
CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Operations Basics

CoreMedia Operations Basics
Copyright CoreMedia AG © 2015

CoreMedia AG

Ludwig-Erhard-Straße 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

iiCoreMedia DXP 8

CoreMedia Operations Basics |

1. Introduction .. 1
1.1. Audience .. 2
1.2. Typographic Conventions .. 3
1.3. CoreMedia Services .. 5

1.3.1. Registration .. 5
1.3.2. CoreMedia Releases .. 5
1.3.3. Documentation .. 6
1.3.4. CoreMedia Training .. 8
1.3.5. CoreMedia Support . 9

1.4. Change Chapter . 12
2. Overview .. 13
3. System Requirements .. 17

3.1. Java .. 19
3.2. Databases .. 20
3.3. Servlet Containers .. 21

4. Basics of Operation .. 22
4.1. CoreMedia CMS Directory Structure .. 23
4.2. Communication between the System Applications 24

4.2.1. Communication Through a Firewall 25
4.2.2. Binding Only a Single Network Interface 29
4.2.3. Encrypting CORBA Communication Using
SSL .. 30
4.2.4. Encrypting CORBA with SSL and bind to a Single
Network Interface .. 36
4.2.5. Preparing Tomcat for HTTPS Connection 36
4.2.6. Troubleshooting .. 38

4.3. Starting the Applications .. 39
4.3.1. Starting CoreMedia Web Applications 39
4.3.2. Starting CoreMedia Command-Line Tools 40

4.4. Configuration of CoreMedia Applications 42
4.5. Collaborative Components .. 44

4.5.1. Overview .. 44
4.5.2. Deployment .. 44
4.5.3. Recovery of Collaborative Components Data-
base .. 45

4.6. CoreMedia Licenses .. 46
4.7. Logging .. 50

4.7.1. Logging Configuration for Web Applica-
tions .. 50
4.7.2. Logging Configuration for Apache Solr 50

iiiCoreMedia DXP 8

CoreMedia Operations Basics |

4.7.3. Logging Configuration for Command-Line
Tools . 51

4.8. CM Watchdog/Probedog .. 52
4.8.1. Starting the Watchdog/Probedog 53
4.8.2. Watching Databases .. 53
4.8.3. Configuration in watchdog.xml .. 54
4.8.4. Watchdog Result Codes .. 69

4.9. JMX Management .. 71
Glossary .. 72
Index .. 79

ivCoreMedia DXP 8

CoreMedia Operations Basics |

List of Figures
2.1. Architectural Overview .. 15
4.1. IOR inquiry and answer between CoreMedia Client and Serv-
er . 24
4.2. Schema of the SSH tunnel . 26

vCoreMedia DXP 8

CoreMedia Operations Basics |

List of Tables
1.1. Typographic conventions .. 3
1.2. Pictographs .. 3
1.3. CoreMedia manuals . 6
1.4. Log files check list . 10
1.5. Changes .. 12
2.1. CoreMedia applications .. 13
4.1. Properties for SSH configuration .. 28
4.2. Properties for Single IP configuration .. 29
4.3. Example SSL Ports . 30
4.4. Properties for Content Server SSL configuration 31
4.5. Properties for Workflow Server SSL configuration 32
4.6. Properties for Workflow to Content Server SSL configura-
tion .. 33
4.7. Properties for Client ORB SSL configuration .. 34
4.8. Properties for persistence of collaboration data to Mon-
goDB .. 44
4.9. Elements of a license file . 48
4.10. Action to be used to check a certain application 53
4.11. Attributes of the Component element .. 54
4.12. General attributes of the Action element .. 55
4.13. Custom Action .. 55
4.14. Action DB .. 56
4.15. Action HTTP .. 57
4.16. JMX Action .. 58
4.17. ProcessStatus .. 59
4.18. Action ServerMode .. 61
4.19. Server Query .. 61
4.20. Action ServiceStatus .. 62
4.21. Action Script . 63
4.22. WorkflowServerQuery .. 64
4.23. Attributes of the Edge element .. 65
4.24. watchdog result codes .. 69

viCoreMedia DXP 8

CoreMedia Operations Basics |

List of Examples
4.1. Code to insert into server.xml .. 38
4.2. Output of cm in the cms-tools directory .. 40
4.3. A sample license file . 47

viiCoreMedia DXP 8

CoreMedia Operations Basics |

1. Introduction

CoreMedia CMS is a content management system for easy and convenient creation
and administration of up-to-date content, interactive features and personalized
web pages.

For this purpose, CoreMedia provides an environment for online editorial workflow
processes. Users can simultaneously create and edit content and so conveniently
maintain a website. Integration of contents from print editorial systems, office
applications and news agencies (dpa, SID, Reuters, etc.) is possible via import
mechanisms. The versatile CoreMedia Content Application Engine (CAE) delivers
content to the Internet and creates various export formats.

Configuration and operation of the different CoreMedia applications is described
in the correspondent manuals. This manual describes some overall tasks and
knowledge that is important for all the applications.

➞ An overview of the architecture of the CoreMedia CMS system in Chapter 2,
Overview [13]

➞ Some basics about the operating environments used by CoreMedia Digital
Experience Platform 8 are described in Chapter 3, System Requirements [17].

➞ the administration essentials of CoreMedia CMS for example how to start the
applications, in Chapter 4, Basics of Operation [22]

1CoreMedia DXP 8

Introduction |

1.1 Audience
This manual is dedicated to administrators and developers of CoreMedia CMS install-
ations. They will find descriptions of all tasks necessary for installation, configuration
and operation of a CoreMedia system.

2CoreMedia DXP 8

Introduction | Audience

1.2 Typographic Conventions
CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:

Table 1.1. Typographic
conventions

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entry

Format|Normal

Bold, linked with |Menu names and entries

Enter in the field Heading

The CoreMedia Component

ItalicField names

CoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed
keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \

-u user

\Code lines in code examples
which continue in the next
line

See the [Studio Developer
Manual] for more information.

Square BracketsMention of other manuals

In addition, these symbols can mark single paragraphs:

Table 1.2. PictographsDescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

3CoreMedia DXP 8

Introduction | Typographic Conventions

DescriptionPictograph

Danger: The violation of these rules causes severe damage.

4CoreMedia DXP 8

Introduction | Typographic Conventions

1.3 CoreMedia Services
This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.3.1,
“Registration” [5] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

➞ Section 1.3.1, “Registration” [5] describes how to register for the usage of
the services.

➞ Section 1.3.2, “CoreMedia Releases” [5] describes where to find the
download of the software.

➞ Section 1.3.3, “Documentation” [6] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

➞ Section 1.3.4, “CoreMedia Training” [8] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

➞ Section 1.3.5, “CoreMedia Support” [9] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.3.5, “CoreMedia Support” [9]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

5CoreMedia DXP 8

Introduction | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5]
for details about the registration process. If the problems persist, try clearing
your browser cache and cookies.

Maven artifacts

CoreMedia provides its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual.

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [9]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia
manualsContentAudienceManual

This manual lists the third-party software used
by CoreMedia and lists, when required, the li-
cence texts.

Developers, ar-
chitects, admin-
istrators

CoreMedia Utilized Open-
Source Software

This document lists the third-party environ-
ments with which you can use the CoreMedia

Developers, ar-
chitects, admin-
istrators

Supported Environments

system, Java versions or operation systems for
example.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It

EditorsStudio User Manual, Eng-
lish

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

6CoreMedia DXP 8

Introduction | Documentation

https://repository.coremedia.com
livecontext-en.pdf#CoreMediaManual
http://documentation.coremedia.com/dxp8

ContentAudienceManual

This manual gives an overview over the struc-
ture and features of CoreMedia LiveContext.

Developers, ar-
chitects, admin-
istrators

LiveContext for IBM Web-
Sphere Manual

It describes the integration with the IBM
WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

This manual describes some overall concepts
such as the communication between the

Developers, ad-
ministrators

Operations Basics Manual

components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

This manual describes the configuration of and
development with Adaptive Personalization, the

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

CoreMedia module for personalized websites.
You will learn how to configure the GUI used
in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-
sions.

This manual describes how you can connect
your CoreMedia website with external analytic
services, such as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors
Manual

This manual describes concepts and develop-
ment of the Content Application Engine (CAE).

Developers, ar-
chitects

Content Application De-
veloper Manual

You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

This manual describes the concepts and admin-
istration of the main CoreMedia component,

Developers, ar-
chitects, admin-
istrators

Content Server Manual

the Content Server. You will learn about the
content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

7CoreMedia DXP 8

Introduction | Documentation

ContentAudienceManual

This manual describes the concepts and admin-
istration of the Elastic Social module and how
you can integrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the structure of the in-
ternal CoreMedia XML format used for storing

Developers, ar-
chitects

Importer Manual

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

This manual describes the configuration and
customization of the CoreMedia Search Engine

Developers, ar-
chitects, admin-
istrators

Search Manual

and the two feeder applications: the Content
Feeder and the CAE Feeder.

This manual describes the configuration and
customization of Site Manager, the Java based

Developers, ar-
chitects, admin-
istrators

Site Manager Developer
Manual

stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

This manual describes the concepts and exten-
sion of CoreMedia Studio. You will learn about

Developers, ar-
chitects

Studio Developer Manual

the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the re-

Developers, ar-
chitects

Unified API Developer
Manual

commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

This manual describes the Workflow Server. This
includes the administration of the server, the

Developers, ar-
chitects, admin-
istrators

Workflow Manual

development of workflows using the XML lan-
guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

8CoreMedia DXP 8

Introduction | CoreMedia Training

mailto:documentation@coremedia.com

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the Training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, virtual
machines, class libraries and customized code in many different combinations.
That's why CoreMedia needs detailed information about the environment for a
support case. In order to track down your problem, provide the following informa-
tion:

➞ Which CoreMedia component(s) did the problem occur with (include the
release number)?

➞ Which database is in use (version, drivers)?

➞ Which operating system(s) is/are in use?

➞ Which Java environment is in use?

➞ Which customizations have been implemented?

➞ A full description of the problem (as detailed as possible)

➞ Can the error be reproduced? If yes, give a description please.

➞ How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

9CoreMedia DXP 8

Introduction | CoreMedia Support

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of
Java processes and CoreMedia components. They're often the only source of in-
formation for error tracking and solving. All protocolling services should run at the
highest log level that is possible in the system context. For a fast breakdown, you
should be logging at debug level. The location where component log output is
written is specified in its < appName>-logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia.log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do I Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the logs/ directory of the servlet
container.See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files
check list

Log filesProblemComponent

generalCoreMedia Studio CoreMedia-Studio.log
coremedia.log

generalCoreMedia Editor editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre-
view

coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

10CoreMedia DXP 8

Introduction | CoreMedia Support

Log filesProblemComponent

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

communication errorsServer and client editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.jpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

not startingServer coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

11CoreMedia DXP 8

Introduction | CoreMedia Support

1.4 Change Chapter
In this chapter you will find a table with all major changes made in this manual.

Table 1.5. ChangesDescriptionVersionSection

Removed properties con
trolroom.jdbc.driver,

7.5.41Section 4.5.2, “Deploy-
ment” [44]

controlroom.jdbc.url,
controlroom.jd
bc.user and control
room.jdbc.password.
Control Room no longer sup-
ports IBM DB2 for persisting
collaboration data. See [Core-
Media DXP 8 Manual], Section
"In-Memory Replacement for
MongoDB-Based Services".

12CoreMedia DXP 8

Introduction | Change Chapter

2. Overview

Overview and deploy-
ment

CoreMedia CMS is a distributed web content management system (WCMS) for
creation, management and delivery of context dependent content. Most of the
applications of CoreMedia CMS are deployed as web applications in a servlet con-
tainer. Only the Site Manager and the server utilities are deployed as stand-alone
applications. All applications can be deployed into the Cloud.

A CoreMedia system is separated into a management environment where the ed-
itors are working and a delivery environment where the customers access the
website. The environments can be separated by a firewall for security reasons. The
applications communicate via HTTP and CORBA, see Section 4.2, “Communication
between the System Applications” [24] for details. Table 2.1, “CoreMedia applica-
tions” [13] shows all applications of CoreMedia CMS, describes what they do, if
there are multiple instances and with which applications they communicate:

Table 2.1. CoreMedia
applicationsCommunicates withMultiple InstancesPurposeApplication

NoManages the content
in the Management

Content Management
Server

➞ All clients

➞ Publishes con-
tent to the Mas-
ter Live Server

Environment and
publishes content to
the Master Live Server.

