CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Elastic Social Manual

COREMEDIA

Cm

CoreMedia Elastic Social Manual |

CoreMedia Elastic Social Manual

Copyright CoreMedia AG © 2015
CoreMedia AG
Ludwig-Erhard-Strake 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwdhnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehorigen Programme diirfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfdltigt werden. Unberiihrt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

CoreMedia DXP 8

CoreMedia Elastic Social Manual |

T PrEIACE i 1
T 7 AUIENCE Lot 2
1.2. Typographic Conventionscccoevviiiiiiiieiieieeeinenen, 3
1.3. CoreMedia SErVICEScuuiviieiiieieieee e 4

1.3.1. Registrationcooviiiiiiiiiee e 4
1.3.2. CoreMedia Releasescceevevivivinninninnnnne. 4
1.3.3. DOCUMENtAtiON .vuiiiiiiiei e 5
1.3.4. CoreMedia TraiNiNg ...cc.ovnieiiiiiieiieieeeeeeeneaes 7
1.3.5. CoreMedia SUPPOTtcviniieiiieiiieiieeeeeeeeans 8
T.4. Change Chaptercocovviiiii e 11

2. Architectural OVerVIEWc.cevuviiiniiiiiiiii e, 12
2.1. Logical COMPONENtScvivnieiiiiieiei e 14
2.2. SOftware Stackc.veiiiiiii e 15

3. Administration and Operationcccoeeviviiiiiiiiiiceieennn, 16
3.7. Installation GUIdecevvieiiiiiiie e 17
3.2. DeploymMENt ...ovviniiiiii e 18

3.2, SEIUPD it e 18
3.2.2. Single Data Center Deployment 19
3.2.3. Multiple Data Center Deployment 20
3.2.4. Cloud deploymentccoeiiiiiiiiiiiiiiieieeean 21
3.2.5. Performancecc.vevviiiiiniiene e 21
3.2.6. Availabilityooooiii 22
3.2.7.BaCKUP e 23
3.3, AdmINIStrationocuveeiiiiiii e 26
3.3.1. Configuration propertiesccooeeeveinennnen. 26
3.3.2. Block Users automaticallycccoeeeininnns. 28
3.3.3. Reject Comments automatically 28
3.3.4. REINAEX 1.uvniiniiiieiei e 29
3.3.5. Refresh countersooveveiiiiniiiiiniiieeieanes 29

4. DEVEIOPMENT L.ttt 31
AT, SECUNIEY ittt e e 32
4.2. Persistence Modelcouviiiiiiiiiiniii e 33
4.3, INAEXINEG «ovieiit e 38
4.4, Listening to Model Changescccoeiviviiiieininnnen. 43
4.5. Message Queue Modeloevviviiiiiiiiiiiiiiieeeans 44
4.6, COUNTETS «oeeneieitie e 47
A.7.INtegration ...oiv i 50

4.7.1. Apache Mavenccovviviriiiiiiiieeeeeeeeean, 50
4.7.2. MUILI-TENANCY et 53
4.7.3. Using Elastic Social Servicescocoevnenennen. 54
4.7.4. Authentication and Authorization 54

CoreMedia DXP 8

CoreMedia Elastic Social Manual |

A.7.5. EMalS cooviiiii 60

4.7.6. BBCOAE ...oviniiniiiiiie e 61

4.8. KNown Limitationscoovviiiiiiiiiieiieecee e 63
X ettt e e e 66

CoreMedia DXP 8

CoreMedia Elastic Social Manual |

List of Figures

2.1. Logical components of Elastic Socialcccoevviiiiiiiiniinaans. 14
2.2. Software Stack of Elastic Socialccoeeevviiiiiiiiiniinen, 15
3.1. Use of sharding and replication Setsccccceevviiiiiniiniinnnnss 18
3.2. Single data center deploymentcevviiiiiiiiiieieieieenns 19
3.3. Multiple data center deploymentccc.ovvviiiiiniiniiiineieanes 20
4.1. Mapping of Java classes and MongoDB documents 33
4.2. Method call sequence using the TaskQueueService 44
4.3. Components in identity and access management 55

CoreMedia DXP 8 \Y

CoreMedia

Elastic Social Manual |

List of Tables

1.1.
1.2.
1.3.
1.4.
1.5.
3.1.
3.2.
3.3.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

Typographic CONVENLIONSovviiniiiiiieiieie e 3
PICTOZIaPNS . et 3
CoreMedia MANUAISvviiiiieieee e 5
Log files Check Tistvuiiniiiiei e 9
(@ T U = PPN 11
Measured performanCeovueveeieeieeiieieeee e e e 22
Recommended shard Keyscoveiiviiiiiiiiiiieeeeeeen 24
Configuration Propertiesciuveveeieeiieiiee e 26
Mapping of BSON values to Java typesccceevvvvneiniennennnnns 34
Mapping of BSON collection values to Java types 34
Which module contains support for which type 35
Counter COlleCtioNS ...vuiveiieie e 47
Aggregated counter collectionsc.coeeviiiiiiiiiieiieieienns 48
Counters used in CoreMedia Elastic Socialcc.cceeunn... 48
HiStOZram COUNTETS ...uvveitiieiii i e e eans 49
AVETAE COUNTETS tuivtiinitein it eieeete it eete et e ete et eeie e eeieeneenaannas 49

CoreMedia DXP 8

CoreMedia Elastic Social Manual |

List of Examples

3.1. Snapshot from a passive nodeccccooiiiiiiiiiiiii 23
3.2. Shard other collectionsceeviiiiiiiiiiiie e 24
3.3. Creating shard KeYSccviniiiiiiiiiieieee e 25
3.4. Start JConsole on Windows OScoooiviiiiniiiiiiiiicieieee, 29
3.5. Start JConsole alternatively on UNIX based OS 29
4.1. Extending the APl interfacescoceveveviiiieiiiieiieieeeenne, 36
4.2. Modifying returned iNStanCecccoeviiiiiiiiiieieieeeeeeieanes 36
4.3. Create user from exiSting USEercocviviiiiniiieiiieineeneennes 36
4.4, Creating @ ModeliNdeXc.vviiiiieiieeie e 38
4.5, Create @ QUETY .ouieeiii i ettt e e e 38
4.6. Creating a ModelCollectionConfigurationc.coeevvennnne. 39
4.7. Create a SearchindexConfigurationccccovvviiiiiiiiiinnnnn.. 40
4.8. Example try catchoooieiiii 41
e T 5 (=] =] N 43
4.10. TaskQueueConfigurationccevvieiiiieiiiiieieie e 44
AT ALASK ClasS conieiiiie e 45
4,72, EXeCULe @ 1aSK oveininiiiie e 45
4,73, SMAll taSKS . oneeeiee e 45
4.14. Typical Elastic Social dependenciesccccvvvivieinennnnnns 50
4.15. Application context Spring example configuration 51
4.16. Invalid configuration setupccevvviiiiiiiiiiiiiiieeeeeeee 52
4.17. Default configuration setup exampleccocevvviiiiiiinnnn.. 52
4.18. Example of the /com/acme/es-defaults.properties file 53
4.19. Configure a tenant filter and its mapping in your own applic-

ALION CONTEXE L.ttt e e e 53
4.20. Spring controller with USerServiceccocoveveiviiininnennnnnss 54
4.21. Configuring a UserAuthenticationProvider 55
4.22. Configuring LDAP Authenticationc.coevviiiiiiiinninnnns 56
4.23. Implementing an ApplicationListenerccocuveiveniinnnnss 57
4.24. Spring LDAP dependencycccoevvviieiniiieiieeieiieeeeieeiaanas 57
4.25. Dependencies for Facebook and Twitter integration 58
4.26. Configuring Elastic Social classes for Spring Social 59
4.27. CUSTOM iNterfaceuvvniiniiii e 63
4.28. Custom implementationcccoiiiiiiiiii 63
4.29. Get query result listoeuiiiiiiiiii s 63
4.30. Interface and implementationccooiiiiiiiiiiean. 64
4.31. Model method definitionccoeviiiiiiiiiiienes 64
4.32. Casting of MOdelSovniiniiii i 64

CoreMedia DXP 8

CoreMedia Elastic Social Manual |

4.33. Set model Propertiesccveiieiiiiiiiiieeceeeee e 64
4.34. CUStOMIZE MOAEIS w.ovininiiii s 65
4.35. CuStOmM MOdel SEIVICES ..viviviririritieieeeeeeee e 65

CoreMedia DXP 8 viii

Preface |

1. Preface

This manual describes the usage of CoreMedia Elastic Social.

Chapter 2, Architectural Overview [12] gives an architectural overview of
CoreMedia Elastic Social.

Chapter 3, Administration and Operation [16] gives an overview over the
administration and operation of CoreMedia Elastic Social.

Chapter 4, Development [31] describes how to develop with CoreMedia
Elastic Social.

CoreMedia DXP 8 1

Preface | Audience

1.1 Audience

This manual is intended for developers who integrate CoreMedia Elastic Social into
their projects.

CoreMedia DXP 8 2

Preface | Typographic Conventions

1.2 Typographic Conventions

CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:
Table 1.1. Typographic

Element Typographic format Example conventions
Source code Courier new cm contentserver
. . start
Command line entries
Parameter and values
Menu names and entries Bold, linked with | Open the menu entry

Format|Normal

Field names Italic Enter in the field Heading
CoreMedia Components The CoreMedia Component
Entries In quotation marks Enter "On"
(Simultaneously) pressed Bracketed in "<>", linked with Press the keys <Ctrl>+<A>
keys 4"

Emphasis Italic It is not saved

Buttons Bold, with square brackets Click on the[OK]button
Glossary entry >> shaped icon >> WebDAV

Code lines in code examples '\ cm contentserver \
which continue in the next

line start

In addition, these symbols can mark single paragraphs:

Table 1.2. Pictographs
Pictograph Description

% Tip: This denotes the best practice or a recommendation.

Warning: Please pay special attention to the text.

Summary: This symbol indicates a summary of the above text.

% Danger: The violation of these rules causes severe damage.

CoreMedia DXP 8 3

Preface | CoreMedia Services

1.3 CoreMedia Services

This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.3.1,
“Registration” [4] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners ﬁ
Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

Section 1.3.1, “Registration” [4] describes how to register for the usage of
the services.

Section 1.3.2, “CoreMedia Releases” [4] describes where to find the
download of the software.

Section 1.3.3, “Documentation” [5] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

Section 1.3.4, “CoreMedia Training” [7] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

Section 1.3.5, “CoreMedia Support” [8] describes the CoreMedia support.

1.3.1 Registration

In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.3.5, “CoreMedia Support” [8]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

CoreMedia DXP 8 4

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

Preface | Documentation

If you encounter a 404 error then you are probably not logged in at GitHub or ﬁ
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [4]

for details about the registration process. If the problems persist, try clearing

your browser cache and cookies.

Maven artifacts
CoreMedia provides its release artifacts via Maven under the following URL:
https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual.

