class Name of the class with the predicate for filtering. Own classes must im-
plement the interface com.coremedia.common.util.Predicate<Object> to
filter document types, which are represented by instances of class
hox.corem.editor.proxy.DocumentTypeModel. If you enter no class attrib-
ute, the default predicate is used as described in Section 5.1.3, “Predicate
Classes” [97].

<Predicate>

Child elements: <DocumentType>*, $varies;

Parent elements: <Filter>, <TreeFilter>, <DocumentTypes>, <Processes>,
<Workflow>

<Filter name="deleted-filter">

<Predicate class="UndeletedPredicate"/>

</Filter>

The predicate for filtering is entered with the <Predicate> element. The provided
filter classes are described in Section 5.1.3, “Predicate Classes” [97]. Different
objects can be filtered:

The documents shown in the document overview of the Site Manager can be
filtered, due to different conditions, if the <Predicate> element is used
ina<Filter> element.

The folders shown in the folder view of the Site Manager can be filtered, if
the <Predicate> elementis used in a <Treefilter> element.

The document types which can be used in the editor (which can be, for ex-
ample, created, copied, moved), if the <Predicate> element is used in a
<DocumentTypes> element. That is the document types defined in the
<DocumentType> element inside the <Predicate> element are no longer
accessible (negative list).

The workflows offered for initiating in the Menu File|New workflow... can
be filtered, if the <Predicate>elementis used in a <Processes> element.
The workflows and tasks shown in the sub views My tasks, Offered tasks and
My workflows of the Workflow window can be filtered by custom predicates,
if the <Predicate> element is used in a <Workflow> element.

CoreMedia DXP 8

Table 5.54. Attributes
of the DocumentType-
Predicate element

Example 5.29. Ex-
ample for the Predicate
element used in a Filter
element

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/proxy/DocumentTypeModel.html

Appendix | Configuring Document Windows

Attribute

class

Description Table 5.55. Attribute
. . L . of the Predicate ele-
Name of the class with the predicate for filtering. Own classes must im- ment

plement the interface com.coremedia.common.util.Predicate<Object>.
Depending on the parent elements different object types will be filtered
(see Section 4.6, “Program Own Predicate Classes” [60]). If you enter no
class attribute the default predicates are used as described in Section
5.1.3, “Predicate Classes” [97].

5.2.4 Configuring Document Windows

Using these elements, the appearance of the document window of the Site Manager
can be configured.

<Documents>

Child elements: <Document>*

Parent elements: <Editor>
Example 5.30. Ex-
<Editor> -
<Documents> ample for the Docu
. ments element
%/Documents>
</Editor>

This element of the XML file designates the configuration of the document window.

autoCheck- S

Attribute Description Table 5.56. Attributes
of the Documents ele-
etting this attribute to "false", you can disable the automatic checkout ment

Oout (start typing in a checked-in document and it will be checked-out auto-

matically) functionality of the Site Manager. Default is "true".

<Document>

Child elements: <Property>*, <Tab>*

Parent elements: <Documents>

<Documents>

Example 5.31. Ex-

<Document type="article"> anuﬁejbrtheDocu-

CoreMedia DXP 8

ment element

136

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/common/util/Predicate.html

Appendix | Configuring Document Windows

</Document>

</Documents>

This element of the XML file is used for entering the document type for which the
view is defined and the class used for the view.

Table 5.57. Attributes
Attribute Description of element <Docu-

historyIcon- Here you can enter the number of versions for which the status icon is ment>

Count shown in the version history of the document window. For example:
<Document type="Link" historyIconCount="3"/>
The following values are possible:
-1: show the icon for all versions (not recommended)
0: show no icons in the version history
n: show icons for the last n versions
Default value is 5
Note: The value should not be chosen greater than 10 otherwise the ed-
itor slows down.
type Name of the document type for which the view is configured.

viewClass Here you can enter the class which should be used for displaying the
documents. Normally you would not enter anything, and therefore use
the default hox.corem.editor.generic.GenericDocumentView. You can use
the TabbedDocumentView class for a tabbed view of the properties (see
Section 5.1.2, “View Classes” [96] and the description of element Tab
below).

compact The order of properties of a document in the CoreMedia Editor depends
per default (compact=false)on the order defined in the document -
types.xmloreditor.xml file. If you set compact=true proper-
ties which do not use the full window width (int, date) will be shown
consecutively.

$varies; This entity stands for further configuration possibilities which depend on
the APl of the viewClass. The specific configuration possibilities must
be obtained from your developers.

<Property»>
Child elements: svaries;

Parent elements: <Document>, <Tab>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/TabbedDocumentView.html

Appendix | Configuring Document Windows

<Document type="article">
<Property name="Author" editorClass="ComboBoxStringEditor">
<HistoryItem value="TextEditor"/>
</Property>
<Document>

This element of the XML file is used for configuring some features of a property
in the document window.

Attribute Description
name This attribute is used for entering the name of the field for configuration.
visible This attribute determines whether the field is shown. Using "false", the

field can be hidden. The default value is "true".

editable This attribute determines whether the field can be edited. If "false” is
entered, the field cannot be edited. The default setting is "true".

editorClass This attribute is used for entering the class with which the field is edited.

$varies; This entity stands for further configuration possibilities which depend on
the API of the editorClass. The specific configuration possibilities
must be obtained from your developers.

<Tab>
Child elements: <Property>*

Parent elements: <Document>

<Documents>
<Document type="article" viewClass="TabbedDocumentView">
<Tab name="MainData">
<Property name="Headline"/>
<Property name="Text"/>
</Tab>
<Tab name="Administration">
<Property name="Editor"/>
</Tab>

</Document>
</Documents>

This element of the DTD is used to define different tabs for the document view.
The properties of a document shown in a tab are configured using the sub element
<Property>. <Tab> can only be applied, when the view class TabbedDocu-
mentView is used.

CoreMedia DXP 8

Example 5.32. Ex-
ample for the Property
element

Table 5.58. Attributes
of element <Property>

Example 5.33. Ex-
ample for the Tab ele-
ment

Table 5.59. Attributes
of element <Tab>

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/TabbedDocumentView.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/TabbedDocumentView.html

Appendix | Configuring Table Views

Attribute Description

name Name of the tab which is shown as the label of the tab.

5.2.5 Configuring Table Views

Using these elements, for all windows of the Site Manager (except the workflow
window) using table views or tree views, it can be configured which properties
and how the properties should be shown. The following windows can be configured:

Explorer window (element <Explorer>)
Query window (element <Query>)

Resource chooser window (element <ResourceChooser>)

<Explorer>

Child elements: <TreeSorter>?, <TreeFilter>?, <Filter>*,
<TableDefinition>

Parent elements: <Editor>

Example 5.34. Ex-
ample for the Explorer
element

<Editor>
<Explorer name="configurable-explorer-factory">

</Explorer>
</Editor>

The explorer configuration which can be chosen via the menu item View|Display
is defined within this element of the XML file.
Table 5.60. Attributes

Attribute Description of the <Explorer> ele-
name Name of the explorer configuration ment
class With this attribute the class used for the appearance of the explorer

is chosen. Own classes must implement the interface hox.corem.ed-
itor.explorer.ExplorerFactory. As a default, the class hox.corem.edit-
or.generic.ConfigurableExplorerFactory is used, which allows cus-
tomization.