➞ External rela-
tional database

➞ Search Engine

Multiple instances
when Multi-Site is
used

Manages the content
in the Delivery Envir-
onment

Master Live Server ➞ All clients.

➞ External rela-
tional database

Multiple instances
can be attached to
one Master Live Server

Serves content to the
CAEs

Replication Live Serv-
er

➞ Content Applic-
ation Engine

➞ External rela-
tional database

Content Management
Server

NoExecutes workflowsWorkflow Server

13CoreMedia DXP 8

Overview |

Communicates withMultiple InstancesPurposeApplication

YesManagement tool for
workflows and users.

Site Manager ➞ Content Man-
agement Server

➞ Workflow Serv-
er

One web applicationContent editing and
management. Hosts

Studio ➞ Content Man-
agement Server

management exten-
sions for Elastic Social
and Adaptive Personal-
ization.

➞ Search Engine

➞ Workflow Serv-
er

➞ MongoDB

Yes.Indexes content and
provides searches
functionality.

Search Engine ➞ Content Man-
agement Server

➞ Content Feeder

➞ CAE Feeder

➞ Studio

➞ Content Applic-
ation Engine

Multiple instances
possible, for example
when reindexing.

Feeds content beans
into the Search Engine

CAE Feeder ➞ Content Man-
agement Server

➞ Search Engine

➞ External rela-
tional database

Multiple instances
possible, for example
when reindexing.

Serves content to the
Search Engine

Content Feeder ➞ Content Man-
agement Server

➞ Search Engine

Multiple instances
can be attached to

Serves sites to the
customer. Hosts

Content Application
Engine

➞ Content Server

➞ MongoDB data-
base for Elastic
Social

one Master Live Server
or Replication Live
Server

Elastic Social and Ad-
aptive Personalization
extension.

➞ Search Engine

➞ Custom extern-
al systems

14CoreMedia DXP 8

Overview |

Communicates withMultiple InstancesPurposeApplication

YesImports content into
the Content Manage-
ment Server.

Importer ➞ Content Man-
agement Server

Monitored applica-
tions

YesMonitors CoreMedia
applications and
databases

Watchdog

Figure 2.1, “Architectural Overview” [15] shows a simple deployment of CoreMedia
CMS.

Figure 2.1. Architectur-
al Overview

Management Environment

Servlet Container

Workflow Server

CAE Feeder

Content
Management
Server

Content
Feeder

User
Changes

Servlet Container

Studio

Personalization
Management

Elastic Social
Management

Personalization
Management

Elastic Social
Management

Preview Web
Application CAE

CoreMedia Site
Manager

Delivery Environment

Servlet Container

Delivery Web
Application CAE

Personalization
Management

Elastic Social
Management

Servlet Container

Master Live Server

CAE
Feeder

Replication Live
Server

LDAP Server

MongoDB

Relational
Database

Relational
Database

Servlet Container

Search Engine

Third-party softwareAs shown in Figure 2.1, “Architectural Overview” [15] CoreMedia CMS requires
some third-party software for operation, which is not delivered with CoreMedia
CMS. In detail, the following software has to be installed:

➞ A Java installation.

➞ A relational database for the content storage.

➞ A servlet container as a runtime environment for most of the applications.

➞ A MongoDB database for Elastic Social.

15CoreMedia DXP 8

Overview |

➞ A browser for CoreMedia Studio.

In addition, you can run CoreMedia CMS with an LDAP server. Find a list of all sup-
ported environments at the CoreMedia Online Documentation.

InstallationCoreMedia CMS is not shipped with an installer. Instead, it comes as a development
workspace, where you can customize it to your needs. By default, this workspace
produces RPM and ZIP artifacts that you can install as usual. See CoreMedia Digital
Experience Platform 8 Developer Manual for more details about the workspace.

SecurityThe communication between all applications can be secured. See Section 4.2,
“Communication between the System Applications” [24] for details.

Logging and Monitor-
ing

All applications of CoreMedia CMS use Logback for logging. See Section 4.7, “Log-
ging” [50] for details. By default all CoreMedia applications register relevant re-
sources via JMX as MBeans for management and monitoring purposes. So, you can
use a common JMX client such as JConsole to change or check the configuration,
to start tasks or to get statistic data. If you only want to have a look at the configured
JMX-Parameter and its values, you can simply use the CoreMedia utility jmxdump,
which simply prints out this information, as described in section "JMXDump" of
the Content Server Manual. CoreMedia CMS comes with two applications specific
for monitoring, that is the Probedog and the Watchdog. You can use these applic-
ations to monitor the status of CoreMedia applications and to restart a server.

16CoreMedia DXP 8

Overview |

http://documentation.coremedia.com/dxp8
livecontext-en.pdf#CoreMediaManual
livecontext-en.pdf#CoreMediaManual
http://logback.qos.ch/documentation.html

3. System Requirements

Use only recommended
systems

A CoreMedia system has to rely on several (third-party) software components, for
proper operation. CoreMedia tests CoreMedia CMS with the most common combin-
ations used by our customers and distinguishes between two levels of approved
infrastructure components:

➞ Certified level

Certified infrastructure components are extensively tested to work with the
CoreMedia CMS system. Every infrastructure component approved with the
first final CMS Release is certified. It is recommended to use these compon-
ents for productive systems.

➞ Supported level

Supported infrastructure components will also work with CoreMedia applic-
ations but they are tested less exhaustively, because they are released after
the first final CMS Release. They also can be used for productive systems.
Refer to the notes.html file for announcements of additionally supported
environments or the appendix of this manual.

Note: the state "deprecated" is also used on occasion. Deprecated infrastructure
components are either of certified or supported level in the current version of the
CoreMedia CMS but do not carry official approval by CoreMedia beyond this version.

All necessary security updates for approved versions, recommended by vendors
of infrastructure components (such as OS, Java, database...), are supported by
CoreMedia automatically. This does not apply to feature updates!

Supported operation
environments

You will find the approved components in the Supported Operation Environments
document on the documentation page. In the following sections you will find some
general hints for the usage of these components:

➞ Java platforms in Section 3.1, “Java” [19],

➞ Databases in Section 3.2, “Databases” [20],

➞ Servlet containers in Section 3.3, “Servlet Containers” [21].

17CoreMedia DXP 8

System Requirements |

https://documentation.coremedia.com/dxp8

Please keep in mind, that the databases and application servers have only been
tested in CoreMedia compliant operating environments and therefore are only
approved on these platforms.

18CoreMedia DXP 8

System Requirements |

3.1 Java
The functionality of CoreMedia applications can only be guaranteed with approved
platforms and corresponding Java versions. To operate CoreMedia CMS, run the Java
platform with Java Runtime Environment (JRE) or Java Development Kit (JDK).

Do not run a CoreMedia CMS System with different Java versions. All applications
have to use the same Java version.

The appropriate JREs/JDKs for the different supported platforms can be obtained
from the following locations:

➞ for Solaris, Linux and Windows JRE/JDK can be downloaded at Oracle (ht-
tp://www.oracle.com or http://www.oracle.com/technet-
work/java/javase/downloads/index.html).

➞ the IBM JRE/JDK can be downloaded at IBM (https://www.ibm.com/developer-
works/java/jdk/).

Only use the JRE/JDK binaries listed in the Supported Environments document
or further approved versions mentioned in the change notes on the document-
ation site. Don't use any other than the specified patch level of an JRE/JDK ver-
sion! A different patch level is not supported and probably causes errors in ser-
vice.

19CoreMedia DXP 8

System Requirements | Java

http://www.oracle.com
http://www.oracle.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/

3.2 Databases
CoreMedia CMS uses repositories for data storage, therefore it requires one or more
external relational databases. A correctly installed and activated database is pre-
requisite for the operation of CoreMedia CMS. How to connect the CoreMedia system
to databases is described in detail for the different databases in the Content Server
Manual.

It is strongly recommended to use a UTF-8 enabled database for your CoreMedia
CMS repository.

The databases have only been tested in CoreMedia compliant operating environ-
ments and therefore are only approved on these platforms. For all supported en-
vironments see the [Supported Environments] document at https://documenta-
tion.coremedia.com/dxp8/supported-environments-en.pdf.

20CoreMedia DXP 8

System Requirements | Databases

https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf

3.3 Servlet Containers
CoreMedia CMS web applications such as the Content Servers and Content Application
Engine use a servlet container for operation. Default servlet container is Tomcat.
Keep in mind, that the servlet containers have only been tested in CoreMedia
compliant operating environments and therefore are only approved on these
platforms. For all supported servlet containers see the [Supported Environments]
document at https://documentation.coremedia.com/dxp8/supported-environments-
en.pdf.

21CoreMedia DXP 8

System Requirements | Servlet Containers

https://documentation.coremedia.com/dxp8/supported-environments-en.pdf
https://documentation.coremedia.com/dxp8/supported-environments-en.pdf

4. Basics of Operation

This chapter covers the fundamental principles of CoreMedia system administration
and operation - an overview of the directory structure of the CoreMedia system,
configuration settings for internal system communication and general aspects of
starting and operating CoreMedia applications.

22CoreMedia DXP 8

Basics of Operation |

4.1 CoreMedia CMS Directory Structure
CoreMedia applications come as simple applications or as web applications. Both
have a standard directory structure that will be described in the following. Other
- application specific - directories, are described in the corresponding application
manual.

CoreMedia applications

A CoreMedia application, the Server Utilities for example, has the following direct-
ories:

➞ ./bin: Start scripts (see Section 4.3, “Starting the Applications” [39]) for
Unix (cm) and Windows (cm.exe, cmw.exe) as well as the start scripts of the
individual CoreMedia utility programs and the Site Manager.

➞ ./lib: Runtime resources like Java JAR files and DLLs.

➞ ./classes: Optional local classes. Note: The directory does not exist in the
standard installation. It can contain customer-specific extensions.

➞ ./config/<component>: XML configuration files of the application.

➞ ./properties/corem: CoreMedia CMS configuration files in Java properties
format.

➞ ./var/log: log files of the CoreMedia applications (see Section 4.7, “Log-
ging” [50]).

➞ ./var/run: runtime data (such as Process ID).

➞ ./var/tmp: temporary data.

CoreMedia web application

A CoreMedia web application, the Content Application Engine or the Content Server
for example, is deployed in a servlet container. The web applications have some
of the following sub directories in its WEB-INF directory:

➞ ./config/<application>: XML configuration files of the application.

➞ ./properties/corem: CoreMedia CMS configuration files in Java properties
format.

➞ ./lib: Runtime resources like Java JAR files and DLLs.

➞ ./spring: Spring configuration files of the web application.

23CoreMedia DXP 8

Basics of Operation | CoreMedia CMS Directory Structure

4.2 Communication between the System
Applications

Figure 4.1. IOR inquiry
and answer between
CoreMedia Client and
Server

CORBA is used for the communication between CoreMedia system applications.
All CoreMedia applications require the IOR of the Content Server which they want
to communicate with. The IOR of the Content Server will be delivered by the server
via the HTTP protocol.

➞ All applications require the IOR of the Content Server with which they want
to communicate.
The URL where to get the IOR of the Content Server is configured with the
parameter cap.client.server.ior.url=<IOR-URL> in the file capcli
ent.properties.
The value of the parameter ishttp://<server>:<port>/coremedia/ior.
Instead of <server> you have to insert the name of the computer where the
server is running. Instead of <port> you have to insert the HTTP port on
which the client connects to the server. Both values are defined in the con
tentserver.properties file.
Example: The Content Server host has the name productionserver and the
contentserver.properties file contains the property cap.server.ht
tp.port=44445. In this case, you can obtain the IOR with the following
URL:
cap.client.server.ior.url=http://productionserv
er:44445/coremedia/ior

The Content Management Server/Live Server embed their own host names into the
IOR which must be resolved by the client machines. If this is not possible by the
client, you can configure the server to embed a numeric IP address into the IOR.
To do so, set the ORB property com.sun.CORBA.ORBServerHost. In the following
example, the ORB is configured to embed its numeric address, by setting a system
property:

-Dcom.sun.CORBA.ORBServerHost="10.1.3.253"

24CoreMedia DXP 8

Basics of Operation | Communication between the System Applications

All CoreMedia applications deployed as web applications expect an ORB to be
provided by the application server. To use the application server ORB you have to
provide the JNDI name of the ORB in the property com.coremedia.orb.jndiN
ame, for example:

com.coremedia.orb.jndiName=java:comp/ORB

If this property is left empty, each CoreMedia application will create its own ORB.

