
CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Adaptive Personalization
Manual

CoreMedia Adaptive Personalization Manual
Copyright CoreMedia AG © 2015

CoreMedia AG

Ludwig-Erhard-Straße 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

iiCoreMedia DXP 8

CoreMedia Adaptive Personalization Manual |

1. Preface .. 1
1.1. Audience .. 2
1.2. Typographic Conventions .. 3
1.3. CoreMedia Services .. 5

1.3.1. Registration .. 5
1.3.2. CoreMedia Releases .. 5
1.3.3. Documentation .. 6
1.3.4. CoreMedia Training .. 8
1.3.5. CoreMedia Support . 9

1.4. Change Chapter . 12
2. Overview .. 13

2.1. Example Scenario .. 14
2.2. Architectural Overview .. 16
2.3. Building Blocks .. 18

3. Configuration and Operation .. 21
3.1. Defining Property Editors . 22
3.2. Configuring Caching For Rules and Condition Evalu-
ation .. 25
3.3. Configuring The Persona Form ... 26
3.4. Configuring The PersonaSelector . 27
3.5. Localizing the Persona Info Window ... 30
3.6. Monitoring Components With JMX .. 31

4. Developing With Adaptive Personalization .. 32
4.1. Architectural Overview .. 33
4.2. Working With the User's Context . 38

4.2.1. Configuring the Context Collector 39
4.2.2. Implementing ContextSources .. 40
4.2.3. Implementing Context . 41
4.2.4. Working With Test Contexts . 42

4.3. Working With Selection Rule Lists . 46
4.4. Working With User Segments .. 50
4.5. Working With Scoring .. 52
4.6. Working With Search Queries .. 55

4.6.1. Evaluation Of Search Functions .. 55
4.6.2. Implementing Search Functions .. 56
4.6.3. Adding Help Texts . 58

4.7. Localizing the Studio Plugin .. 60
5. Appendix .. 61

5.1. Condition Types .. 62
5.2. Content Types .. 63
5.3. Supplied Context Sources .. 64

iiiCoreMedia DXP 8

CoreMedia Adaptive Personalization Manual |

Glossary .. 65
Index .. 72

ivCoreMedia DXP 8

CoreMedia Adaptive Personalization Manual |

List of Figures
2.1. Example Page with Main Teaser .. 14
2.2. Architectural overview .. 16
3.1. The PersonaSelector in CoreMedia Studio .. 27
3.2. The Persona Info Window in CoreMedia Studio 28
4.1. Adaptive Personalization overview .. 33
4.2. Request processing in the CAE .. 35
4.3. ContextObject usage .. 38
4.4. ContextCollector position .. 39
4.5. A ContextSource implementing typical interfaces 41
4.6. PropertyProvider Interface .. 42
4.7. Property container and field .. 44
4.8. Caching SelectionRuleProcessor instances .. 49
4.9. Scoring classes .. 52
4.10. Evaluating a Search Function .. 56
4.11. Example of a help text . 58

vCoreMedia DXP 8

CoreMedia Adaptive Personalization Manual |

List of Tables
1.1. Typographic conventions .. 3
1.2. Pictographs .. 3
1.3. CoreMedia manuals . 6
1.4. Log files check list . 10
1.5. Changes .. 12
3.1. All properties .. 23
3.2. Plugins for PersonaSelector . 29
4.1. Supported operators .. 47
4.2. Supported values .. 47
4.3. Behavior when the context does not contain the specified
property .. 48
4.4. Properties of SegmentSource .. 50
4.5. Example results . 53
5.1. Condition types .. 62
5.2. Supplied context sources .. 64

viCoreMedia DXP 8

CoreMedia Adaptive Personalization Manual |

1. Preface

This manual describes CoreMedia Adaptive Personalization.

➞ In Chapter 2, Overview [13] you will get an overview over the aim and features
of CoreMedia Adaptive Personalization.

➞ In Chapter 3, Configuration and Operation [21] you will learn, how to configure
and operate the system.

➞ In Chapter 4, Developing With Adaptive Personalization [32] you will learn
how to develop your own customizations of CoreMedia Adaptive Personaliza-
tion.

➞ In Chapter 5, Appendix [61] you will find the supplied context sources, con-
dition types and document types.

You should start with reading the overview section to understand the basic concepts
and scenarios underlying CoreMedia Adaptive Personalization. Then, jump to the
section that concerns you the most as they are self-contained and don't need to
be read in order.

1CoreMedia DXP 8

Preface |

1.1 Audience
This manual is intended for all technical users of CoreMedia Adaptive Personalization
that is administrators and developers. Administrators should have read the Core-
Media Operations Basics Manual to have basic knowledge of the administration of
CoreMedia components. Developers should be familiar with CAE development as
it is described in the CoreMedia Content Application Developer Manual and with the
customization of CoreMedia Studio. The use of CoreMedia Adaptive Personalization
is described in the [CoreMedia Studio User Manual].

2CoreMedia DXP 8

Preface | Audience

1.2 Typographic Conventions
CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:

Table 1.1. Typographic
conventions

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entry

Format|Normal

Bold, linked with |Menu names and entries

Enter in the field Heading

The CoreMedia Component

ItalicField names

CoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed
keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \

-u user

\Code lines in code examples
which continue in the next
line

See the [Studio Developer
Manual] for more information.

Square BracketsMention of other manuals

In addition, these symbols can mark single paragraphs:

Table 1.2. PictographsDescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

3CoreMedia DXP 8

Preface | Typographic Conventions

DescriptionPictograph

Danger: The violation of these rules causes severe damage.

4CoreMedia DXP 8

Preface | Typographic Conventions

1.3 CoreMedia Services
This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.3.1,
“Registration” [5] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

➞ Section 1.3.1, “Registration” [5] describes how to register for the usage of
the services.

➞ Section 1.3.2, “CoreMedia Releases” [5] describes where to find the
download of the software.

➞ Section 1.3.3, “Documentation” [6] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

➞ Section 1.3.4, “CoreMedia Training” [8] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

➞ Section 1.3.5, “CoreMedia Support” [9] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.3.5, “CoreMedia Support” [9]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

5CoreMedia DXP 8

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5]
for details about the registration process. If the problems persist, try clearing
your browser cache and cookies.

Maven artifacts

CoreMedia provides its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual.

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [9]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia
manualsContentAudienceManual

This manual lists the third-party software used
by CoreMedia and lists, when required, the li-
cence texts.

Developers, ar-
chitects, admin-
istrators

CoreMedia Utilized Open-
Source Software

This document lists the third-party environ-
ments with which you can use the CoreMedia

Developers, ar-
chitects, admin-
istrators

Supported Environments

system, Java versions or operation systems for
example.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It

EditorsStudio User Manual, Eng-
lish

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

6CoreMedia DXP 8

Preface | Documentation

https://repository.coremedia.com
livecontext-en.pdf#CoreMediaManual
http://documentation.coremedia.com/dxp8

ContentAudienceManual

This manual gives an overview over the struc-
ture and features of CoreMedia LiveContext.

Developers, ar-
chitects, admin-
istrators

LiveContext for IBM Web-
Sphere Manual

It describes the integration with the IBM
WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

This manual describes some overall concepts
such as the communication between the

Developers, ad-
ministrators

Operations Basics Manual

components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

This manual describes the configuration of and
development with Adaptive Personalization, the

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

CoreMedia module for personalized websites.
You will learn how to configure the GUI used
in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-
sions.

This manual describes how you can connect
your CoreMedia website with external analytic
services, such as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors
Manual

This manual describes concepts and develop-
ment of the Content Application Engine (CAE).

Developers, ar-
chitects

Content Application De-
veloper Manual

You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

This manual describes the concepts and admin-
istration of the main CoreMedia component,

Developers, ar-
chitects, admin-
istrators

Content Server Manual

the Content Server. You will learn about the
content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

7CoreMedia DXP 8

Preface | Documentation

ContentAudienceManual

This manual describes the concepts and admin-
istration of the Elastic Social module and how
you can integrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the structure of the in-
ternal CoreMedia XML format used for storing

Developers, ar-
chitects

Importer Manual

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

This manual describes the configuration and
customization of the CoreMedia Search Engine

Developers, ar-
chitects, admin-
istrators

Search Manual

and the two feeder applications: the Content
Feeder and the CAE Feeder.

This manual describes the configuration and
customization of Site Manager, the Java based

Developers, ar-
chitects, admin-
istrators

Site Manager Developer
Manual

stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

This manual describes the concepts and exten-
sion of CoreMedia Studio. You will learn about

Developers, ar-
chitects

Studio Developer Manual

the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the re-

Developers, ar-
chitects

Unified API Developer
Manual

commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

This manual describes the Workflow Server. This
includes the administration of the server, the

Developers, ar-
chitects, admin-
istrators

Workflow Manual

development of workflows using the XML lan-
guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

8CoreMedia DXP 8

Preface | CoreMedia Training

mailto:documentation@coremedia.com

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the Training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, virtual
machines, class libraries and customized code in many different combinations.
That's why CoreMedia needs detailed information about the environment for a
support case. In order to track down your problem, provide the following informa-
tion:

➞ Which CoreMedia component(s) did the problem occur with (include the
release number)?

➞ Which database is in use (version, drivers)?

➞ Which operating system(s) is/are in use?

➞ Which Java environment is in use?

➞ Which customizations have been implemented?

➞ A full description of the problem (as detailed as possible)

➞ Can the error be reproduced? If yes, give a description please.