Another class which can be used is hox.corem.editor.generic.Generic-
ExplorerFactory which shows the behavior known from CoreMedia
CAP 3.2. The class is not configurable. See the APl documentation
for more details.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/explorer/ExplorerFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/explorer/ExplorerFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/ConfigurableExplorerFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/ConfigurableExplorerFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericExplorerFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericExplorerFactory.html

Appendix | Configuring Table Views

Attribute Description

extendedCon- Setting this attribute to "false", you can remove the menu items

textMenu Check in, Check out and Revoke Check out from the context menu
of the Explorer. Default is "true".

com-— With this attribute set to "false", separated sorting and filtering of

bineSortingAnd- the documents shown inthe document overview can be enabled. So

Filtering itis possible, to use own Comparators with the predefined Predicates.
By default, documents may be filtered and sorted in one step on the
server. Remote filtering and sorting on the server is much faster than
local operations which may slow down the server dramatically. So
use local filtering and sorting with care.

keepSelection- Only use this attribute when combineSortingAndFilter

Focused ing=false. If set to "true", this attribute replaces delete, insert
event pairs with "content changed"” events in the ExplorerTa-
bleResourceListChain. This change allows the Explorer Re
sourceTable to track entry updates (which it could not when
receiving delete and insert events). Therefore, the focus in the docu-
ment overview of the Explorer Window will not be lost. The default
is "true".

noLoc- Only use this attribute when combineSortingAndFilter

alSortingAfter— ing=false. If setto "false", this attribute will instruct the ListSor-

InsertAndUp- terimpl to insert (sort) new entries rather than adding them to the

date end of the entry list which is the existing behavior. Setting this
property to false might imply performance degradation on editor
and server, so use with care. If keepSelectionFocused is set
to "true", you do not need to change the setting of noLoc
alSortingAfterInsertAndUpdate.
The default is "true".

<ResourceChooser>

Child elements: <TreeSorter>?, <TreeFilter>?, <Filter>¥*,

<TableDefinition>

Parent elements: <Editor>

<Editor>

<ResourceChooser>

Example 5.35. Ex-
ample for the Re-
sourceChooser element

</ResourceChooser>

</Editor>

Within this element of the XML file, the dialog for selecting an internal link is
configured. The element has no attributes.

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/explorer/ExplorerTableResourceListChain.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/explorer/ExplorerTableResourceListChain.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/ListSorterImpl.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/ListSorterImpl.html

Appendix | Configuring Table Views

<Query>
Child elements: <TableDefinition>

Parent elements: <Editor>

Example 5.36. Ex-
<Editor>
<Query> glf;'l:;/een];Of the Query
</Query>.
</Editor>

Within this element of the XML file, the document view in the query window is
configured. The element has no attributes.

<Search>
Child elements: <TableDefinition>

Parent element: <Editor>

Example 5.37. Ex-
<Editor>
<Search> ample of the Search
. element
</Séarch
</Editor>

Within this element of the XML file, the result table of the full-text search is con-
figured. The element has no attributes.

<TreeSorter>
Child elements: <Comparator>

Parent elements: <Explorer>, <ResourceChooser>

Example 5.38. Ex-

<Explorer name="configurable-explorer-factory">

<TreeSorter> ample for the Treesort-
. er element
</TreeSorter>
</Explorer>

Within this element is defined, how the folder view is sorted. The element has no
attributes. If an <Explorer> element contains no <TreeSorter> element, the
folders are sorted in alphabetic order. In order to activate an own comparator class,
a <TreeSorter> element must occur.

<TreeFilter>

CoreMedia DXP 8 1

Appendix | Configuring Table Views

Child elements: <Predicate>

Parent Elements: <Explorer>, <ResourceChooser>

Example 5.39. Ex-

<Explorer name="configurable-explorer-factory">

<TreeFilter> ample for the TreeFilter
. element
</TreeFilter>
</E§plorer>

Within this element of the XML file, the configuration of the folder view is defined.
The element has no attributes. If an <Explorer> element contains no
<TreeFilter> element, the folders for which the user has no read rights are left
out. In order to activate a filter class, a <TreeFilter>element with the appropriate
<Predicate> element must occur.

<Filter»>
Child elements: <Predicate>

Parent elements: <Explorer>, <ResourceChooser>

Example 5.40. Ex-

<Explorer name="configurable-explorer-factory">

<Filter name="deleted-filter"> anuﬂefbrtheﬂherek-
. ment
</Filter;
</Explorer>

Using this element of the XML file, the filters in the explorer window are configured.
You will find predefined filter predicates in Section 5.1.3, “Predicate Classes” [971].

Table 5.61. Attributes
Attribute Description of element <Filter>

name Use this attribute to enter the name of the filter. Using this name, the
entry for the menu item View|Filters is looked up in the Bundle.

remote Use this attribute to enter whether filtering occurs on the server ("true")
or on the client. Filtering on the client must be executed with your own
filters. Default is "true”. If you use filtering on client side, you have to set
the attribute combineSortingAndFilteringofthe<Explorer>
element to false. Remote filtering and sorting on the server is much faster
than local operations which may slow down the server dramatically. So
use local filtering with care.

<Predicate>

See the description in "Configuring document types" in this chapter. In contrast to
this description, the sub element <DocumentType> can not be used here.

CoreMedia DXP 8

Appendix | Configuring Table Views

<Comparator»>

See the description in Section 5.1.8, “Comparator Classes” [109].
<TableDefinition>

Child elements: <ColumnDefinition>*

Parent elements: <Explorer>, <Query>, <ResourceChooser>, <Workflow>

Example 5.41. Ex-

<Explorer name="configurable-explorer-factory">

<TableDefinition> amplefor the
TableDefinition ele-
ment
</TableDefinition>
</Explorer>

Within this element of the XML file, the columns of the document table view are

configured.

Table 5.62. Attribute
Attribute Description of element
rowHeight This attribute determines the height of a row in the table. <TableDefinition>

The height is given in pixels.

<ColumnDefinition>

Child elements: <DisplayMap>*, <Comparator>?,<Renderer>?, <NamedDoc
umentVersionComparator>?

Parent elements: <TableDefinition>

Example 5.42. Ex-
ample for the
ColumnDefinition ele-
ment

<TableDefinition>
<ColumnDefinition class="StringColumn" weigth="1.0">

</ColumnDefinition>
</TableDefinition>

Using this element, a column in the document table view is defined.
Table 5.63. Attributes
Attribute Description of element

name Name of the column which is shown in the header of the column. <ColumnDefinition>

CoreMedia DXP 8

Appendix | Configuring Table Views

Attribute Description

class This attribute is used for selecting a class for displaying the column (for
example IntColumn, StringColumn see Section 5.1.4, “Column
Classes” [101] for details). This determines the field type which can be
displayed. Furthermore, the class sorts the contents of the column.

width This attribute is used for defining the minimum width of the column in
pixels. If the window width is smaller than the total sum of all column
widths, a scroll bar appears. Scaling for a larger window is controlled with
the attributes weight and resizable. The default value is 100 pixels.

weight This attribute gives the relative weight of a column in the scaling. Rational
numbers are entered. The default value for all columns is "1.0".

resizable This attribute is used for defining whether a column is resized at all. The
default setting is "true”, that is, the column is enlarged. Resizing can be
switched off with "false".

searchField This attribute can only be used for column definitions in the <Search>
element. Set it to the name of the Search Engine's index field that should
be used for sorting. The field must be sortable in the Search Engine, and
the Content Feeder must set its value accordingly. You can either use
predefined index fields or define custom ones in the index profile of the
Search Engine. For the latter case, see the CoreMedia Search Manual how
to set custom fields with the Content Feeder.