For Tomcat deployment, CoreMedia provides an integration of the Oracle JDK ORB.
Take a look at the tomcat-config module in the CoreMedia Blueprint workspace
for further details. All system properties defined, for example, in Tomcat's
setenv.sh / setenv.bat are passed on as configuration properties to the ORB.

For WebSphere deployment, CoreMedia provides an integration of the IBM JDK
ORB (see CoreMedia IBM Deployment Manual for IBM specific deployment).

As said before, classic CoreMedia client applications read its capclient.proper
ties file to access the property cap.client.server.ior.url for the IOR URL
of the server. Newer CAE/Spring/Unified API based clients read its Spring config-
uration file (repository.xml, CapConnectionFactory...) to access the server
IOR. When Content Servers act as clients to access other Content Servers, they
read the IOR URL from other configuration files:

➞ The Content Management Server must know the IOR of the Master Live Server
during publication.
The IOR URL is stored in the property publisher.target.ior.url of the
file publisher.properties.

➞ The Replication Live Server (when installed) has to communicate with its
Master Live Server.
The IOR URL is stored in the property replicator.publicationIorUrl
of the file replicator.properties.

4.2.1 Communication Through a Firewall
In order to communicate with the CoreMedia Server or Workflow Server, two open
ports are required:

➞ The HTTP port to fetch the IOR,

➞ the CORBA port for communication.

In the default configuration, the CORBA port changes with every restart of the
application server which is inconvenient in case of an intermediate firewall. In this
case, the port can be set to a fixed value through the ORB property
com.sun.CORBA.ORBServerPort. In the following example, the ORB is configured
to listen on port 55555, by setting a system property:

25CoreMedia DXP 8

Basics of Operation | Communication Through a Firewall

ibmdeployment-en.pdf#IBMDeploymentManual

➞ -Dcom.sun.CORBA.ORBServerPort=55555

If you want to access the Server from "outside" a firewall and the server IP address
is not directly accessible (due to network address translation for example), it is
possible to establish an SSH tunnel. The tunnel forwards all traffic from the client
to the server. Of course, the endpoint of the tunnel must be able to reach the
server. Figure 4.2, “Schema of the SSH tunnel” [26] shows the scenario:

Figure 4.2. Schema of
the SSH tunnel

contentserver.properties

CMS Client CMS Server

Four parties are involved in the tunneling:

➞ A client <CMSClient> which cannot access the server directly.

➞ The client-side SSH client <SSHClient> which cannot access the Content
Server.

➞ The server-side SSH server <SSHServer> which can access the Content Server.

➞ The CoreMedia Server <CMSServer>.

<CMSClient>/<SSHClient> and <CMSServer>/<SSHServer> can reside on the same
machine respectively.

Two ports must be configured:

➞ <HTTPPort> is the HTTP port for the IOR.

➞ <CORBAPort> is the port for CORBA communication.

For this scenario you must,

➞ establish the tunnel,

➞ redirect client requests to the tunnel endpoint SSHClient instead of
CMSServer.

26CoreMedia DXP 8

Basics of Operation | Communication Through a Firewall

Proceed as follows:

1. Configure the HTTP port of the server as usual in the contentserver.prop
erties files.

2. Configure the HTTP address where to fetch the IOR of the server in the capcli
ent.properties file as follows:

cap.client.server.ior.url=http://<SSHClient>:<HTTP
Port>/coremedia/ior

3. Start a SSH server on <SSHServer>. No particular configuration is necessary.

4. Start the SSH client on <SSHClient>.

5. On a UNIX system, open the tunnel on the SSHClient with ssh -g -
L<CORBAPort>:<CMSServer>:<CORBAPort> -L<HTTPPort>:<CMSServ
er>:<HTTPPort> <SSHServer>. Replace the values in angle brackets with
the appropriate settings.

For the Windows SSH client SSH Secure Shell choose Edit|Settings|Pro
file Settings|Tunneling|Incoming. You need to make two entries.
Insert as follows:
Type: TCP
Listen Port: <HTTPPort>
Destination Host: <CMSServer>
Destination Port: <HTTPPort>
and
Type: TCP
Listen Port: <CORBAPort>
Destination Host: <CMSServer>
Destination Port: <CORBAPort>
This will instruct ssh to forward all requests on <SSHClient>:<Port> via
<SSHServer> to <CMSServer>:<Port>.

6. In order to instruct a client to contact <SSHClient> instead of <CMSServer>,
you need to configure its client-side ORB with ORB properties and system
properties.

Depending on the type of client, system properties are set either in the JPIF file
(for command line tools), in the JNLP file (for Web Start) or in
setenv.sh/setenv.bat (for web applications deployed in Tomcat). ORB
properties are also set as system properties, except for command line tools,
described below.

You need to set the following properties, replacing <CMSServer> and <SSHCli-
ent> with the names of the appropriate computers and <CorbaPort> with the
port number of the ends of the SSH tunnel:

27CoreMedia DXP 8

Basics of Operation | Communication Through a Firewall

Table 4.1. Properties
for SSH configuration

Property ValueProperty NameProperty Type

com.coremedia.corba.ORBRedirect-
or50

com.sun.CORBA.legacy.con-
nection.ORBSocketFactory-
Class

ORB

<CMSServer>com.coremedia.corba.OR-
BRedirector.origin-
al.host

System

<SSHClient>com.coremedia.corba.OR-
BRedirector.redir-
ect.host

System

<CorbaPort>com.coremedia.corba.OR-
BRedirector.origin-
al.port

System

<CorbaPort>com.coremedia.corba.OR-
BRedirector.redir-
ect.port

System

7. In order to instruct stand-alone Unified API clients like the command line tools
to contact <SSHClient> instead of <CMSServer>, you must configure the ORB
property for the socket factory in the connection parameters for the Unified API.

If you are setting up the Unified API connection programmatically, consider
using the connect(Map) method of the class Cap.

Map parameters = new HashMap();
...
parameters.put
("com.sun.CORBA.legacy.connection.ORBSocketFactoryClass",
"com.coremedia.corba.ORBRedirector50");

connection = Cap.connect(parameters);

In any case, you may inject the parameter through the IOR URL passed to
the Unified API. For command line tools, you can pass the URL on the com-
mand line:

cm systeminfo -url http://<SSHCLIENT>:<HTTPPort>/coremedia/ior?
com.sun.CORBA.legacy.connection.ORBSocketFactoryClass=
com.coremedia.corba.ORBRedirector50 -u admin -p admin

You can also set the extended URL in the file capclient.properties:

cap.client.server.ior.url=\
http://<SSHCLIENT>:<HTTPPort>/coremedia/ior?\

28CoreMedia DXP 8

Basics of Operation | Communication Through a Firewall

com.sun.CORBA.legacy.connection.ORBSocketFactoryClass=\
com.coremedia.corba.ORBRedirector50

It is also possible to pass an extended URL when opening a connection pro-
grammatically.

An alternative to setting up a SSH tunnel might be the use of a VPN, or SSL.

The ORBRedirector only works if the client uses the ORB from the Oracle J2RE.
It may not work if you are not using an Oracle J2RE or an application runs in a
third-party web container that provides its own ORB.

4.2.2 Binding Only a Single Network Interface
By default, both HTTP port and the CORBA port are bound to all network interfaces.
For example your server might be accessible through two network cards using the
IP addresses 10.1.3.253 and 10.1.3.254. For security reasons, you might want to
grant access to the servers only through one of the interfaces.

Binding the HTTP port to only one single interface can be achieved by adding an
address attribute to the Tomcat's Connector element (see http://tom-
cat.apache.org/tomcat-7.0-doc/config/http.html).

For limiting the access through CORBA, too, some properties must be set. By setting
com.sun.CORBA.ORBServerHost to the correct IP address, you ensure that ex-
ternal clients contact the server through the correct interface. In order to bind only
the correct interface, you must configure a custom CoreMedia socket factory, which
is configured using a system property. Set the following system properties when
starting the Content Management Server and the Workflow Server:

Table 4.2. Properties
for Single IP configura-
tion

Property ValueProperty NameProperty Type

<IpAddress>com.sun.CORBA.ORBServer-
Host

ORB

com.coremedia.corba.SingleIpSock-
etFactory50

com.sun.CORBA.legacy.con-
nection.ORBSocketFactory-
Class

ORB

<IpAddress>com.core-
media.corba.SingleIpSock-
etFactory.ip

System

Replace <IpAddress> by the IP address of the network interface to bind, for example
10.1.3.253. If you want to secure this connection via SSL, you have to use different

29CoreMedia DXP 8

Basics of Operation | Binding Only a Single Network Interface

http://tomcat.apache.org/tomcat-7.0-doc/config/http.html#Standard_Implementation
http://tomcat.apache.org/tomcat-7.0-doc/config/http.html#Standard_Implementation

factories, see Section 4.2.4, “Encrypting CORBA with SSL and bind to a Single
Network Interface” [36] for details.

4.2.3 Encrypting CORBA Communication Using SSL
In a standard CoreMedia installation, session handles and content are transmitted
in clear text across the network between client and server. This is usually not a
problem when the editorial workplaces and the servers reside in the same trusted
network. However, for secure remote access, encrypted communication is some-
times required.

If SSH tunneling is not an option, alternatively a Secure Socket Layer (SSL) connec-
tion can be used for the CORBA communication between CoreMedia applications.

The setup is slightly more complex than in the SSH case, because the certificate
handling has to be administered explicitly for Java's SSL implementation, and be-
cause the port mapping has to be specified in CoreMedia configuration files.

In the following example it is assumed that communication has to be encrypted
between a Site Manager on one side, and the Content Server and Workflow Server on
the other side.

In the example, the following ports numbers are used. You may want to use different
port numbers for your deployment.

Table 4.3. Example SSL
PortsSSL PortClear-Text PortServer

1444314300Content Server

1444514305Workflow Server

The servers open an SSL Port in addition to the clear-text port. This allows the same
server to be accessed using clear text communication from within a trusted network,
and using SSL from outside. When a client is configured to use SSL, not a single
byte will be sent to the clear text port, which may be blocked from outside access
by a firewall.

Note that the server's HTTP port will have to be accessible to clients, for example
to retrieve the IOR.

Enable SSL Encryption

Enabling SSL encryption for CORBA communication requires the following steps:

1. Create key stores for Content Server and Workflow Server.

2. Prepare the Content Server for SSL communication

30CoreMedia DXP 8

Basics of Operation | Encrypting CORBA Communication Using SSL

3. Prepare the Workflow Server for SSL communication

4. Prepare the Site Manager for SSL communication.

5. Restart all three applications

6. Verify SSL communication

Create key stores

Create key stores which will later be distributed to the servers and clients. Consult
your JDK documentation for further details about the keytool command.

1. Create self-signed server keys for Content Server and Workflow Server

keytool -genkey -alias contentserver -v -keyalg RSA \
-keystore contentserver.keystore

keytool -genkey -alias workflowserver -v -keyalg RSA \
-keystore workflowserver.keystore

2. Export the server's public keys from their key stores:

keytool -export -rfc -keystore contentserver.keystore \
-alias contentserver -file contentserver.public-key

keytool -export -rfc -keystore workflowserver.keystore \
-alias workflowserver -file workflowserver.public-key

Prepare the Content Server for SSL communication

1. Add the following system properties to the content server's
setenv.sh/setenv.bat files:

Table 4.4. Properties
for Content Server SSL
configuration

Property ValueProperty NameProperty Type

14300com.sun.CORBA.ORBServer-
Port

ORB

com.coremedia.corba.SSLClient-
ServerSocketFactory50

com.sun.CORBA.legacy.con-
nection.ORBSocketFactory-
Class

ORB

SSL:14443com.sun.CORBA.trans-
port.ORBListenSocket

ORB

<path to contentserver.keystore>com.core-
media.corba.SSLServer-
SocketFactory.keystore

System

31CoreMedia DXP 8

Basics of Operation | Encrypting CORBA Communication Using SSL

Property ValueProperty NameProperty Type

<mypassword>com.core-
media.corba.SSLServer-
SocketFactory.passphrase

System

2. Place the contentserver.keystore in the folder etc/keys/ of your install-
ation home directory of the CMS server. For another location adjust the key
store setting by defining the corresponding system property accordingly.