➞ How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

9CoreMedia DXP 8

Preface | CoreMedia Support

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of
Java processes and CoreMedia components. They're often the only source of in-
formation for error tracking and solving. All protocolling services should run at the
highest log level that is possible in the system context. For a fast breakdown, you
should be logging at debug level. The location where component log output is
written is specified in its < appName>-logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia.log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do I Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the logs/ directory of the servlet
container.See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files
check list

Log filesProblemComponent

generalCoreMedia Studio CoreMedia-Studio.log
coremedia.log

generalCoreMedia Editor editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre-
view

coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

10CoreMedia DXP 8

Preface | CoreMedia Support

Log filesProblemComponent

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

communication errorsServer and client editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.jpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

not startingServer coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

11CoreMedia DXP 8

Preface | CoreMedia Support

1.4 Change Chapter
In this chapter you will find a table with all major changes made in this manual.

Table 1.5. ChangesDescriptionVersionSection

12CoreMedia DXP 8

Preface | Change Chapter

2. Overview

CoreMedia Adaptive Personalization provides the basis for creating a personalized
web experience on top of the CoreMedia Content Application Engine. It offers user
interest profile management as well as dynamic content selection - the building
blocks for your personalized site, whether you want to implement explicit (manual)
personalization, implicit (automatic) personalization, or both.

Personalization is used by leading web companies to increase user engagement
by providing a better user experience. Typical examples of website personalization
are:

➞ Showing more relevant ads by taking a user's browsing behavior into account.

➞ Recommending products on an e-Commerce site based on the user's purchase
history.

➞ Automatically listing the most common answers on a support site for the
operating system and browser used by the current user.

➞ Selecting news stories for a user by analyzing the user's reading history.

➞ Ranking search results for an individual user based on his personal search
history.

The underlying idea of all these examples is to be more relevant to the individual
user. With personalized content, you can increase the satisfaction and loyalty of
your users, which leads to higher user retention and number of visits.

13CoreMedia DXP 8

Overview |

2.1 Example Scenario
CoreMedia Adaptive Personalization provides everything you need to implement
rule-based personalization for your website out of the box. But what does this
mean, exactly? Here's a simple example:

Assume you're the editor of a news site and there's a single main teaser region on
your entry page. You know that placing a relevant teaser in this region is critical
as it drives a high percentage of clicks, and more clicks mean more revenue. By
inspecting the reports of your analytics system, you've noticed that in the morning,
most visitors read World News, while during lunch break and in the evenings, in-
terests are more diverse. In particular, you see some visitors focusing on Lifestyle,
others on Economy, and still others on Sports. You decide to optimize your entry
page by placing a Personalized Content document in the main teaser region. This
document is configured to show the most important (as defined by the editorial
team) article in World News each morning until 10am. At 10am, it switches to an-
other Personalized Content document that selects the most important teaser from
Lifestyle, Economy, or Sports depending on the interests of the current user. If
CoreMedia Adaptive Personalization is installed in your site, you can do all of this
without the need to do any programming or to redeploy the system.

Figure 2.1. Example
Page with Main Teaser

Have a quick look at the components of CoreMedia Adaptive Personalization that
would be used to implement a system that supports this scenario. Detailed descrip-
tions of the components can be found in the corresponding chapters within this
manual.

All context data for a request, containing the current time of day, is stored within
the CAE in a ContextCollection. If you tag your pages with keywords, as is
typically the case if you use an ad server, you can use a ScoringContext in
combination with the KeywordInterceptor to track the most often seen keywords

14CoreMedia DXP 8

Overview | Example Scenario

for each user (if he read a lot of articles tagged with 'Sports', 'Sports' will have a
large score in the context).

Personalized Content contains a list of rules of the form select content X if the contexts
satisfy conditions Y. Given a ContextCollection, it renders the first content for
which the conditions are satisfied. So in the scenario above, the main teaser would
contain the rules select most-important-world-news if current time < 10am and
select special-interest-article if current time >= 10am. The content most-important-
world-news could use a search to determine the most current, highly rated editor-
ial article from World News, while special-interest-article would be another Person-
alized Content selecting articles based on the users' keyword scores, for example
select most-important-sports-news if score of 'Sports' > 0.8. These Selection Rules
are defined from within CoreMedia Studio using a specialized editor component
and are deployed to the CAEs via document publication, so there's no need for any
code changes.

15CoreMedia DXP 8

Overview | Example Scenario

2.2 Architectural Overview
CoreMedia Adaptive Personalization is a collection of building blocks intended to
assist you in leveraging the versatility of the CAE to implement dynamic and per-
sonalized content delivery. The basic idea is that each request to the site by a vis-
itor is associated with context data and that this data is used to determine what
is to be delivered to the visitor.

Contexts represent arbitrary things about the user and his environment, such as
the user's current interests, the location from which the user accesses the site, and
the device used. A context can also contain general information such as the current
date and time or the day of the week.

To determine the content to be delivered, CoreMedia Adaptive Personalization
provides the implementation of a rule-based approach ("select some specific content
if the context data fulfills some requirements") as well as an extension to the search
engine integration that allows using context data within search queries.

Figure 2.2. Architectur-
al overview

To configure rule-based personalization and define user segments, CoreMedia Ad-
aptive Personalization includes CoreMedia Studio components that provide corres-
ponding editing functionality for editors. All configurations are stored within doc-
ument properties which are freely configurable - you are not required to use the
predefined content types.

Within the CAE, you evaluate rules in a Content Bean implementation using the
SelectionRuleProcessor. The processor expects to be supplied with a collection
of user contexts, which may include all user segments for which the defined con-
ditions are satisfied by the user.

16CoreMedia DXP 8

Overview | Architectural Overview

Not shown in the diagram above is the search engine extension. It provides a query
preprocessor that allows you to add macro calls within query strings and evaluate
these macros at time of search. For example, if you define a macro userSegments
that looks up and returns the set of segments the user is a member of and tag your
content with segment names which are indexed in field segments, you can search
for all documents tagged with the segments of the user via the query seg
ments:userSegments().

17CoreMedia DXP 8

Overview | Architectural Overview

2.3 Building Blocks
CoreMedia Adaptive Personalization provides the basis for creating a personalized
web experience on top of the CoreMedia Content Application Engine. This section
lists all building blocks with a short description and is intended as an overview for
programmers and technical consultants. See Chapter 4, Developing With Adaptive
Personalization [32] for a more detailed discussion.

CoreMedia Adaptive Personalization comes with an API that offers five main
building blocks:

➞ Personalized Content

➞ User Segments

➞ User Contexts

➞ Test User Contexts

➞ Behavior tracking

Personalized Content

Personalized Content is content that uses a list of rules to determine what to show
to a visitor. This is similar to content that stores a search query and displays the
results of executing the search, but covers different use cases as you've got finer
control over the selection process. For example, you can define rules that show
different documents

➞ ... to users above a certain age AND at specific times of the day.

➞ ... to users who previously bought a specific service or product.

➞ ... to users visiting the website with a specific device.

➞ ... to users who previously showed interest in content tagged by repeated
keywords (such as soccer, baseball, travel, politics etc.) through keyword
tracking.

Selection rules are stored in a Markup document property using a specific XML
grammar. Rules are parsed and evaluated within the CAE and all content selected
by rules whose conditions are satisfied is returned.

Adaptive Personalization provides a CoreMedia Studio plug-in with an easy to use
interface for users to define personalization criteria. Adaptive Personalization comes
with a number of predefined condition types that can be bound to arbitrary context
parameters, thus allowing you to adapt the UI to the semantics of your application
domain. These condition types are described in detail regarding usage and config-
uration in Section 5.1, “Condition Types” [62].

18CoreMedia DXP 8

Overview | Building Blocks

User Segments

With personalization you can group the visitors of your website into segments ac-
cording to a set of logical conditions. For example, if a user context (explained
below) is provided, you could create visitor segments such as

➞ Male users aged between 30 and 40 AND with a yearly available income of
US$45,000.

➞ Users with an interest in the fashion topic AND with at least five social con-
nections within the site's user base.

➞ Users which have bought a certain number of products through the website
correlating with an interest in a specific content topic.

User segments are evaluated by a specialized ContextSource (a component that
adds a context to the ContextCollection associated with a request to the CAE) and
added to the current user's context data. Thus, they can be used within conditions
in selection rules.

The CoreMedia Studio plug-in provides an interface to define segments with condi-
tional expressions. As with Personalized Content, the UI can be adapted to your
application's needs.

User Contexts

CoreMedia Adaptive Personalization allows you to use arbitrary user contexts as
sources of information accessible in conditional criteria of Personalized Content
and User Segments. A context can be an arbitrary Java object, but usually is a map-
like entity that stores key-value pairs. A user's request is associated with an arbitrary
number of contexts collected in a ContextCollection, which typically is injected
in all CAE beans that require access to the context data.

User contexts are populated in the CAE, in the preHandle phase of request pro-
cessing. Thus, context data is available to handlers as well as content beans. The
context API also allows you to persist information into user contexts at the end of
request processing.

Test User Contexts

Test User Contexts are CMS documents containing lists of context properties. A
specialized ContextSource reads these documents and adds corresponding
context objects to the context collection of each request to the CAE. Using Test
User Contexts, you can simulate a user having specific context properties and thus
test the behavior of your personalized site.

19CoreMedia DXP 8

Overview | Building Blocks

Behavior Tracking

CoreMedia Adaptive Personalization provides a specialized Context class that is
intended for tracking and scoring the behavior of individual users on your site.
This ScoringContext can be informed about (weighted) events, such as visits to
keyword-tagged pages or initiated downloads. The collected weights for an event
are combined and the event name as well as its weight are made available as
context properties to be used in user segments or selection rules.

20CoreMedia DXP 8

Overview | Building Blocks

3. Configuration and Operation

This chapter describes how you configure CoreMedia Adaptive Personalization fea-
tures in the underlying platforms.

➞ Section 3.1, “Defining Property Editors” [22] describes how you can integrate
the delivered property editors into CoreMedia Studio document forms.

➞ Section 3.2, “Configuring Caching For Rules and Condition Evaluation” [25]
describes how to cache rules and conditions.