<NamedDocumentVersionComparators
Child elements: <Comparator>

Parent elements: <ColumnDefinition>

Example 5.43. Ex-

<Explorer name="configurable-explorer" B
combineSortingAndFiltering="false"> ample for the Named
<Filter name="undeleted-filter"> DocumentVersionCom-
<Predicate class="UndeletedPredicate"/> parator
</Filter>

<TableDefinition>
<ColumnDefinition class="StringColumn"
name="documentname">
<NamedDocumentVersionComparator remote="false">
<Comparator class=
"hox.corem.editor.toolkit.clientoperation.comparator.
NameComparator"/>
</NamedDocumentVersionComparator>
<DisplayMap document="*" property="name "/>
</ColumnDefinition> .
</TableDefinition>
</Explorer>

This element of the XML file is used to define custom comparators. It defines if a
comparator should be used on client or server side. If you combine a client side

CoreMedia DXP 8

Appendix | Configuring Table Views

comparator with a server side filter, the attribute combineSortingAndFiltering
of the Explorer element must be "false".

Be aware that combined client and server filtering and sorting may slow down the
server dramatically.

Table 5.64. Attributes

Attribute Description
of element <Named-
remote Defines .whether the comp.arator should be used on client (false) or DocumentVersionCom-
server side (true). Default is true. parator>
name Name of the comparator
<Renderer>

Child elements: svaries;

Parent elements: <ColumnDefinition>

Example 5.44. Ex-
<ColumnDefinition class="ImageColumn">
<Renderer class="ImagelayoutColumnRenderer" width="50" anuﬂejbrtheRendaer
height="50"/> element
<DisplayMap document="Picture" property="thumbnail"/>
</ColumnDefinition>

This element is used to define a renderer class, which will be used instead of the
predefined renderer of the column class (see example). You will find predefined
renderer classes in Section 5.1.5, “Renderer Classes” [104].
Table 5.65. Attribute
Attribute Description of the <Renderer> ele-

class The renderer class which should be used to show the content of the ment

column. For own renderer classes, the abstract class hox.corem.edit-
or.toolkit.table.columnrenderer.LayoutColumnRenderer must be extended.

<DisplayMap>
Child elements:

Parent elements:<ColumnDefinition>

Example 5.45. Ex-

<ColumnDefinition name="StringColumn" weight="1.0"> : _
<DisplayMap document="Bild" property="Name"/> anuﬂefbrthe[NSPMy

<DisplayMap document="*" property="name "/> Map element

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/columnrenderer/LayoutColumnRenderer.html

Appendix | Configuring the Spell checker

</ColumnDefinition>

This element of the XML file is used for entering which field from which document

type is displayed in a column of the document view.
Table 5.66. Attributes

Attribute Description of the <DisplayMap >

document Document type from which the field is taken. Content_ can be used as a element

wildcard for all document types.

property Property of the document type which should be displayed. Two types of
properties exist for a document. The properties which are defined in the
document types file and the predefined properties in all documents like
id_orname_.See the Developer Manual for details.

5.2.6 Configuring the Spell checker
Using these elements, the configuration of the spell checker can be done.
<Spellchecker>
Child elements: <MainDictionary>, <CustomDictionary>
Parent elements: <Editor>

Example 5.46. Ex-
<E‘E1 tO]]f > ample of a Spelichecker
<SpellChecker enabled="false" /> element
<SpellChecker enabled="true" os="Windows">

<MainDictionary class=
"com.coremedia.spellchecker.Bridge2JavaWordDictionary"/>

<CustomDictionary class=
"hox.corem.editor.spellchecker.Dictionary"/>
</SpellChecker>

</Editor>

Use this element to enable or disable the spell checker. It's also the container ele-
ment for the configuration of the spell checker.

Table 5.67. Attribute

of the element
enabled This attribute determines whether the spell checker should be used ("true") spellChecker
or should be disabled ("false"). By default, "false" is used.

Attribute Description

CoreMedia DXP 8 1

Appendix | Configuring the Spell checker

Attribute Description

os Restricts the configured spell checker to a given operating system. The
value is compared to Java's system property os.name. Common value
is for example Windows. The configuration with the best (that is, longest)
match wins. So for example if you have a spell checker configured with
os="Windows" and another with os="Windows 7" and you are
running on Windows 7 the second one will be taken. Default is to match
all operating systems. So the example above says: Disable the spell
checker on all operating systems but on Windows.

<MainDictionary>
Child elements:
Parent elements: <SpellChecker>

. Example 5.47. Ex-
<Editor> ample of a MainDiction-

<SpellChecker enabled="true"> anxdement
<MainDictionary
class="com.coremedia.spellchecker.Bridge2JavaWordDictionary"/>

</SpellChecker>

</Editor>

This element is used to determine the class used for integrating an external diction-
ary in the spell checker. As a default, the Microsoft Word dictionary will be used.
Please keep in mind, that it is not possible to write from CoreMedia CMS to the
Word user dictionary. If the Word user dictionary should be used for spell checking,
you need to activate this option in Word itself (please refer to the Word document-

ation).

Table 5.68. Attributes
Attributes Description of the MainDictionary
class With this attribute, the class used for determining the dictionary used in element

the spell checker is configured. By default, the class com. core
media.spell checker.Bridge2JavaWordDictionary will
be used. This class integrates the dictionary of a Microsoft Word installa-
tion. It takes the file properties/corem/language-map
ping.properties tomap the Javalocale (de_DE, for example) to the
Word locale (wdGerman, for example). The spell checker checks whether
a language exists in Word or not. If the language does not exist, an error
message will be shown and all properties using the language will not be
checked (see the element PropertyLanguageResolverFactory). If you are
sure that the language is installed with Word you might check the 1an

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/PropertyLanguageResolverFactory.html

Appendix | Configuring the Spell checker

Attributes Description

guage-mapping.properties file for the correct mapping. Maybe
you need to add the appropriate mapping.

For own classes, the interface com.coremedia.spellchecker.Dictionary
must be implemented.

<CustomDictionary>
Child elements:

Parent elements: <SpellChecker>

<Editor>

<SpellChecker enabled="true">
<CustomDictionary
class="hox.corem.editor.spellchecker.Dictionary"/>

</SpellChecker>

</Editor>

This element is used to determine the class used for integrating a customized dic-
tionary in the spell checker. The entries of this dictionary will be used for spell
checking and for suggestions.

Attributes Description

class With this attribute the class used for determining the customized diction-
ary used in the spell checker is configured. By default, the class
hox.corem.editor.spellchecker.Dictionary will beused
This class uses two customized dictionary created in the folder tree of
the CoreMedia System. For usage of these dictionaries see the User
Manual.

For own classes, the interface com. coremedia.spellchecker.Cus
tomDictionary must be implemented.

<PropertyLanguageResolverFactory>
Child elements:

Parent elements: <Editor>

CoreMedia DXP 8

Example 5.48. Ex-
ample of a CustomDic-
tionary element

Table 5.69. Attribute
of the <CustomDiction-
ary> element

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/spellchecker/Dictionary.html

Appendix | Configuring the Workflow

Example 5.49. Ex-
<Editor>

ample of a PropertyLan-
<PropertylLanguageResolverFactory guageResolver Factory
ellass= element

"hox.corem.editor.DefaultPropertyLanguageResolverFactory"/>

</Editor>

This element is used to configure a class which determines the language used in
a property. This information is used for the spell checker. For the default class
hox.corem.editor.DefaultPropertyLanguageResolverFactory the additional attributes
language and country can be used to override the settings of the element

Locale.

Table 5.70. Attribute
Attribute Description of the PropertyLan-
class With this attribute the class used for determining the language of a guageResolverfactory

property is configured. By default, the class hox.corem.editor.DefaultProp- element
ertyLanguageResolverFactory will be used. This class sets the language

of all properties used for the spell checker to the value defined via the

element <Locale>. You can override this setting with the attributes

language and country of the default language resolver factory.

