
CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Search Manual

CoreMedia Search Manual
Copyright CoreMedia AG © 2015

CoreMedia AG

Ludwig-Erhard-Straße 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

iiCoreMedia DXP 8

CoreMedia Search Manual |

1. Preface .. 1
1.1. Audience .. 2
1.2. Typographic Conventions .. 3
1.3. CoreMedia Services .. 5

1.3.1. Registration .. 5
1.3.2. CoreMedia Releases .. 5
1.3.3. Documentation .. 6
1.3.4. CoreMedia Training .. 8
1.3.5. CoreMedia Support . 9

1.4. Change Chapter . 12
2. Overview .. 13
3. Search Engine .. 15

3.1. Starting .. 16
3.2. Solr Home Directory .. 17
3.3. Reindexing .. 20
3.4. Creating Backups .. 25
3.5. Searching in Different Languages .. 26

3.5.1. Details of Language Processing Steps 26
3.5.2. Configuring Multi-Language Search 28

4. Searching for Content .. 33
4.1. Concepts .. 34
4.2. Configure the Content Feeder .. 37

4.2.1. Required Configuration .. 37
4.2.2. Content Configuration .. 39
4.2.3. Advanced Configuration .. 47

4.3. Configure Search for the Content Server .. 50
4.4. Configure Search Suggestions for Studio .. 52
4.5. Modify the Search Index .. 55
4.6. Operation of the Content Feeder .. 56
4.7. Implementing Custom Search .. 59

5. Searching for CAE Content Beans .. 60
5.1. Architectural Overview .. 61
5.2. Configuring the CAE Feeder .. 62
5.3. Operations of the CAE Feeder .. 65

5.3.1. Starting and Stopping .. 65
5.3.2. Resetting .. 65
5.3.3. Disabling Invalidations .. 66

5.4. Indexing Content Beans .. 67
5.4.1. Specifying the Set of Indexed Content
Beans .. 67
5.4.2. Configuring Content Bean Classes 68

iiiCoreMedia DXP 8

CoreMedia Search Manual |

5.4.3. Customizing Feedables .. 68
5.4.4. Modifying the Search Index .. 73
5.4.5. Using Revalidating Fragments .. 73

5.5. Integrating a Different Search Engine .. 81
5.6. CAE Feeder for API Use .. 84
5.7. Implementing Custom Search .. 86

6. Appendix .. 87
6.1. Content Feeder Configuration .. 88
6.2. Content Feeder JMX Managed Beans .. 100
6.3. CAE Feeder Configuration .. 107
6.4. CAE Feeder JMX Managed Beans .. 113
6.5. Solr Indexer JMX Managed Beans .. 124
6.6. Supported Languages in Solr Language Detection 125

Glossary .. 127
Index .. 134

ivCoreMedia DXP 8

CoreMedia Search Manual |

List of Figures
3.1. New Solr Core .. 21
3.2. Swap Solr Cores .. 22
3.3. Unload old Solr Core .. 23
4.1. Search Engine Integration .. 34
4.2. Content Feeder Administration .. 57
5.1. CAE Feeder architecture .. 61

vCoreMedia DXP 8

CoreMedia Search Manual |

List of Tables
1.1. Typographic conventions .. 3
1.2. Pictographs .. 3
1.3. CoreMedia manuals . 6
1.4. Log files check list . 10
1.5. Changes .. 12
5.1. Properties for retry on Solr server .. 64
5.2. Feedable Element Types for Java Bean Properties 72
6.1. Solr specific properties .. 88
6.2. Properties for login .. 89
6.3. Partial update configuration .. 90
6.4. Properties for batch configuration .. 90
6.5. Properties to feed additional items .. 92
6.6. Properties to specify document types. 93
6.7. Include property types .. 94
6.8. Tika configuration .. 95
6.9. Properties to configure ImageDimensionFeedablePopulat-
or. 96
6.10. Properties for Content Feeder configuration .. 97
6.11. Attributes for statistics time intervals . 98
6.12. JMX manageable attributes of the Content Feeder 100
6.13. JMX operations of the Content Feeder .. 106
6.14. Configuration of general properties independent from the
type of the search engine .. 107
6.15. Configuration properties for Apache Solr . 112
6.16. Attributes of the Feeder MBean .. 113
6.17. Attributes of the ProactiveEngine MBean .. 122
6.18. Properties of SolrIndexer MBean .. 124
6.19. Supported Languages .. 125