21CoreMedia DXP 8

Configuration and Operation |

3.1 Defining Property Editors
CoreMedia Adaptive Personalization includes two property editors for editing per-
sonalization specific document properties in CoreMedia Studio:

➞ SelectionRulesField is an editor to be used to define content selection
rules

➞ ConditionsField is an editor to be used to define user segment conditions

SelectionRulesField and ConditionsField can be used for a document
property of type XML using schema coremedia-selectionrules-1.0. This
schema is defined in cap-personalization-schema-bundle.jar and can be
imported into a content type declaration file by adding the following code near
the top of the file:

<XmlSchema Name="coremedia-selectionrules-1.0"
SchemaLocation="classpath:xml/coremedia-selectionrules-1.0.xsd"
Language="http://www.w3.org/2001/XMLSchema"/>

You configure a property editor for a specific document property as explained in
the CoreMedia Studio Manual.

The CoreMedia CM7 development workspace provides a Studio form using these
condition fields to edit personalized content documents.

Setting up the Property Editors

CoreMedia Adaptive Personalization offers different types of conditions that are listed
in Section 5.1, “Condition Types” [62]. Therefore, you can adapt the property editors
for selection rules and segment conditions to the types of properties your applica-
tion is using. For example, if your context contains a property dateOfBirth that
holds the current visitor's date of birth, the property editors should use a DateCon
dition instead of a StringCondition for conditions using the property.

You configure the editors in the ext-xml files defining the property editors for
your content types.

SelectionRulesField

SelectionRulesField supports the attributes propertyName and allowed
ContentType.

➞ propertyName is required and denotes the name of the document property
to be associated with the field. This attribute is common to all property editors
in CoreMedia Studio.

➞ allowedContentType is optional and denotes the name of the type of
content that can be selected via rules defined using this property editor.

22CoreMedia DXP 8

Configuration and Operation | Defining Property Editors

For example, if allowedContentType="CMTeasable" is used, only documents
of type CMTeasable or of any subtype can be added to the rules created via this
editor. Thus, you won't be able to create a rule that selects a CMChannel.

The child element conditionItems defines the condition types the Selection
RulesFieldwill support. The following table lists the allowed attributes in condi-
tions.

Table 3.1. All proper-
ties

DescriptionProperty Name

The text the user sees in the combo box used
to select the type of a condition. It is not fur-

conditionName

ther processed by the rule editor and thus
can be an arbitrary string. Required

The prefix denotes the context name of the
property and does not include the separating

propertyPrefix

'.'. For example, to denote all properties in
the 'foo' context, such as 'foo.bar' and
'foo.zork', supply 'foo' as thepropertyPre-
fix value. ConditionTypes support
either propertyPrefix or property-
Name, but not both.

The name of the property the condition is
associated with. The rule editor compares the

propertyName

name of the property used in a condition with
this string to identify the UI element it should
use for rendering the condition.Condition-
Types support either propertyPrefix
or propertyName, but not both.

If set to "true", the condition type is used as
the selected condition type if a new condition

isDefault

is added to a rule via the UI. Make sure that
there's only a single default item because
otherwise you cannot be sure which one will
be selected. Default is 'false'.

Example with propertyName attribute:

<perso:dateCondition conditionName="Date of Birth"
propertyName="personal.dateofbirth"/>

This element makes the SelectionRulesField use a DateCondition if a
condition is defined on the personal.dateofbirth property.

Example with propertyPrefix attribute:

23CoreMedia DXP 8

Configuration and Operation | Defining Property Editors

<perso:keywordCondition conditionName='Explicit Interest'
propertyPrefix='explicit' isDefault='true'/>

This element makes the SelectionRulesField use a KeywordCondition for
all properties starting with the prefix "explicit" followed by ".", for example, "expli-
cit.science".

The order of elements in conditionItems is relevant for item selection. The Se
lectionRulesField searches the list top to bottom to find the Condition for a
given property name. It uses the first item whose propertyName or propertyPre
fix matches.

ConditionsField

The ConditionsField property editor is similar to the SelectionRulesEditor
in that it allows you to define a list of user segment conditions using the same
components and configuration, except for the SegmentCondition.

Using the AddConditionItemsPlugin to add conditions to the
property editors

The SelectionRuleField as well as the ConditionsField support the AddCon
ditionItemsPlugin to allow the configuration of condition items via plugin
rules. Plugin rules are a mechanism provided by CoreMedia Studio to allow Studio
plugins to modify common UI components.

For example, you might want to keep the configuration of condition items specific
to your CRM system in the same project as your CAE/CRM integration. To this end,
create a CoreMedia Studio plugin containing plugin rules that configure the condition
items using the AddConditionItemsPlugin and introduce it as a Maven depend-
ency to your CoreMedia Studio web application (for details, see the CoreMedia Studio
Developer Manual).

Module p13n-studio of the CoreMedia Blueprint development workspace shows
how to configure selection rules based on Elastic Social contexts.

24CoreMedia DXP 8

Configuration and Operation | Defining Property Editors

3.2 Configuring Caching For Rules and
Condition Evaluation
Selection rules as well as segment conditions are stored in textual form in document
properties. To be evaluated in the CAE, they have to be parsed and transformed
into an executable form. This transformation is expensive and thus should only be
performed if necessary, that is, if the corresponding document properties were
modified. Therefore, you should use CoreMedia data views and the CoreMedia
cache for caching.

SelectionRulesProcessor as well as ConditionsProcessor can be cached.
In your content beans, use a property getter that returns the appropriate processor
for your document and create a data view with association type 'static' for this
getter. In the methods that use the processor, access it via the getter. This guaran-
tees that parsing is only done if necessary.

If you use the SegmentSource, you do not need to care about caching segment
conditions, as this is done by the source itself. You'll find an example data view
declaration for the type CMSelectionRules in the CoreMedia DXP 8 p13n exten-
sion. For further information on how data views work, refer to the Content Applic-
ations Developer Manual.

25CoreMedia DXP 8

Configuration and Operation | Configuring Caching For Rules and Condition Evaluation

3.3 Configuring The Persona Form
You can change the used context properties and/or the appearance of the context
property editors of the Persona Form by reconfiguring the CMUserProfile content
type.

If you add context properties to the document you do not need to adapt the content
type definition for the Content Server because all context properties are stored in
one, already defined plain text blob property.

Underneath a PersonaGroupContainer there are special property fields which
are responsible for handling the forwarded property. You can write your own
property fields for custom properties.

There are already the most common property fields available:

➞ PersonaNumberPropertyField - accepts just digits, '-' and '.'

➞ PersonaStringPropertyField - accepts all kind of characters

➞ PersonaTimePropertyField - accepts time in the specified time format;
you can choose time from the combo box as well

➞ PersonaDatePropertyField - accepts a date in the specified date format;
you can pick the date from the date picker as well

➞ PersonaDateTimeProperty - combined time and date property fields.
You need to fill both values.

To write your own property fields have a look at Section 4.2.4, “Working With Test
Contexts” [42].

26CoreMedia DXP 8

Configuration and Operation | Configuring The Persona Form

3.4 Configuring The PersonaSelector
The PersonaSelector is a component of CoreMedia Adaptive Personalization that
is shown in the Preview Toolbar of CoreMedia Studio. As depicted in Figure 3.1,
“The PersonaSelector in CoreMedia Studio” [27], you can unfold it by pressing the
corresponding button in the Preview's Toolbar (1.). It contains Personas that rep-
resent typical visitors of your website. When selecting a Persona its artificial context
properties are read from the CMS and the Preview is rendered accordingly. For
example, a Persona could explicitly simulate a specific date to test a Personalized
Content displaying special offers on Christmas Eve.

In addition to simply selecting a Persona, the PersonaSelector allows you the
following:

➞ navigate to the location of the Personas' backing documents in the Content
Management Server (2.) and

➞ open the Persona Info Window with detailed information about the context
properties of a specific Persona (3.).

Figure 3.1. The Per-
sonaSelector in Core-
Media Studio

The initial view of the Persona Info Window displays the basic context properties
as shown in Figure 3.2, “The Persona Info Window in CoreMedia Studio” [28]. You
can display a grouped list of all contained properties by switching to the "Details"
tab (1.). To permanently modify a context property press the "Edit" button (2.),
which opens the Persona's backing CMS document in a new document tab. You
can also activate a Persona from the Persona Info Window by clicking the "Activate
Persona" button (3.). If you want to know how to customize localized context
properties of the Persona Info Window, have a look at Section 3.5, “Localizing the
Persona Info Window” [30].

27CoreMedia DXP 8

Configuration and Operation | Configuring The PersonaSelector

Figure 3.2. The Per-
sona Info Window in
CoreMedia Studio

By default, the PersonaSelector offers a list of all Personas - which are documents
of type CMUserProfile - that are located in the /System/personaliza
tion/profiles folder (which is different in CoreMedia Blueprint, see further
below). Furthermore, it offers a method that can be used to adapt the paths from
which Personas are retrieved:

➞ public function addPath(repositoryPath:String, groupHead
erLabel:String)

➞ public function clearPaths()

The groupHeaderLabel argument of the addPath method defines a label that
is used to group the Personas within the PersonaSelector that are retrieved
from the same path.

Example

If you do not want to retrieve Personas from the default path, but from the paths
/context and /experimentalwhere all Personas from the latter location should
be suffixed with "experimental" you would do the following in a plugin:

...
public function init(component:Component):void {
const selector:PersonaSelector = component as PersonaSelector;
if (!selector) {
throw Error("plugin is only applicable to components of

type PersonaSelector");
}
selector.clearPaths();
selector.addPath('/contexts');
selector.addPath('/experimental', 'experimental');

}
...