For own classes, the interface hox.corem.editor.PropertyLanguageResolv-
erFactory must be implemented.

5.2.7 Configuring the Workflow

Using these elements, the appearance of the worklist in the workflow window can
be configured.

<Workflow>
Child elements: <TableDefinition>

Parent elements: <Editor>

Example 5.50. Ex-
<Editor>

<Workflow> ample of the Workflow

<TableDefinition> element
<ColumnDefinition
class="hox.corem.editor.workflow.columns.WorklistDetailColumn"/>

</TableDefinition>
</Workflow>
</Editor>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/DefaultPropertyLanguageResolverFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/PropertyLanguageResolverFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/PropertyLanguageResolverFactory.html

Appendix | Configuring the Workflow

This element is used to define, which information should be shown in the columns
of the workflow list at the left side of the workflow window.

<TableDefinition>
See the description in "Configuring windows with table views".
<ColumnDefinition>

See the description in "Configuring windows with table views" and in Section 5.1.4,
“Column Classes” [101].

<Processes>
Child elements: <Process>*, <Predicate>?, <Comparator>?

Parent elements: <Editor>

Example 5.517. Ex-

<Editor>
<Processes> ample for the Processes
<Process name="Publication"/> element
</Process>
</Processes>
</Editor>

This element is used to group the elements which define the view of the workflow
variables.

<Comparator>

See the description in the section "Configuring document types".
<Predicate>

See the description in the section "Configuring document types".
<Process>»

Child elements: <view>?, <Task>*, <WorkflowStartup>?

Parent elements: <Processes>

Example 5.52. Ex-

<Processes>
<Process name="Publication"/> anuﬂefbrtheaness
<View> element
</View>
</Process>

CoreMedia DXP 8

Appendix | Configuring the Workflow

</Processes>

This element is used for the configuration of the variable editors for the process
variable view (in the <view> element) and for each task (in the <Task> element).

Table 5.71. Attribute

Attribute Description of element <Process >
name Name of the process, for which the view should be configured.
openWork- Flag to control whether the workflow window should be opened on
flowWindow process creation. By default, "true" is used.
<View>

Child elements: <variable>*, <AggregationVariable>*

Parent elements: <Process>

Example 5.53. Ex-
<Process name="FourEyesProcess"> anuﬁeﬂwfhecodeek
: ment
<View>

<Variable name="User" editorClass="UserChooserEditor"/>

</View>
</Process>

This element is used to group the elements which define the look of the workflow
variables of a process. That is, with which editor the variables defined in the
workflow XML file should be shown in the workflow window.

<Task>

Child elements: <variable>*, <AggregationVariable>*

Parent elements: <Process>

Example 5.54. Ex-
<Process name="FourEyesProcess"> anuﬂejbrthe7hskem-

. ment
<Task name="approve">

<Variable name="comment" editorClass="StringEditor"/>

</Task>
</Process>

CoreMedia DXP 8

Appendix | Configuring the Workflow

This element is used to group the elements which define the look of the variables
of a task. That is, with which editor the variables defined in the workflow XML file
for the task should be shown in the workflow window.
Table 5.72. Attribute

Attribute Description of the <Task> element
name Name of the task for which the definitions should be valid.
<WorkflowStartup»>

Child elements:

Parent elements: <Process>

Example 5.55. Ex-
ample for the Work-
flowStartup element

<Process name="MyWorkflow">
<WorkflowStartup class="MyWorkflowStarter"/>

</Process>

This element is used to define, how the workflow should be started. That is, how
the variables should be filled.
Table 5.7 3. Attribute

Attribute Description of <WorkflowStartup>
class This attribute defines the class which manages the startup of the workflow. element

Own classes must implement the interface hox.corem.editor.work-

flow.WorkflowStartup.

As a default, the class hox.corem.editor.generic.GenericWorkflowStartup
is used. It sets the resource variable with the selected resource(s) and
opens a window for setting the other workflow variables.

<Variable>
Child elements:

Parent elements: <view>, <Task>

Example 5.56. Ex-
ample for the Variable
element

<Task name="approve">
<Variable name="comment" editorClass="StringEditor"/>

</Task>

CoreMedia DXP 8

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/WorkflowStartup.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/workflow/WorkflowStartup.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/generic/GenericWorkflowStartup.html

Appendix | Configuring Web Extensions

This element is used to define with which editor a workflow variable should be
shown in the workflow window.

Table 5.74. Attributes
Attributes Description of element <Variable>
editorClass Editor class to be used for showing the variable. See Section 5.1.1,

“Property Editors” [77] for a listing of the editor classes.

name Name of the variable to be shown, as defined in the workflow definition.

<AggregationVariable>

Child elements:

Parent elements: <View>, <Task>

Example 5.57. Ex-
<Task name="approve"> _
<AggregationVariable name="Resources" a‘mplefgrtheAggrega
editorClass="ResourceChooserEditor"/> tionVariable element
</Task> ’
This element is used to define with which editor a workflow aggregation variable
should be shown in the workflow window.
Table 5.75. Attributes
Attributes Description of <AggregationVari-
editorClass Editor class to be used for showing the variable. See Section “Workflow able> element

Editors” [77] for a listing of the editor classes.
name Name of the aggregation variable to be shown, as defined in the workflow
definition.

5.2.8 Configuring Web Extensions

A web extension is an addition to the Site Manager. A web extension is part of a
standard web application in a servlet container. It displays one or more web pages
and might return a result back to the invoking editor by opening a URL to the ed-
itor’s remote control with the result of the web extension call as an URL parameter.

CoreMedia CMS contains the following web extension:

Preview - Shows a preview of the selected document with different web
browsers and different render URLs

CoreMedia DXP 8

Appendix | Configuring Web Extensions

<WebContext>
Child elements: <WebExtensions>

Parent element: <Editor>

<Editor>
<WebContext host="previewHost" port="40081" context="coremedia">
</wéﬁContext>

</ﬁaitor>

The <WebContext> element configures a web application in a Servlet container.

Therefore, this element defines connection parameters. It is a container for
<WebExtension> elements.

Attribute Description Table 5.76. Attributes
of the WebContext ele-
class Java class with no-arg constructor. Defaults to the value ment

hox.corem.editor.web.SingleSignOnWebContext.
Other classes must be sub classes of the class hox . corem. ed
itor.web.WebContext.

host The name of the hosting computer where the web application
runs.

port The port of the web application where the web extension runs.

context The name of the web application where the web extension runs.

protocol The protocol part of the URL. Defaults to ‘http’.

loginPort The port for the SSL connection which is used for single sign-

on. This port is optional, if the web extension does not require
authentication. Currently Preview does not require authentica-
tion.

loginPath The path for the SSL connection which is used for single sign-
on. Defaults to /servlet/login. Not needed if the web
extension does not require authentication.

<WebExtension>
Child elements: <Pattern>

Parent elements: <WebContext>

<WebContext host="localhost" port="40081" context="coremedia">
<WebExtension name="preview" path="/servlet/preview"/>
</WebContext>

CoreMedia DXP 8

Appendix | Configuring Web Extensions

The <webExtension> element configures a part of a web application which is
used to add functionality to the Site Managers.

Attribute Description Table 5.77. Attribl{tes
of the <WebExtension>
class Java class with no-arg constructor. If not set, the class depends on the element

attribute name. If the name attribute is set to "preview", the class
hox.corem.editor.web.Previewis used. Other names will pro-
duce an error (if class is not set).

name The name of the web extension. Existing names are:

preview - the preview of documents or folders

path The path to the web application without context and URL query part.

open Use this attribute only with the preview web extension. It determines
which browser(s) are opened, when you call the preview from the toolbar.
If open is set to "all", then all defined browsers are opened. If you omit
the attribute or set it to "last" (default), then the last selected browser is
opened. If you have selected no browser before, the first configured
browser is opened. Using the Preview menu item from the File menu,
you can always choose the browser to use from all configured browsers.