Prepare the Workflow Server for SSL communication

1. Add the following two system properties during the invocation of the server:

Table 4.5. Properties
for Workflow Server SSL
configuration

Property ValueProperty NameProperty Type

14305com.sun.CORBA.ORBServer-
Port

ORB

com.coremedia.corba.SSLClient-
ServerSocketFactory50

com.sun.CORBA.legacy.con-
nection.ORBSocketFactory-
Class

ORB

SSL:14445com.sun.CORBA.trans-
port.ORBListenSocket

ORB

<path to workflowserver.keystore>com.core-
media.corba.SSLServer-
SocketFactory.keystore

System

<mypassword>com.core-
media.corba.SSLServer-
SocketFactory.passphrase

System

2. Place the workflowserver.keystore in folder etc/keys/ of your installation
home directory of the Workflow Server. For another location adjust the key store
setting by defining the corresponding system property accordingly.

The following two steps are optional and are limited to rare cases, in which SSL
encrypted communication may also be required between workflow server and
content server.

3. In this case, you should add the content server's key to the workflow server's
key store, and configure the workflow server as an SSL client like the Site
Manager. Run the following command:

32CoreMedia DXP 8

Basics of Operation | Encrypting CORBA Communication Using SSL

keytool -import -alias contentserver -keystore \
workflowserver.keystore -file contentserver.public-key

4. In addition to the above, set the following system properties during invocation
of the Workflow Server:

Table 4.6. Properties
for Workflow to Con-
tent Server SSL configur-
ation

Property ValueProperty NameProperty Type

14300com.core-
media.corba.SSLClient-
SocketFactory.clearText-
Port

System

14443com.core-
media.corba.SSLClient-
SocketFactory.sslPort

System

<path to workflowserver.keystore>com.core-
media.corba.SSLClient-
SocketFactory.keystore

System

<mypassword>com.core-
media.corba.SSLClient-
SocketFactory.passphrase

System

Prepare the Site Manager for SSL communication

1. Import the servers' public keys to the Site Manager's key store:

keytool -import -alias contentserver \
-keystore editor.keystore -file contentserver.public-key

keytool -import -alias workflowserver \
-keystore editor.keystore \
-file workflowserver.public-key

2. Add the following lines to tomcat/webapps/editor-webstart/web
start/editor.jnlp, behind the property tag with name="java.secur-
ity.policy" inside the resources tag.

<property name=
"com.sun.CORBA.legacy.connection.ORBSocketFactoryClass"
value="com.coremedia.corba.SSLClientSocketFactory50"/>

<property
name="com.coremedia.corba.SSLClientSocketFactory.
clearTextPort"

value="14300,14305"/>
<property name=
"com.coremedia.corba.SSLClientSocketFactory.sslPort"
value="14443,14445"/>

33CoreMedia DXP 8

Basics of Operation | Encrypting CORBA Communication Using SSL

<property
name="com.coremedia.corba.SSLClientSocketFactory.keystore"
value="

$$codebaseproperties/corem/editor.keystore"/>
<property name=
"com.coremedia.corba.SSLClientSocketFactory.passphrase"
value="mypassword"/>

3. Place the editor.keystore in tomcat/webapps/editor-webstart/prop
erties/corem/ of your installation.

Though stated in the examples, it is not recommended to place the editor.key
store at any publicly accessible place. This is only intended for testing and de-
velopment. For productive use, an official key should be deployed with every
Unified API installation on the client machines. For the CoreMedia Site Manager
this key must be added to Web Start's key store. Another possible way would
be to download the key store via HTTPS using a certificate that is already present
on the workplace computers.

Preparing a client ORB for SSL communication

1. CoreMedia clients running as web applications, such as the Content Application
Engine, are usually configured to use the servlet container's ORB. CoreMedia
provides an integration of the Oracle ORB into Tomcat. You can configure this
ORB for SSL by setting the following system properties:

Table 4.7. Properties
for Client ORB SSL con-
figuration

Property ValueProperty NameProperty Type

com.coremedia.corba.SSLClientSock-
etFactory50

com.sun.CORBA.legacy.con-
nection.ORBSocketFactory-
Class

ORB

14300,14305com.core-
media.corba.SSLClient-

System

SocketFactory.clearText-
Port

14443,14445com.core-
media.corba.SSLClient-
SocketFactory.sslPort

System

<path to workflowserver.keystore>com.core-
media.corba.SSLClient-
SocketFactory.keystore

System

34CoreMedia DXP 8

Basics of Operation | Encrypting CORBA Communication Using SSL

Property ValueProperty NameProperty Type

<mypassword>com.core-
media.corba.SSLClient-
SocketFactory.passphrase

System

Prepare Unified API clients for SSL communication

1. In order to instruct stand-alone Unified API clients like the command line tools
to use SSL, the ORB properties must be set in the connection parameters for
the Unified API instead of as system properties.

2. If you are setting up the Unified API connection programmatically, consider using
the connect(Map) method of the class Cap.

Map parameters = new HashMap();
...
parameters.
put("com.sun.CORBA.legacy.connection.ORBSocketFactoryClass",
"com.coremedia.corba.SSLClientSocketFactory50");

connection = Cap.connect(parameters);

3. In any case, you may inject the parameter through the IOR URL passed to the
Unified API. For command line tools, you can pass the URL on the command
line:

cm systeminfo
-url http://<SSHCLIENT>:<CorbaPort>/coremedia/ior?
com.sun.CORBA.legacy.connection.ORBSocketFactoryClass=
com.coremedia.corba.SSLClientSocketFactory50
-u admin -p admin

➞ You can also set the extended URL in the file capclient.properties:

cap.client.server.ior.url=\
http://<SSHCLIENT>:<CorbaPort>/coremedia/ior?\
com.sun.CORBA.legacy.connection.ORBSocketFactoryClass=\
com.coremedia.corba.SSLClientSocketFactory50

➞ It is also possible to pass an extended URL when opening a connection pro-
grammatically.

Restart Workflow Server, Content Server, and clients.

Restart all servers by restarting the servlet container where they are deployed.

35CoreMedia DXP 8

Basics of Operation | Encrypting CORBA Communication Using SSL

Verify SSL communication

Verify SSL communication by searching the applications' logs for error messages,
and by using netstat or lsof. Under Solaris, using the port numbers in this example,
you could use the command:

netstat -e -a -p|grep ":14[34]"

It should show that before starting the Site Manager, the server is listening on port
14443/14445 (which are the SSL ports) and 14300/14305 (the clear text ports).
After the Site Manager is started and a user has logged in, a connection should be
established on port 14443/14445 (and not 14300/14305) towards the client's
machine. Note that other applications might continue to connect to the clear text
ports.

4.2.4 Encrypting CORBA with SSL and bind to a Single
Network Interface
It is also possible to bind to a single network interface and to encrypt the CORBA
communication with SSL.

Limiting the access of the HTTP connection to a single IP and encrypting it can be
achieved by combining the settings described in the previous sections.

For limiting the encrypted CORBA connection to a single network interface you
should first configure your system for the SSL encryption as shown in the last
section, ensure that everything works and then set the following system properties
for the Content Server and the Workflow Server:

-Dcom.sun.CORBA.legacy.connection.ORBSocketFactoryClass=
com.coremedia.corba.SingleIpSSLClientServerSocketFactory50

-Dcom.coremedia.corba.SingleIpSSLServerSocketFactory.ip=<IpAddress>

Replace <IpAddress> by the IP address of the network interface to bind, for ex-
ample 10.1.3.253.

4.2.5 Preparing Tomcat for HTTPS Connection
HTTPS is a variant of HTTP which enables encrypted data transmission between
server and client. It is therefore recommended, that you create the servlet container
client (WebDAV, CAE) connection via HTTPS. This chapter describes how you create
a key and how you configure Tomcat to use this key. If you want a more detailed
description, please visit the Tomcat documentation at http://tomcat.apache.org.

36CoreMedia DXP 8

Basics of Operation | Encrypting CORBA with SSL and bind to a Single Network Interface

http://tomcat.apache.org

Creating a Key

In order to connect client and servlet container via HTTPS you have to generate a
key for the servlet container. This key is sent from servlet container to client with
each query of the client to the server. The client decides whether the sender of the
key is trustworthy with every single request.

Creation of the key

The tool for creating the key is supplied with the JDK. You create the key with the
following entries:

1. Enter the following command:

<java-home>/bin/keytool -genkey -alias tomcat
-keystore /example/coremedia/.keystore -keyalg rsa

In this way you call the program keytool in the directory <java-
home>/bin. You initiate creation of the key (-genkey) with the alias name
(-alias tomcat). A key is created according to the RSA algorithm. The
key is saved in the keystore file /example/coremedia/.keystore (here
you can enter your own path/name). If you already have a key store file, you
must enter the location of this file.

2. At the next input request, enter a password. If you want to save the key in an
already existing key store, you must enter the password of this file.

3. At the next input request, enter the name of the server (the entry given below
is an example).

What are your first and last name?

[Unknown]: webserver.coremedia.com

4. Confirm the following input requests with <Return>, until you are asked to
confirm the correctness of the previous entries.

5. Enter "y" and <Return> to confirm the previous entries. You can cancel by en-
tering <Return>.

After a short pause, you are asked for the "key password for < Tomcat>".

6. Enter the password you have defined in step 2 for your newly created key with
the alias "tomcat".

Now, you have finished key creation.

37CoreMedia DXP 8

Basics of Operation | Preparing Tomcat for HTTPS Connection

Configuring Tomcat

In addition to the creation of a key for HTTPS communication some entries must
be made in certain configuration files. <ServletContainerHome> stands here
for the home directory of the servlet container. The Tomcat servlet container that
is part of the CoreMedia Project deployment workspace already contains the following
entries. If you use the deployment workspace, you can simply configure the required
settings in the catalina.properties file in the tomcat-template module.

Entry in <TomcatHome>/conf/server.xml

In the file <ServletContainerHome>/conf/server.xml you must insert the
following section after the already existing <Connector> elements:

Example 4.1. Code to
insert into server.xml<!-- Secure HTTP -->

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" enableLookups="false"
disableUploadTimeout="true" acceptCount="100" scheme="https"
secure="true" clientAuth="false" sslProtocol="TLS"
keystoreFile="/example/coremedia/.keystore"
keystorePass="changeit"/>

Adjust the entries port (port number with which the browser communicates),
keystoreFile and keystorePass to your own settings. The key required for
HTTPS communication is stored in the key store file generated in Section “Creating
a Key” [37]. The path to the key store given there must match the path you entered
in server.xml.

4.2.6 Troubleshooting
You use Oracle's ORB implementation. Applications do not respond on request. The
CPU load of the applications is high, the thread dump shows threads which use nio
classes.

Possible cause:

Problems with the CORBA ORB.

Possible Solution:

Add the following ORB property as a system property for the affected applications:

-Dcom.sun.CORBA.transport.ORBUseNIOSelectToWait=false

38CoreMedia DXP 8

Basics of Operation | Troubleshooting

4.3 Starting the Applications
In CoreMedia there are two distinct types of applications: web applications and
command-line tools.

Examples for web applications:

➞ the Content Servers

➞ Workflow Server

➞ CAE Feeder

Examples for command-line tools:

➞ runlevel

➞ serverimport

➞ schemaaccess

General preconditions for starting CoreMedia CMS applications:

➞ An approved browser must be installed in order to use CoreMedia Studio.

➞ For operation of CoreMedia CMS command line tools on Unix systems, the
ksh shell must be installed in /bin. It is used for starting the CoreMedia
applications on execution of the cm command (see next section).

➞ In general, it must be ensured that all computers in use are mutually visible
over DNS.

➞ The image converter service of the server needs the program convert from
ImageMagick. On a Linux and Solaris system, you have to use the convert
of your distribution. If there is no convert installed, or if you are using
Windows you can download the respective program at http://www.imagema-
gick.org. You have to enter the path to the installed convert in the property
convertCommand in the fileproperties/corem/imageconverter.prop
erties. You can find a description of the other image converter properties
in the description of the AggregatingImageBlobEditor in the Site Man-
ager Developer Manual.

4.3.1 Starting CoreMedia Web Applications
The CoreMedia web applications are deployed as web applications in a supported
servlet container. These applications are started together with the servlet container.
Therefore, refer to the servlet container's documentation for how to set JVM options
and system properties.

39CoreMedia DXP 8

Basics of Operation | Starting the Applications

http://www.imagemagick.org
http://www.imagemagick.org

4.3.2 Starting CoreMedia Command-Line Tools
Depending on their function the command-line tools are split into several director-
ies, for example the tools that work with the Content Management Server are com-
bined in a directory called cms-tools. The command-line tools are started by
calling the cm command. On entering the command bin/cmwithout further details,
an overview of the commands available in the respective directory is given.