viCoreMedia DXP 8

CoreMedia Search Manual |

List of Examples
5.1. Configure the Content Server .. 62
5.2. Configure the database .. 62
5.3. Configure the Search Engine for Apache Solr . 63
5.4. ContentSelector example .. 67
5.5. Definition of FeedableContentBeanEvaluator .. 68
5.6. Example Content Bean to Feedable Mapping .. 71
5.7. Example of a fragment key implementation .. 75
5.8. Example of a PersistenCacheKeyFactory implementation 78
5.9. Define and register the factory in the Spring context 79
5.10. Using the fragment key in the content bean .. 79
5.11. Configure content bean with factory .. 80
5.12. caefeeder.xml .. 84
5.13. Create CAE Feeder .. 85

viiCoreMedia DXP 8

CoreMedia Search Manual |

1. Preface

This manual describes the concepts of the CoreMedia Search Engine and how data
is indexed with Content Feeder, CAE Feeder and Elastic Social. You will learn how to
configure and operate these applications and how to customize them.

1CoreMedia DXP 8

Preface |

1.1 Audience
This manual is intended for all administrators and developers that use the CoreMedia
Search Engine. If you want to use the CAE Feeder, you should also read the [Content
Application Developer Manual] in order to become familiar with the Content Applic-
ation Engine. For searching in Elastic Social you should also read the [Elastic Social
Manual].

2CoreMedia DXP 8

Preface | Audience

1.2 Typographic Conventions
CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:

Table 1.1. Typographic
conventions

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entry

Format|Normal

Bold, linked with |Menu names and entries

Enter in the field Heading

The CoreMedia Component

ItalicField names

CoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed
keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \

-u user

\Code lines in code examples
which continue in the next
line

See the [Studio Developer
Manual] for more information.

Square BracketsMention of other manuals

In addition, these symbols can mark single paragraphs:

Table 1.2. PictographsDescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

3CoreMedia DXP 8

Preface | Typographic Conventions

DescriptionPictograph

Danger: The violation of these rules causes severe damage.

4CoreMedia DXP 8

Preface | Typographic Conventions

1.3 CoreMedia Services
This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.3.1,
“Registration” [5] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

➞ Section 1.3.1, “Registration” [5] describes how to register for the usage of
the services.

➞ Section 1.3.2, “CoreMedia Releases” [5] describes where to find the
download of the software.

➞ Section 1.3.3, “Documentation” [6] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

➞ Section 1.3.4, “CoreMedia Training” [8] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

➞ Section 1.3.5, “CoreMedia Support” [9] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.3.5, “CoreMedia Support” [9]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

5CoreMedia DXP 8

Preface | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5]
for details about the registration process. If the problems persist, try clearing
your browser cache and cookies.

Maven artifacts

CoreMedia provides its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual.

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [9]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia
manualsContentAudienceManual

This manual lists the third-party software used
by CoreMedia and lists, when required, the li-
cence texts.

Developers, ar-
chitects, admin-
istrators

CoreMedia Utilized Open-
Source Software

This document lists the third-party environ-
ments with which you can use the CoreMedia

Developers, ar-
chitects, admin-
istrators

Supported Environments

system, Java versions or operation systems for
example.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It

EditorsStudio User Manual, Eng-
lish

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

6CoreMedia DXP 8

Preface | Documentation

https://repository.coremedia.com
livecontext-en.pdf#CoreMediaManual
http://documentation.coremedia.com/dxp8

ContentAudienceManual

This manual gives an overview over the struc-
ture and features of CoreMedia LiveContext.

Developers, ar-
chitects, admin-
istrators

LiveContext for IBM Web-
Sphere Manual

It describes the integration with the IBM
WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

This manual describes some overall concepts
such as the communication between the

Developers, ad-
ministrators

Operations Basics Manual

components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

This manual describes the configuration of and
development with Adaptive Personalization, the

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

CoreMedia module for personalized websites.
You will learn how to configure the GUI used
in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-
sions.

This manual describes how you can connect
your CoreMedia website with external analytic
services, such as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors
Manual

This manual describes concepts and develop-
ment of the Content Application Engine (CAE).