<WebExtension name="preview" open="all">

<Pattern»>
Child elements:

Parent elements: <WebExtension>

<WebExtension name="preview">
<Pattern id="Default Preview” browser="Internet Explorer”/>
<Pattern id="Document-DE” browser="Internet Explorer”
pattern="%p://%h:%n/de/%i.html” />
<Pattern id="Document-EN” browser="Internet Explorer”
pattern="%p://%h:%n/en/%i.html” />
</WebExtension>

The <pattern>- element is optional and configures two things:

onge or more browsers

one or more URL patterns

If no <Pattern>elementis configured, the web extension uses one or more default
browsers with the default pattern string. Preview uses all browsers that match the
user’s locale when all browsers should open.

CoreMedia DXP 8

Appendix | Example Configuration of the Document Overview

Attribute Description Table 5.78. Attributes
- - of the <Pattern> ele-
id The unique name of the pattern. Defaults to the browser at- ment

tribute.
browser The id of the browser to invoke. The value must match an id

attribute in element <WebBrowser>.

pattern A URL pattern string. Defaultsto $p: //%h: %n/%f. Every web
extension may use different patterns with different placeholders.
The place holders have the following meaning:

Common to all web extensions:
p: protocol
h: host name
n: port number
f: rest of the URL

u: path including context name but without URL query

Preview:
i document id
v: document version
f expands to ‘id=%i’ if version = O otherwise to ‘id=%i &

version=v’
I: expands to the URL-encoded string ID of the document

5.2.9 Example Configuration of the Document Overview

Using the file editor.xml, you can configure the document overview, that is,
the tabular listing of documents in four windows:

The explorer view in the Explorer window.
The query view in the Query window.

The document overview in the selection window for internal links to re-
sources.
The workflows in the workflow list.

Configuration is the same for all four windows. However, there is the additional
possibility in the main window of filtering the documents in the document window.

CoreMedia DXP 8

Appendix | Example Configuration of the Document Overview

The example configuration described here for the query window can simply be
used for the other windows. Only the enclosing element has to be changed (Query,
Explorer, ResourceChooser, Search and Workflow are possible).

Creating a query view in the query window

You want to create a query view in the query window which displays the following
information:

the document type
the document name

the content of a structured text field

These column definitions are created within the <Query> and <TableDefini
tion> tags. Note that the document types and fields given in the following ex-
amples do not necessarily exist in your CoreMedia installation.

Example 5.58. The

<Query>
<TableDefinition> query tags

</TableDefinition>
</Query>

In the following examples, the attribute name is used in the <ColumnDefinition>
element.

Definition of the table column for the document type

The column should have the name "Type". The minimum width should be
50 pixels and should scale with the width of the window. Enter the following
linesin editor.xml:

Example 5.59. Ex-
<ColumnDefinition name="Type" width="50" . ;
class="DocumentTypeColumn"/> ample Conﬂgumtlon'
for document type dis-

. . . . la
In this case it is necessary only to make a few entries, since most of the de- play

fault values can be used. For example, the default value for resizable is
"true", that is, the column is automatically scaled. It is also not necessary to
make any DisplayMap entries, since the document type is an inherent
property of all documents.

Definition of the table column for the document name

The column should have the name "Name". The minimum width should be
150 pixels and should scale with the width of the window. The document

CoreMedia DXP 8

Appendix | Example Configuration of the Document Overview

name should be displayed in this column for each document. Enter the fol-
lowing lines in editor.xml:

<ColumnDefinition name="Name" width="150" class="StringColumn">
<DisplayMap document="*" property="name "/>
</ColumnDefinition>

Mostly default values are also used in this case. However, because there is
no special class for displaying the document name (the StringColumn class
must be used), you must make DisplayMap entries. Since the name is
defined in all document types, you can enter document="+*". The document
name is accessed via property="name ".

Definition of the table column for the content of a structured text field

The column should have the name "Content". The minimum width should
be 250 pixels and should scale if the width of the window is increased. For
a document of type "Dish", the content of the description field should be
displayed; Enter the following lines in editor.xml:

<ColumnDefinition name="Content" width="250"
class="SgmlTextColumn">
<DisplayMap document="Dish" property="Description"/>
</ColumnDefinition>

The SgmiTextColumn class is used here for displaying the structured text
field (SGML field). One DisplayMap tags is created for the document type
Dish. The next figure shows the configured query window.

CoreMedia DXP 8

Example 5.60. Ex-
ample configuration
for document name
display

Example 5.61. Ex-
ample configuration
for the structured text
column

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/StringColumn.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/hox/corem/editor/toolkit/table/column/SgmlTextColumn.html

Appendix | Example Configuration of the Document Window

=01 x] Figure 5.3. Configured

Query window

Resource type: ID All document types LI Hit lirmit: ISD LI Hitz: &

Property: Ionly latest version LI search for latest version anly

Cly fal il hienuSite Fish

Type | Matne Content
D Picture SoleCitrus_pic -
D Picture SalmonCitrus_pic

D Dish SalmonCitrus Tasty salman from the scotizh riversflavoured with fresh he..
D Picture FreshCod_pic

Creating filters

You want to make filters for the following documents available via the menu point
View|Filter:

Published documents
Deleted documents
Enter the following lines in the editor.xml file:

Example 5.62. Creation
<Explorer name="configurable-explorer">

<Filter name="deleted-filter"> of two filters
<Predicate class="DeletedPredicate" />
</Filter>

<Filter name="unpublished-filter">
<Predicate class="UnpublishedPredicate" />
</Filter>

</Explorer>

5.2.10 Example Configuration of the Document Window

With the help of the edi tor.xm1 file you can define the fields of a document type
which should be displayed in the document window.

CoreMedia DXP 8 9

Appendix | Example Configuration of the Document Window

You can configure the following settings:

Which fields are displayed?

Which fields can be edited?

Which fields must be filled?

How is the content of a field displayed?

The initial values of the fields of a newly created document.

How the content of a field is validated at check in.

The configuration possibilities are shown using a document of type Dish. The fol-
lowing figure shows such a document without specially configured fields (a Dish
document type could of course have completely different fields in your system, or
not occur at all). The document has no fields of type blob and integer. However,
the configuration of these fields can be carried out analogously to the configuration
shown. The editors for these two field types can be found in Section 5.1.1, “Property
Editors” [77].

Srame | ™

(L description:

3 ingredients: |

3 calories

o pictures: | =l

A price:

I PosO I 0Chars

The fields of the document type Dish should now be configured as follows:

Pictures

A selection list should be presented here.
Description

This field must be filled, since it is necessary for a dish.
price

Three different prices should be made available for selection here.
name

This field should be filled with the initial value "New Dish".
calories

This field should only be displayed and filled with the initial value "200".