28CoreMedia DXP 8

Configuration and Operation | Configuring The PersonaSelector

CoreMedia Adaptive Personalization contains ready-made plugins for use with the
PersonaSelector:

Table 3.2. Plugins for
PersonaSelector

Descriptionptype

Disables the selector if one among a set of precon-
figured content types is being previewed.

disablefortypes

Adds a path to the list of path used by the selector.addpath

Adds a site specific path containing a placeholder to
the selector.

addsitespecificpath

You add plugins to a component via the plugin rules of your project module (see
the "Understanding Studio Plugins" section in the CoreMedia Studio Developer
Manual for details). CoreMedia Blueprint provides a ready to use example of the
PersonaSelector with the side independent default path /Settings/Op
tions/Personalization/Profiles and the site specific default path Op
tions/Personalization/Profiles.

29CoreMedia DXP 8

Configuration and Operation | Configuring The PersonaSelector

3.5 Localizing the Persona Info Window
The data shown in the Persona Info Window can be localized, so that the right lan-
guage version is shown in CoreMedia Studio. You can localize the following items:

➞ context names

➞ property keys

➞ property values

The Persona Info Window searches for the localized form of an element by looking
for global resource bundle properties of the form (where name is the name of a
context, key is a property key and value is a property value):

➞ p13n_context_<name> for the name of a context

➞ p13n_context_<name>_<key> for the name of a property key within a
context

➞ p13n_context_<name>_<key>_<value> for a property value within a
context

Any non-word characters (everything except alphanumeric characters and '_') are
removed before the look-up key is constructed, that is, the localization property
for the context "a sample context" would be p13n_context_asamplecontext.

Property values representing time stamps are not looked up in a localization file,
but automatically transformed into a date representations matching the selected
locale.

If the Persona Info Window cannot find a matching localization property, the original
value is used. Refer to the CoreMedia Studio Developer manual on how to set up
resource bundles in CoreMedia Studio.

30CoreMedia DXP 8

Configuration and Operation | Localizing the Persona Info Window

3.6 Monitoring Components With JMX
Key components of CoreMedia Adaptive Personalization expose management func-
tionality via the following JMX MBeans:

➞ ContextCollectorManager

➞ SelectionRuleProcessorManager

You can find a detailed list of all available JMX properties in the corresponding API
documentation of the classes.

ContextCollectorManager

This class provides statistics about the performance of the ContextCollector
and each registered ContextSource. By default, only performance tracking of
the ContextCollector is enabled. If you want to enable tracking of the sources,
use the perSourcePerformanceEnabled flag in your JMX console.

You can use the ContextCollectorManager bean to activate and deactivate
the ContextCollector. This might be useful if you have an unexpected spike in
high traffic and you want to disable Adaptive Personalization. Use the ContextCol
lectorEnable flag for this task.

SelectionRuleProcessorManager

This class provides statistics about the performance of all SelectionRulePro
cessor instances used in a CAE.

31CoreMedia DXP 8

Configuration and Operation | Monitoring Components With JMX

4. Developing With Adaptive
Personalization

CoreMedia Adaptive Personalization is a set of building blocks by nature. As such,
there is a lot of room for customizations and custom implementation. Each of the
following sections explains how to use and combine the available building blocks
and features.

32CoreMedia DXP 8

Developing With Adaptive Personalization |

4.1 Architectural Overview
CoreMedia Adaptive Personalization is a collection of building blocks intended to
assist you in leveraging the versatility of the CAE to implement dynamic and per-
sonalized content delivery. The basic idea is that each request to the site by a vis-
itor is associated with context data and that this data is used to determine what
is to be delivered to the visitor. Contexts might represent arbitrary things about
the user and his environment, such as the user's current interests, the location
from which the user accesses the site, and the device used.

Figure 4.1. Adaptive
Personalization over-
view

CoreMedia Adaptive Personalization runs partly within the CAE delivery component
to evaluate the selection and choice of content based on your settings. CoreMedia
Adaptive Personalization also depends on content types in the CoreMedia content
repository to persist certain settings and personalization rules, representing the
personalized content you want to place on your site. These content types can be
edited conveniently through CoreMedia's web based editor by using the Adaptive
Personalization Editor Plugin. Using the CoreMedia Adaptive Personalization content
types in your publication workflow, you can place personalized content just like
you would place any other content, using the same editing metaphors and work-
flows as with any other CoreMedia content.

Both components are integrated into CoreMedia Blueprint by default. CoreMedia
Blueprint already has suitable content types in place. When using a custom content
type model, it will be necessary to model suitable content types for Adaptive Per-
sonalization and configure their usage according to documentation.

Dedicated personalization documents in the content repository are used to manage
personalization of a site editorially. The type Personalized Content represents per-
sonalized content by storing a Markup property with a set of selection rules used
to decide what content to render when a request is processed in the CAE. The type

33CoreMedia DXP 8

Developing With Adaptive Personalization | Architectural Overview

User Segment allows you to define segments of website users based on conditional
rules. Using the same selection rule logic as the type Personalized Content, this type
stores the rules as a String property. User Segments can then in term be used
within a matching condition type in Personalized Content documents. The type Test
User Context can be used by editors within CoreMedia Studio to switch user contexts
within the preview pane to test and preview the effects of personalization settings
before publishing any documents to a live website. These documents are edited,
placed and published from within CoreMedia Studio like any other document - except
the test user contexts which have no effect or use when published. During delivery
of those documents, CoreMedia Adaptive Personalization components running
within the CAE will interpret and evaluate the contents of those documents in order
to render matching, personalized content based on the user's request and the user
context.

The CAE has access to a pool of context sources addressed through the Context
API, which is also described in detail in this manual. Out of the box, CoreMedia
Adaptive Personalization supports storing user context information in cookies. For
each request, the CAE can determine the specific context using the contexts avail-
able through the Context API implement context sources. The information stored
in those contexts can be used to define selection rules in Personalized Content and
User Segment documents.

The evaluation of dynamic, request specific selection rules per request is costly in
terms of computation. Because of this, CoreMedia Adaptive Personalization facilitates
the caching features already in place in the CAE and computes a cacheable, pre-
computed representation of a set of selection rules, using both CAE data views and
cache keys where appropriate. This minimizes the impact of personalization on
CAE performance.

Adaptive Personalization in the CAE

Within the CAE a high level point of view request processing looks like in figure.

34CoreMedia DXP 8

Developing With Adaptive Personalization | Architectural Overview

Figure 4.2. Request
processing in the CAE

CoreMedia Adaptive Personalization integrates into the CAE using the standard Spring
facilities and API. Within the CoreMedia Blueprint development workspace, Adaptive
Personalization is already be integrated in the CAE setup. Refer to the installation
documentation for details about how to manipulate the Spring configuration of
CoreMedia Adaptive Personalization.

Within the CAE, Adaptive Personalization performs two basic functions:

➞ collecting information from all available contexts for the current request

➞ evaluating content selection rules as they are used within Personalized
Content and User Segments

Context information must be collected before processing a request and can be
persisted after having processed the request. This can be achieved through Spring
Web MVC interceptors or servlet filters. Evaluation of content selection rules may
be performed while processing a request, for example, using content bean logic.

How contexts, properties, conditions and personas work together

In CoreMedia Adaptive Personalization the information about a website users context
is stored in a so called ContextCollection that can be best thought of as a re-
quest scope map holding the request's context objects. All context sources that
are configured via the Spring application context are called to retrieve and store
their context information for the given Request into the request - and therefore

35CoreMedia DXP 8

Developing With Adaptive Personalization | Architectural Overview

usually user-specific - ContextCollection. A common scenario is to instantiate a
ContextCollectionwhen a request hits the CoreMedia Content Application Engine
(CAE) with enabled CoreMedia Adaptive Personalization. Alternatively, a ContextCol
lection can be implemented using thread local storage, so that it is effectively
a singleton bean (as the DefaultContextCollection).

A context is identified by a name (“keywords”, “personal” or “system”, for example)
and can store arbitrary data. Usually (at least the default contexts that are shipped
with the product) the context sources implement the PropertyProvider interface
which requires that a context stores Map-like information in key/value pairs.
Therefore, the properties of a given context are identified by the context name
and property names with corresponding values, for example a numeric value, a
string value, a date value.

Example

<contextname>.<propertyname>=<value>

The <contextname>.<propertyname> pattern is also used in personalization
selection rules to identify the context information that will be used in a rule.

Examples

select <content> if <contextname>.<propertyname> \
<operator> <value>

select content:1234 if keyword.sports > 0.5

In the Selection Rules editor, which is part of the CoreMedia Studio plug-in, you can
use different UI components to define different conditions in personalization rules.
Which UI component is used, can be configured by a manually mapping from
context property names to component types. This is, for example, done in CMSe
lectionRulesForm.exml andCMSegmentForm.exmlof the CoreMedia Blueprint
development workspace.

When the CAE evaluates a personalization rule for a given request, the Selection
RulesProcessor uses the already known <contextname>.<propertyname>
pattern to check whether the values in the current ContextCollection match
the rules or not. For more details on the selection rule execution please refer to
Section 4.3, “Working With Selection Rule Lists” [46].

Due to the map-style nature of the context data, it is very easy to create test data
for editorial usage. That is exactly how the persona contexts work in the personal-
ization UI (the PersonaSelector).

Instead of actually instantiating a ContextSource with an identifier “keyword”
and the property “sports” and value 70% you can simply write “keyword.sports=0.7”
into the persona context. This information is then used in the CAE as context in-
formation and the real “keyword” ContextSource is ignored.

36CoreMedia DXP 8

Developing With Adaptive Personalization | Architectural Overview

When the CAE evaluates a personalization rule, an executable representation of
the rule string is created or retrieved from the cache and supplied with the active
user’sContextCollection. This representation uses the<contextname>.<prop
ertyname> pattern encoded in the individual conditions to retrieve the corres-
ponding property values from the ContextCollection and applies the specified
comparison operator from the personalization rule.

37CoreMedia DXP 8

Developing With Adaptive Personalization | Architectural Overview

4.2 Working With the User's Context
Personalizing the user's experience relies on data about the user. Within the system,
this data is represented as so called context objects (simple POJOs) stored in a
ContextCollection. The ContextCollection is made available to all compon-
ents requiring access to context objects.