Under Windows the command-line tools can be started with a JVM 64-bit using
the cm64.exe application launcher which is also located in the bin directory.

Note that the cm command always changes the working directory to COREM_HOME,
which is the base directory of the tools (in the example: cms-tools/). Thus, if a
relative path is given as a parameter (with the -script parameter in cm sql, for
instance) it must be relative to COREM_HOME.

The cm command can use the -nolog option. This option overwrites the OUT-
PUT_REDIRECT parameter setting of the cm.jpif file with the empty value. Thus,
all log output is written to standard out.

You will find a description of all server utilities in the [Content Server Manual] and
[Workflow Server Manual]. Other tools which can be started with cm can be found
all over the manual.

Note: <cm>-xmlimport is a freely configurable XML importer, in which the prefix
<cm> can be exchanged for any other desired prefix (see the [Importer Manual]).

Example 4.2. Output of
cm in the cms-tools
directory

$ cm
Usage: bin/cm application parameter*
where application is one of: approve bulkpublish cancelpublication
changepassword checklicense cleanrecyclebin cleanversions dbindex
destroy destroyversions dump dumpusers encryptpasswordproperty
encryptpasswords events groovysh ior jconsole jmxdump
killsession license migrateplacements module multisiteconverter
post-config pre-config probedog processorusage publications
publishall publish queryapprove query querypublish recordstate
repositorystatistics republish restorestate restoreusers rules
runlevel schemaaccess search serverexport serverimport sessions
sql systeminfo tracesession unlockcontentserver usedlicenses
validate-multisite version

Configuration of the Start Routine with JPIF Files

Each command-line tool has its own start file with the ending ".jpif", which is ex-
ecuted on startup. The name of this file corresponds to the name used for starting
the application with the cm/ command (for example cm runlevel uses run
level.jpif). You'll find these files in the <COREM_HOME>/bin directory.

40CoreMedia DXP 8

Basics of Operation | Starting CoreMedia Command-Line Tools

The JPIF files for applications determine which Java class should be executed on
starting the application. Further settings for the operation of the application can
also be stored in this file. This file can be used to modify the Java Virtual Machine
(JVM) where the application runs, while parameters can be passed to the JVM.

The following CoreMedia relevant modifications can be configured for the Java
Virtual Machine in the JAVA_VM_ARGS section of the JPIF file:

The memory usage within the Java Virtual Machine can be configured using the
parameters -Xms<size> and -Xmx<size>. -Xms specifies the initial object
memory size and -Xmx the maximum object memory size. The memory requirement
for the applications is preconfigured and depends on the main memory size accord-
ing to the standard hardware recommendations, but can be increased using this
parameter if necessary.

The ORB can be configured to use a fixed CORBA port using the parameter
com.sun.CORBA.ORBServerPort as described in Section 4.2, “Communication
between the System Applications” [24].

Furthermore, the target of the log outputs of the Java process (see Section 4.7,
“Logging” [50]) can be configured with the parameter OUTPUT_REDIRECT.

Three JPIF files cannot be invoked directly with the cm command. They are executed
internally:

➞ pre-config.jpif for installation depending settings. In this file, the
parameter VERBOSE can be set to false to reduce JVM outputs. On a Unix
system, the JVM to use is set in this file.

➞ module.jpif for general environment settings for the Java programs in
the CoreMedia system.

➞ post-config.jpif for special CoreMedia JVM settings.

In general, these files need not be changed.

Which JVM will be used?

For command-line tools the information about the JVM to use is read from the
property JAVA_HOME in the pre-config.jpif file or from the environment
variable.

If JAVA_HOME is not set, a JVM installed in the COREM_HOME directory will be used
as the active JVM. The installation directory of the JVM has to be located directly
below these directories. For example, <COREM_HOME>/jre.

41CoreMedia DXP 8

Basics of Operation | Starting CoreMedia Command-Line Tools

4.4 Configuration of CoreMedia Applications
CoreMedia applications are configured with Java properties files with the ending
.properties. The encoding is ISO-8859-1. Each line stores a single property
with the format key=value. The hash sign (#) is used for labeling comments, and
the backslash (\) is used as escape character.

Each application of the CoreMedia system has one or more relevant property files
where the operation of the application can be configured.

The locations of properties files for CoreMedia applications are (depending on the
particular application):

Web applications:

➞ WEB-INF

➞ WEB-INF/properties/corem

➞ WEB-INF/config

Command-line tools:

➞ properties/corem

➞ config

The manuals of the applications contain descriptions of how to use the relevant
property file(s) to configure each CM application.

Most web applications also offer the possibility to configure properties via JNDI,
so that you can leave the WAR files untouched and for example define properties
in the context.xml of the Tomcat installation. For details see the CoreMedia Di-
gital Experience Platform 8 Developer Manual.

Besides directly editing the property files configuration might also be done at
Runtime via JMX. For details about what can be configured please consult the
manuals of the applications. For more general details about JMX see Section 4.9,
“JMX Management” [71].

Windows Paths in Java Properties Files

When you configure a Windows paths in a property file, you have to escape a
backslash with a second backslash in the path. This applies especially to paths

42CoreMedia DXP 8

Basics of Operation | Configuration of CoreMedia Applications

livecontext-en.pdf#CoreMediaManual
livecontext-en.pdf#CoreMediaManual

for an importer inbox path. For more details about writing property values, see
the Javadoc for the load() method in the java.util.Properties Java class.

43CoreMedia DXP 8

Basics of Operation | Configuration of CoreMedia Applications

4.5 Collaborative Components
CoreMedia offers tools for collaboration between editors in Studio. Collaboration
means sharing content, collaborating by publishing and translating content, assign-
ing tasks to users, and notifying editors about recent actions with their content.

4.5.1 Overview
The following components provide collaborative features in CoreMedia Studio:

➞ Studio Control Room Plugin

➞ Notifications Studio Plugin

➞ User Changes Web Application

➞ Extensions of the Workflow Server

4.5.2 Deployment
The default deployment of CoreMedia's collaborative components is with a Mongo
DB database. When deployed with a MongoDB database, configure the collaborative
components to connect to your MongoDB instance using the configuration prop-
erties given below.

Table 4.8. Properties
for persistence of collab-
oration data to Mon-
goDB

DescriptionExampleProperty

The URL of the MongoDB to connect
to. Replace <Host> and <Port>
with the appropriate values of the

mon
godb://<Host>:<Port>/

mongoDb.clientURI

MongoDB installation. Add this
property to theWEB-INF/applic
ation.properties file of Stu-
dio, User Changes and Workflow
Server applications, and let it point
to your MongoDB.

When the collaborative components
persist collaboration data to a Mon-

<prefix>mongoDb.prefix

goDB database, the default name of
its database is prefixed by blue
print. To configure a different
database name prefix, add this
property to WEB-INF/applica
tion.properties files of Stu-
dio, User Changes and Workflow
Server web applications.

44CoreMedia DXP 8

Basics of Operation | Collaborative Components

4.5.3 Recovery of Collaborative Components Database
In this chapter you will get to know how to backup and recover the database, de-
ployed with CoreMedia's collaborative components.

Backup Strategy

You need to have database backups to recover from database failures. The backups
are created with database tools. The exact backup procedure depends on your
database product and likely on the configuration of your database. The chronolo-
gical order of the backups is crucial:

1. Backup the CoreMedia collborative components database.

2. Backup the Content Management Server's database.

Note, that recovery will work correctly, if this given chronological order of
backups is respected. The content of the Content Management Server must be
newer than the content of the collaborative components database. The time
between the single backups should be short.

See CoreMedia Content Server Manual for information how to backup the Content
Server's database.

You can find an overview about backup of Mongo DB and possible backup strategies
here.

Recovery of the Collaborative Components Database

In order to recover the database of the collaborative components, proceed as fol-
lows:

1. Stop CoreMedia Studio, Workflow Server and User Changes web application.

2. Stop the Content Management Server. The sessions of the connected clients will
be closed and no more content changes are possible.

3. Restore the Content Management Server with a backup. Note, that this backup
must be newer than the backup of the collaborative components database.

4. Restart the Content Management Server.

5. Recover the database of CoreMedia's collaborative components.

6. Restart CoreMedia Studio, Workflow Server and User Changes web application.

45CoreMedia DXP 8

Basics of Operation | Recovery of Collaborative Components Database

contentserver-en.pdf#ContentServerManual
http://docs.mongodb.org/manual/administration/backup/

4.6 CoreMedia Licenses
CoreMedia CMS uses file based licenses. Only server applications (Content Manage-
ment Server and Live Servers) have a license file on their own. All other applications
are licensed by the license file of the server they connect to. The license file will
be read in from the directory defined in the property cap.server.license in
the contentserver.properties file and will be validated each time the licensed
application starts. If the license is valid, the application will start properly. Core-
Media distinguishes between two kinds of licenses:

➞ Time-based license

Limits the use of an application to a specific period.

➞ IP-based license

Limits the use of an application to a specific computer, defined by its IP ad-
dress and/or host name.

Both license types can define a valid CoreMedia CMS release using the release
attribute. If you use time-based licenses, the application will not start if the license
has expired. In addition, the license file defines a grace period. You receive a noti-
fication, after exceeding the grace period. You will see this warning each time you
start the Site Manager and in the log files of the application.

Both license types may limit the number of clients which can connect to the applic-
ation simultaneously. This is achieved, using the following concepts:

➞ Named user

A named user is a specific CoreMedia CMS user, known by the system. Each
service connects as a user to the server. The attribute named-users defines
the maximum number of users which are allowed to use a specific service.

➞ Concurrent user

Concurrent users are users which are connected simultaneously to the
server. The attribute concurrent-users defines the maximum number of
named users which are allowed to connect simultaneously.

➞ Multiplicity

A named user may connect several times to the server (start two site man-
agers, for example). The attribute multiplicity defines the maximum
number of allowed connections for a named user.

Use the utility sessions (see Section “Sessions” in CoreMedia Content Server
Manual) to get this information and the utility usedlicenses (see Section
“Usedlicenses” in CoreMedia Content Server Manual) to free used licenses. If the
built-in user admin (user ID 0) has no open sessions, that user may log in to the

46CoreMedia DXP 8

Basics of Operation | CoreMedia Licenses

contentserver-en.pdf#Session
contentserver-en.pdf#CMUsedlicenses
contentserver-en.pdf#CMUsedlicenses

Content Server even if the licenses are otherwise exhausted. This makes it possible
to start the utilities for recovering from a license shortage in any case.

A server license can be exchanged at runtime without restarting the server. The
property cap.server.license in the file contentserver.properties defines
the location of the license file relative to the WEB-INF directory of the server web
application. When the file or location changes, the server will automatically reload
the license. Reloading the license will not cause any open sessions to be closed,
even if the new license is more restrictive than the old one.

Example:

Example 4.3. A sample
license file<LicenseConfiguration>

<Server type="production"/>
<Property name="licensed-to" value="Customer"/>
<Property name="workflow" value="enabled"/>
<Property name="elastic-social" value="enabled"/>
<Property name="personalization" value="enabled"/>
<Property name="analytics" value="enabled"/>
<Property name="livecontext" value="enabled"/>
<Property name="brand-blueprint" value="enabled"/>
<Property name="asset-management" value="enabled"/>
<Property name="id" value="10394"/>
<Valid from="01.01.2015" until="01.12.2015" grace="01.11.2015"/>
<License service="editor" concurrent-users="30000"
named-users="200"/>
<License service="system" concurrent-users="5"
named-users="25"/>
<License service="webserver" concurrent-users="15"
named-users="50"/>
<License service="workflow" concurrent-users="600"
named-users="200"/>
<License service="importer" concurrent-users="2"
named-users="25"/>
<License service="publisher" concurrent-users="33"
named-users="200"/>
<License service="debug" concurrent-users="100"
named-users="100"/>
<License service="filesystem" concurrent-users="5"
named-users="50"/>
<License service="replicator" concurrent-users="5"
named-users="10"/>
<License service="feeder" concurrent-users="2"
named-users="10"/>
<License service="analytics" concurrent-users="2"
named-users="10"/>
<License service="dashboard" concurrent-users="30"
named-users="50"/>

</LicenseConfiguration>

The attributes of the License file elements have the following meaning:

47CoreMedia DXP 8

Basics of Operation | CoreMedia Licenses

Table 4.9. Elements of
a license file

DescriptionAttributeElement

The type of the server for which the license is valid.
Possible values are:

typeServer

➞ production: The Content Management Server

➞ publication: The Master Live Server

➞ live: The Replication Live Server

The aim of the property. Possible values are:nameProperty

➞ licensed-to: The customer to which the system
is licensed.