Figure 5.4. Dish docu-
ment without special
configuration

CoreMedia DXP 8

Appendix | Example Configuration of the Document Window

Once the configuration has been carried out, a document of type Dish appears

as follows:
0 potires. [oehacs S| Figure 5.5. Dish docu
3 calories: 'ZUU a price: Lll ment aﬁer the Conﬁgur_
G name: few Dish j; | ation
(4 description: 208
3 ingredients: =l
I Pos 0 I 0 Chars

One of the two list fields is opened up here as example. If you try to save this
document without entries in the fields description, an error message appears. An
entry in the field calories is not possible. The field name has the default entry "New
Dish". You achieve this configuration with the following settings in editor.xml:

Example 5.63. Code
DOETHENES> example for configura-
. tion of the editor
<Document type="Dish">

<Property name="pictures" editorClass="ComboBoxLinkListEditor"
path="/MenuSite/Fish"/>
<Property name="calories" editable="false"/>
<Property name="price" editorClass="ComboBoxStringEditor">
<HistoryItem value="55"/>
<HistoryItem value="105"/>
<HistoryItem value="205"/>
</Property>
</Document>
</Documents>

<DocumentTypes>

<DocumentType name="Dish">
<PropertyType name="description">
<Validator class="NotEmpty2"/>

</PropertyType>
<PropertyType name= " initialvValue="New Dish"/>
<PropertyType name="calories" initialvalue="200"/>
</DocumentType>
</DocumentTypes>

CoreMedia DXP 8

Appendix | Configuration Possibilities in editor.properties

5.3 Configuration Possibilities in
editor.properties

The file editor.properties contains settings for the following points:

user login

logging of the editor

the URL of the XML configuration file of the editor
the URL of the CSS file used for the richtext pane
embedded document view

the number of results from a user or group query in the user manager window

Property Value De- Description Table 5.79. editor.prop-
fault erties

login.user example With this parameter, the default setting of

name the user name when login in can be determ-

ined. If no value is entered, the login name
of the user in the system is used.

login.pass example With this parameter, the default setting of

word the password when logging in can be determ-
ined. If no value is entered, the user must
enter the password.

login.do example With this parameter, the default setting of

main the domain for login can be determined. If
no value is entered, the user must enter the
domain. If no domain is entered, the user
must be an internal user.

login.imme true, false If this parameter is set to "true”, the editor

diate tries to login the user with the "user name"
and "password" configured above, without
the login dialog box appearing.

editor.star <Path relat The file defined in this property will be evalu-
tup.config ive to $COR ated before login. Thus, if a user-defined ed-
uration EM HOME and itor class should be used, you must configure
name or URL this class in the appropriate XML element of
of the XML thefiledefinedineditor.startup.con

figuration. If you want to change the
language of the login dialog, the locale must
be set in this file, too.

startup.con
figuration
file>

CoreMedia DXP 8

Property

editor.con
figuration

group.con
figuration

user.config
uration

editor.rich
text.css.loc
ation

editor.dis
play.embed
ded.view

userman
ager.sear

Value

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the XML
configura
tion file>

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the XML
configura
tion file
with wild
card {0}>

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the XML
configura
tion file
with wild
card {0}>

<Path relat
ive to
<CoreMedi
aHome> and
name or URL
of the CSS
file>

true, false

integer
value

CoreMedia DXP 8

fault

Appendix | Configuration Possibilities in editor.properties

Description

The main configuration file of the Site Man-
ager, which will be loaded after login. As a
default, the file properties/corem/ed
itor.xml will be used.

With this property, a group dependent edit
or .xml file can be configured. To do so, the
wildcard {0} in the URL or path of the config-
uration file will be replaced by the group
name of the user or by names defined in the
<ConfigGroups> element of the edit
or-startup.xml file. If the user belongs
to multiple groups, {0} will be replaced by
one of these group names in an arbitrary or-
der.

With this property a user dependent edit
or .xmnl file can be configured. To do so, the
wildcard {0} in the URL or path of the config-
uration file will be replaced by the name of
the user.

With this property the CSS file for the look
and feel of the richtext pane is defined.

With this property, enable the embedded
document view which shows the selected
document in the overview window of the
CoreMedia Editor. The default setting is "false".

You can limit the number of users or groups
obtained by a query in the user manager

Property Value

chResult
Size

edit
or.blob.mi

true,

me
type.strict

edit
or.query.al
lowUsers

true,

show.con
tat.dange.pooxs

true,

De-
fault

false false

false true

false true

Appendix | Configuration Possibilities in editor.properties

Description

window. You should set it small, as the user

manager GUI is not designed to be used as

an LDAP browser. The value must be smaller
than the user and group cache sizes of your
CAP serversetinthe capserver.proper
ties file. The default value is 490. The size
may also be limited by your particular LDAP
server (for example Active Directory: 1500).

If set to "true”, a blob can only be loaded into
a blob property when the MIME type of the
blob meets the MIME type of the property. If
set to "false", the user can decide to load a
blob with the required MIME type even if the
actual MIME type of the blob is different.

If set to "false", all user related queries in the
Query window (such as "Approved by") are
restricted to the logged in user. If set to
"true”, the common user chooser button ap-
pears and a specific user can be selected. This
property does not affect administration users,
they can always choose a specific user.

Show pop-up notifications for content
changes ("checkin", "save" and "uncheckout")
in opened document, that are performed in

a different editor.

CoreMedia DXP 8

Appendix | Configuration Possibilities in proxy.properties

5.4 Configuration Possibilities in

proxy.properties

Inthe file proxy.properties the resource cache for accelerating the Site Manager
is configured. A large resource cache reduces the network load, but at the same
time increases the memory required by the Site Manager on the local computer.

Property Value Default
proxy.cache.capa <int>

city

proxy.gc.limit <int>

CoreMedia DXP 8

Description

With this parameter you can set the
number of cached resources, that is
documents and folders (default
value: 2000). The default value of
2000 resources is set according to
the maximum memory allocation of
the Java environment of 128 Mbytes
(seebin/editor.jpif).Further-
more, this value is based on the as-
sumption that a document contains
a normal sized image (JPEG, GIF,
etc.) and these images are displayed
in the overview as thumbnails.

If the documents contain few im-
ages but their number is many
thousands, the value for the cache
can be, for example, doubled, while
maintaining the memory size of the
JVM.

If large multimedia data is involved,
the upper limit of the memory alloc-
ation for the Java environment must
be increased, or the cache memory
size reduced according to the larger
size of the data.

Using this parameter, you can enter
(in bytes) the size of the remaining
free memory of the JVM before Site
Manager objects start to be deleted,
in order to avoid a memory defi-
ciency (default value: 1,000,000).
An increase of this value to ca. 3 ~
5 million can lead to the resource
cache being almost completely
emptied very often, to maintain free
memory for the program execution

Table 5.80. proxy.prop-
erties

Appendix | Configuration Possibilities in proxy.properties

Property Value Default Description

of the Site Manager. In this way,
memory deficiency can be avoided,
but the network load usually in-
creases, since the resource cache
must be refilled, leading to possible
losses in speed when working with

the Site Manager.
proxy.status.inter <int> Using this parameter, you can de-
val termine the interval (in seconds) at

which the required memory is ana-
lyzed and, possibly, reduced, and
messages about the resource cache
and the memory use of the Site
Manager are output. A value of 0
deactivates this function.

CoreMedia DXP 8

Appendix | Configuration of The Site Manager in capclient.properties

5.5 Configuration of The Site Manager in
capclient.properties

The file capclient.properties contains information about the location of the
IOR of the CoreMedia Server, about the home and system folder and global inform-
ation on the timezone and on special elements in XML text Properties.

Table 5.81. capcli-

Property Value Default Description .
ent.properties
cap.client.serv URLformat This property describes
er.ior.url for the Site Manager the
ht location where it gets the
tp://<bost>:<port>/core IOR of the CoreMedia Con-
media/ior

tent Server. Since the edit-
or is usually installed on
adifferent computer from
the CoreMedia Content
Server, the property is giv-
en as HTTP URL. The edit-
or then receives the IOR
from the server with an
HTTP query. In general,
work is only carried out
on the Content Manage-
ment Server. In exceptional
cases the administrator
can access the Master Live
Server. On the MasterLive
Server, no resources
should be changed with
the editor, so that consist-
ency of the MasterLive
Server with the Content
Management Server is en-
sured.