In a personalized web application, the ContextCollection is filled with all objects
relevant for processing the request prior to actually processing the request. Relevant
context data may be located in disparate sources (for example, internal CRM sys-
tems and external social community sites), thus a simple way to collect and combine
this data is required. This is the responsibility of the ContextCollector. The
ContextCollector can be invoked by either a Spring Web MVC handler inter-
ceptor that is installed in all handler chains requiring context data, or a servlet filter.
For this purpose, the implementations PersonalizationHandlerInterceptor
and PersonalizationServletFilter are provided. In the following, it is as-
sumed that the ContextCollector is set up as a handler interceptor, if not stated
otherwise.

The request flow

The sequence diagram below shows an example of how context objects are retrieved
and provided for further manipulation and decision making. In general, for every
request all context objects for the active user are loaded. These objects can be
used, for example, to select content to be rendered or keep track of the pages the
user visits. After request processing is finished, changed context objects are written
back to their source. The ContextCollection is then cleared.

Figure 4.3. ContextOb-
ject usage

Loading Contexts

For each request, the ContextCollector asks each of its ContextSources to
load its context objects and place them into the ContextCollection of the active
user.

Each ContextSource retrieves part of the user's context objects. For example,
the CookieSource checks if a specific cookie is available in the current request.
If it is, the value of the cookie is decoded into a context object and put into the
ContextCollection collection. If not, a new and empty context is created.

38CoreMedia DXP 8

Developing With Adaptive Personalization | Working With the User's Context

Using Contexts

Contexts objects can be read and modified throughout request processing. For
example, the contexts can be used to determine which content to show to the user
or to capture user behavior (see the Section 4.5, “Working With Scoring” [52]).

Storing Contexts

After request processing, each ContextSource gets the chance to persist the
contexts objects it is responsible for.

Supplied ContextSources

CoreMedia Adaptive Personalization comes with a set of ContextSources ready
to be used in your project. See Section 5.3, “Supplied Context Sources” [64] for a
table of all delivered sources.

A ContextSource typically requires a context name and a ContextFactory or
ContextCoDec instance to be appropriately configured. The name is used as the
key under which the context object is stored in the ContextCollection. Make
sure these names are unique to prevent replacing context objects added by other
sources. The ContextFactory or ContextCoDec is used by the source to create
new context instances and serialize as well as deserialize a context.

4.2.1 Configuring the Context Collector
The ContextCollector is responsible for collecting context data from Context
Sources. It can be invoked through a Spring MVC interceptor or a servlet filter
both of which must be installed in all handler chains that require user context data.

Figure 4.4. ContextCol-
lector position

ContextCollector

CustomSource-ACookieSource CustomSource-B

Controller ViewDispatcher

Request Response

preHandle postHandle afterCompletion

read clear

st
or

e

39CoreMedia DXP 8

Developing With Adaptive Personalization | Configuring the Context Collector

The ContextCollector manages a list of ContextSources to fill before pro-
cessing the request. Sources are processed in the order implied by the respective
list and the request and session lifecycle are mapped as follows to the Context
Source methods: preHandle and postHandle can be invoked by a servlet filter
or by the corresponding lifecycle methods of a Spring HandlerInterceptor,
preSession and postSession relate to sessionCreated and sessionDes
troyed of an HttpSessionListener.

In addition to the lists of context sources, you have got to provide a LicenseHelp
er bean, configured with a connection to the content server, as well as the Con
textCollection bean to be filled by the collector.

4.2.2 Implementing ContextSources
Implementing your own ContextSource is straightforward. It is quite similar to
the implementation of a Spring HandlerInterceptor in that the interface de-
clares several methods called in a request's lifecycle. What you do within those
methods is entirely up to you, but keep in mind that they are executed for each
request, so

➞ make them fast and

➞ make them robust.

You are free to throw any kind of exception within a ContextSource implement-
ation - the ContextCollector represents an exception firewall that will log the
exception and continue with the next source.

You will notice that almost all methods in the ContextSource interface expect
a ContextCollection argument. This argument represents the collection used
for the current request in the state at the time of the call. Hence, if source A's
preHandlemethod is executed before source B's, A will not see any objects added
later by B. Keep this in mind if you think about the order of your sources.

There are a couple of conventions you should follow to create a proper Context
Source:

➞ If you want your ContextSource to be independent of the type of context
object it manages (if your source is only concerned with storing and not
modifying contexts in any way, for example), support the ContextFactory
or ContextCoDec interfaces. Most context objects implement these inter-
faces and thus can readily be used by any source that supports them.

➞ If your source serializes and persists context objects, check for the Dirty
FlagMaintainer interface on a context object before storing it. If the in-
terface is implemented and the dirty flag is not set, you do not need to store
the context because it has not changed since it was last read. Make sure that
you reset the dirty flag if you save the context.

40CoreMedia DXP 8

Developing With Adaptive Personalization | Implementing ContextSources

Finally, if you do not need to execute logic in all request phases, you might want
to derive your source from AbstractContextSource, which provides empty
implementations of all ContextSource methods.

4.2.3 Implementing Context
Context objects are arbitrary POJOs, so you can define and implement them in the
way most suitable for your application.

If you want to reuse some of the functionality provided by CoreMedia Adaptive
Personalization, a specific ContextSource for example, you need to implement
the required interfaces. In particular, most ContextSource implementations re-
quire a ContextFactory or a ContextCoDec implementation for your context,
which provide the knowledge of how to create, serialize, and deserialize an instance
of your context. Most of them also use the DirtyFlagMaintainer interface,
writing a context object back into their respective stores only if the context's dirty
flag is set.

Figure 4.5. A Context-
Source implementing
typical interfaces

If your context objects contains properties that should be available in selection
rules, simply implement the PropertyProvider interface.

41CoreMedia DXP 8

Developing With Adaptive Personalization | Implementing Context

Figure 4.6. PropertyPro-
vider Interface

4.2.4 Working With Test Contexts
Test contexts allow you to test your personalized web pages by viewing them with
different user-context data in a preview CAE. You create a test context as a content
of type CMUserProfile in CoreMedia Studio. Within the CAE, test contexts are
created by an instance of TestContextSource.

By convention, test contexts are located in the /System/personalization/pro
files folder of the CoreMedia repository. A document with name 'DEFAULT' in
this folder will be used as the preselected test context for each newly created tab
in CoreMedia Studio.

The default settings of a TestContextSource assume that they are of content
type CMUserProfile and contain a blob property with MIME type text/plain
containing the context-property definitions using the syntax of a Java property file.
These properties are parsed into one or more context objects that implement the
PropertyProvider interface.

Setting Up a TestContextSource Instance

The TestContextSource requires an instance of CapConnection to be able to
retrieve the test contexts from CoreMedia CMS. In addition, the name of the expected
content type can be set. By default, it is assumed that test contexts are defined in
documents of type CMUserProfile.

Typically, you may want to set up a separate ContextCollector instance based
on test contexts. To this end, add the TestContextSource instance to that Con
textCollector bean and switch the collector instances before processing a re-
quest. The PreviewPersonalizationHandlerInterceptor switches context
collectors dependent on a request parameter indicating that test context sources
are to be used. See Section 4.2, “Working With the User's Context” [38] for details
on how the ContextCollector works.

Adapting a TestContextSource to Project-Specific Requirements

A TestContextSource retrieves a test-context document from the CMS and ap-
plies TestContextExtractors to the document. The responsibility of a Test

42CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Test Contexts

ContextExtractor is to create test contexts from the values of document
properties and add them to the supplied ContextCollection instance. By default,
TestContextSource applies the PropertiesTestContextExtractor, which
creates test contexts given a plaintext blob containing Java-style property declara-
tions.

public interface TestContextExtractor {
void extractTestContextsFromContent(final Content content,

final ContextCollection contextCollection);
}

You can set the extractors to be applied using the ContextExtractors property
of the source. This allows you to use new properties or properties with differently
structured values to define your test contexts without reimplementing the func-
tionality of TestContextSource. For example, to use another property in your
test-context documents, follow the following steps:

1. Add the property to the content type definition of CMUserProfile.

2. Implement a new TestContextExtractor that knows how to create test
contexts from the value of your new property.

3. Set the list of extractors to be used by the TestContextSource in your CAE
to contain the default PropertiesTestContextExtractor as well as your
own extractor.

You can also change the name of the test-context content type by setting the
TestContextDocType property of TestContextSource.

Customizing the Persona Form

In order to customize the rendering of a CMUserProfile via the Persona Form
component, you need to understand the underlying basic architecture: The UI
component consists of property containers (PersonaGroupContainer, for ex-
ample) that hold one or more property fields (PersonaStringProperty, for
example). You can configure each of the existing implementations or add your
own. To change the appearance of property fields and containers have a look at
Section 3.3, “Configuring The Persona Form” [26].

43CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Test Contexts

Figure 4.7. Property
container and field

Adding your own property field

You can define your own property field in addition to the already existing ones,
such as the PersonaNumberPropertyField. Your new field needs to contain
three major parts:

44CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Test Contexts

➞ It needs to get the context data

➞ It needs to access the propertyContext and propertyName

➞ It needs to bind the entered data to the context property

Get the context data

The user context data is actually a text blob which is interpreted as a properties
object. The blob information is stored in a ValueExpression accessed via the
bindTo property of the documents's backing config object (see the Studio De-
veloper Manual for details). This ValueExpression is "forwarded" to the child
components of the CMUserProfile document. Each child component can access
and listen to changes of its given (sub)property. Furthermore, each child component
needs to implement the forwarding mechanism as well. You do this by adding a
default attribute to your component which is responsible for telling every item to
get the corresponding ValueExpression.