Developers, ar-
chitects

Content Application De-
veloper Manual

You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

This manual describes the concepts and admin-
istration of the main CoreMedia component,

Developers, ar-
chitects, admin-
istrators

Content Server Manual

the Content Server. You will learn about the
content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

7CoreMedia DXP 8

Preface | Documentation

ContentAudienceManual

This manual describes the concepts and admin-
istration of the Elastic Social module and how
you can integrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the structure of the in-
ternal CoreMedia XML format used for storing

Developers, ar-
chitects

Importer Manual

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

This manual describes the configuration and
customization of the CoreMedia Search Engine

Developers, ar-
chitects, admin-
istrators

Search Manual

and the two feeder applications: the Content
Feeder and the CAE Feeder.

This manual describes the configuration and
customization of Site Manager, the Java based

Developers, ar-
chitects, admin-
istrators

Site Manager Developer
Manual

stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

This manual describes the concepts and exten-
sion of CoreMedia Studio. You will learn about

Developers, ar-
chitects

Studio Developer Manual

the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the re-

Developers, ar-
chitects

Unified API Developer
Manual

commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

This manual describes the Workflow Server. This
includes the administration of the server, the

Developers, ar-
chitects, admin-
istrators

Workflow Manual

development of workflows using the XML lan-
guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

8CoreMedia DXP 8

Preface | CoreMedia Training

mailto:documentation@coremedia.com

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the Training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, virtual
machines, class libraries and customized code in many different combinations.
That's why CoreMedia needs detailed information about the environment for a
support case. In order to track down your problem, provide the following informa-
tion:

➞ Which CoreMedia component(s) did the problem occur with (include the
release number)?

➞ Which database is in use (version, drivers)?

➞ Which operating system(s) is/are in use?

➞ Which Java environment is in use?

➞ Which customizations have been implemented?

➞ A full description of the problem (as detailed as possible)

➞ Can the error be reproduced? If yes, give a description please.

➞ How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

9CoreMedia DXP 8

Preface | CoreMedia Support

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of
Java processes and CoreMedia components. They're often the only source of in-
formation for error tracking and solving. All protocolling services should run at the
highest log level that is possible in the system context. For a fast breakdown, you
should be logging at debug level. The location where component log output is
written is specified in its < appName>-logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia.log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do I Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the logs/ directory of the servlet
container.See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files
check list

Log filesProblemComponent

generalCoreMedia Studio CoreMedia-Studio.log
coremedia.log

generalCoreMedia Editor editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre-
view

coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

10CoreMedia DXP 8

Preface | CoreMedia Support

Log filesProblemComponent

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

communication errorsServer and client editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.jpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

not startingServer coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

11CoreMedia DXP 8

Preface | CoreMedia Support

1.4 Change Chapter
In this chapter you will find a table with all major changes made in this manual.

Table 1.5. ChangesDescriptionVersionSection

Added chapter about revalidating fragment
keys.

7.5.41Section 5.4, “Indexing Con-
tent Beans” [67]

Added a small section about Content Feeder
partial update functionality and configuration

7.1.9Section 4.1, “Concepts” [34]
and Section 6.1, “Content
Feeder Configuration” [88] properties solr.partialUpdates,

solr.partialUpdatesSkipIndex
Checkandfeeder.partialUpdate.as
pects in the appendix.

12CoreMedia DXP 8

Preface | Change Chapter

2. Overview

The CoreMedia Search Engine adds full-text search capabilities to the CoreMedia CMS.
You can use it to quickly find documents of a CoreMedia Content Server, content
beans of a CoreMedia CAE and social data such as users and comments of CoreMedia
Elastic Social. It is possible to search for text in binary data of many supported
formats.

Document search is available in the Site Manager and in Studio. You can integrate
search functionality into your website and custom applications.

The CoreMedia Search Engine is based on Apache Solr and comes with some CoreMedia
specific extensions for content processing. It maintains indices and provides full-
text search capabilities. Chapter 3, Search Engine [15] describes the Search Engine
in more detail.

The CoreMedia CMS is delivered with different Feeder applications, which send data
to the Search Engine.

➞ The Content Feeder sends documents to the Search Engine for indexing. This
makes it possible to search for documents in the Site Manager, Studio and
custom content applications.

Chapter 4, Searching for Content [33] describes concepts, configuration and
operation of the required components in detail.

➞ Content applications often require search functionality not only for single
documents but for content beans of a CoreMedia CAE. The CoreMedia CAE
Feeder makes content beans searchable by sending their data to the Search
Engine.

Chapter 5, Searching for CAE Content Beans [60] describes concepts, config-
uration, operation and developing for the CAE Feeder in detail.