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [8]) to get your licences.

1.3.3 Documentation

CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia

Manual Audience Content manuals
CoreMedia Utilized Open- Developers, ar- This manual lists the third-party software used
Source Software chitects, admin- by CoreMedia and lists, when required, the li-

istrators cence texts.

Supported Environments Developers, ar- This document lists the third-party environ-
chitects, admin- ments with which you can use the CoreMedia

istrators system, Java versions or operation systems for

example.
Studio User Manual, Eng- Editors This manual describes the usage of CoreMedia
lish Studio for editorial and administrative work. It

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

CoreMedia DXP 8 5

https://repository.coremedia.com
livecontext-en.pdf#CoreMediaManual
http://documentation.coremedia.com/dxp8

Preface | Documentation

Manual Audience Content

LiveContext for IBM Web- Developers, ar- This manual gives an overview over the struc-
Sphere Manual chitects, admin- ture and features of CoreMedia LiveContext.
istrators It describes the integration with the IBM

WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

Operations Basics Manual Developers, ad- This manual describes some overall concepts
ministrators such as the communication between the
components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

Adaptive Personalization Developers, ar- This manual describes the configuration of and
Manual chitects, admin- development with Adaptive Personalization, the
istrators CoreMedia module for personalized websites.
You will learn how to configure the GUI used

in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-

sions.
Analytics Connectors Developers, ar- This manual describes how you can connect
Manual chitects, admin- your CoreMedia website with external analytic
istrators services, such as Google Analytics.

Content Application De- Developers, ar- This manual describes concepts and develop-

veloper Manual chitects ment of the Content Application Engine (CAE).
You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

Content Server Manual Developers, ar- This manual describes the concepts and admin-
chitects, admin- istration of the main CoreMedia component,
istrators the Content Server. You will learn about the

content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

CoreMedia DXP 8 6

Preface | CoreMedia Training

Manual Audience Content

Elastic Social Manual Developers, ar- This manual describes the concepts and admin-
chitects, admin- istration of the Elastic Social module and how
istrators you can integrate it into your websites.

Importer Manual Developers, ar- This manual describes the structure of the in-
chitects ternal CoreMedia XML format used for storing

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

Search Manual Developers, ar- This manual describes the configuration and
chitects, admin- customization of the CoreMedia Search Engine
istrators and the two feeder applications: the Content

Feeder and the CAE Feeder.

Site Manager Developer Developers, ar- This manual describes the configuration and
Manual chitects, admin- customization of Site Manager, the Java based
istrators stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

Studio Developer Manual Developers, ar- This manual describes the concepts and exten-
chitects sion of CoreMedia Studio. You will learn about
the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

Unified API Developer Developers, ar- This manual describes the concepts and usage

Manual chitects of the CoreMedia Unified API, which is the re-
commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

Workflow Manual Developers, ar- This manual describes the Workflow Server. This
chitects, admin- includes the administration of the server, the
istrators development of workflows using the XML lan-

guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training

CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

CoreMedia DXP 8 7

mailto:documentation@coremedia.com

Preface | CoreMedia Support

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training
Contact the Training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support

CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.3.1, “Registration” [4]. The support email address is:

Email: support@coremedia.com

Create a support request

CoreMedia systems are distributed systems that have a rather complex structure. Support request
This includes, for example, databases, hardware, operating systems, drivers, virtual

machines, class libraries and customized code in many different combinations.

That's why CoreMedia needs detailed information about the environment for a

support case. In order to track down your problem, provide the following informa-

tion:

Which CoreMedia component(s) did the problem occur with (include the
release number)?
Which database is in use (version, drivers)?

Which operating system(s) is/are in use?

Which Java environment is in use?

Which customizations have been implemented?

A full description of the problem (as detailed as possible)

Can the error be reproduced? If yes, give a description please.

How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

CoreMedia DXP 8 8

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Preface | CoreMedia Support

To put it in a nutshell, CoreMedia needs: Support checklist

1. a person in charge (ideally, the CoreMedia system administrator)
. extensive and sufficient system specifications
. detailed error description

. log files for the affected component(s)

v A W N

. if required, system files

An essential feature for the CoreMedia system administration is the output log of Log files
Java processes and CoreMedia components. They're often the only source of in-

formation for error tracking and solving. All protocolling services should run at the

highest log level that is possible in the system context. For a fast breakdown, you

should be logging at debug level. The location where component log output is

written is specified in its < appName>-1logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia. log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do | Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the 1ogs/ directory of the servlet
container. See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files

Component Problem Log files
check list

CoreMedia Studio general CoreMedia-Studio.log
coremedia.log

CoreMedia Editor general editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre- coremedia.log

view (Content Management Server)
coremedia.log
(Master Live Server)

CoreMedia DXP 8 9

Preface | CoreMedia Support

Component Problem Log files

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

Server and client communicationerrors editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.Jjpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

Server not starting coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

CoreMedia DXP 8

Preface | Change Chapter

1.4 Change Chapter

In this chapter you will find a table with all major changes made in this manual.
Table 1.5. Changes
Section Version Description

CoreMedia DXP 8

Architectural Overview

2. Architectural Overview

Elastic Social combines four major components:

Elastic Core is the foundation of Elastic Social and provides several services
for building horizontally scalable web applications
ModelService, for schema-free persistence

StagingService, staging of changes on models
CounterService, AverageCounterService, atomic counters
HistogramCounterService, counters with a histogram
BlobService, storage of large binary objects

TaskQueueService, asynchronous parallel execution of background
tasks
SearchService, full-text search

UserService, for users
TemplateService, for template rendering
TenantService, for tenant management
Elastic Social services for social use cases:
CommunityUserService, for community users
CommentService, for commenting
ReviewService, for reviews
BlacklistService, for blacklists
RatingService, for rating
LikeService, for likes
RegistrationService, for user registration
MailService, for sending mails

MailTemplateService, for creating mails from localized templates
A Plugin for CoreMedia Studio

The plugin allows the premoderation and post-moderation of users, reviews
and comments which can include pictures, processing complaints, managing
users and searching for comments and using them for curated content.

CoreMedia DXP 8

Architectural Overview

A reference Implementation based on the development workspace that is
showing the integration of social software use cases into CoreMedia Blueprint.

The reference implementation shows registration, login, password loss, user
self service, commenting, citing, reviews, premoderation and post moderation
of comments, reviews and users, ignoring users, handling of anonymous
users, automatic rejection of comments, automatic blocking of users, display
of top reviewed, most reviewed and most commented content.

Elastic Social and Elastic Core are supplied as a set of Java libraries that can easily
be integrated into any Java web application, see Section 4.7, “Integration” [50].

CoreMedia DXP 8

Architectural Overview | Logical Components

2.1 Logical Components

The rational behind Elastic Core is to provide services that allow the agile, cost-ef-
fective and riskless development of horizontally scalable, high available, elastic,

cloud-based web applications. The following diagram depicts the logical components
that are required for this approach:

Figure 2.1. Logical
components of Elastic
Social

Internet

et e — =

CoreMedia DXP 8

Architectural Overview | Software Stack

2.2 Software Stack

Reference implementation, Elastic Social and Elastic Core can be seen as a software
stack that offers APIs for flexibility and extensibility on each level. The following
image depicts how a sample application uses the Elastic Social, Elastic Core and
Unified API to enrich a website with social use cases. Everything is running within
a Content Application Engine as a container:

Figure 2.2. Software
Stack of Elastic Social

CoreMedia DXP 8

Administration and Operation |

3. Administration and Operation

This chapter describes the administration and operation of Elastic Social.

CoreMedia DXP 8

Administration and Operation | Installation Guide

3.1 Installation Guide

In this chapter you find help to set up components necessary to run Elastic Social.
Itis also possible and recommended to use RPMs to install MongoDB in your project
depending on your operating system. This chapter only helps you to quickly setup
a development environment.

Install
Install the supported versions of Java and Maven

Download and extract the latest supported version of MongoDB:

http://www.mongodb.org/downloads/

Download and extract the latest CoreMedia Blueprint
https://releases.coremedia.com/dxp8

See the [CoreMedia Digital Experience Platform 8 Developer Manual] for
further instructions on how to set up and use CoreMedia Blueprint.

MongoDB

1. Prepare MongoDB
mkdir log
mkdir data

If you start MongoDB under a dedicated user, make sure the user has read
and write access to MongoDB's 1ogs and data folders.

2. Start MongoDB

bin/mongod --rest --dbpath data --logpath log/mongodb.log
--logappend

3. Open MongoDB status

http://localhost:28017 /serverStatus?text=1

CoreMedia DXP 8

http://www.mongodb.org/downloads/
https://releases.coremedia.com/dxp8
http://localhost:28017/serverStatus?text=1

Administration and Operation | Deployment

3.2 Deployment

This section describes the deployment of CoreMedia Elastic Social within the context
of a CoreMedia CAE application based on CoreMedia CMS.

3.2.1 Setup

The basic setup is the same as for a CoreMedia CAE application. Additionally, a
MongoDB installation is required for deploying an Elastic Social enabled application.
See the Supported Environments document for the supported versions.

Please refer to the MongoDB documentation to install and administrate MongoDB.
CoreMedia highly recommends to use Replica Sets for automated failover and
distribution of read load. In order to scale write load, CoreMedia suggests to use
Sharding. While Replica Sets should be used in any deployment scenario, sharding
is optional and can be enabled when load increases.

Figure 3.1. Use of
sharding and replica-
tion sets

Sharded

¢Rep|ica Set & Replica Sets

o Sharded

CoreMedia DXP 8

https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
http://www.mongodb.org/display/DOCS/Home
http://www.mongodb.org/display/DOCS/Replica+Sets
http://www.mongodb.org/display/DOCS/Sharding

Administration and Operation | Single Data Center Deployment

3.2.2 Single Data Center Deployment

The deployment of CoreMedia Elastic Social and CoreMedia CMS offers a lot of flex-
ibility. The following diagram depicts a typical single data center deployment
showing the well known CoreMedia CMS components and the CoreMedia Elastic Social
extensions:

Delivery Environment 1 Figure 3.2. Single data

E center deployment
Replication Live
Server
CoreMedia Studio c—
' - E
Master Live
Server
—
Preview CAE
[Replication Live

Server

Elastic Social Storage
| |

| MongoDB MongoDB MongoDB
|

The deployment options for a single data center deployment range from small to
large:

Small 's’

The'S' deployment abandons high availability for cost efficiency and runs MongoDB
on a single node. When equipped with 8 GB of RAM for each node it may serve a
working set of 700000 users and 100000 comments, likes or ratings.

Medium 'M'

The "M' deployment consists of three nodes running MongoDB as one Replica Set.
This setup offers high availability and hot failover with three MongoDB nodes and
can survive the failure of one node if configured appropriately. When equipped
with 16 GB of RAM for each node it may serve a working set of 1 million users and
1 million comments, likes or ratings.