Access propertyContext and propertyName

If you write your own property field, you need to specify the name and the context
of the property you want to add. Therefore, you need to configure two attributes
to accept the forwarded propertyContext and propertyName. This could be
done by adding the following snippet underneath your EXML imports:

<exml:cfg name="propertyContext" type="String">
<exml:description>the context of the Bean-property
to bind in this field</exml:description>

</exml:cfg>

<exml:cfg name="propertyName" type="String">
<exml:description>the property of the Bean to
bind in this field</exml:description>

</exml:cfg>

Bind your field to the property

By configuring these attributes, you are able to access your property by setting
these values to your propertyBinding inside your property field. Examples are
given in the p13n-studio module of the CoreMedia Blueprint development
workspace.

45CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Test Contexts

4.3 Working With Selection Rule Lists
Content Selection Rules allow an editor to define a set of rules that determine
which content items to show based on the active user's context. For example, the
entry page of a site could take the user's local time into account when selecting a
welcome message. To this end, rules that determine what to show under certain
conditions are stored in a document property which is evaluated in the CAE at time
of delivery.

A selection rule is of the general form:

select <some content> if <some conditions>

Here <some content> specifies the content to be selected if <some condi
tions> evaluate to true. The content is specified by its unique id using the syntax
content:<id>, while conditions are specified using <context property name>
<operator> <value>.

<context property name>

The <context property name> can have two different forms:

➞ It can consist of the name of the context object, followed by a dot ('.') and
followed by the name of the context property you want to test in the condi-
tion.

Example:

select content:23 if count.foo > 12

➞ It can consist of the name of the context object, followed by some more in-
formation in brackets ('[]'). Using this notation, the information can simply
consist of the context property name, or of a content ID using the syntax
content:<id>, or an arbitrary string in double quotes. The property name
is handled as in the form above.

Example:

select content:23 if count[foo] > 12
select content:23 if count[content:12] > 12
select content:23 if count["some complex key"] > 12

<operator>

<operator> is one of the supported comparison operators. These are:

46CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Selection Rule Lists

Table 4.1. Supported
operators

DescriptionOperator

Equals=

Less than<

Less than or equal<=

Greater than>

Greater than or equal>=

Not equal!=

Contains as substring. Only used for string literals#

<value>

<value> is the literal value to compare the property value to. Supported types
are:

Table 4.2. Supported
values

DescriptionType

true or falseBoolean

Examples: 2.34, 0.543e-12Float

Examples: 42, 1093Integer

A date in ISO8601 format (yyyy-mm-ddThh:mm:ss) 2010-12-
15T17:08:52, for instance

Date

Time of day in the format hh:mm:ss, 23:01:00, for exampleTime

A string literal enclosed in double quotes. Java escape sequences
are supported. Examples: "foo", "frob\\\bnitz"

String

A representation of a content ID, following the syntax con
tent:<id>. For example, content:4712. Only equal and
not equal operators are supported.

ContentId

The Evaluation of a condition is performed as follows:

1. Determine the type of the value used in the condition.

2. Retrieve the value of the context property.

3. If the type of the context property value can be compared to the type of the
condition value, perform the comparison.

4. Otherwise, evaluate to false.

47CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Selection Rule Lists

If the context does not contain the property specified in the condition, the behavior
depends on the type of the comparison value:

Table 4.3. Behavior
when the context does
not contain the spe-
cified property

BehaviorType

Assume property is falseBoolean

Assume property is 0Float

Assume property is 0Integer

Evaluate to falseDate

Evaluate to falseTime

Evaluate to falseString

Evaluate to falseContentId

Conditions can be combined using "and" and "or" in their familiar semantics. Fur-
thermore, negation (not) and parentheses are supported. Thus, the following is a
valid condition:

behavior.good = true and not
(datetime.date > 2010-12-25T00:00:00 or vcard.name = "Santa")

Rules are separated via a newline character or a semicolon, for example

select content:23 if count.foo > 12; select content:42 if count.foo
< 5

The SelectionRuleProcessor

Rules are evaluated by an instance of SelectionRuleProcessor. Its constructor
expects a string containing the rules which are transformed into a representation
that can be evaluated very efficiently. The process* method apply the rules to
the supplied ContextCollection and return a list of all content items selected
in order of their corresponding rules.

The SelectionRuleProcessor can only access context objects of type Proper
tyProvider, so make sure that all properties you are using in your rules are ac-
cessible via such an object. All context classes supplied with CoreMedia Adaptive
Personalization implement the PropertyProvider interface.

SelectionRuleProcessor instances can and should be cached, because the
process of transforming a string of rules into an internal representation is expensive
and not user or context dependent. The recommended pattern is to add a property
getter to your content beans that returns a SelectionRuleProcessor instance
representing the rules stored in the associated document, then define a data view

48CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Selection Rule Lists

on the getter with association type static. See the Content Applications Developer
Manual for a detailed description of data views.

Figure 4.8. Caching
SelectionRulePro-
cessor instances

Saving Rules as an XML Property

Selection Rules created via CoreMedia Studio are saved in XML format using the
grammar coremedia-selectionrules-1.0. In this representation, references
to content objects (including user segment definitions) are encoded as xlink at-
tributes allowing the CoreMedia Content Server to check whether the referenced
content is available on the live servers before publishing the rules.

To convert rules in XML format into the plain text format expected by the Selec
tionRuleProcessor, use the helper class XMLCoDec.

49CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Selection Rule Lists

4.4 Working With User Segments
User segments represent groups of website visitors. Users belong to a segment if
they satisfy the conditions associated with the respective segment, for example if
a user is a premium user and at most 35 years old.

Segment conditions are stored in a property of a content type that represents
segments in your application. In CoreMedia Blueprint, this content type is called
CMSegment. These conditions are used by the SegmentSource to determine
membership in a segment.

CoreMedia Adaptive Personalization offers a CoreMedia Studio field editor for segment
conditions called ConditionsField.

Configuring the SegmentSource

SegmentSource is a ContextSource implementation that evaluates segment
conditions to determine the current user's membership in a segment. The source
evaluates the conditions in its preHandlemethod for each request. The conditions
are applied to the contents of the ContextCollection at the time of invocation
of preHandle, thus the SegmentSourcemust be placed behind all other sources
that provide context information used in the segment conditions.

Membership in a segment is indicated by a property of the segment's simplified
content id (content:<id>) of the document representing the segment. So a segment
represented by content 42 will be mapped to the property 'content:42'. This
property is set to the Boolean value 'true' if the user is a member of the segment;
segments a user does not belong to are either not represented in the context or
are assigned a value of 'false'.

The SegmentSource requires a reference to the Cache used for storing prepro-
cessed segment conditions and to the ContentRepository to retrieve segment
documents. Further, as with all sources, you've got to provide the name of the
context to be used to store the segment properties.

Optionally, you may configure in which folder of the repository the source looks
for segment documents, the content type used to represent segments, and the
name of the property of the content type that contains the segment conditions.

Table 4.4. Properties of
SegmentSource

DescriptionDefaultRe-
quired

Property Name

Reference to the CoreMedia Cache to be used
to store preprocessed segment conditions.

Yescache

50CoreMedia DXP 8

Developing With Adaptive Personalization | Working With User Segments

DescriptionDefaultRe-
quired

Property Name

Reference to the content repository contain-
ing the segment documents.

 YescontentRe-
pository

Name to be used for the context containing
the segment properties.

YescontextName

Repository folder in which to look for segment
documents.

/System/person-
alization/seg-
ments

NopathToSeg-
ments

Name of the content type used to represent
user segments.

CMSegmentNosegmentDoc-
Type

Property of the segment content type that
contains the segment conditions.

conditionNocondition-
Property-
Name

Configuring the property editor used for segment conditions

ConditionsField is a property editor for conditions. This editor is configured
similar to the SelectionRuleField by supplying the list of supported condition
types and their mapping to user profile properties.

Configuring the SelectionRulesField to offer conditions on user
segments

To enable conditions on user segments in the SelectionRulesField property
editor, configure the SegmentCondition component. Make sure its propertyPre
fix attribute matches the name of the context object used for storing segments
in the CAE.

51CoreMedia DXP 8

Developing With Adaptive Personalization | Working With User Segments

4.5 Working With Scoring
Scoring is a simple means to abstract an individual user's behavior on a website.
In general, the idea is to assign scores to certain observable events and to combine
these scores with the user's current scores whenever the events are observed.

Example

Assume the pages on a website are tagged with keywords and you want to keep
track of how often the user visits pages tagged with a specific keyword. In this
scenario, a visit on a page is an observable event, and the scores are the counters
associated with each keyword. Whenever the user visits a page, the scores of all
associated keywords are incremented by 1.

CoreMedia Adaptive Personalization supports scoring via the ScoringContext. It
manages a set of scores and uses a ScoringStrategy to update scores if events
are observed.

Figure 4.9. Scoring
classes

CoreMedia Adaptive Personalization comes with a set of predefined scoring strategies:

➞ CountScoring This strategy simply counts the occurrence of events. That
is, for each supplied event, the corresponding score is incremented. This
strategy can be used to implement the keyword scenario described above.

➞ PercentageFromMaxScoring This strategy weights each score by its
percentage of the maximum score value. For each event, a score of the cor-
responding key is maintained and incremented by 1 whenever the event is
observed.

➞ PercentageFromTotalScoring This strategy weights each score by its
percentage of the sum of all scores. For each event, a score of the corres-

52CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Scoring

ponding key is maintained and incremented by 1 whenever the event is
observed.

Going back to the keyword example, assume that page A is tagged with keywords
'foo' and 'bar', and page B is tagged with 'bar'. Further, assume that a new user
visits page A once and page B twice. Here is the table of scores that result from
applying the different strategies:

Table 4.5. Example
results

barfooStrategy

31CountScoring

3/31/3PercentageFromMaxScoring

3/41/4PercentageFromTotalScoring

In addition to the application specific scores, two general scores are maintained
by all three strategies:

➞ __max__ contains the maximum score of all scores maintained by the context

➞ __total__ contains the current total of all scores maintained by the context

The scoring strategies are interchangeable, that is, if you start with one you can
reconfigure your system later to use a different one without loosing any data.