➞ Elastic Social worker applications send social data such as created comments
and users to the Search Engine. Worker applications are Elastic Social applic-
ations configured with property taskQueues.workerNode=true.

The Elastic Social Plugin for CoreMedia Studio allows searching for comments
and users.

See the [CoreMedia Elastic Social Manual] for more information.

13CoreMedia DXP 8

Overview |

A Search Engine index contains index documents. Each of these index documents
carries a unique String identifier and multiple fields with values. Applications can
search for index documents that match a given query, for example index documents
that contain a specific word in one field. Index document fields and field types can
be configured in the index schema as required by the application.

When using the Content Feeder, an index document represents a CoreMedia docu-
ment. When using the CAE Feeder, an index document represents a content bean.
With Elastic Social, an index document represents a comment or a user.

Multiple Content Feeder applications, CAE Feeder applications and Elastic Social
tenants can use the same Search Engine but require separate indices. An index is
a group of index documents for a specific application and with similar structure.
Search requests use a specific index to retrieve results for the specific application.
Each index can use different fields for its index documents as configured in the
index schema.

14CoreMedia DXP 8

Overview |

3. Search Engine

The CoreMedia Search Engine is based on Apache Solr. This chapter describes config-
uration and operational tasks specific to the integration of Apache Solr as CoreMedia
Search Engine.

Apache Solr is open source and you can find the Solr reference guide at ht-
tps://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide.
Some links in this manual point to HTML pages of the Solr reference guide, which
may describe newer versions of Solr. If in doubt, please read the reference guide
for the correct Solr version as used in CoreMedia Digital Experience Platform 8. You
can get the Solr reference guide as a PDF for the correct version at ht-
tp://archive.apache.org/dist/lucene/solr/ref-guide/.

More useful information is available on the Apache Solr website at http://lu-
cene.apache.org/solr/.

15CoreMedia DXP 8

Search Engine |

https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
http://archive.apache.org/dist/lucene/solr/ref-guide/
http://archive.apache.org/dist/lucene/solr/ref-guide/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

3.1 Starting
Apache Solr is a web application. So, in order to start the CoreMedia Search Engine
you simply have to start the web container into which the Search Engine is deployed.
The Solr administration page is available at http://<host>:<port>/solr, for
example at http://localhost:44080/solr when started locally in the Core-
Media Blueprint.

16CoreMedia DXP 8

Search Engine | Starting

3.2 Solr Home Directory
In addition to the actual web application, Solr uses a special directory called Solr
Home for configuration files, additional libraries and index files. It is configured
either via JVM system property solr.solr.home or via JNDI lookup of
java:comp/env/solr/home and needs to be writable by the Solr process. It has
the following general structure:

<solr-home>/
solr.xml
configsets/

<configset1>/
conf/

schema.xml
solrconfig.xml
...

<configset2>/
...

cores/
<core1>/

core.properties
data/

index/
<index files>

tlog/
<transaction log files>

<core2>/
...

lib/
<additional jar files>

The Solr server manages multiple indices with possibly different configurations.
Each of these indices is stored as a Lucene index on disk. An index managed by a
Solr server is called a Solr Core (or shortly a core) in Solr terminology.

solr.xml

The file solr.xml is the central Solr configuration file. It contains only few settings,
which you do not need to change. Most of Solr's configuration is placed in other
configuration files. It however enables core discovery mode for Solr, which means
that available Solr Cores are automatically discovered. In earlier versions of Solr
available cores were listed explicitly in the file solr.xml. This legacy mode is not
used in the CoreMedia CMS.

You can find more information about the solr.xml file in the Solr Reference
Guide at https://cwiki.apache.org/confluence/display/solr/Format+of+solr.xml.

Config Sets

Index-specific configuration files are organized as named config sets, which are
subdirectories of the configsets directory. A config set defines an index schema
with index fields and types in conf/schema.xml and lots of configuration options
for indexing, searching and additional features in conf/solrconfig.xml. The

17CoreMedia DXP 8

Search Engine | Solr Home Directory

https://cwiki.apache.org/confluence/display/solr/Format+of+solr.xml

latter file for example contains search request handler definitions with default
settings such as the default index field to search in.