Large 'L

The'L' deployment matches the '"M' deployment and uses vertical scaling and better
I/0 throughput to boost read and write performance. When equipped with 64 GB
of RAM and fast HDDs or SSDs for each node it may serve a working set of 5 million
users and 5 million comments, likes or ratings.

CoreMedia DXP 8

Administration and Operation | Multiple Data Center Deployment

3.2.3 Multiple Data Center Deployment

The following diagram depicts a multiple data center deployment showing the well
known CoreMedia CMS components and the CoreMedia Elastic Social extensions:

Management Environment

Delivery Environment 1

Replication Live

CoreMedia pere
Studio =

Server

Elastic Social Storage

| MongoDB MongoDB MongoDB ‘

| DeiveryEnvionment2 I

Replication Live

==

\‘

Elastic Social Storage

MongoDB MongoDB MongoDB

The deployment options for a multiple data center deployment range from extra
large to XXL:

Extra Large 'XL'

The 'XL' deployment consists of six nodes running MongoDB configured as two
Replica Sets. This setup offers sharding, high availability and hot failover with six
MongoDB nodes and can survive the failure of one data center if configured appro-
priately. When equipped with 256 GB of RAM for each node it may serve a working
set of 10 million users and 30 million comments, likes or ratings.

Extra Extra Large "XXL'

The 'XXL' deployment matches the 'XL' deployment and uses vertical scaling and
better /0 throughput to boost read and write performance. Please contact Core-
Media for serious recommendations.

CoreMedia DXP 8

Figure 3.3. Multiple
data center deploy-
ment

Administration and Operation | Cloud deployment

3.2.4 Cloud deployment

Due to technical limitations there is no dedicated Cloud deployment option yet. A
Cloud deployment of CoreMedia CMS components and CoreMedia Elastic Social
extensions is actually a multiple data center deployment where one or more data
centers are based on Cloud infrastructure.

Please refer to the MongoDB on AWS Whitepaper to install and administrate
MongoDB on AWS.

3.2.5 Performance

When sizing the deployment of an Elastic Social enabled application, you should
take into account that adding user generated content to pages increases the page
delivery time depending on the caching strategy. When using a HTTP proxy like
Varnish that caches all pages for a fixed time (one minute, for instance) or when
using a timed dependency CAE cache key any extra costs can be eliminated. Deliv-
ering user generated content directly from the database roughly doubles the
amount of CAEs required. Using a mixed strategy for dynamically serving all re-
quests with a session and statically caching everything else allows you to reduce
the amount of extra CAEs required. With 10% dynamic requests, 20% more CAEs
are required; with 20% dynamic requests, it's 40% and so on. However, the response
time remains constant regardless of the number of users and the amount of the
user generated content they create.

The statements above have been verified in a test deployment on Amazon EC2.
EC2 was used to run the tests on a comparable and reproducible environment. The
setup consisted (among other servers) of 3 m1.xlarge instances running the Core-
Media 6 SP1 Starter Kit CAE Live web application in Apache Tomcat 7, one load
balancer and 3 m1.xlarge instances running MongoDB 2.2.x in a Replica Set. Up
to 10 million users and 10 million comments have been imported into the Elastic
Social 0.19.x database. The load balancer has been configured to distribute load
evenly between the CAE instances. An article page has been used to measure re-
sponse time and throughput. Two scenarios have been tested, one with user
feedback disabled and one with 10 comments on the article page.

Adding user generated content to pages increases the page delivery time depending
on the caching strategy:

static: a HTTP proxy that caches all pages for one minute or a timed depend-
ency CAE cache key eliminates any extra costs

dynamic: delivering directly from the store roughly doubles the amount of
CAEs required

mixed: use the dynamic strategy for all requests with a session and the
static strategy for everything else allows you to reduce the amount of extra

CoreMedia DXP 8

http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf
http://www.varnish-cache.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/ec2/instance-types/

Administration and Operation | Availability

CAEs: with 10% dynamic requests, 20% more CAEs are required; with 20%
dynamic requests, it's 40%

During various tests the following best practices have been showing up:
The amount of RAM dedicated to a single MongoDB process (mongod) should
exceed the working set size of the data.
The usage of fast HDDs or SSDs is mandatory if writing becomes a bottleneck.
When using sharding, the MongoDB Routing processes (mongos) should be

deployed on the same machine as the CoreMedia CAE thus eliminating one
network hop and reducing latency for database queries.

The MongoDB routing processes (mongos) and configuration servers (mon-
god) consume only very few resources.

For MongoDB and Apache Solr the CPU is typically not limiting but Memory
and 1/0.

The numbers have been measured on a developer machine and can be used as a
conservative lower limit to estimate performance and space requirements:
Table 3.1. Measured

Category MongoDB RAM MongoDB disk space MongoDB Throughput performance
[Bytes] [Bytes] [1/h]

Users 2500 2500 1800000

Comments 4000 4000 900000

Ratings 2500 2500 1800000

Likes 3500 3500 1200000

The Elastic Social Sizing Sheet allows you to estimate performance and space re-
quirements for your deployment.

3.2.6 Availability

MongoDB replicates and balances data transparently between the available nodes,
checks node's health, detects new nodes and waits for old nodes to join again.
Typical clustering services like failover, replication, data and request distribution
is handled transparently to Elastic Social and Elastic Core based applications.

During various tests the following best practices have been showing up:

One million users, ratings or likes require less than 10 GB of hard disk space
per node. User profile pictures are not included in this upper limit estimation.
See the Mongo DB documentation for details.

CoreMedia DXP 8

https://documentation.coremedia.com/dxp8/Elastic_Social_Sizing_Sheet.xlsx
http://www.mongodb.org/display/DOCS/Excessive+Disk+Space

Administration and Operation | Backup

3.2.7 Backup

Even with replica sets and journaling, it is still a good idea to regularly back up
your data. You can find an overview about the topic and possible strategies here.

Passive MongoDB node

One approach is to run a passive MongoDB node for all backups and filesystem
snapshots to take the actual backup. If journaling is enabled, it's possible to take
hot snapshots of a MongoDB data directory. Without journaling it's recommended
to fsync and lock the passive node and then take the snapshot from there. See the
code below for an example:

from pymongo import Connection
def do_backup () :
<insert your snapshot and backup code here>
def lock_and backup () :
conn = Connection(slave okay=True)
try:
conn.admin.command ("fsync", lock=True)
do_backup ()
finally:
conn.admin["$cmd.sys.unlock"].find one()

A more detailed example how this pattern can be used with Amazon S3 can be
found here.

Backup Tools

MongoDB provides tools to dump and restore the current content of the databases.
mongodump and mongorestore allow you to create exact copies of your current
database. You can find a detailed description here.

Incremental backup

Incremental backup is only useful in rare cases. Usually you want to restore data,
if your primary is down. But if your primary is down, you will want to restore your
data as quick as possible. Restoring an old state and slowly adding your incremental
backup parts will take lots of time that you usually do not have in these moments.
Incremental backups make restoring your data more complicated and slow them
down. All you gain is mildly less disk usage. Look here for a more detailed discussion
on incremental backups.

Sharding

MongoDB sharding can be used when one MongoDB replication set becomes too
small to handle the application load. Sharding does not need to be configured in
advance, servers can be added during normal operation and the configuration can

CoreMedia DXP 8

Example 3.1. Snapshot
from a passive node

http://docs.mongodb.org/manual/administration/backup/
https://dzone.com/articles/backing-mongodb-instances-ebs
http://www.mongodb.org/display/DOCS/Import+Export+Tools
http://groups.google.com/group/mongodb-user/browse_thread/thread/6b886794a9bf170f

Administration and Operation | Backup

be updated to enable sharding. Make sure to read the MongoDB sharding docu-
mentation for a deeper insight.

For an efficient sharding configuration you need to know which databases and
collections are used by Elastic Social.

Four databases are created for each tenant. The database names are generated
from the mongoDb . prefix setting, the tenant name and the service name separ-
ated by underscores. The service name is one of blobs, counters, models and tasks.
When mongoDb . prefix is "blueprint" and the tenant name is "media" then four
databases named "blueprint_media_blobs", "blueprint_media_counters", "blue-
print_media_models" and "blueprint_media_tasks" will be created.

The BlobService uses MongoDB GridFS for storing blobs and metadata. Please
refer to the MongoDB documentation on how to configure sharding for GridFS.
Example for configuring sharding for GridFS:

db.runCommand ({ shardcollection : "blueprint me
dia blobs.fs.chunks", key : { files id : 1 }});

The counter services create six collections with the counters database. The
highest_average_counters and highest_histogram_counters can not be sharded.
They contain aggregated counter values so these collections are rather small and
this imposes no limitation. The other collections in the counters database can be
sharded with the name attribute as shard key. An example is given below:

Example 3.2. Shard

db.runCommand ({ shardcollection : other collections

"blueprint media counters.average counters" ,

key : { name : 1 } });

db.runCommand({ shardcollection :
"blueprint_media_counters.average_histogram_counters" ,
key : { name : 1 } });

db.runCommand({ shardcollection :
"blueprint_media_counters.counters" ,

key : { name : 1 } });

db.runCommand({ shardcollection :
"blueprint media counters.histogram counters" ,
key : { name : 1 } });

The models database contains one collection per model collection. Sharding of the
blacklist and complaints collections is not recommended because they are compar-
atively small. For the other model collections the following shard keys are recom-

mended:

Table 3.2. Recommen-
Collection Shard Key ded shard keys
comments target : 1

CoreMedia DXP 8

http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/GridFS
http://www.mongodb.org/display/DOCS/Choosing+a+Shard+Key#ChoosingaShardKey-GridFS

Administration and Operation | Backup

Collection Shard Key

likes target : 1

ratings target : 1

shares target : 1

users name : 1 or email: 1
notes user: 1

An example is given below:

Example 3.3. Creating

db.runCommand({ shardcollection : "blueprint media models.comments", shard keys
key : { target : 1 } });

db.runCommand({ shardcollection : "blueprint media models.likes",

key : { target : 1 } });

db.runCommand({ shardcollection : "blueprint media models.ratings",

key : { target : 1 } });

db.runCommand({ shardcollection : "blueprint media models.users",

key : { name : 1 } });

The tasks database contains one collection per task queue. Configuring sharding
for the task collections is not recommended because the tasks are removed after
successful executions thus making the collections small.

If you are running a multi-tenant application you should consider spreading the
databases of each tenant across the cluster so that the load is distributed evenly.

CoreMedia DXP 8

Administration and Operation | Administration

3.3 Administration

This section describes the configuration and administration of CoreMedia Elastic

Social.

3.3.1 Configuration properties

The following table describes all Elastic Social configuration properties.

Property

mongoDb.prefix

mongoDb.clientURI

counters.aggrega
tionInterval

counters.aggrega
tionInterval.daily

counters.aggrega
tionInter
val.weekly

counters.aggrega
tionInter
val.monthly

CoreMedia DXP 8

Description

Prefix for MongoDB database
names. Change this when sharing a
MongoDB installation with other
Elastic Core applications.