➞ workflow: Defines if the programmable workflow
is licensed ("enabled").

➞ analytics: Defines if Analytics is licensed ("en-
abled").

➞ elastic-social: Defines if Elastic Social is licensed
("enabled").

➞ personalization: Defines if Adaptive Personaliza-
tion is licensed ("enabled").

➞ elastic-social: Defines if Elastic Social is licensed
("enabled").

➞ id: The unique ID of the license.

The value of the property. The possible values depend
on the name attribute.

value

The starting date of the validity of the license.fromValid

The end date of the validity of the license.until

The starting point of the grace period.grace

The CoreMedia release for which the license is valid.release

The host name for which the license is valid.host

The IP address for which the license is valid.ip

The name of a service which might connect to the
server.

serviceLicense

The maximum number of simultaneously allowed ses-
sions of this service.

concurrent-
users

The maximum number of users which are allowed to
be allocated to the service.

named-users

48CoreMedia DXP 8

Basics of Operation | CoreMedia Licenses

DescriptionAttributeElement

The maximum number of sessions a user is allowed to
open.

multiplicity

49CoreMedia DXP 8

Basics of Operation | CoreMedia Licenses

4.7 Logging
An important element in the monitoring of CoreMedia CMS applications is logging.
Without recording relevant information of the system it is often impossible to find
out when an irregularity occurred.

Logback

CoreMedia DXP 8 uses Logback for logging. You can use all features of Logback
when configuring the log configuration of CoreMedia applications. See Logback
documentation for details http://logback.qos.ch/documentation.html. One exception
is the Apache Solr web application, which uses Apache Log4J.

4.7.1 Logging Configuration for Web Applications
CoreMedia web applications use a common logging component which is based on
Logback. The log configuration for each web application is located in WEB-
INF/logback.xml. If no configuration file is provided, a fallback configuration
is used.

The default log directory is set to ./logs. It can be changed by providing the
property coremedia.logging.directory either in WEB-INF/applica
tion.properties, as a system property, or as a JNDI property
java:comp/env/coremedia/logging/directory.

It is also possible to access the log configuration via JMX using com.core
media:Type=Logging,application=<applicationname>.

The logging configuration contains reasonable defaults which you can override if
required. You can define the properties log.pattern and log.file in your
project logback.xml file. For example to enable tenant logging for Elastic Social
in your log pattern it can be defined like this:

<property name="log.pattern" value="%d{yyyy-MM-dd HH:mm:ss}
%-7([%level]) %logger - [%X{tenant}] %message \\(%thread\\)%n" />

For more information about the logging component, see the Section “The Logging
Component” in CoreMedia Digital Experience Platform 8 Developer Manual for details.

4.7.2 Logging Configuration for Apache Solr
The Apache Solr web application uses Apache Log4J as log framework, which is
configured in the file log4j.properties.

Note that you can use the Solr admin page to view log messages and change the
log level at runtime. Alternatively you could configure Apache Solr to use Logback
as well, but then you cannot use the logging functionality of the Solr admin page.

50CoreMedia DXP 8

Basics of Operation | Logging

http://logback.qos.ch/documentation.html
livecontext-en.pdf#logging-component
livecontext-en.pdf#logging-component

See https://cwiki.apache.org/confluence/display/solr/Configuring+Logging for
details on Solr log configuration.

4.7.3 Logging Configuration for Command-Line Tools
The logging configuration for each command-line tool is taken from the tools-
logback.xml file in properties/corem directory by default. You can use a
customized configuration file and add the file name to the system properties when
initializing the application with:

-Dlogback.configurationFile=file://localhost/<PathtoYourFile>/<yourFileName>.xml

You will find the default logging facilities of CoreMedia applications in the default
logging configuration.

stdout/stderr Output

Enter the location for the stdout/stderr output of an application and any other
third-party program in the corresponding JPIF start file of the application. To do
so, configure the parameter OUTPUT_REDIRECT in the corresponding JPIF file of
the application as it is described in this file.

51CoreMedia DXP 8

Basics of Operation | Logging Configuration for Command-Line Tools

https://cwiki.apache.org/confluence/display/solr/Configuring+Logging

4.8 CM Watchdog/Probedog
The following actions can be executed with the watchdog:

➞ Applications of the CoreMedia system can be monitored for functioning.

➞ Applications can be locally stopped and/or restarted.

➞ Depending on the state of the system, further actions can be triggered.

The watchdog is delivered in two flavors:

➞ watchdog

The watchdog is an independent monitoring process which is used to test
regularly whether applications are functioning and, in case of error, to restart
them. The watchdog will be installed as a web application.

➞ probedog

The probedog is a process for one-time checking of the status of an applica-
tion. This variant is used with integration of the CoreMedia system in a high-
availability cluster. The probedog can be used as a diagnostic tool for the
momentary status during operation. The probedog delivers a return code
which can be evaluated by a shell script. It is deployed as part of the stan-
dalone server applications respectively the server tools.

The watchdog's main configuration file is the watchdog.xml, where the applications
and actions are defined. To configure the path of this file and which of the defined
applications should be watched, the following two properties can be used:

the file where the applications are defined
watchdog.config=properties/corem/watchdog.xml

a space separated list of applications that should be watched by
this watchdog
watchdog.components=WatchContentServer

➞ watchdog.config: Configure the location of watchdog.xml (default is
properties/corem/watchdog.xml)

➞ watchdog.components: A space separated list of applications that should
be watched.

The following table shows the actions you can use to monitor a specific application.
In addition, you can use the <Script> and <Custom> actions to define your own
monitoring. See Section “Action Elements” [54] for a detailed description of the
actions.

52CoreMedia DXP 8

Basics of Operation | CM Watchdog/Probedog

Table 4.10. Action to
be used to check a cer-
tain application

ActionApplication

Content Server ➞ <ServerQuery>: Checks the overall
status

➞ <ServiceStatus>: Checks the
status of a specific service

➞ <ServerMode>: Checks the runlevel

Workflow Server ➞ <WorkflowServerQuery>: Checks
the overall status of a Workflow Server

➞ <ProcessStatus>: Checks if a
specified number of processes is run-
ning

Database ➞ <DB>: Checks the status of the data-
base

CAE ➞ <Http>: Checks if the response code
is "200" and if the response matches a
given regular expression

4.8.1 Starting the Watchdog/Probedog

Watchdog

The watchdog is always started with the servlet container.

Probedog

The Probedog can be started with: cm probedog <component>

4.8.2 Watching Databases
If you want to check a database directly over JDBC you need to know the connection
data of the database.

For a stand-alone application, you have to install the watchdog together with the
Content Server, so that the watchdog can use the sql.properties file of the
Content Server.

A web application deployment of the watchdog has its own sql.properties file.
By default, the settings match the database of the Content Managment Server.

53CoreMedia DXP 8

Basics of Operation | Starting the Watchdog/Probedog

4.8.3 Configuration in watchdog.xml
An administrator configures the watchdog in the watchdog.xml file. The watchdog
executes actions to check the watched applications and executes further actions
depending on the check results. The watched applications, the actions and the
mapping from actions to actions are described by XML elements. The mapping
from actions to actions is defined by <Edge/> tags.

The general XML file structure is as follows:

<Watchdog>
<Component>
<AnActionElement/>
<Edge/>

</Component>
<Component>
<AnActionElement/>
<Edge/>

</Component>
</Watchdog>

<AnActionElement> is a placeholder for one of several possible action elements.
<Component>, <AnActionElement/> and <Edge/> can occur multiple times.

In the configuration file, applications are linked with actions. In Section “Example
Configuration of a Watchdog” [65] you will find a description of a watchdog file.

Component Element

For each watched application you need a <Component> element in the watch
dog.xml file. The element has the following attributes:

Table 4.11. Attributes
of the Component ele-
ment

DescriptionOptionalAttribute

A unique name.name

The name of the action which should be executed first when
the watchdog is started. If this is a simple status test (probe),
it's the only action which is executed.

startAc
tion

The attribute specifies the delay in seconds until the action
defined in the startAction attribute is executed.

xdelay

Action Elements

An action definition is defined by the tag <ActionType>. For <ActionType>,
the name of the desired action is entered. A list of all possible actions is given in
the table below. The action is configured with a series of attributes, as follows:

54CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

Actions that need to log into the Content Server, such as the ServerMode or
ProcessStatus action, can use the predefined user "watchdog" with the default
password "watchdog" for this purpose.

General attributes

Table 4.12. General at-
tributes of the Action
element

DescriptionOptionalAttribute

The name of the action. It must be unique within the configura-
tion file.

name

Interval (in seconds) at which the number of action calls is
checked. Checking is switched off with "0" (Default).

xinterval

Maximum permissible number of calls of the action within "in-
terval". If the maximum number is exceeded, the action is not

xevents

executed and the error message "respawning_too_fast" is de-
livered. "events" is only used if "interval" <> "0".

Time (in seconds) to wait until a pending action is canceled with
the error message "11". The default value is 60 seconds.

xtimeout

In addition, specific attributes can be assigned to the actions. These can be found
in the following description of the actions.

Possible actions

Table 4.13. Custom
Action

Custom

This action invokes a custom watchdog action (see the Javadoc
of CustomAction for details). You have to add two nested

Description

tags - Custom and Action - into the watchdog.xml file to call
the action.

Example:

<Custom name="my first action" timeout="10">
<Action class="com.customer.MyWatchDogAction"
myprop="ok">
<MySub class="com.customer.MySub" foo="bar"/>
<MySub class="com.customer.MySub" foo="baz"/>
</Action>
</Custom>

In this example, classcom.customer.MyWatchDogAction
would need to implement CustomAction, would need a no-
args constructor, a setter formyprop and a methodaddMySub
accepting aMySub object. The Classcom.customer.MySub
would need a no-args constructor and a setter for foo. This al-

55CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

 Custom

lows for elaborate configuration. Please read the chapter "The
BeanParser" of the Workflow Manual for details.

Make sure that your custom action will not accumulate resources
(Database, JMS connections etc.), otherwise the watchdog would
itself need to be watched. In all nontrivial cases, starting an ex-
ternal script is strongly preferred.

The nested tags of the Action tag depend on the setters defined
in your custom action class, here com.customer.MyWatch
dogAction.

The Custom tag supports the general attributes for actions. All
sub tags of Custom need the class attribute. All other attributes
of the Action tag and its sub tags depend on the custom action.

Attributes

The error codes returned from the execute() method of the
custom action class.

Error Codes

Table 4.14. Action DBDB

This action checks a CoreMedia database over the JDBC API.Description

driver

JDBC driver to use

Attribute

url

URL where to connect to the database

user

Name of the database user

password

Password of the database user

propertyFile

The CoreMedia database configuration file (sql.properties)
where the settings (driver, URL, password, user) are configured.
The path must be relative to $COREM_HOME/properties.
See Chapter 1, Introduction in CoreMedia Content Server Manual
for details of the syntax of the configuration file.

You have to specify either driver, URL, user and password or
the propertyFile attribute.

sql

56CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

contentserver-en.pdf#Overview

 DB

The database statement that is used to check the database. De-
fault is SELECT * FROM Resources WHERE id_ = 1.

0 (ok)

10 (unexpected_error)

Error codes

11 (timeout)

12 (error)

13 (respawning_too_fast)

21 (io_error)

61 (no_ jdbc_driver)

62 (no_connection)

63 (sql_exception)

Table 4.15. Action HT-
TP

Http

This action requests a URL and checks whether the response
code is "200". If so configured, it also checks whether the re-
sponse matches a given regular expression.

Description

url

Requested URL

Attribute

user

User name to use for HTTP basic authentication, if given together
with the password attribute

password

Password to use for HTTP basic authentication, if given together
with the user attribute

pattern

Regular expression according to java.util.regex.Pat
tern to be used for verifying the response

encoding

Character encoding for parsing the response, if the pattern at-
tribute is given

maxSize

57CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

 Http

Maximum permitted size of the response in characters (default
65536), if the pattern attribute is given

0 (ok)

10 (unexpected_error)

Error codes

11 (timeout)

12 (error)

13 (respawning_too_fast)

21 (io_error)

Table 4.16. JMX ActionJMX

The JMX action retrieves an attribute from any application via
JMX and converts the attribute's value into a watchdog code.

Description

This attribute conversion is done by one or more configured
com.coremedia.watchdog.impl.CodeConverter
instances. Each configured converter might either return a
watchdog code or a special "not responsible" code. The JMX ac-
tion iterates over each converter until a watchdog code is re-
turned. In case that all converter return a "not responsible" code,
a configured default code is used.