Configuring a ContextSource to use the ScoringContext

ScoringContext provides its own ContextCoDec implementation in the static
inner class ScoringContext$CoDec. The codec can be used in any source that
accepts a ContextCoDec or a ContextFactory. Because the ScoringContext
requires a ScoringStrategy, you must inject the strategy you want to use for
all decoded and created contexts into the codec.

Here is an example of how to configure a CookieSource to use a ScoringCon
text with the PercentageFromTotalScoring strategy:

<bean id="scoringCookie"
class="com.coremedia.personalization.context.collector.CookieSource"

type="singleton">
<property name="contextCoDec">
<bean class="com.coremedia.personalization.scoring.

ScoringContext$CoDec">
<property name="strategy">
<bean class="com.coremedia.personalization.scoring.

PercentageFromTotalScoring"/>
</property>

</bean>
</property>

53CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Scoring

<property name="contextName" value="scoringContext"/>
</bean>

Writing your own ScoringStrategy

Writing your own scoring strategy is as simple as implementing the Scoring
Strategy interface. Keep in mind that your implementation must be thread-safe
because it is typically shared by several ScoringContext instances. Ideally, you
simply do not use any modifiable state that is shared among threads.

In typical scenarios, processing events is far more frequent than reading scores.
Thus, it's sensible to perform costly updates lazily only when scores are requested.
To this end, your strategy may implement the ScoreValueTransformer interface.
If a strategy implements this interface, the ScoreValueTransformer#transform
method is called by the ScoreContext#getScoremethod and its result returned
as the score. The supplied strategies PercentageFromMaxScoring and Percent
ageFromTotalScoring use this to perform the normalization of values only at
the time of access.

The third interface that is relevant to scoring is MergeStrategy: A Scoring
Strategy that allows merging of two sets of scores should implement this inter-
face. Merging of scores is useful if you want to combine data from different context.
A typical scenario is as follows: A user logs into your site and his scoring context
is persisted in a database. Later, the user returns to the site and browses without
logging in, thus new scores are collected. Then, with the user logging in, the
formerly persisted data becomes available and can now be merged with the scores
collected while the user was anonymous.

If your ScoringStrategy implements the MergeStrategy interface, a Scor
ingContext using your strategy will be able to perform the mergeWith operation.

Using a ScoringContext to track Keyword Clicks

CoreMedia Adaptive Personalization provides the KeywordInterceptor for the
common use case in which you want to count the keywords associated with the
pages a user clicks on. The KeywordInterceptor intercepts a CAE request after
the controller but before the view is rendered and attempts to extract keywords
from the 'self' bean in the model that is to be supplied to the view dispatcher. These
keywords are sent as events to the configured ScoringContext. See the respective
Javadoc for details.

54CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Scoring

4.6 Working With Search Queries
You can use queries to the CoreMedia Search Engine to dynamically compile parts
of your website's pages. Nevertheless, using this method, you do not have context
information for your queries. To solve this problem, search functions provided by
CoreMedia Adaptive Personalization come in handy. They enable you to include
context-specific data into your queries, thus providing you with another means to
adapt your site to the visitor.

Example

You use folders in the CMS repository, that represent a specific user segment. That
is, each folder contains content that will be shown to a user who is member of the
respective segment. Now, you compile a page about sports products and want to
show content depending on the user's segment. Let's say, Skateboard products for
the young urban segment and Golf products for the successful prime-age manager
segment. Now, you can use a search query similar to sports userSegment().
Where userSegment() is a search function that is evaluated at query time and
presumably adds the required folder constraint to the query. That is, if the user is
in the segment mapped to the folder of id 23, the string actually sent to the search
engine would be sports folderid:23 (assuming folderid is the field, IDs of
folders get fed to).

CoreMedia Adaptive Personalization comes with some generally useful functions in
the com.coremedia.personalization.search package. Nevertheless, since
search functions are very project specific, you will use these delivered functions
as a starting point for your own functions.

➞ In Section 4.6.1, “Evaluation Of Search Functions” [55] you will learn how
search functions are evaluated.

➞ In Section 4.6.2, “Implementing Search Functions” [56] you will learn how
to write your own search functions.

4.6.1 Evaluation Of Search Functions
Typically, you access your Search Engine from within a content bean implementation.
Within the bean, you will do the following things:

1. Read the query string from a property of the associated Content object

2. Use a Search Engine connection to send the query to the Search Engine

3. Retrieve the result object

4. Iterate over the results to map them to content beans which can then be
provided to the template for rendering.

55CoreMedia DXP 8

Developing With Adaptive Personalization | Working With Search Queries

If your query string contains calls to search functions, you can't just provide the
string to the Search Engine because the Search Engine doesn't know what to do with
the functions. So, you first got to evaluate the functions and replace their calls by
their respective results, thus creating a syntactically correct query string that can
be send to the engine. Evaluation and replacement of search function calls is per-
formed by the SearchFunctionPreprocessor.

Figure 4.10. Evaluat-
ing a Search Function

4.6.2 Implementing Search Functions
The SearchFunctionPreprocessor maintains a map of search function names
and implementations. The registered name of a function is used to call it from
within the query string and, if a call is encountered in the query, it's replaced by
the result of the executed implementation.

A search function implementation is an instance of a Java class that implements
the SearchFunction interface. This interface contains a single method only;
evaluate. The preprocessor supplies the ContextCollection associated with
the current request and all function arguments supplied in the function call to this
method.

What's happening inside of the evaluate method is entirely up to you. The only
constraint is that the resulting string should by a syntactically valid (sub)query to
your Search Engine.

Search function arguments are in the form <parameter name>:<value> and
are supplied to a function in an instance of class SearchFunctionArguments.
The latter provides a number of convenience methods to access arguments and
convert their values to appropriate types.

If you implement your own search functions, make sure they are thread safe be-
cause the SearchFunctionPreprocessor is usually declared as a singleton

56CoreMedia DXP 8

Developing With Adaptive Personalization | Implementing Search Functions

Spring bean. This means that several request threads may access the preprocessor
and the registered search functions in parallel.

Example

The search function SolrGeneralProperty, which is provided as part of Core-
Media Adaptive Personalization, provides access to a general context property from
within a query in Solr syntax. If it is registered with the SearchFunctionPrepro
cessor under the name "contextProperty", preprocessing the query recommend
ations contextProperty(property:personal.name, field:user) calls
the evaluate method of the registered instance of SolrGeneralProperty
supplying the current ContextCollection and function arguments prop
erty:personal.name and field:user.

SolrGeneralProperty looks up the context object named "personal" in the
ContextCollection and retrieves the value of its property name, which is as-
sumed to be "bob". Then, it concatenates the field argument with the retrieved
name to the valid Solr search query "user:bob" and returns this string.

The preprocessor replaces the function call by the returned string, resulting in the
query "recommendations user:bob".

Exception Handling

The SearchFunctionPreprocessor wraps any exception that is thrown while
evaluating a search function's evaluate method in a runtime exception of type
SearchFunctionEvaluationException. In addition to the exception cause,
the SearchFunctionEvaluationException is supplied with the name under
which the executing search function is registered.

Implementations of SearchFunction are encouraged to use one of the Argu
ment*Exception classes if there is any problem with the arguments supplied in
SearchFunctionArguments. These exception classes are known to the Core
Media Studio integration provided as part of CoreMedia Blueprint and are used
to provide improved feedback to CoreMedia Studio users in case they make any
mistakes using search functions.

Spring Configuration

The SearchFunctionPreprocessor is intended to be configured as a Spring
bean. It is thread safe so using the default Spring singleton scope is fine.

Here is an example configuration that registers three search functions with the
processor:

<bean class="com.coremedia.personalization.search. \
SearchFunctionPreprocessor">

<property name="functions">
<map>

57CoreMedia DXP 8

Developing With Adaptive Personalization | Implementing Search Functions

<entry key="userKeywords">
<bean class="com.coremedia.personalization. \

search.solr.SolrScoredKeys">
<property name="defaultLimit" value="5"/>
<property name="defaultThreshold" value="0"/>

<property name="defaultContextName" value="keyword"/>
<property name="defaultField" value="keywords"/>

</bean>
</entry>
<entry key="userSegments">
<bean class="com.coremedia.personalization. \

search.solr.SolrSegments"/>
</entry>
<entry key="contextProperty">
<bean class="com.coremedia.personalization.search. \

solr.SolrGeneralProperty"/>
</entry>

</map>
</property>

</bean>

4.6.3 Adding Help Texts
In order to support the users of your search functions, you can add a help text to
CoreMedia Studio. This text might describe, for example, how to call the function,
what the function does and what arguments are required.

Figure 4.11. Example
of a help text

58CoreMedia DXP 8

Developing With Adaptive Personalization | Adding Help Texts

To add a help text, CoreMedia Adaptive Personalization provides the
SearchQueryHelper component in cap-personalization-ui. The help text
is written as an HTML file. Proceed as follows:

Write your help text and store the file as SearchFunctionHelp.html in the
directory joo/resources/html-includes/ of your web application.

Add the SearchQueryHelper with the tag <perso:SearchQueryHelper> to
the document form where it should be shown.

59CoreMedia DXP 8

Developing With Adaptive Personalization | Adding Help Texts

4.7 Localizing the Studio Plugin
The Studio plugin of CoreMedia Adaptive Personalization enhances CoreMedia Studio
with several UI components. You can adapt any labels shown by these components.
To do so, override the respective properties in the global CoreMedia Studio Re
sourceBundle either programmatically or by using a property file.

All changes that are done programmatically have to be applied in the initmethod
of the class PersonalizationEditorPlugin that is located in the p13n-studio
module of the CoreMedia Blueprint development workspace.