The standard MongoDB connection
string URI is used to configure your
MongoDB connection, for example,
it allows you to configure read
preferences and write concerns. The
format of a client URI is docu-
mented under the following link:
http://docs.mongodb.org/manu-
al/reference/connection-string/.

Interval in milliseconds in which
aggregated values for all historic
counter events will be updated. De-
faults to 86400000 (24 h).

Interval in milliseconds in which
aggregated values for counter
events of the last 24 hours will be
updated. Defaults to 300000 (5
min).

Interval in milliseconds in which
aggregated values for counter
events of the last 7 days will be up-
dated. Defaults to 10800000 (3
hours).

Interval in milliseconds in which
aggregated values for counter
events of the last 30 days will be
updated. Defaults to 86400000 (24
hours).

Table 3.3. Configura-

Example tion properties

blueprint

mon-
godb://mongo1:27017,
mongo2:27017/?w=1

86400000

30000

10800000

86400000

http://docs.mongodb.org/manual/reference/connection-string/
http://docs.mongodb.org/manual/reference/connection-string/

Administration and Operation | Configuration properties

Property Description Example
counters.aggrega Interval in milliseconds in which 86400000
tionInter aggregated values for counter
val.yearly events of the last 365 days will be

updated. Defaults to 86400000 (24

hours).

models.createln Set to false to skip index creation true
dexes on startup. This can be useful to

speed up initial data import. Make

sure to set this true before produc-

tion use.

taskQueues.work Set to false to disable execution of true
erNode background tasks. This setting can
be used to differentiate web applic-
ations nodes into worker nodes
which only execute background
tasks and rendering nodes which
serve requests. Defaults to false.

comments.autoRe A number of complaints after which 10
ject.limit a comment will automatically be
rejected. Set to O to disable automat-
ic rejection. Defaults to 0.

comments.autoRe Interval in milliseconds in which 60000
ject.interval comments will be automatically re-
jected when the number of com-
plaints reaches the limit com-
ments.autoReject.limit.
Defaults to 300000.

users.autoB A number of complaints after which 10

lock.limit a user will automatically be blocked.
Set to 0 to disable automatic rejec-
tion. Defaults to 0.

users.autoBlock.in Interval in milliseconds in which 60000
terval users will be automatically blocked
when the number of complaints
reaches the limit users.autoB-
lock.limit. Defaultsto 300000.

users.token.expir Token expiration time in milli- 604800000
ationTime seconds, defines the lifetime of the

user token used for user activation

and password reset. After expira-

tion, the token becomes invalid.

Defaults to 604800000 (1 week).

CoreMedia DXP 8

Administration and Operation | Block Users automatically

Property Description Example

elastic.solr.index Prefix for Apache Solrindex names. blueprint
Prefix Change this when sharing an

Apache Solr installation with other

Elastic Core applications.

elastic.solr.index Name of the Apache Solr config set elastic
Config for Elastic Core applications. This

config set must exist as subdirectory

of <solr-home>/configsets.

elastic.solr.url Apache Solr URL http://solr.ex-
ample.com:44080/solr

elastic.solr.con Apache Solr HTTP connection 0
nectionTimeout timeout in milliseconds. A value of

zero is interpreted as an infinite

timeout.
elastic.solr.sock Apache Solr HTTP socket read 600000
etTimeout timeout in milliseconds. A value of

zero is interpreted as an infinite

timeout.

elastic.solr.max Apache Solr maximum number of 100
Connections HTTP connections.

keep.ht Set to true to keep https after a false (default)
tps.after.logout shop userlogged out.

3.3.2 Block Users automatically

If the number of complaints for a user exceeds a defined quantity
(users.autoBlock.1limit, see configuration), the user is blocked automatically.

The AutoBlockUsersTask is executed in a configured time interval
(users.autoBlock.interval, see configuration).

With the default configuration no user is blocked automatically as users.autoB
lock.limit defaultsto 0.

3.3.3 Reject Comments automatically

If the number of complaints for a comment exceeds a defined quantity (com
ments.autoReject.limit, see configuration), the comment is rejected auto-
matically.

The AutoRejectCommentsTask is executed in a configured time interval (com
ments.autoReject.interval, see configuration).

CoreMedia DXP 8

Administration and Operation | Reindex

With the default configuration no comment is rejected automatically as com
ments.autoReject.limit defaultsto 0.

3.3.4 Reindex

Elastic Social uses JMX for all management operations. This requires that you enable
JMX remoting when accessing remote hosts. To reindex the search index for users
or comments execute the JConsole with JMX remoting enabled on Windows OS
like this:

Example 3.4. Start

"$JAVA HOME%\bin\jconsole" -J-classpath * JConsole on Windows
—-J"$JAVA HOME%\lib\jconsole.jar; $USERPROFILE%\ (0
.m2\repository\javax\management\jmxremote optionalll.0.1 03\

jmxremote optional-1.0.1 03.jar"

or on Unix based OS like this:

Example 3.5. Start

$JAVA HOME/bin/jconsole -J-classpath \ JConsole alternatively
-J$JAVA HOME/lib/jconsole.jar:$HOME/ \ on UNIX based OS
.m2/repository/javax/management/jmxremote optional/ \

1.0.1_03/jmxremote optional-1.0.1_03.jar

Open a new connection to the JMX port of a CAE or Studio host. For a remotely
running preview CAE the default is:

service:jmx:rmi:///jndi/rmi://servername:40099/jmxrmi

Then navigate to the node com.coremedia/SearchServiceManager/blue
print/media/Operations (Where media is the tenant name and blueprint the
application name) and execute

reindex (users)
to reindex the search service index with the name "users". Use "comments” to

reindex all comments.

3.3.5 Refresh counters

Counters are calculated automatically in defined aggregation time intervals (see
configuration).

To refresh the average and histogram counters manually for the tenant media,
start the JConsole as described above, navigate to the node coremedia.com/Av
erageCounterServiceManager/blueprint/media/operations where
media is the tenant name and blueprint the application name and execute

CoreMedia DXP 8

Administration and Operation | Refresh counters

refreshCounters(<intervall\>)

to refresh the counters for the given interval where LAST DAY, LAST WEEK,
LAST MONTH, LAST YEAR and INFINITY are valid values. Basically the same
procedure applies for the Hi stogramCounterServiceManager, but INFINITY
is not a valid value here, because it is calculated differently internally.

CoreMedia DXP 8

Development |

4. Development

This chapter describes how you adapt Elastic Social to your own needs.

CoreMedia DXP 8

Development | Security

4.1 Security

SQL Injection

Elastic Social does not rely on SQL for database access so all Elastic Social compon-
ents are immune to SQL injection attacks.

The MongoDB NoSQL database used in Elastic Social transfers BSON encoded data.
To communicate with the MongoDB server Elastic Social uses the MongoDB Java
Driver which takes care of the necessary encoding of BSON messages which pre-
vents injection of unintended data. For information about SQL injection attacks
please refer to the MongoDB documentation and forums.

CoreMedia DXP 8

http://en.wikipedia.org/wiki/SQL_injection
http://bsonspec.org/
https://github.com/mongodb/mongo-java-driver
https://github.com/mongodb/mongo-java-driver
http://www.mongodb.org/display/DOCS/Do+I+Have+to+Worry+About+SQL+Injection
https://groups.google.com/forum/?fromgroups#!topic/mongodb-user/tO9XkSy_Cdc

Development | Persistence Model

4.2 Persistence Model

The Elastic Core persistence is based on instances of Mode1s to which the data that
is stored in MongoDB is mapped at runtime. The idea is that not the Java classes
determine how the MongoDB documents are structured but the MongoDB docu-
ment is mapped to a given Java instance. Parts of the documents that do not fit
the given Java instance are mapped into a generic data pool to make sure that no
data is lost when the Java instance is persisted back into the MongoDB document
just because the given Java instance does not understand them:

Figure 4.1. Mapping of
Java classes and Mon-
goDB documents

MongoDB
Document

This mapping behavior offers a lot more flexibility to update Java classes without
running into the hassles of schema evolution. For example, it allows for different
Model classes accessing the same data at the same time. But it is different from
typical mappers like Morphia, Spring Data for MongoDB or Hibernate that take a
Java class as the source how to structure the data in the storage underneath.

Mapping properties

The mapping algorithm uses Java Bean properties as entities to load and store data.
That means if some Mode1 class is used to load data via for example the Mode1Ser-
vice get(...) methods, the Query or the SearchService, the mapping algorithm
first creates an instance of the given Mode1 class and then calls the setters of the
instance to transfer data from the MongoDB document to the instance. If a Java
Bean property is defined in the Model instance, its setter method is called by the
mapping algorithm and its value is accessible via the getter method. If no Java
Bean property is defined the data is stored in the generic data pool of the instance,
which is accessible via Model#getProperty ().

If an instance of a Model class is stored with Model#save () or ModelSer-
vice#save (), the mapping algorithm calls the getters of the given instance and
joins them with the generic data pool to map these properties into a MongoDB
document. The key for storing of data is the same combination of ID and Collection
that was used to lookup the data.

CoreMedia DXP 8

http://www.mongodb.org/
http://www.springsource.org/spring-data/mongodb/
http://www.hibernate.org/
http://download.oracle.com/javase/tutorial/javabeans/

Development | Persistence Model

In all implementations of this interface all setter methods for non-primitive types
must support null values, even if a default value is used during initialization. Code
or data migration might still cause the setter to be called with a null value.

Mapping atomic values

The following table describes the mapping of BSON values to the corresponding

Java types:
Table 4.1. Mapping of
BSON Java BSON values to Java
Boolean false/true Boolean types
Floating point double
32-bit Integer int
64-bit Integer long
Boolean false/true java.lang.Boolean
UTC date time java.util.Date
Floating point java.lang.Double
32-bit Integer java.lang.Integer
64-bit Integer java.lang.Long
UTF-8 string java.lang.String
Object ID org.bson.types.ObjectId

Mapping collection values

The following table describes the mapping of BSON collection values to the corres-
ponding Java types:
Table 4.2. Mapping of

BSON Java BSON collection values
Array java.util.List to Java types
Embedded document java.util.Map

Please note that the mapping is defined from BSON values to Java types which
means that you are limitedto java.util.List and java.util.Map and cannot
use the full expressiveness of the Java collection framework.

CoreMedia DXP 8

Development | Persistence Model

Mapping references

References to other Mode1s or user defined classes are supported via TypeCon-
verters.

To make the implementation of custom TypeConverters easier, the helper class
AbstractTypeConverter is there to provide a basic implementation for user
defined types. For Mode1s thereis a specialized AbstractModelConverter that
provides a basic implementation for user defined Models.