By default, a converter com.coremedia.watchdog.im
pl.NumberRangeConverter is provided which expects
the JMX attribute to be a number (such as int or long) and which
returns a configured watchdog code if the number is included
in a configured range of numbers.

You might also implement a custom converter by extending
com.coremedia.watchdog.impl.CodeConverter.
See the Javadoc for more details.

serviceUrl

A URL to connect to a JMX server

Attribute

objectName

The qualified name of the MBean.

attributeName

The name of the MBean's attribute

58CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

 JMX

defaultCode

The watchdog code to use if none of the converters is responsible

username

The user name for the JMX connection (optional).

password

The password for the JMX connection (optional).

Nested elements

Each converter needs to be specified as a <Converter> and has
to provide its implementation class by "class" attribute. If the
converter implementation provides additional configurable at-
tributes ("setter methods"), these attributes might be specified
as well.

The error codes depend on the configured converters or the
default code is returned.

Error codes

Example

<Jmx name="myJmxAction"
serviceUrl="service:jmx:jmxmp://localhost:5555/"

objectName="com.coremedia:type=ProactiveEngine,application=caefeeder"

attributeName="HeartBeat"
defaultCode="ok">

<Converter
class="com.coremedia.watchdog.impl.NumberRangeConverter"

min="10" max="29999" code="ok"/>
<Converter

class="com.coremedia.watchdog.impl.NumberRangeConverter"
min="30000" code="error"/>

</Jmx>

The JMX action "myJmxAction" retrieves the attribute HeartBeat of the MBean
com.coremedia:type=ProactiveEngine,application=caefeeder. If the
attribute value is between 10 and 29999 then a watchdog code "ok" is returned.
A value greater or equal "30000" results in a code "error". The default code "ok" is
used if no converter applies, if the value is lower than 10, for instance.

Table 4.17. Pro-
cessStatus

ProcessStatus

This action checks whether a specified number of instances of
a process definition with a given name runs in the Workflow

Description

59CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

 ProcessStatus

Server. It is also checked that these instances do not contain es-
calated tasks.

url

URL where to get the IOR of the Workflow Server

Attribute

user

CoreMedia user name to log on to the server

domain

Domain of the user

password

CoreMedia user password to log on to the server

processName

The name of the process definition. The predefined workflows
have the following process names: GlobalSearchAndReplace,
SimplePublication, ThreeStepPublication, TwoStepApproval,
TwoStepPublication.

minCount

The minimum number of instances to expect, typically 1

maxCount

The maximum number of instances to expect

0 (ok)

10 (unexpected_error)

Error Codes

11 (timeout)

12 (error)

13 (respawning_too_fast)

21 (io_error)

32 (invalid_login)

91 (escalated)

92 (too_few_instances)

93 (too_many_instances)

60CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

Table 4.18. Action
ServerMode

ServerMode

This action checks the runlevel of the CoreMedia server. This
ensures that the server has reached the specified runlevel and
that certain clients can connect to the server.

Description

url

URL where to get the IOR of the server

Attribute

user

CoreMedia user name to log on to the server.

domain

Domain of the user.

password

CoreMedia user password to log on to the server

mode

The expected server runlevel. Valid values are "maintenance",
"administration" and "online".

0 (ok)

10 (unexpected_error)

Error codes

11 (timeout)

12 (error)

13 (respawning_too_fast)

21 (io_error)

31 (no_licenses)

32 (invalid_login)

33 (corba_error)

71 (insufficient_mode)

Table 4.19. Server
Query

ServerQuery

This action executes a database query on the CoreMedia server
over the CORBA API. In this way, all integral components of the
server from ORB to the database connection are checked.

Description

61CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

 ServerQuery

urlAttribute

URL where to get the IOR of the server

user

CoreMedia user name to log on to the server

domain

Domain of the user.

password

CoreMedia user password to log on to the server

0 (ok)

11 (timeout)

Error Codes

12 (error)

13 (respanwing_too_fast)

21 (io_error)

31 (no_licenses)

32 (invalid_login)

33 (corba_error)

41 (repository_error)

51 (query_malformed)

52 (query_failed)

Table 4.20. Action Ser-
viceStatus

ServiceStatus

This action checks a certain service offered by the CoreMedia
server, for example the replicator of a Replication Live Server.

Description

url

URL where to get the IOR of the server

Attribute

user

CoreMedia user name to log on to the server

domain

62CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

 ServiceStatus

Domain of the user.

password

CoreMedia user password to log on to the server

service

Name of the checked service. Possible values are:

➞ replicator

➞ adminlogin

➞ userlogin

0 (ok)

10 (unexpected_error)

Error codes

11 (timeout)

12 (error)

13 (respawning_too_fast)

21 (io_error)

31 (no_licenses)

32 (invalid_login)

33 (corba_error)

81 (service_stopped)

82 (service_failed)

83 (service_disabled)

Table 4.21. Action
Script

Script

This action executes a shell command and checks whether the
programs' return code is "0". If the command returns with a
different value, an error is assumed.

Description

Under the Windows operating system you cannot use non-ex-
ecutable commands like dir, copy or echo directly. They will
result in ajava.io.IOException. The reason is that these
commands are part of the Windows command interpreter and

63CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

 Script

not a separate executable. To run these commands use the
Windows command interpreter by calling cmd.exe, for example:
cmd.exe /C echo test.

command

Name of the executable command

Attribute

0 (ok)Error codes

Table 4.22. Work-
flowServerQuery

WorkflowServerQuery

This action executes a database query on the CoreMedia work-
flow server over the CORBA API. In this way, all integral compon-

Description

ents of the server from ORB to the database connection are
checked.

url

URL where to get the IOR of the server

Attribute

user

CoreMedia user name to log on to the server

domain

Domain of the user.

password

CoreMedia user password to log on to the server

0 (ok)

10 (unexpected_error)

Error Codes

11 (timeout)

12 (error)

13 (respanwing_too_fast)

21 (io_error)

32 (invalid_login)

41 (repository_error)

52 (query_failed)

64CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

Edge Element

An edge connects two actions within a component, depending on the result code
of the first action. The edges and actions form a graph. The watchdog process walks
through the actions and edges in the graph. Edges are defined with <Edge> ele-
ments in <Component> elements after action elements.

Edges are configured with the following attributes:

Table 4.23. Attributes
of the Edge element

DescriptionOptionalAttribute

The name of the action from which the edge starts.from

The name of the action which follows.to

Result code (numerical entry or symbolic name). If this value
equals the result code of the action named in thefrom attribute,

code

then the action named in the to attribute is executed. Edges
may not start from the same action with the same error code
to different target actions. To avoid defining an Edge tag for
all error codes, the edge with the error code "Error" or "12"
serves as the default edge. If an error occurs for which no edge
is defined, the watchdog process will follow the edge with result
code "Error".

This attribute specifies the delay in seconds until the subsequent
action is executed. The default value is 10 seconds.

xdelay

Example:

If the watchdog process has to execute an action "B" in case an action "A" returns
with result code "0", you have to configure:

<Edge from="A" to="B" code="0"/ >

Component definitions should not contain cycles in which every edge has a delay
of 0. Such cycles can cause high CPU loads and excessive usage of system pro-
cesses and open files.

Example Configuration of a Watchdog

This section explains a simple watchdog.xml file configuration. The file begins
with the XML and document type declarations:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE Watchdog SYSTEM "./lib/xml/coremedia-watchdog.dtd">

65CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

That is, the DTD for the watchdog.xml file with the name coremedia-
watchdog.dtd is located on the local host under the installation directory
in the lib/xml directory.

<Component name="WatchServer" startAction="WS-CorbaQuery">

A component called WatchServer is configured which immediately starts the
action "WS-CorbaQuery".

<ServerQuery name="WS-CorbaQuery" url="http://local
host:44441/coremedia/ior" user="watchdog" password="watchdog"/>

The start action WS-CorbaQuery is defined as a ServerQuery action that re-
quests the CoreMedia server IOR URL at http://localhost:44441/core-
media/ior and logs in with user name "watchdog" and password "watchdog".

<ServerQuery name="WS-CorbaReQuery" url="http://local
host:44441/coremedia/ior" user="watchdog" password="watchdog"/>

Action WS-CorbaReQuery is the same type of action with the same attrib-
utes. The meaning of this double definition will become clear below in the
description of the edges.

<DB name="WS-CheckDB" propertyFile="corem/sql.properties"/>

Another action to check the database. The file corem/sql.properties
contains the connection parameters for the database.

<Script name="WS-RestartServer" command="service cm7-cms-tomcat
restart " timeout="15" interval="600" events="3"/>

This script action restarts the CoreMedia Content Server Tomcat on a Linux
system. The concrete command depends on your concrete installation. If the
server has not restarted successfully after 15 seconds (timeout attribute),
the result code is 11 (Timeout). If the server is restarted four times within
600 seconds (interval attribute), result code 13 (RespawningTooFast) is
returned. This script action restarts the CoreMedia Content Server Tomcat
on a Linux system. The concrete command depends on your concrete install-
ation. If the server has not restarted successfully after 15 seconds (timeout
attribute), the result code is 11 (Timeout). If the server is restarted four times
within 600 seconds (interval attribute), result code 13 (RespawningToo-
Fast) is returned.

<Script name="WS-Abort" command="echo watchdog; watch server:
abort" timeout="10"/>

66CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

This action prints out an abort message (command attribute). The timeout
interval for this message is 10 seconds (timeout attribute). Alternatively
you can email to the watchdog administrator to inform him about the
watchdog termination.
Now connect the previously defined actions with <Edge> elements.

<Edge from="WS-CorbaQuery" to="WS-CorbaQuery" code="ok"
delay="60"/>

In the error-free case, when the result code is ok, the server is queried every
60 seconds.

<Edge from="WS-CorbaQuery" to="WS-CorbaQuery" code="no_li
censes" delay="60"/>

The same happens, if the result code is "no_licenses", because there was no
free license to log on to the server.

<Edge from="WS-CorbaQuery" to="WS-Abort" code="invalid_login"
delay="0"/>

If the result code is "invalid_login", because the authentication has failed,
then the abort action is executed. The administrator must correct the login
configuration and restart the watchdog application later.

<Edge from="WS-CorbaQuery" to="WS-CheckDB" code="error"
delay="0"/>

If WS-CorbaQuery returns an error, the action WS-CheckDB is invoked
immediately without delay. The latter action checks whether there is a
database error. As the result code "error" is the default code, this action is
also invoked for all the result codes for which no <Edge> element is con-
figured.

<Edge from="WS-CheckDB" to="WS-CorbaReQuery" code="ok"
delay="0"/>

If the database check results in no error, the action WS-CorbaReQuery is
called to check the server again. In this way, a possibly unnecessary restart
of the server can be avoided. Remember that WS-CheckDB was called as a
reaction to an error from WS-CorbaQuery. If the reason for this error was a
database problem, the server will continue to operate without restart as
soon as the database is online again. The server is restarted only if the
database is OK and a following check on the server fails again.

<Edge from="WS-CheckDB" to="WS-CheckDB" code="error"
delay="60"/>

67CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

The database is checked every 60 seconds as long as the database returns
an error result. As the result code "error" is the default code, this action is
also invoked for all the result codes for which no <Edge> element is con-
figured.

<Edge from="WS-CheckDB" to="WS-Abort" code="no_jdbc_driver"
delay="0"/>

If the database check fails due to a missing JDBC driver, the abort action is
invoked without delay. The administrator must correct the driver configura-
tion and restart the watchdog application later.

<Edge from="WS-CorbaReQuery" to="WS-CorbaQuery" code="ok"
delay="60"/>

If the server check results in no error, the error-free state is reached again
with the action WS-CorbaQuery being called with 60 seconds delay.

<Edge from="WS-CorbaReQuery" to="WS-CorbaQuery" code="no_li
censes" delay="60"/>

The error-free state is also reached with 60 seconds delay when there are
no free licenses to log on to the server.

<Edge from="WS-CorbaReQuery" to="WS-Abort" code="invalid_login"
delay="0"/>

If the result code is "invalid_login", because the authentication has failed,
the abort action is invoked without delay. The administrator must correct
the login configuration and restart the watchdog application later.

<Edge from="WS-CorbaReQuery" to="WS-RestartServer" code="error"
delay="0"/>

If the second server check yields an error again, the action "WS-RestartServer"
is invoked to restart the server. At this point the database works correct and
there seems to be an internal server error, which hopefully can be solved
with a server restart. As the result code "error" is the default code, this action
is also invoked for all the result codes for which no <Edge> element is con-
figured.