CoreMedia DXP 8 1

Appendix | Configuration Possibilities in workflowclient.properties

5.6 Configuration Possibilities in

workflowclient.properties

The fileworkflowclient.properties defines configuration options for logging
(not Site Manager!), user management for the workflow client, remote action
handlers and the parameters necessary to connect to the CoreMedia Workflow
Server. For more information about logging see the [Operations Basics Manual].

Property

workflow.cli
ent.serv
er.ior.url

work
flow.user

work
flow.pass
word

workflow.do
main

Value

http://host-
name:port/work-
flow/ior

<workflow-
user-name>

<Work
flowUserPass
word>

<Work
flowUserDo
main>

CoreMedia DXP 8

Default Description

Defines the URL where to get the IOR of
the workflow server. The host name and
portin the URL must match with the host
name and port in the workflowserv
er.properties file.

As a default, a workflow client (but not
the Site Manager) connects to the Content
Server as the workflow user. Here you can
define a different user to connect with
the server. Replace <WorkflowUserName>,
<WorkflowUserPassword> and <Work-
flowUserDomain> with your user name,
domain and/or password.

Table 5.82. Parameters
of the workflowcli-
ent.properties file

Appendix | Configuration Possibilities in language-mapping.properties

5.7 Configuration Possibilities in
language-mapping.properties

This file is necessary for the spell checker. It defines the mappings from Java Locale
objects to Word language identifiers. For example,

de DE=wdGerman

maps the locale de DE to the Word language identifier wdGerman. The most
common European languages are covered in the default 1anguage-mapping.prop
erties file. The locale identifier can be taken from the Locale.toString()
method (see Javadoc for details) and the Word language identifiers from the wd
LanguageID enumeration of the Word object type library.

CoreMedia DXP 8

Glossary |

Glossary

Blob

CAE Feeder

Content Application Engine (CAE)

Content Bean

Content Delivery Environment

CoreMedia DXP 8

Binary Large Object or short blob, a property type for binary objects, such as
graphics.

Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in
other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

A content bean defines a business oriented access layer to the content, that
is managed in CoreMedia CMS and third-party systems. Technically, a content
bean is a Java object that encapsulates access to any content, either to Core-
Media CMS content items or to any other kind of third-party systems. Various
CoreMedia components like the CAE Feeder or the data view cache are built
on this layer. For these components the content beans act as a facade that
hides the underlying technology.

The Content Delivery Environment is the environment in which the content is
delivered to the end-user.

It may contain any of the following modules:

CoreMedia Master Live Server
CoreMedia Replication Live Server
CoreMedia Content Application Engine
CoreMedia Search Engine

Elastic Social

Glossary |

Content Feeder

Content item

Content Management Environment

Content Management Server

Content Repository

Content Server

CoreMedia DXP 8

CoreMedia Adaptive Personalization

The Content Feeder is a separate web application that feeds content items of
the CoreMedia repository into the CoreMedia Search Engine. Editors can use
the Search Engine to make a full text search for these fed items.

In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following modules:

CoreMedia Content Management Server
CoreMedia Workflow Server

CoreMedia Importer

CoreMedia Site Manager

CoreMedia Studio

CoreMedia Search Engine

CoreMedia Adaptive Personalization
CoreMedia CMS for SAP Netweaver ® portal

CoreMedia Preview CAE

Server on which the content is edited. Edited content is published to the
Master Live Server.

CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is
stored in a relational database.

Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.
Content Management Server
Master Live Server

Replication Live Server

Glossary |

Content type

Contributions

Controm Room

CORBA (Common Object Request
Broker Architecture)

CoreMedia Studio

Dead Link

DTD

Elastic Social

CoreMedia DXP 8

A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it clients,
partners or CoreMedia employees. CoreMedia contributions are hosted on
Github at https://github.com/coremedia-contributions.

Controm Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

The term CORBA refers to a language- and platform-independent distributed
object standard which enables interoperation between heterogenous applic-
ations over a network. It was created and is currently controlled by the Object
Management Group (OMG), a standards consortium for distributed object-
oriented systems.

CORBA programs communicate using the standard I110OP protocol.

CoreMedia Studio is the working environment for business specialists. Its
functionality covers all of the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As amodern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

A link, whose target does not exists.

A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the docu-
ment prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier.
The System Identifier is just that: a URL to the DTD. The Public Identifier is
an SGML Legacy Concept.

CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can
moderate user generated content from their common workplace. Elastic Social
bases on NoSQL technology and offers nearly unlimited scalability.

https://github.com/coremedia-contributions

Glossary |

EXML

Folder

Home Page

IETF BCP 47

Importer

IOR (Interoperable Object Refer-
ence)

Jangaroo

Java Management Extensions (JMX)

ISP

Locale

Master Live Server

CoreMedia DXP 8

EXML is an XML dialect supporting the declarative development of complex
Ext JS components. EXML is Jangaroo's equivalent to Adobe Flex MXML and
compiles down to Actions Script.

A folder is a resource in the CoreMedia system which can contain other re-
sources. Conceptually, a folder corresponds to a directory in a file system.

The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for all
subpages.

Document series of Best current practice (BCP) defined by the Internet Engin-
eering Task Force (IETF). It includes the definition of IETF language tags, which
are an abbreviated language code such as en for English, pt-BR for Brazilian
Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using
traditional Han characters.

Component of the CoreMedia system for importing external content of
varying format.

A CORBA term, Interoperable Object Reference refers to the name with which
a CORBA object can be referenced.

Jangaroo is a JavaScript framework developed by CoreMedia that supports
ActionScript as an input language which is compiled down to JavaScript. You
will find detailed descriptions on the Jangaroo webpage ht-
tp://www.jangaroo.net.

The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification are
already integrated with Java 5. JMX provides a tiered architecture with the
instrumentation level, the agent level and the manager level. On the instru-
mentation level, MBeans are used as managed resources.

JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

The Master Live Server is the heart of the Content Delivery Environment. It re-
ceives the published content from the Content Management Server and makes
it available to the CAE. If you are using the CoreMedia Multi-Site Management
Extension you may use multiple Master Live Server in a CoreMedia system.

173

http://www.jangaroo.net
http://www.jangaroo.net

Glossary |

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part,
multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects A project is a collection of content items in CoreMedia CMS created by a
specific user. A project can be managed as a unit, published or put in a
workflow, for example.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content items depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers
and to improve the robustness of the Content Delivery Environment. The Rep-
lication Live Server is a complete Content Server installation. Its content is an
replicated image of the content of a Master Live Server. The Replication Live
Server updates its database due to change events from the Master Live Server.
You can connect an arbitrary number of Replication Live Servers to the Master

Live Server.
Resource A folder or a content item in the CoreMedia system.
ResourceURI A ResourceUri uniquely identifies a page which has been or will be created

by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number of
key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes re-
ferred to as localized site. In CoreMedia CMS a site especially consists of a site
folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

CoreMedia DXP 8

Glossary |

Site Folder

Site Indicator

Site Manager

Site Manager Group

Template

Translation Manager Role

User Changes web application

Version history

Weak Links

WebDAV

CoreMedia DXP 8

All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a
site.

A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely cMSite.

Swing component of CoreMedia for editing content items, managing users
and workflows.

Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site and
that they accept translation tasks for that site.