The following table describes which Maven module contains support for the given
types:

Table 4.3. Which mod-
Module Mapped Class ule contains support
for which type

core-impl com.coremedia.elastic.core.api.blobs.Blob

com.coremedia.elastic.core.api.models.Mod-
el

com.coremedia.elastic.core.api.users.User
java.lang.Enum
java.lang.Locale

social-impl com.coremedia.elastic.social.api.com-
ments.Comment

com.coremedia.elastic.social.api.re-
views.Review

com.coremedia.elastic.so-
cial.api.users.CommunityUser

core-cms com.coremedia.cap.content.Content

com.coremedia.objectserver.beans.Content-
Bean

com.coremedia.xml.Markup

MongoDB Collections and IDs

MongoDB documents are stored in collections which can be seen as named
groupings of documents which share roughly the same structure or purpose. Indexes
and queries are defined per MongoDB collection. The key for the lookup of data
in the MongoDB is the combination of ID and Collection. It is accessible via Mod-
el#getId() and Model#getCollection().

CoreMedia DXP 8

http://www.mongodb.org/display/DOCS/Collections

Development | Persistence Model

Extending models, users and comments

The basic idea to extend Mode1s is to keep it simple for the API user, but hide and
reuse the implementation. You should never extend internal subclasses. Extending
public interfaces is possible and supported but not necessary. If you want to extend

the API interfaces, create an interface and an implementation for that aspect you
are missing like this:

Example 4.1. Extend-

public interface FooUser extends User ({ lngtheAPlunedhces
String getFoo ()

void setFoo (String foo) ;

}

public abstract class FooUserImpl implements FooUser ({
private String foo;

public String getFoo () {
return foo;

}

public void setFoo (String foo) {
this.foo = foo;
}
}

Instances of the class above are enhanced with the internal implementation of
Model and User when calling UserService#createUser (). Beware that this
call does not persist the returned instance to give the caller a possibility to modify
the returned instance before saving it with Model#save ().

Example 4.2. Modify-

FooUser fooUser = userService.createUser ("foos-id", lngleﬂunedlnstance
FooUserImpl.class) ;

fooUser.setFoo ("foo") ;
fooUser.save () ;

When you already have a User, just use UserService#createFrom() to turn
it into FooUser with a copy of the data that the User had. All data from User is
still readable and writable through the methods for the generic data pool:

Example 4.3. Create

User user = userService.getUserById("4711"); userﬂoniexmﬂnnger
FooUser fooUser = userService.createFrom(user, FooUserImpl.class);

fooUser.setFoo ("bar") ;

fooUser.setProperty ("name", "Foobar");

fooUser.save() ;

CoreMedia DXP 8

Development | Persistence Model

user and fooUser are different instances. Any changes to user are not visible
atthe fooUser instance. Saving a modified user and then a modified fooUser
in the scenario above will overwrite the changes applied to user.

Changing the class of an instance

ModelService#createFrom may be used to change the class for a given Model
instance without reloading the data from the underlying MongoDB document.

CoreMedia DXP 8

Development | Indexing

4.3 Indexing
Model indexing

Typically, the access to Mode1s is very cheap for the id property and calls to Mod-
elService#get (id, collection) and very expensive for all other properties.
A ModelIndex helps to speed up the access to other properties.

To create a ModelIndex for the collection myobjects and the x property of all

MongoDB documents inside the collection, define aModelIndexConfiguration
like this:

Example 4.4. Creating
a Modellndex
@Named
public class MyObjectsModelIndexes implements ModelIndexConfiguration

{
@Inject

private ModelIndexConfigurationBuilder builder;

public Collection<ModelIndex> getModelIndexes () {
return builder.

configure ("myobjects", "x").
build() ;

This speeds up the executions of Querys to the property x to the same level as
those for the property id when called like this:

Example 4.5. Create a

MyObject myObject = modelService.query ("myobjects") . query
filter ("x", EQUAL, "1234") .get (MyObject.class) ;

The creation of indexes is not enabled by default to speed up faster initial bulk
loading. To enable the creation of indexes, set models.createIndexes to
true as described in the Configuration properties.

Keep the number of indexes to an absolute minimum because they consume
precious heap memory in the MongoDB.

Model collection configuration

WithaModelCollectionConfiguration anautomatic removal of Models after
a defined time span can be configured.

CoreMedia DXP 8

Development | Indexing

The ModelCollectionConfiguration is configured for a collection name, a
Date property of the Mode1, a time to live time span in seconds.

The configured ModelCollectionConfiguration adds an index to a specified
Date field of a collection with the time to live interval and removes the models
automatically, when the time span has expired.

If 2 sparse option is required for the collection property, a separate Modellndex
has to be configured. On index creation the index configuration will be merged
resulting in one sparse TTL index for that field.

To create aModelCollectionConfiguration for the collection myobjects, the
date property creationDate and the time to live period of 180 days, define a Mod-
elCollectionConfiguration like this:

@Named

public class MyObjectsModelCollectionConfigurations implements
ModelCollectionConfiguration {

private static final int EXPIRE AFTER SECONDS = 180*24*60*60;
//180 days

@Inject
private ModelCollectionConfigurationBuilder builder;

public Collection<CollectionConfiguration>
getCollectionConfigurations () {
return builder.

configureTTL (
"myobjects",
"creationDate",
EXPIRE AFTER SECONDS) .

build() ;

The creation of a TTL index can be prevented by setting the time to live time
span to 0. This will not drop an existing index.

ATTL index cannot be created, if a single field index already exists for that field.
To create the TTL index, the existing index must be dropped first.

Search indexing

For the full text retrieval and suggestions for Mode1s the SearchService is used.

CoreMedia DXP 8

Example 4.6. Creating
a ModelCollectionCon-
figuration

Development | Indexing

To create a SearchIndex with the name myindex for models of the collection
mycollection, the reindex property creationbDate and their title and text property,
define a SsearchIndexConfiguration like this

Example 4.7. Create a

eNamed SearchindexConfigura-
public class MyObjectsSearchIndexes implements tion
SearchIndexConfiguration {

@Inject

private SearchIndexConfigurationBuilder builder;

public Collection<SearchIndex> getSearchIndexes() {
return builder.
configure ("myindex", "mycollection", "creationDate",
null, "title", "text").
build() ;
}

}

You can define searchIndexCustomizers to customize how a Model will actually
be indexed, for example, if you need to index references to other models or lists.
An example SearchIndexCustomizer that adds an author's name and email to
the comment search index looks like this:

@Named
@Order (value=100)
public class CommentAuthorSearchIndexCustomizer implements
SearchIndexCustomizer {
@Inject
private CommentService commentService;

public void customize (String indexName, Model model, Map<String,
Object> serializedObject) {
if ("comments".equals (model.getCollection())) {
Comment comment = commentService.createFrom (model) ;
if (comment != null) {
CommunityUser user = comment.getAuthor () ;
if (!user.isAnonymous()) {
serializedObject.put ("authorName", user.getName() + " "
+ user.getEmail ()) ;

}
}
}

You can use the Spring Framework @order annotation or the ordered interface
to define a priority for a customizer. A higher priority means that you can overwrite
values defined by customizers with a lower or no priority. The SearchIndexCus-
tomizers defined in the product have no priority defined, so they can easily be
overwritten.

CoreMedia DXP 8

Development | Indexing

When you work with SearchIndexCustomizers to add information about
referenced models, changes to the referenced models will only be indexed when
the referring model itself is changed or the whole index is rebuilt.

The indexing of models as described above is implemented via the ﬁ
TaskQueueService. To enable it, set taskQueues.workerNode to true as

described in the Configuration properties and configure the URL of the Apache

Solr server with elastic.solr.url.

Caching

Differing from the CoreMedia CMS Content Server and its Unified API the latencies
and throughput of the MongoDB are more similar to memcached. This means,
caching should only be introduced if performance tests show up bottlenecks.

To avoid bottlenecks, minimize the amount of requests to the MongoDB by minim-
izing the amount of calls to the Elastic Core and Elastic Social API. Do not refetch
Models but keep them during one request.

Referential Integrity

The ModelService does not ensure referential integrity between Mode1s or from
Models to content beans. When accessing model properties of these types, the
implementation will return proxy objects regardless of whether the targeted
Model or ContentBean exists. When trying to access the proxy objects, the refer-
ences will be resolved and in case that the referenced object does not exist, an
UnresolvableReferenceException will be thrown. The application developer
needs to deal with this case by surrounding access to referenced objects by
try/catch blocks (or c:catch tags in JSPs). Examples are given below.

Example 4.8. Example
i . . try catch
for (Comment comment : commentService.getNextUnapprovedComments (true,
10)) |
try {
if (!comment.getAuthor ().isActivated()) {

}
} catch (UnresolvableReferenceException e) {
LOG.warn("...", e);
}
}

<c:forEach var="comment" items="${comments}">
<c:catch>

<div class="comment-author">
<c:out value="${comment.author.name}"/>
</div>

CoreMedia DXP 8

http://memcached.org/

Development | Indexing

</c:catch>
</c:forEach>

CoreMedia DXP 8

Development | Listening to Model Changes

4.4 Listening to Model Changes

Differing from the CoreMedia CMS Content Server and its Unified APl the ModelSer-
viceListener is a local listener at ModelService that is only notified before
and after Model#save () and Model#remove () calls from models that were
created from that Modelservice.

To register a ModelServiceListener at the ModelService it has to be in the
application context. This can be achieved by annotating the Mode1ServiceListen-
er implementation with javax.inject .Named and using component scanning.

For a fault-tolerant processing of ModelServiceListener events, it is recom-
mended to immediately queue the work to be done with the TaskQueueService.
A listener following this pattern looks like this:

Example 4.9. Listener
@Named
public class MyObjectsModelServiceListener extends
ModelServiceListenerBase {
@Inject
private TaskQueueService taskQueueService;

private MyTask defer () {

return taskQueueService.queue ("mytasks", MyTasks.class);
}

public void afterSave (Collection<? extends Model> models) {
defer () .processSave (models) ;
}

public void afterRemove (Collection<? extends Model> models) {
defer () .processRemove (models) ;
}

}

CoreMedia DXP 8

Development | Message Queue Model

4.5 Message Queue Model

The Elastic Core message queue is based on the idea that method calls (called tasks)
may be deferred (that is, queued) to a later point of time where they can be pro-
cessed concurrently by a pool of worker applications. It is ensured that a task is
executed at least once. On errors the task is automatically retried by another
worker until an error count limit is reached.

The TaskQueueService persists its information in the same MongoDB as the
ModelService and uses the same mapping algorithm to store the arguments of
the method calls.