<Edge from="WS-RestartServer" to="WS-CorbaQuery" code="ok"
delay="60"/>

If the server was restarted successfully, the error-free state is reached again
with the action WS-CorbaQuery being called with 60 seconds delay.

68CoreMedia DXP 8

Basics of Operation | Configuration in watchdog.xml

<Edge from="WS-RestartServer" to="WS-Abort" code="error"
delay="0"/>

If the server restart has failed, the abort action is invoked without delay. The
administrator must analyze the reason, why the server fails to start and restart
the watchdog application. As the result code "error" is the default code, this
action is also invoked for all the result codes for which no <Edge> element
is configured.

<Edge from="WS-RestartServer" to="WS-Abort" code="respawn
ing_too_fast" delay="0"/>

If the server is restarted more than three times in 600 seconds, the abort
action is invoked without delay. The administrator must analyze the reason,
why the server fails to start and restart the watchdog application later.

</Component>

4.8.4 Watchdog Result Codes
The watchdog actions return result codes. The following table lists all possible
codes:

Table 4.24. watchdog
result codes

DescriptionSymbolic nameResult code

The application works properly without errors."ok"0

An exception has been thrown, that is not caught
and handled by the action.

"unexpected_error"10

An action has not finished in the specified time
interval.

"timeout"11

An action has failed with an unknown error. This
is the default code for all unhandled codes in
<Edge> elements.

"error"12

An action was executed to often in a specified
time interval (see Section “Action Elements” [54]).

"respawn-
ing_too_fast"

13

An action has failed with an I/O error."io_error"21

An action has failed because there was no free li-
cense.

"no_licenses"31

An action has failed to authenticate against the
CoreMedia server.

"invalid_login"32

An action has failed because a CORBA ORB raises
a CORBA exception.

"corba_error"33

69CoreMedia DXP 8

Basics of Operation | Watchdog Result Codes

DescriptionSymbolic nameResult code

An action has failed with an exception thrown in
the CoreMedia server repository.

"repository_error"41

An action has failed because the query was mal-
formed. This result code indicates a serious intern-
al error and should not happen.

"query_malformed"51

An action has failed because of a database error."query_failed"52

An action has failed to load the JDBC driver class.
The specified driver class is either invalid, or the
JAR file is missing in the class path.

"no_ jdbc_driver"61

An action has failed to establish a database con-
nection. This indicates an internal database error
or a configuration problem.

"no_connection"62

An action has failed to create or execute a SQL
statement. The error indicates an internal database
error or a configuration problem.

"sql_exception"63

This result code indicates that the current run level
of the server is lower than the configured run level

"insufficient_mode"71

This result code is returned by the ServiceStatus
action if the service is not running, either because

"service_stopped"81

it has been stopped, or because the run level of
the server is too low for the service to run.

The ServiceStatus action has failed because the
service was ended due to a "critical error".

"service_failed"82

The ServiceStatus action has failed because the
checked service is not activated. The service activ-

"service_disabled"83

ation can depend on the server type. For example,
the replicator service is only available on a Replic-
ation Live Server.

TheProcessStatus action has found escalated
tasks in the observed process.

"code_escalated"91

The ProcessStatus action has found too few
instances of the observed process definition.

"code_toofewin-
stances"

92

TheProcessStatus action has found too many
instances of the observed process definition.

"code_toomanyin-
staces"

93

70CoreMedia DXP 8

Basics of Operation | Watchdog Result Codes

4.9 JMX Management
By default, all CoreMedia applications register relevant resources via JMX as MBeans
for management and monitoring purposes. This might range from simple log con-
figuration up to repository statistics or cache capacities. You will find a list of the
functionality supported via JMX in most of the CoreMedia application manuals.

All resources are registered using Spring's ability to register and export MBeans
to an MBean server. If you use a JDK with version 6 or higher, you can access the
MBean server with any JMX client without configuration, if this client is running
on the same machine. A common JMX client is JConsole, which is bundled with
Oracle's JDK but you can also choose one of the freely available clients.

All CoreMedia web applications use a common component for JMX management,
that provides common JMX infrastructure such as a remote connector server.

The remote connector server can be configured by providing the property manage
ment.server.remote.url either in WEB-INF/application.properties,
as a system property, or as a JNDI property java:comp/env/coremedia/man
agement/server/remote/url. It is, however, recommended to leave this
property empty so that no separate remote connector server is started, and instead
to use the servlet container's remote connector server.

For more information about the management component see the CoreMedia Digital
Experience Platform 8 Developer Manual.

71CoreMedia DXP 8

Basics of Operation | JMX Management

livecontext-en.pdf#CoreMediaManual
livecontext-en.pdf#CoreMediaManual

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in
other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content, that
is managed in CoreMedia CMS and third-party systems. Technically, a content
bean is a Java object that encapsulates access to any content, either to Core-
Media CMS content items or to any other kind of third-party systems. Various
CoreMedia components like the CAE Feeder or the data view cache are built
on this layer. For these components the content beans act as a facade that
hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is
delivered to the end-user.

It may contain any of the following modules:

➞ CoreMedia Master Live Server

➞ CoreMedia Replication Live Server

➞ CoreMedia Content Application Engine

➞ CoreMedia Search Engine

➞ Elastic Social

72CoreMedia DXP 8

Glossary |

➞ CoreMedia Adaptive Personalization

Content Feeder The Content Feeder is a separate web application that feeds content items of
the CoreMedia repository into the CoreMedia Search Engine. Editors can use
the Search Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following modules:

➞ CoreMedia Content Management Server

➞ CoreMedia Workflow Server

➞ CoreMedia Importer

➞ CoreMedia Site Manager

➞ CoreMedia Studio

➞ CoreMedia Search Engine

➞ CoreMedia Adaptive Personalization

➞ CoreMedia CMS for SAP Netweaver ® Portal

➞ CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is
stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

➞ Content Management Server

➞ Master Live Server

➞ Replication Live Server

73CoreMedia DXP 8

Glossary |

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it clients,
partners or CoreMedia employees. CoreMedia contributions are hosted on
Github at https://github.com/coremedia-contributions.

Controm Room Controm Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed
object standard which enables interoperation between heterogenous applic-
ations over a network. It was created and is currently controlled by the Object
Management Group (OMG), a standards consortium for distributed object-
oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all of the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exists.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the docu-
ment prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier.
The System Identifier is just that: a URL to the DTD. The Public Identifier is
an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can
moderate user generated content from their common workplace. Elastic Social
bases on NoSQL technology and offers nearly unlimited scalability.

74CoreMedia DXP 8

Glossary |

https://github.com/coremedia-contributions

EXML EXML is an XML dialect supporting the declarative development of complex
Ext JS components. EXML is Jangaroo's equivalent to Adobe Flex MXML and
compiles down to Actions Script.

Folder A folder is a resource in the CoreMedia system which can contain other re-
sources. Conceptually, a folder corresponds to a directory in a file system.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for all
subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engin-
eering Task Force (IETF). It includes the definition of IETF language tags, which
are an abbreviated language code such as en for English, pt-BR for Brazilian
Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using
traditional Han characters.

Importer Component of the CoreMedia system for importing external content of
varying format.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with which
a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
ActionScript as an input language which is compiled down to JavaScript. You
will find detailed descriptions on the Jangaroo webpage ht-
tp://www.jangaroo.net.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification are
already integrated with Java 5. JMX provides a tiered architecture with the
instrumentation level, the agent level and the manager level. On the instru-
mentation level, MBeans are used as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It re-
ceives the published content from the Content Management Server and makes
it available to the CAE. If you are using the CoreMedia Multi-Site Management
Extension you may use multiple Master Live Server in a CoreMedia system.

75CoreMedia DXP 8

Glossary |

http://www.jangaroo.net
http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part,
multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects A project is a collection of content items in CoreMedia CMS created by a
specific user. A project can be managed as a unit, published or put in a
workflow, for example.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content items depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers
and to improve the robustness of the Content Delivery Environment. The Rep-
lication Live Server is a complete Content Server installation. Its content is an
replicated image of the content of a Master Live Server. The Replication Live
Server updates its database due to change events from the Master Live Server.
You can connect an arbitrary number of Replication Live Servers to the Master
Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number of
key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes re-
ferred to as localized site. In CoreMedia CMS a site especially consists of a site
folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

76CoreMedia DXP 8

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a
site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users
and workflows.

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site and
that they accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined
by typically an administrative user a content editor can use this template to
quickly create a complete new page including, for example, navigation, pre-
defined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in
the Control Room, as a part of projects and workflows.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can
be declared with the weak attribute, so that they are not checked during
publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

WebDAV WebDAV stands for World Wide Web Distributed Authoring and Versioning
Protocol. It is an extension of the Hypertext Transfer Protocol (HTTP), which
offers a standardised method for the distributed work on different data via
the internet. This adds the possibility to the CoreMedia system to easily access
CoreMedia resources via external programs. A WebDAV enabled application
like Microsoft Word is thus able to open Word documents stored in the
CoreMedia system. For further information, see http://www.webdav.org.

77CoreMedia DXP 8

Glossary |

http://www.webdav.org

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the work-
flow software ensures that the individuals responsible for the next task are
notified and receive the data they need to execute their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environ-
ment. It comes with predefined workflows for publication and global-search-
and-replace but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated but
also metadata about the text. For example, the source and target language.
CoreMedia Studio allows you to export content items in the XLIFF format and
to import the files again after translation.

78CoreMedia DXP 8

Glossary |

Index

A
applications, 39-40

C
communication

between applications, 24
encrypting CORBA, 30
through firewall, 25
using CORBA, 24

components, 54
configuration, 22, 38, 52, 54
Control Room

configuration, 44
mongoDb.clientURI, 44
mongoDb.prefix, 44

CORBA communication, 30
CoreMedia applications, 13
CoreMedia CMS, 1, 17, 20, 23

directory structure, 23

D
directory structure, 23

F
firewall, 25

H
HTTPS, 36

I
ImageMagick, 39

J
Java, 19

JDK
supported, 19

JMX management, 71
JPIF files, 40

L
licences

IP-based, 46
time-based, 46

license, 46
logback, 50
logging, 50

command-line tools, 51
solr, 50
web applications, 50

M
MBeans, 71
module.jpif, 41

P
post-config.jpif, 41
pre-config.jpif, 41

S
server utilities, 65, 69
single network interface, 29
starting applications, 39
system requirements, 17

T
Tomcat

HTTPS communication, 36

U
User Changes web application

configuration, 44

W
Watchdog, 52

action elements, 54
component element, 54
databases, 53

79CoreMedia DXP 8

Index |

edge element, 65
result codes, 69
starting, 53

80CoreMedia DXP 8

Index |

	CoreMedia Operations Basics
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Change Chapter

	2. Overview
	3. System Requirements
	3.1 Java
	3.2 Databases
	3.3 Servlet Containers

	4. Basics of Operation
	4.1 CoreMedia CMS Directory Structure
	4.2 Communication between the System Applications
	4.2.1 Communication Through a Firewall
	4.2.2 Binding Only a Single Network Interface
	4.2.3 Encrypting CORBA Communication Using SSL
	4.2.4 Encrypting CORBA with SSL and bind to a Single Network Interface
	4.2.5 Preparing Tomcat for HTTPS Connection
	Creating a Key
	Configuring Tomcat

	4.2.6 Troubleshooting

	4.3 Starting the Applications
	4.3.1 Starting CoreMedia Web Applications
	4.3.2 Starting CoreMedia Command-Line Tools
	Configuration of the Start Routine with JPIF Files
	Which JVM will be used?

	4.4 Configuration of CoreMedia Applications
	4.5 Collaborative Components
	4.5.1 Overview
	4.5.2 Deployment
	4.5.3 Recovery of Collaborative Components Database
	Backup Strategy
	Recovery of the Collaborative Components Database

	4.6 CoreMedia Licenses
	4.7 Logging
	4.7.1 Logging Configuration for Web Applications
	4.7.2 Logging Configuration for Apache Solr
	4.7.3 Logging Configuration for Command-Line Tools

	4.8 CM Watchdog/Probedog
	4.8.1 Starting the Watchdog/Probedog
	4.8.2 Watching Databases
	4.8.3 Configuration in watchdog.xml
	Component Element
	Action Elements
	Edge Element
	Example Configuration of a Watchdog

	4.8.4 Watchdog Result Codes

	4.9 JMX Management

	Glossary
	Index