60CoreMedia DXP 8

Developing With Adaptive Personalization | Localizing the Studio Plugin

5. Appendix

61CoreMedia DXP 8

Appendix |

5.1 Condition Types
The following condition types exist in CoreMedia Adaptive Personalization:

Table 5.1. Condition
types

DescriptionName

Used for defining conditions on user segments. Plugins may
use the addPath, removePath and clearPath

SegmentCondition

method to adapt the set of repository paths' that are searched
for segment definitions. Supports theaddpath plugin provided
by CoreMedia Adaptive Personalization.

Used for defining conditions on dates, such as the current date.DateCondition

Used for defining conditions on string-valued properties.StringCondition

Used for defining conditions on properties that can take on a
limited set of values.

EnumCondition

Used for defining conditions on float-valued properties.FloatCondition

Used for defining conditions on integer-valued properties.IntegerCondition

Used for defining conditions on properties that represent
timestamps consisting of hours, minutes, and seconds.

TimeCondition

Used for defining conditions on Boolean-valued properties.BooleanCondition

Used for defining conditions on properties that represent a date
and a timestamp, such as March 12, 2011, 15:13:02h

DateTimeCondition

Used for defining conditions that test the values of keywords
stored as properties. In contrast to the previous conditions, this

KeywordCondition

condition isn't mapped to a property name but a property prefix.
The substring following the prefix is assumed to be the keyword.

This corresponds to a KeywordCondition but instead of
accepting arbitrary floating point values, it only accepts integers

PercentageKeywordCondi-
tion

between 0 and 100, which are mapped to a floating point value
between 0 and 1. This condition isn't mapped to a property name
but a property prefix. The substring following the prefix is as-
sumed to be the keyword.

A condition that tests whether a Boolean property is set to true.
You provide the set of available properties to choose from. This

BooleanPropertiesCondi-
tion

condition is not mapped to a property name but a property
prefix. The substring following the prefix is assumed to be the
name of the Boolean property.

For example, if propertyPrefix="flags" and prop
erties="\{\[\['sports', 'Sport News'\]\]\}",
the UI will show a property Sport News. If selected, the
condition flags.sports=true will be added to the re-
spective selection rule.

62CoreMedia DXP 8

Appendix | Condition Types

5.2 Content Types
CoreMedia Blueprint comes with content types suitable for CoreMedia Adaptive Per-
sonalization

63CoreMedia DXP 8

Appendix | Content Types

5.3 Supplied Context Sources
Here is a list of context sources delivered with CoreMedia Adaptive Personalization.
Find the details about their use in the respective API documentation.

Table 5.2. Supplied
context sources

DescriptionName

This source stores a context object in a cookie. The parameters
of the used cookie (such as its max age) can be configured via

CookieSource

properties of the source. The source serializes the context into
a string and then base-64 encodes this string before writing it
to the cookie.

This source adds a context object containing several properties
related to the system's date and time. The added context imple-
ments the PropertyProvider interface.

SystemDateTime
Source

This source stores and retrieves contexts to and from a
TableStore implementation. A TableStore can be any-

TableStoreSource

thing capable of persisting key-value pairs, such as a relational
database or a persistent hash map. TableStoreSource
also requires a UserIdProvider that is expected to return
a unique id for the current user. This id is used to construct the
key used to store the context object.

This source provides a context that indicates the user segments
the current user is a member of. See Section 4.4, “Working With
User Segments” [50] for details.

SegmentSource

This source reads test contexts from the CMS repository. See
Section 4.2.4, “Working With Test Contexts” [42] for details.

TestContextSource

64CoreMedia DXP 8

Appendix | Supplied Context Sources

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in
other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content, that
is managed in CoreMedia CMS and third-party systems. Technically, a content
bean is a Java object that encapsulates access to any content, either to Core-
Media CMS content items or to any other kind of third-party systems. Various
CoreMedia components like the CAE Feeder or the data view cache are built
on this layer. For these components the content beans act as a facade that
hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is
delivered to the end-user.

It may contain any of the following modules:

➞ CoreMedia Master Live Server

➞ CoreMedia Replication Live Server

➞ CoreMedia Content Application Engine

➞ CoreMedia Search Engine

➞ Elastic Social

65CoreMedia DXP 8

Glossary |

➞ CoreMedia Adaptive Personalization

Content Feeder The Content Feeder is a separate web application that feeds content items of
the CoreMedia repository into the CoreMedia Search Engine. Editors can use
the Search Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following modules:

➞ CoreMedia Content Management Server

➞ CoreMedia Workflow Server

➞ CoreMedia Importer

➞ CoreMedia Site Manager

➞ CoreMedia Studio

➞ CoreMedia Search Engine

➞ CoreMedia Adaptive Personalization

➞ CoreMedia CMS for SAP Netweaver ® Portal

➞ CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is
stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

➞ Content Management Server

➞ Master Live Server

➞ Replication Live Server

66CoreMedia DXP 8

Glossary |

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it clients,
partners or CoreMedia employees. CoreMedia contributions are hosted on
Github at https://github.com/coremedia-contributions.

Controm Room Controm Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed
object standard which enables interoperation between heterogenous applic-
ations over a network. It was created and is currently controlled by the Object
Management Group (OMG), a standards consortium for distributed object-
oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all of the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exists.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the docu-
ment prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier.
The System Identifier is just that: a URL to the DTD. The Public Identifier is
an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can
moderate user generated content from their common workplace. Elastic Social
bases on NoSQL technology and offers nearly unlimited scalability.

67CoreMedia DXP 8

Glossary |

https://github.com/coremedia-contributions

EXML EXML is an XML dialect supporting the declarative development of complex
Ext JS components. EXML is Jangaroo's equivalent to Adobe Flex MXML and
compiles down to Actions Script.

Folder A folder is a resource in the CoreMedia system which can contain other re-
sources. Conceptually, a folder corresponds to a directory in a file system.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for all
subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engin-
eering Task Force (IETF). It includes the definition of IETF language tags, which
are an abbreviated language code such as en for English, pt-BR for Brazilian
Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using
traditional Han characters.

Importer Component of the CoreMedia system for importing external content of
varying format.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with which
a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
ActionScript as an input language which is compiled down to JavaScript. You
will find detailed descriptions on the Jangaroo webpage ht-
tp://www.jangaroo.net.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification are
already integrated with Java 5. JMX provides a tiered architecture with the
instrumentation level, the agent level and the manager level. On the instru-
mentation level, MBeans are used as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It re-
ceives the published content from the Content Management Server and makes
it available to the CAE. If you are using the CoreMedia Multi-Site Management
Extension you may use multiple Master Live Server in a CoreMedia system.

68CoreMedia DXP 8

Glossary |

http://www.jangaroo.net
http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part,
multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects A project is a collection of content items in CoreMedia CMS created by a
specific user. A project can be managed as a unit, published or put in a
workflow, for example.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content items depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers
and to improve the robustness of the Content Delivery Environment. The Rep-
lication Live Server is a complete Content Server installation. Its content is an
replicated image of the content of a Master Live Server. The Replication Live
Server updates its database due to change events from the Master Live Server.
You can connect an arbitrary number of Replication Live Servers to the Master
Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number of
key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes re-
ferred to as localized site. In CoreMedia CMS a site especially consists of a site
folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

69CoreMedia DXP 8

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a
site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users
and workflows.

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site and
that they accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined
by typically an administrative user a content editor can use this template to
quickly create a complete new page including, for example, navigation, pre-
defined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in
the Control Room, as a part of projects and workflows.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can
be declared with the weak attribute, so that they are not checked during
publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

WebDAV WebDAV stands for World Wide Web Distributed Authoring and Versioning
Protocol. It is an extension of the Hypertext Transfer Protocol (HTTP), which
offers a standardised method for the distributed work on different data via
the internet. This adds the possibility to the CoreMedia system to easily access
CoreMedia resources via external programs. A WebDAV enabled application
like Microsoft Word is thus able to open Word documents stored in the
CoreMedia system. For further information, see http://www.webdav.org.

70CoreMedia DXP 8

Glossary |

http://www.webdav.org

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the work-
flow software ensures that the individuals responsible for the next task are
notified and receive the data they need to execute their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environ-
ment. It comes with predefined workflows for publication and global-search-
and-replace but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated but
also metadata about the text. For example, the source and target language.
CoreMedia Studio allows you to export content items in the XLIFF format and
to import the files again after translation.

71CoreMedia DXP 8

Glossary |

Index

A
architecture, 33

B
behavior tracking, 18

C
caching, 25
condition types , 62
context

implementing, 41
context sources, 64

implementing, 40
ContextCollector, 39

D
dashboard, 13

R
request processing, 33

S
Scoring, 52
ScoringStrategy, 53
SegmentSource, 50
selection rules

format, 49
SelectionRuleProcessor, 48

T
test context, 42
TestContextField, 22

72CoreMedia DXP 8

Index |

	CoreMedia Adaptive Personalization Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Change Chapter

	2. Overview
	2.1 Example Scenario
	2.2 Architectural Overview
	2.3 Building Blocks

	3. Configuration and Operation
	3.1 Defining Property Editors
	3.2 Configuring Caching For Rules and Condition Evaluation
	3.3 Configuring The Persona Form
	3.4 Configuring The PersonaSelector
	3.5 Localizing the Persona Info Window
	3.6 Monitoring Components With JMX

	4. Developing With Adaptive Personalization
	4.1 Architectural Overview
	4.2 Working With the User's Context
	4.2.1 Configuring the Context Collector
	4.2.2 Implementing ContextSources
	4.2.3 Implementing Context
	4.2.4 Working With Test Contexts

	4.3 Working With Selection Rule Lists
	4.4 Working With User Segments
	4.5 Working With Scoring
	4.6 Working With Search Queries
	4.6.1 Evaluation Of Search Functions
	4.6.2 Implementing Search Functions
	4.6.3 Adding Help Texts

	4.7 Localizing the Studio Plugin

	5. Appendix
	5.1 Condition Types
	5.2 Content Types
	5.3 Supplied Context Sources

	Glossary
	Index