A typical method call sequence when using the TaskQueueService looks like

this:
Figure 4.2. Method call
sequence using the
TaskQueueService
WebApp TaskQueueService MongoDB Worker MyTask
queue(MyTask class) -
storeTask()
pollQueue()
invoke(method args)
throwException()
polQueue()
invoke(method,args)
_, markAsExecuted()
€
Creating task queues
To create a TaskQueue with the name mytasks, define a TaskQueueConfigura-
tion like this:
Ex-
iNamed ample 4.10. TaskQueueCon-
public class MyTaskQueues implements TaskQueueConfiguration ({ ﬁgunﬁbn

@Inject
private TaskQueueConfigurationBuilder builder;

public Iterable<TaskQueue> getTaskQueues () {
return builder.
configure ("mytasks") .
build() ;

CoreMedia DXP 8

Development | Message Queue Model

Executing tasks

Tasks are simple classes that contain methods which can have parameters that are
handled by the mapping algorithm:

Example 4.11. A task
@Named class
public class MyTask {
@Inject
private ModelService modelService;

public void doSomething(int id, String name, Object value) {
Model model = modelService.get (id);
model.setProperty (name, value);
model.save () ;
}
}

Execute such a task (called mytasks) via the TaskQueue as follows:

Example 4.12. Execute
”élnject a task
private TaskQueueService taskQueueService;

public void executeInTaskQueue () {

taskQueueService.queue ("mytasks", MyTask.class).doSomething (4711,
"hello", "world");

}

If you split down the tasks into small units you'll very likely come to a pattern like
this:

Example 4.13. Small

@Inject tasks
private TaskQueueService taskQueueService;

private MyTask defer () {
return taskQueueService.queue ("mytasks", MyTasks.class);

}

public void entry () {
for (int i=0; 1i<10; i++) {
defer () .doSmallerPortion (i) ;
}
}

public void doSmallerPortion (int id) {

CoreMedia DXP 8

Development | Message Queue Model

String paraml // .. calculate this
String param?2 // .. calculate this
defer () .doEvenSmallerPortion (id, paraml, param2);

}

public void doEvenSmallerPortion (int id, String paraml, String
param2) {
// .. do the fine granular work

}

CoreMedia DXP 8

Development | Counters

4.6 Counters

This section describes the configuration and usage of Counters in CoreMedia
Elastic Social.

The following CounterServices are available in Elastic Social:

CounterService: for simple counters with a given name and value which
can increment or decrement a value.

HistogramCounterService: for counters which also contain a date. This
is necessary if you want to determine a counter value for a certain time
period, for instance the most commented articles in the last week.

AverageCounterService: for counters which can increment and decre-
ment two values, the total sum and the number of samples to calculate an
arithmetic mean, for instance if you want to calculate the average rating. It
handles counters with and without a date.

Counters are stored in the database [prefix]_[tenant]_counters. The following col-
lections contain counter values:
Table 4.4. Counter col-

Name Description lections
counters Counters with aggregated value

histogram_counters Histogram counters with date and sum

average_counters Average counters with aggregated sum and quantity

average_histogram_counters Average counters with date, sum and quantity

Each counter is stored aggregated with a value in the counters collection.

Each histogram counter is stored separately with sum and date in the histo
gram_counters collection and aggregated with value in the counters collection.

Each average counter is stored separately with sum, quantity and date in the
average histogram counters collection and aggregated with sum and
quantity in the average counters collection.

A sorted list for highest values for simple counters without a date can easily be
calculated using a simple query. Lists which need to consider an average value or
a certain time interval need to be aggregated using map and reduce jobs.

The following collections contain these aggregated sorted lists of counter values,

for instance the most commented targets in a given time interval:
Table 4.5. Aggregated
counter collections

CoreMedia DXP 8

Development | Counters

Name Description

highest aver- The highest average counters without time limitation (infinity)
age counters

highest aver- The highest average counters for the given time interval for
age counters [INTER- instance the last week ("LAST_WEEK")

VAL]

highest histo- The highest histogram counters for the given time interval

gram counters [IN- forinstance the last week ("LAST_WEEK")
TERVAL]

All aggregated counter lists are updated in given time intervals that are configurable
(counters.aggregationInterval [.interval],see Section 3.3.1, “Configur-
ation properties” [26]).

Counters can also be refreshed manually using JMX, see Section 3.3.5, “Refresh
counters” [29].

The following tables list the predefined counters in Elastic Social which you can
access via the counter services.

The following counters are implemented in CoreMedia Elastic Social:

Name Description

user:number of lo- The number of logins of the user
gins

comments:approved- Number of approved comments
Comments

comments:rejected- Number of rejected comments
Comments

reviews:approvedRe- Number of approved reviews
views

reviews:rejectedRe- Number of rejected reviews
views

complaints:comments Number of complaints for a comment

complaints:users Number of complaints for a user

The following histogram counters are implemented in CoreMedia Elastic Social:

Table 4.6. Counters
used in CoreMedia
Elastic Social

Table 4.7. Histogram
counters

CoreMedia DXP 8

Development | Counters

Name Description

comments :mostCommen— Most commented target [per category]
ted[:category]

re- Most reviewed target [per category]
views:mostReviewed|:cat—

egory]

share[:category] Number of shares for a target [per category]
like[:category] The number of likes for a target [per category]
author:num- Number of likes from the author

ber of likes

author:num- Number of ratings from the author
ber of ratings

The following average counters are implemented in CoreMedia Elastic Social:
Table 4.8. Average
Name Description counters

rating[:category] The number of ratings for a target [per category]

CoreMedia DXP 8

Development | Integration

4.7 Integration

This section describes the integration of CoreMedia Elastic Social into a Spring web
application.

4.7.1 Apache Maven

CoreMedia provides BOM POMs for simple dependency management with Apache
Maven. To use Elastic Social artifacts, your POM needs to import the BOM POMs.
The BOM POMs ensure that you use artifacts of compatible versions and also
manage the scope of all Elastic Social dependencies. APl modules have compile
scope, test utility modules have test scope and all other modules have runtime
scope.

When using Elastic Social, you need to define dependencies to the API modules
and to the implementation modules you are going to use. A typical usage of
Elastic Social dependencies is shown below. Besides the API dependencies, the
Elastic Core implementations for MongoDB, Apache Solr and Spring Security are
included as well as the Elastic Social implementation module. For testing a depend-
ency to the Elastic Core test utility module is declared.

Example 4.14. Typical
<?xml version="1.0" encoding="UTF-8"?> ; ; R
<project xmlns="http://maven.apache.org/POM/4.0.0" ﬂasncSoaaldependen
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" cles
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<dependencies>

<!-- allowed Elastic Core and Elastic Social dependencies:
core-api, social-api: compile
core-test: test
others: runtime
o2
<dependency>
<groupld>com.coremedia.elastic.core</groupIld>
<artifactId>core-api</artifactId>
</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-api</artifactId>
</dependency>
<dependency>
<groupId>com.coremedia.elastic.core</groupIld>
<artifactId>core-solr</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>com.coremedia.elastic.core</groupIld>
<artifactId>core-mongodb</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-security</artifactId>

CoreMedia DXP 8

http://maven.apache.org/
http://maven.apache.org/

Development | Apache Maven

<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-impl</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.elastic.core</groupIld>
<artifactId>core-test</artifactId>
<scope>test</scope>

</dependency>

</dependencies>

</project>

Application context setup

To configure Elastic Social you need to enable Spring classpath scanning for the
package com.coremedia.elastic. Configuration properties will be accessed
through the Spring framework Environment which collects all property sources.
Two additional beans need to be configured. A bean of type org.springframe-
work.mail.javamail.JavaMailSender needs to be defined for the
MailService and an implementation of a MailTemplateService needs to be
provided. An example for a Spring configuration is shown below. If you use the
InMemoryMailTemplateService, you need to have a dependency on the
Elastic Social social-base module.

Example 4.15. Applica-
<?xml version="1.0" encoding="UTF-8"?> ; . ~
<beans xmlns="http://www.springframework.org/schema/beans" UOnconnm?Spnqgex

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" ample configuration
xmlns:context="http://www.springframework.org/schema/context"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring- \

context.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

<context:component-scan base-package="com.coremedia.elastic"/>

<bean class="org.springframework.mail.javamail. \
JavaMailSenderImpl">
<property name="host" value="mail.example.com"/>
<property name="port" value="25"/>
</bean>

<bean class="com.coremedia.elastic.social. \
base.mail.InMemoryMailTemplateService">
<property name="mailTemplates">
<set>
<bean class="com.coremedia.elastic.social. \
base.mail.InMemoryMailTemplate">
<property name="name">
<util:constant static-field="com.coremedia.elastic. \

CoreMedia DXP 8

Development | Apache Maven

social.api.MailTemplates.COMMENT REJECTED"/>
</property>
<property name="locale" value="ROOT"/>
<property name="from"
value="reject-contribution@example.com"/>
<property name="subject" value="Rejected contribution \
at example.com"/>
<property name="text">
<value><! [CDATA[Hello ${name},

your comment below from ${commentDate} has not been published:
"${commentText}"
Please comply to our community policy when writing contributions.

Kind regards,
the editors
11></value>
</property>
</bean>
</set>
</property>
</bean>
</beans>

If you have a CoreMedia CAE web application, just name the property file /WEB-
INF/component-elastic.properties and its properties will be automatically
be loaded without the need to configure a PropertyPlaceholderConfigurer.

Note that default values cannot be configured using a standard Spring proper-
tiesSourcesPlaceholderConfigurer as shown in Example 4.16, “Invalid
configuration setup” [52].

Example 4.16. Invalid

<context:property-placeholder configuration setup

location="classpath:/com/acme/es-defaults.properties"/>

You must use a custom configuration class and Spring annotations org.spring-
framework.context.annotation.Configurationandorg.springframe-
work.context.annotation.PropertySource instead, as shown in Ex-
ample 4.17, “Default configuration setup example” [52].

Example 4.17. Default

@Configuration . ; ~
@PropertySource (name = "es-defaults", value = ConﬂgunjuonsetuPex
{"classpath:/com/acme/es-defaults.properties™}) ample

public class MyElasticSocialConfiguration {

}

An example ofa /com/acme/es-defaults.properties file used by the Spring
configuration above is shown below:

CoreMedia DXP 8

Development | Multi-Tenancy

Example 4.18. Ex-

mongoDb.prefix=example-project-prefix
mongoDb.clientURI=mongodb://mongol.example.com:27017, \ ample of the
mongo2.example.com:27017,mongo3.example.com: 27017 Jcom/acme/es-de-
faults.properties file

models.createIndexes=true
taskQueues.workerNode=true

elastic.solr.indexPrefix=example-project-prefix
elastic.solr.url=http://solr.example.com:44080/solr

4.7.2 Multi-Tenancy

Elastic Core supports multi-tenancy. A tenant can have many sites, but each site
belongs to exactly one tenant. In a multi-tenancy environment a Tenant-
ForSiteStrategy is used to determine the tenant for a given site. CoreMedia
Blueprint contains a solution based on settings. For each call to the Elastic Core API
a tenant has to be defined or an exception will be raised. If only one tenant is re-
quired, you can define a default tenant using the property tenant.default.
Tenants have to be registered at the TenantService and may then be set and
cleared for each thread. It is recommended to set the tenant as early in a request
cycle as possible. Elastic Core includes a servlet filter that uses a TenantLookup-
Strategy to determine the tenant for a request. A TenantLookupStrategy is
only required in a multi-tenancy setup. Elastic Social comes with an implementation
for Studio REST calls and Blueprint defines a strategy for CAE web applications as
well. If you have your own project application, you need to define the Servlet Filter
that comes with Elastic Social and implement your own TenantLookupStrategy.