The CoreMedia Search Engine comes with three config sets content for Content
Feeder indices, cae for CAE Feeder indices and elastic for Elastic Social indices.
They configure different index fields and Solr features such as search request
handlers as required. Projects may customize these files or create additional config
sets according to their needs. Note that some index fields are required for operation.
See the comments in the configuration files for details.

Cores

The cores directory contains the actual Solr Cores, which are the indices used by
your applications. Solr automatically discovers cores by looking for core.proper
ties files below the Solr Home directory. Each directory with a core.properties
file represents a Solr Core. The CoreMedia Search Engine comes with three predefined
cores:

➞ studio: an index of CoreMedia documents used for searching in Studio and
Site Manager, which gets its data from the Content Feeder.

➞ preview: an index of CoreMedia content beans used for searching in the
Content Application Engine of the Content Management Environment (aka
preview), which gets its data from the CAE Preview Feeder.

➞ live: an index of CoreMedia content beans used for searching in the Content
Application Engine of the Content Delivery Environment (aka live), which gets
its data from the CAE Live Feeder.

The file core.properties contains Solr core configuration properties, most im-
portantly the name of the used config set with the configSet property. The pre-
defined core studio uses the content config set, the predefined cores preview
and live use the cae config set.

Elastic Social applications create Solr Cores for users and comments automatically
when they are started the first time. With CoreMedia Blueprint and tenant media,
you will see additional directories blueprint_media_comments and blue
print_media_users for these cores below <solr-home>/cores. These Solr
cores use the elastic config set, if not configured otherwise with Elastic Social
configuration property elastic.solr.indexConfig.

Earlier version of CoreMedia CMS used a single shared index for Content Feeder
and CAE Feeder applications. Using separate Solr cores has a number of advant-
ages:

18CoreMedia DXP 8

Search Engine | Solr Home Directory

➞ It becomes possible to use Solr's runtime administration capabilities such
as reloading existing cores after configuration changes, adding new cores
and even replacing existing cores.

➞ Separate cores provide better performance and use less memory. Solr
caches work more efficiently because they only need to store data for the
searched index and not for a larger shared index. Also, caches won't be
invalidated after changing documents of other indices.

➞ It avoids problems with relevancy scoring. Index statistics such as the
term frequency are used to compute the relevancy of search results. In a
shared index, unrelated documents may change the scoring unintention-
ally.

➞ It becomes possible to back up and restore indexes independently from
one another.

➞ It becomes possible to move a single index to another Solr installation.

➞ Different indices can use different configurations and index schema.

Index Data

Each Solr core has its own data directory with index files and transaction log. The
actual index files are written to the directory data/index. In addition to the index,
Solr maintains a transaction log with latest and/or pending changes for the index
files. The transaction log is stored in the directory data/tlog.

Lib directory

The directory <solr-home>/lib contains some additional libraries that can be
used by all Solr cores and are not available in the Solr web application. This includes
some required CoreMedia extensions.

19CoreMedia DXP 8

Search Engine | Solr Home Directory

3.3 Reindexing
There are several reasons why you might want to reindex all index documents.
This includes changes in the Search Engine configuration how text gets indexed
(for example to activate certain features such as stemming) and changes in config-
uration or code so that different data is sent to the Search Engine. In any case,
reindexing a whole index is a very expensive operation and takes some time.

Reindexing Elastic Social indices

Elastic Social indices can be reindexed by invoking the JMX operation reindex of
interface com.coremedia.elastic.core.api.search.management.SearchServiceManager
of an Elastic Social application.

You can find the SearchServiceManager MBean of the elastic-worker web
application for tenant media under the object name com.coremedia:applica
tion=elastic-worker,type=searchServiceManager,tenant=media.

The operation takes the name of the index without prefix and tenant as parameter.
For example, to reindex the Solr core blueprint_media_users the operation
has to be invoked with the parameter users. It then clears the index and reindexes
every index document afterwards.

Reindexing Content Feeder and CAE Feeder indices

The most simple approach for Content Feeder and CAE Feeder indices is to clear the
existing index and restart the Feeder. The Feeder will then reindex everything from
scratch. In almost all cases this is not what you want because search will be unavail-
able (or only return partial results) until reindexing has completed. See section
“Clear Search Engine index” [58] and Section 5.3.2, “Resetting” [65] for instructions
how to clear an existing index for Content Feeder and CAE Feeder, respectively.

A better solution is to feed a new index from scratch but keep using the old one
for search until the new index is up to date. Applications can use the new index
when reindexing is complete. When everything is fine, the old index can be deleted
afterwards. This approach does not only have the advantage of avoiding search
downtime but makes it also possible to test changes before enabling the index for
all search applications.