In CoreMedia, JSPs used for displaying content are known as Templates.
OR

In Blueprint a template is a predeveloped content structure for pages. Defined
by typically an administrative user a content editor can use this template to
quickly create a complete new page including, for example, navigation, pre-
defined layout and even predefined content.

Editors in the translation manager role are in charge of triggering translation
workflows for sites.

The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in
the Control Room, as a part of projects and workflows.

A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

In general CoreMedia CMS always guarantees link consistency. But links can
be declared with the weak attribute, so that they are not checked during
publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

WebDAV stands for World Wide Web Distributed Authoring and Versioning
Protocol. It is an extension of the Hypertext Transfer Protocol (HTTP), which
offers a standardised method for the distributed work on different data via
the internet. This adds the possibility to the CoreMedia system to easily access
CoreMedia resources via external programs. A WebDAV enabled application
like Microsoft Word is thus able to open Word documents stored in the
CoreMedia system. For further information, see http://www.webdav.org.

http://www.webdav.org

Glossary |

Workflow

Workflow Server

XLIFF

CoreMedia DXP 8

A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the work-
flow software ensures that the individuals responsible for the next task are
notified and receive the data they need to execute their stage of the process.

The CoreMedia Workflow Server is part of the Content Management Environ-
ment. It comes with predefined workflows for publication and global-search-
and-replace but also executes freely definable workflows.

XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated but
also metadata about the text. For example, the source and target language.
CoreMedia Studio allows you to export content items in the XLIFF format and
to import the files again after translation.

Index |

Index

A
access resource, 51
API, 107

Editor API, 77
attribute

of Filter, 142

of Process, 151
attributes

of AggregationVariable, 153
of Browser, 120

of Bundle, 118

of ColumnDefinition, 143
of Comparator, 134

of CustomDictionary, 148
of DisplayMap, 146

of Document, 137

of DocumentTypes, 130

of Explorer, 139

of Initializer, 132

of Locale, 117

of MainDictionary, 147

of Preview, 118

of Property, 138

of PropertyLanguageResolverFactory, 149
of PropertyModelFactory, 124
of RemoteControl, 121

of Renderer, 145

of ResourceChooser, 140

of SpellChecker, 146

of Tab, 138

of TableDefinition, 143

of Task, 152

of TreeFilter, 142

of Treesorter, 141

of Validator, 132

of Variable, 153

CoreMedia DXP 8

of WorkflowStartup, 152

BeanParser, 15, 113

C

classes
LinkListEditor, 92
comparators
client side, 109
CoreMedia Editor, 17, 156
coremedia-editor.dtd (Elements)
AggregationVariable, 153
Browser, 119
Bundle, 117
ColumnbDefinition, 143
Comparator, 133
CustomDictionary, 148
DisplayMap, 145
Document, 136
Documents, 136
DocumentType, 130
DocumentTypes, 129
Editor, 113
Explorer, 139
Filter, 142
Initializer, 132
Locale, 116
MainDictionary, 147
Predicate, 135
Preview, 118
Process, 150
Processes, 150
Property, 137
PropertyLanguageResolverFactory, 148
PropertyType, 130
Query, 141
regular expressions to use, 131
Renderer, 145
ResourceChooser, 140
SpellChecker, 146
Tab, 138
TableDefinition, 143
Task, 151
TreeFilter, 141

Index |

TreeSorter, 141
Validator, 132
validPattern, 131
Variable, 152

View, 151

Workflow, 149
WorkflowStartup, 152

D
document fields (example), 159
DTD
coremedia-editor.dtd: generalconfiguration, 113

E

Editor classes
Column classes, 101
Column classes for workflows, 102
TabbedDocumentView, 96
Editor configuration
Predicate, 142
editor.xml, 112
execute, 64

G

GenericDocumentView, 68
getlnitialvalue, 52

H

HTML
copy and paste, 88

include, 60
Initializer class genericlnitializer, 106

L

language-mapping.properties, 169
LanguageResolver, 56

localization, 73

N

NamedDocumentVersionComparator, 144
no start, 47

CoreMedia DXP 8

P

predefined Editor classes, 77
Property editors

blob fields, 91

date fields, 82

integer fields, 80

string fields, 77

S

SimpleValidationException, 55
Site Manager

Remote Control, 120
spellchecker, 45
style sheet group, 83

T

Tool bar, 36

U

unknow element: ROOT, 48

Vv

validate, 54

w

workflows, 77

	CoreMedia Site Manager Developer Manual
	Table of Contents
	1. Preface
	1.1 Structure of the Manual
	1.2 Audience
	1.3 Typographic Conventions
	1.4 CoreMedia Services
	1.4.1 Registration
	1.4.2 CoreMedia Releases
	1.4.3 Documentation
	1.4.4 CoreMedia Training
	1.4.5 CoreMedia Support

	1.5 Change Chapter

	2. Site Manager Overview
	2.1 The BeanParser
	2.2 Description of the CoreMedia editor.dtd

	3. Operation and Configuration
	3.1 Defining The User Login
	3.2 Define the Locale
	3.3 Starting the Editor
	3.4 Defining XML Files For Configuration
	3.5 Defining Group Specific Configuration Files
	3.6 Configuration Using coremedia-richtext-1.0.css
	3.6.1 Supported CSS Attributes
	3.6.2 Extend the coremedia-richtext-1.0.css file
	3.6.3 Localize the New Styles and Style Groups
	3.6.4 Add to Content Editor

	3.7 Configuring the Struct Editor
	3.8 Disable Workflow
	3.9 Enable Direct Publication
	3.10 Define the Browser for Web Extensions
	3.11 Enable the Spell Checker
	3.12 Troubleshooting
	3.12.1 Taking a Thread Dump

	4. Programming and Customization
	4.1 How To ...
	4.1.1 How To Access Arbitrary Resources

	4.2 Program Own Initializers
	4.3 Program Own Validators
	4.4 Program Own Language Resolver Factories
	4.5 Program Own PropertyEditors
	4.6 Program Own Predicate Classes
	4.7 Program Own Renderers
	4.8 Program Own Commands
	4.8.1 Register Commands
	4.8.2 Localize Commands
	4.8.3 Add Command to Document View
	4.8.4 Add Command to Explorer View
	4.8.5 Add Command to Context Menu
	4.8.6 Add Action to RichTextPane

	4.9 Program Own ResourceNamingFactory Classes
	4.10 Localization
	4.10.1 Localize the Editor
	4.10.2 Localize for Use with WebStart

	5. Appendix
	5.1 Classes Delivered for Site Manager Configuration
	5.1.1 Property Editors
	Workflow Editors
	String Editors
	Integer Editors
	Date Editors
	XML Editors
	Blob Editors
	LinkList Editors

	5.1.2 View Classes
	5.1.3 Predicate Classes
	5.1.4 Column Classes
	5.1.5 Renderer Classes
	5.1.6 Initializer Classes
	5.1.7 Validator Classes
	5.1.8 Comparator Classes

	5.2 Configuration Possibilities in the XML Files
	5.2.1 General Configuration
	5.2.2 Defining Group Specific Configuration Files
	5.2.3 Configuring Document Types
	5.2.4 Configuring Document Windows
	5.2.5 Configuring Table Views
	5.2.6 Configuring the Spell checker
	5.2.7 Configuring the Workflow
	5.2.8 Configuring Web Extensions
	5.2.9 Example Configuration of the Document Overview
	5.2.10 Example Configuration of the Document Window

	5.3 Configuration Possibilities in editor.properties
	5.4 Configuration Possibilities in proxy.properties
	5.5 Configuration of The Site Manager in capclient.properties
	5.6 Configuration Possibilities in workflowclient.properties
	5.7 Configuration Possibilities in language-mapping.properties

	Glossary
	Index