The default tenant can only be statically configured and is used at runtime for
every thread that otherwise has no tenant. The default tenant cannot be dere-
gistered but its tenant scope is destroyed when the application context is closed
so that destruction callbacks are invoked.

The TenantFilter needs to be configured in the web.xml (or a web-frag
ment . xml file) with Spring's DelegatingFilterProxy in your own application
context like this:

Example 4.19. Config-

<filter>
<filter-name>tenantFilter</filter-name> gn?atengntﬁkerand
<filter-class>org.springframework.web.filter. \ its mapping in your
DelegatingFilterProxy</filter-class> own application con-
</filter> text
ex

<filter-mapping>
<filter-name>tenantFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

CoreMedia DXP 8

Development | Using Elastic Social Services

4.7.3 Using Elastic Social Services

Elastic Core uses dependency injection for configuration of components, specifically
JSR-330: Dependency Injection for Java and JSR 250: Common Annotations for the
Java Platform. These standards are supported by Spring 3.0 and later versions.

Use the @Inject annotation to get Elastic Core and Elastic Social services injected
into any Spring Bean. The following example shows a Spring controller which uses
the UserService.

Example 4.20. Spring
import com.coremedia.elastic.core.api.user.User; controller with
import com.coremedia.elastic.core.api.user.UserService; .
import org.springframework.web.servlet.ModelAndView; UserService
import org.springframework.web.servlet.mvc.Controller;
import javax.inject.Inject;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ExampleController implements Controller ({
@Inject
private UserService userService;

public ModelAndView handleRequest (HttpServletRequest request,

HttpServletResponse response) throws Exception {

User user = userService.getUserById (
request.getParameter ("userId")) ;

response.setContentType ("text/plain") ;

response.getWriter () .format ("Hello %s!", user == null ?
"World" : user.getName()) ;

return null;

4.7.4 Authentication and Authorization

Elastic Social is designed to be as flexible and modular as possible when it comes
to identity and access management. It comes preintegrated with Spring Security,
Spring Social and its own user database provided by the CommunityUserService
to cover identity and access management out of the box but every component may
be replaced.

The following picture depicts the components involved in identity and access
management:

CoreMedia DXP 8

http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250
http://static.springsource.org/spring-security/site/index.html
http://www.springsource.org/spring-social

Development | Authentication and Authorization

Figure 4.3. Compon-
ents in identity and ac-
cess management

SaaS S50
Authentification Authorization Authentification
Security Authentication
Extension Filter Provider

Elastic Social Authentication

This section covers only the configuration of the Elastic Social extensions for Spring
Security. Please refer to the Spring Security Reference Documentation for details
about configuration of Spring Security. Elastic Social provides a social-spring-
security module which contains a Spring Security AuthenticationProvider
which can be used for authentication against the user database provided by the
CommunityUserService. When declaring a Maven dependency to the social-
spring-security module configure an authenticationProvider bean like

this:
Example 4.21. Config-
<?xml version="1.0" encoding="UTF-8"7?> : i
<beans xmlns="http://www.springframework.org/schema/beans" uqnga(igﬂAuthenUc
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" ationProvider

xmlns:security="http://www.springframework.org/schema/security"

xsi:schemalocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/ \
spring-security.xsd">

<bean id="authenticationProvider"
class="com.coremedia.elastic.social. \
springsecurity.UserAuthenticationProvider"/>

CoreMedia DXP 8

http://static.springsource.org/spring-security/site/docs/3.2.x/reference/htmlsingle

Development | Authentication and Authorization

<security:authentication-manager>
<security:authentication-provider ref="authenticationProvider"/>

</security:authentication-manager>

</beans>

During a request, it is recommended to retrieve the logged in User once and as
early as possible from the database and store it in a Thread local variable. This
could be realized with a Filter as with the preintegrated com. coremedia.blue-
print.elastic.social.cae.user.UserFilter, com.coremedia.blue-
print.elastic.social.cae.flows.LoginHelper and com.coremedia.blue-
print.elastic.social.cae.flows.RegistrationHelper.

LDAP Authentication

When using an LDAP server for user authentication the user database provided by
the CommunityUserService can be used as a proxy so that the LDAP server will
only be used for authentication and the user details will be copied to and queried
from the Elastic Social user database.

In this case a different Spring Security configuration has to be used and a Maven
dependency to org.springframework.security:spring-security-1ldap
has to be added. Please refer to the Spring Security LDAP documentation for details.
Instead of the AuthenticationProvider provided by Elastic Social, a LdapAu-
thenticationProvider must be configured. To get access to extended user
information, an InetOrgPersonContextMapper is used. And to copy the user
details to the Elastic Social user database after successful authentication, an ap-
plicationListener must be implemented.

Example 4.22. Config-

<?xml version="1.0" encoding="UTF-8"?2> : i
<beans xmlns="http://www.springframework.org/schema/beans" qnngLDAPAUanuca
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" tion

xmlns:security="http://www.springframework.org/schema/security"

xsi:schemalocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/ \
spring-security.xsd">

<security:ldap-server url="ldap://ldap.example.com:389/ \
dc=example, dc=com" />

<security:authentication-manager alias="authenticationManager">
<security:ldap-authentication-provider
user-dn-pattern="uid={0}, ou=people"
user-context-mapper-ref="userDetailsContextMapper" />
</security:authentication-manager>

<bean id="userDetailsContextMapper"
class="org.springframework.security.ldap. \
userdetails.InetOrgPersonContextMapper"/>

CoreMedia DXP 8

http://static.springsource.org/spring-security/site/docs/3.2.x/reference/htmlsingle/#ldap

Development | Authentication and Authorization

<bean class="com.example.authentication. \
ExampleAuthenticationSuccessEventListener"/>

</beans>

Example 4.23. Imple-
menting an Applica-
import com.coremedia.elastic.core.api.user.User; tionListener
import com.coremedia.elastic.core.api.user.UserService;
import javax.inject.Inject;
import org.springframework.context.ApplicationListener;
import org.springframework.security.authentication.event. \
AuthenticationSuccessEvent;
import org.springframework.security.ldap.userdetails.InetOrgPerson;

package com.example.authentication;

public class ExampleAuthenticationSuccessEventListener
implements ApplicationListener<AuthenticationSuccessEvent>
{

@Inject
public UserService userService;

public void onApplicationEvent (AuthenticationSuccessEvent event)
{
InetOrgPerson principal = (InetOrgPerson)
event.getAuthentication () .getPrincipal () ;
User user = userService.getUserByName (principal.getUsername()) ;

if (user == null) {
user = userService.createUser (principal.getUsername (), null,
principal.getMail (), true);
user.save () ;
} else {
if (!user.getEmail () .equals (principal.getMail())) {
user.setEmail (principal.getMail ()) ;
user.save () ;
}
}
}
}

Example 4.24. Spring
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" LDAP dependency
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<dependencies>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-ldap</artifactId>
<version>3.1.0.RELEASE</version>
</dependency>
</dependencies>

</project>

CoreMedia DXP 8

Development | Authentication and Authorization

Social Network Integration

To connect your applications with Software-as-a-Service (SaaS) providers such as
Facebook and Twitter, Elastic Social provides a library for integration of Spring Social,
which is an extension of the Spring Framework. Please refer to the Spring Social
Documentation for an explanation of concepts and integration details.

To use this library along with the Facebook and Twitter connectors you have to
add the following dependencies to your POM:

Example 4.25. Depend-
<?xml version="1.0" encoding="UTF-8"?2> :
<project xmlns="http://maven.apache.org/POM/4.0.0" enaesjergcebooK
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" and Twitter integration
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<dependencies>

<dependency>
<groupId>com.coremedia.elastic.social</groupId>
<artifactId>social-spring-social</artifactId>

</dependency>

<dependency>
<groupld>org.springframework.social</groupIld>
<artifactId>spring-social-core</artifactId>

</dependency>

<dependency>
<groupld>org.springframework.social</groupIld>
<artifactId>spring-social-web</artifactId>

</dependency>

<dependency>
<groupld>org.springframework.social</groupIld>
<artifactId>spring-social-facebook</artifactId>
<version>2.0.3.RELEASE</version>

</dependency>

<dependency>
<groupld>org.springframework.social</groupIld>
<artifactId>spring-social-twitter</artifactId>
<version>1.1.2.RELEASE</version>

</dependency>

</dependencies>

</project>

Elastic Social includes implementations of the ConnectionRepository and
UsersConnectionRepository interfaces which use the CommunityUserSer-
vice to store and retrieve the provider connection information. Furthermore, a
special SignInAdapter is provided which checks if a user may sign in and sets
the Spring Security context accordingly. See the API Documentation of the
com.coremedia.elastic.social.springsocial package for details.

The following example shows a Spring Java @Configuration class which config-
ures the Elastic Social classes for Spring Social. This configuration takes into account
that a multi-tenant application may require different service provider credentials

CoreMedia DXP 8

http://www.springsource.org/spring-social
http://static.springsource.org/spring-social/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social/docs/1.0.x/reference/html/

Development | Authentication and Authorization

for each tenant. This is accomplished through a special Spring scope called tenant
which is provided by the core-imp1l module of Elastic Social.

Example 4.26. Config-

import com.coremedia.elastic.core.api.settings.Settings; uﬁngEMsﬁcSodal

import com.coremedia.elastic.core.api.tenant.TenantService; N

import com.coremedia.elastic.social.springsocial. \ dasasjbrSpnngSo—
CommunityUserSignInAdapter; cial

import com.coremedia.elastic.social.springsocial. \
CommunityUsersConnectionRepository;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.annotation.Scope;

import org.springframework.context.annotation.ScopedProxyMode;

import org.springframework.security.core.Authentication;

import org.springframework.security.core.context. \
SecurityContextHolder;

import org.springframework.social.connect.ConnectionFactoryLocator;

import org.springframework.social.connect.ConnectionRepository;

import org.springframework.social.connect.UsersConnectionRepository;

import org.springframework.social.connect.support. \
ConnectionFactoryRegistry;

import org.springframework.social.connect.web.ConnectController;

import org.springframework.social.connect.web. \
ProviderSignInController;

import org.springframework.social.connect.web.SignInAdapter;

import org.springframework.social.facebook.connect. \
FacebookConnectionFactory;

import org.springframework.social.twitter.connect. \
TwitterConnectionFactory;

import javax.inject.Inject;

@Configuration
public class SpringSocialConfiguration ({
@Inject
private TenantService tenantService;
@Inject
private Settings settings;
@Bean
@Scope (value = "tenant", proxyMode = ScopedProxyMode.INTERFACES)

public ConnectionFactoryLocator connectionFactoryLocator () {
ConnectionFactoryRegistry registry =
new ConnectionFactoryRegistry() ;
String tenant = tenantService.getCurrent() ;
// you need to add methods to get the Facebook and Twitter
connection settings
registry.addConnectionFactory (new FacebookConnectionFactory (
getFacebookClientId (), getFacebookClientSecret ()
)) i
registry.addConnectionFactory (new TwitterConnectionFactory (
getTwitterConsumerKey (), getTwitterConsumerSecret ()
)) i
return registry;

}

@Bean
@Scope (value = "request", proxyMode = ScopedProxyMode.INTERFACES)

public ConnectionRepository connectionRepository () {
Authentication authentication =
SecurityContextHolder.getContext () .getAuthentication () ;
if (authentication == null) {
throw new IllegalStateException ("Unable to get a

CoreMedia DXP 8

Development | Emails

ConnectionRepository: no user signed in");

}
return usersConnectionRepository () .\
createConnectionRepository (authentication.getName ()) ;

}

@Bean
public UsersConnectionRepository usersConnectionRepository () {
return new CommunityUsersConnectionRepository() ;

}

@Bean
public SignInAdapter signInAdapter () {
return new CommunityUserSignInAdapter();

}

@Bean
public ProviderSignInController providerSignInController () {
return new ProviderSignInController (
connectionFactoryLocator (),
usersConnectionRepository (), signInAdapter()):;

}
@Bean
public ConnectController connectController () {

return new ConnectController (
connectionFactoryLocator (), connectionRepository()):;

4.7.5 Emails

CAE

No email is sent automatically. To send emails for specific user actions or events,
listeners are defined and can be implemented.
State change of a CommunityUser

CommunityUserServicelListener#onStateChanged

Registration requested

RegistrationServicelListener#onRegistrationRequested
Or RegistrationServiceListenerBase#onRegistrationRe-
quested, if not all methods of RegistrationServiceListener
need to be implemented.

A CommunityUser requested to reset his password

RegistrationServiceListener#onPasswordResetRequested
OrRegistrationServicelistenerBase#onPasswordResetRe-
quested, if not all methods of RegistrationServiceListener
need to be implemented.

CoreMedia DXP 8

Development | BBCode

State change of a Comment or of a Review

CommentServicelListenerfonStateChanged

Studio

For the following use cases, an email is sent automatically. The MailTemplates
must be provided.

User Blocked: The CommunityUser#State changes to Community-
User.State.BLOCKED.

User Restored: The CommunityUser has a changed profile and the moder-
ator resets the profile to the last values. The email is only sent for a user
who has not the state CommunityUser.State.ANONYMIZED, Community-
User.State.IGNORED Or CommunityUser.State.BLOCKED

User Deleted: The CommunityUser is deleted.

Comment rejected: A comment of the CommunityUser is rejected. The
email is only sent for a user who has not the state Community-
User.State.ANONYMIZED, CommunityUser.State.IGNORED Or Com-
munityUser.State.BLOCKED.

User Profile Changed: A property of the CommunityUser changed. The email
is only sent for a user who has not the state CommunityUser.State.AN-
ONYMIZED, CommunityUser.State.IGNORED or Community-
User.State.BLOCKED.

For the following use case, an email is sent, if the corresponding listener is imple-
mented and the mail template is provided:

Resend Registration Confirmation: The moderator clicks on the "resend re-
gistration confirmation" link in the user details section. The email is only
sent for a user who has the state CommunityUser.State.REGISTRA-
TION REQUESTEDand ifthe listener RegistrationServiceListener#on-
RegistrationRequested is implemented.

User Activated: The email is sent when using premoderation and when a
newly registered and activated user is actually approved. The listener com-
munityUserServiceLlistener#onStateChanged must beimplemented.

4.7.6 BBCode

BBCode is supported for comment formatting. The following BBCode elements can
be used:

[blbold[/b]
[ilitalic[/i]

CoreMedia DXP 8

Development | BBCode

[quote]quoted Text[/quote]
[url]www.coremedia.com[/url]
[url=www.coremedia.com]Coremedia[/url]

Use Comment#getTextAsHtml () to retrieve the comment text with BBCode tags
converted to HTML.

The configuration of the BBCode text processor KefirBB is customizable. A user
defined configuration file is looked up first in classpath*:kefirbb.xml. If no
user defined configuration is found, the Elastic Social configuration is used.

The Elastic Social configuration of KefirBB converts line endings to
 ﬁ

CoreMedia DXP 8

Development | Known Limitations

4.8 Known Limitations

This page describes known limitations of CoreMedia Elastic Social.

Using Queryiiskip for MongoDB Queries can be very costly
The MongoDB has the following text to this issue:

Unfortunately skip can be (very) costly and requires the server
to walk from the beginning of the collection, or index, to get
to the offset/skip position before it can start returning the
page of data (limit). As the page number increases skip will
become slower and more CPU intensive, and possibly 10 bound,
with larger collections. Range based paging provides better
use of indexes but does not allow you to easily jump to a spe-
cific page.

Queries for content with interfaces which do not extend Model

In some cases you want to persist your objects, but you do not want to expose in
your interface how you do it. For instance, a rating is persisted internally as a
Model, but the interface does not extend the Model interface. Your interface and
implementation for a Custom object would look like this:

Example 4.27. Custom
gubllc interface Custom { hnedhce

public class CustomModelImpl implements Custom, Model ({
}

If you query for those Custom objects, you need to use implementation class which
extends Model:

Example 4.28. Custom

List<CustomModelImpl> impls = modelService.query ("customModels", hnpknuﬂﬁaﬁon

CustomModelImpl.class) .fetch();

If you want to have a query result list you need to manually copy all query results
to a new list:

Example 4.29. Get
public List<Custom> getCustoms () { quenlnﬁuklkt

List<CustomModelImpl> impls = modelService.query ("customModels",

CustomModelImpl.class) .fetch () ;
List<Custom> result = new ArrayList<Custom> (impls.size());
for (Custom impl : impls) {
ratings.add (impl) ;
}

return result;

CoreMedia DXP 8

Development | Known Limitations

Non public properties

You might want to have properties which are part of the implementation, but not

of the interface definition. For example, your interface and implementation might
look like this:

Example 4.30. Inter-
$ubllc interface CustomModel extends Model { faceandinuﬂanenta-
tion
public class CustomModelImpl implements CustomModel {
private int level;

public int getLevel () {
return level;

}

public void setLevel (int level) {
this.level = level;
}
}

If you have a service using this model, you want the service to define methods for
the interface, not the implementation.

Example 4.31. Model
public class CustomModelService {

public void doSomething (CustomModel model) ; nwthOddeﬂnnwn
}

}

You cannot easily cast the model to its implementation class because the type is
actually generated at runtime:

Example 4.32. Casting
((CustomModelImpl) model) .setLevel (5) ; ofrnodek
// ClassCastException because the type is actually generated at
runtime

The best workaround for this is to use the setProperty method of the model

using constants, which you should define in your implementation class Custom-
ModelImpl:

Example 4.33. Set
model.setProperty (LEVEL PROPERTY, 5) model properties

CoreMedia DXP 8

Development | Known Limitations

Overloaded Service methods

Every Service that offers a method which returns a Model or a bunch of Models
has to offer this method in three variants to ensure a maximum of extensibility.
This leads to a lot of code that may be hardly reused when implementing the
method.

public interface CustomModel extends Model ({
}

A typical implementation for the three method variants has to follow this pattern:

public class CustomModelServiceImpl implements CustomModelService
{
public List<CustomModel> getSomeModels () {
Query<CustomModel> query = createQuery ()
return query.fetch();
}

public <T extends CustomModel> List<T> getSomeModels (
Class<? extends T> type) {
return getSomeModels (type, ModelService.NO SUPER TYPES);

}

public <T extends CustomModel> List<T> getSomeModels (
Class<? extends T> type,
List<Class<? extends Model>> superTypes) {
Query<CustomModel> query = createQuery();
return query.fetch (type, superTypes);
}

7

}

Spring Social Callback URL

When running a multi-tenant web application with Spring Social behind a proxy
with URL rewriting, it is currently not possible to configure the Spring Social applic-

ation URL on a per tenant basis.

This issue has been raised in the Spring Social issue tracker and is scheduled for

the next minor release:https://jira.springsource.org/browse/SOCIAL-259

CoreMedia DXP 8

Example 4.34. Custom-
ize models

Example 4.35. Custom
model services

https://jira.springsource.org/browse/SOCIAL-259

Index |

Index

A

authentication, 54
Elastic Social, 55
LDAP, 56

authorization, 54

availability, 22

backup, 23
incremental, 23
BBCode, 61
block users automatically, 28

C

caching, 41

cloud deployment, 21
configuration, 38
counters, 47

D

deployment
multiple data center, 20
single data center, 19

E

Elastic core, 12

Elastic Core, 12

Elastic Social, 12
known limitations, 63
Software stack, 15

Elastic Social Services
usage, 54

emails, 60

extending models, users and comments, 36

CoreMedia DXP 8

indexing, 38
installation, 17
integrating into Spring web application, 50

L

logical components, 14

M

mapping atomic values, 34
mapping collection values, 34
mapping references, 35
Maven, 50
message queue, 44
model
search index, 39
models
configuration, 38
extending, 36
index, 38
listening to changes, 43
rerential integrity, 41
MongoDB
collections, 35
installation, 17
replica sets, 18
sharding, 18, 23
multiple data center deployment, 20
extra extra large, 20
extra large, 20
multitenancy, 53

P

performance, 21
tests, 21
persistence
mapping atomic values, 34
mapping collection values, 34
mapping Java classes and MongoDB documents, 33
mapping references, 35
persistence model, 33
prerequisites, 17

Index |

R

reference implementation, 12
refresh counters, 29
reject comments automatically, 28

S

security, 32
sharding, 23
single data center deployment, 19
large, 19
medium, 19
small, 19
social network integration, 58
software stack, 15
SQL injection, 32
Studio plugin, 12
supported environments, 18

T
typography, 3

CoreMedia DXP 8

	CoreMedia Elastic Social Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Change Chapter

	2. Architectural Overview
	2.1 Logical Components
	2.2 Software Stack

	3. Administration and Operation
	3.1 Installation Guide
	3.2 Deployment
	3.2.1 Setup
	3.2.2 Single Data Center Deployment
	3.2.3 Multiple Data Center Deployment
	3.2.4 Cloud deployment
	3.2.5 Performance
	3.2.6 Availability
	3.2.7 Backup

	3.3 Administration
	3.3.1 Configuration properties
	3.3.2 Block Users automatically
	3.3.3 Reject Comments automatically
	3.3.4 Reindex
	3.3.5 Refresh counters

	4. Development
	4.1 Security
	4.2 Persistence Model
	4.3 Indexing
	4.4 Listening to Model Changes
	4.5 Message Queue Model
	4.6 Counters
	4.7 Integration
	4.7.1 Apache Maven
	4.7.2 Multi-Tenancy
	4.7.3 Using Elastic Social Services
	4.7.4 Authentication and Authorization
	Elastic Social Authentication
	LDAP Authentication
	Social Network Integration

	4.7.5 Emails
	4.7.6 BBCode

	4.8 Known Limitations

	Index