To prepare a new index, you need to set up an additional Feeder and configure it
to feed the new index. The new Feeder instance will eventually replace the existing
Feeder instance.

You can follow these steps to reindex from scratch:

1. Add a new Solr core for the new index. The Solr Admin UI supports adding Solr
cores in general but currently still lacks support for named config sets (SOLR-

20CoreMedia DXP 8

Search Engine | Reindexing

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/elastic/core/api/search/management/SearchServiceManager.html
https://issues.apache.org/jira/browse/SOLR-6728

6728), so you have to create the new core with a HTTP request. To this end,
you just need to send a request to the following URL with correct parameters,
for example by opening it in your browser.

http://<hostname>:<port>/solr/admin/cores?action=CRE
ATE&name=<name>&instanceDir=cores/<name>&configSet=<config
Set>&dataDir=data

a. Replace <hostname> and <port> with host name and port of the servlet
container that runs the Apache Solr master.

b. Replace <name> with the name of the new core. Mind that it appears twice
in the above URL. You can choose any name you like as long as no such core
and no such directory below <solr-home>/cores exists yet. If you are
using Elastic Social you should also avoid names that start with the configured
elastic.solr.indexPrefix followed by an underscore (for example,
blueprint_) to avoid name collisions with automatically created Solr cores.

c. Replace <configSet> with the name of the config set of the new core. This
should be content for Content Feeder indices and cae for CAE Feeder indices.
Alternatively you can set it to the name of a custom config set, if you are
using differently named config sets in your project.

2. Check that the new core was successfully created in the directory <solr-
home>/cores. There should be a new subdirectory with the name of the newly
created core which contains a core.properties file. For example, if a core
studio2 with config set content was created, then <solr-
home>/cores/studio2/core.properties should contain something like:

#Written by CorePropertiesLocator
#Thu Dec 11 17:16:47 CET 2014
name=studio2
dataDir=data
configSet=content

You can also open the Solr Admin UI at http://<hostname>:<port>/solr,
which shows the newly created core on the Core Admin page:

Figure 3.1. New Solr
Core

21CoreMedia DXP 8

Search Engine | Reindexing

https://issues.apache.org/jira/browse/SOLR-6728

3. Set up a new Feeder instance and configure it to feed into the new Solr core by
setting the property feeder.solr.url accordingly. Do not change the property
feeder.solr.collection.

For example, to configure a newly set up Content Feeder to feed into the new
core with name studio2, set in WEB-INF/application.properties:

feeder.solr.url=http://localhost:44080/solr/studio2
feeder.solr.collection=studio

In case of a CAE Feeder, you must also configure it with a separate empty data-
base schema.

4. Start the new Feeder and wait until the new index is up-to-date, for example
by checking the log files or searching for a recent document change in the new
index. Depending on the size of the content repository this may take some time.

5. Stop the Feeders for both the old and new Solr core.

6. To activate the new index, it's now time to swap the cores so that the new core
replaces the existing one. You can swap cores with the [SWAP] button on the
Core Admin page of the Solr Admin UI. Afterwards, all search applications
automatically use the new core, which is now available under the original core
name.

Figure 3.2. Swap Solr
Cores

It's important to understand that this operation does not change the directory
structure in <solr-home>/cores but just the name property in the respective
core.properties files. For the example of swapping cores studio and
studio2, you now have a newly indexed Solr core named studio in directory
<solr-home>/cores/studio2. You can verify this by looking into its
core.properties file:

#Written by CorePropertiesLocator
#Thu Dec 11 17:26:33 CET 2014
name=studio
dataDir=data
configSet=content

7. Reconfigure the new Feeder instance to use the new core under the original
name. To this end, the value of property feeder.solr.url needs to be
changed accordingly. Start the new Feeder instance.

22CoreMedia DXP 8

Search Engine | Reindexing

For example, to configure the Content Feeder to feed into the new core which
is now available under name studio, set in WEB-INF/application.proper
ties:

feeder.solr.url=http://localhost:44080/solr/studio
feeder.solr.collection=studio

8. If you're using Solr replication, the new index will be replicated automatically
to the Solr slaves after a commit was made on the Solr master for the new core.
The restart of the Feeder in the previous step caused a Solr commit so that
replication should have started automatically. If not, a Solr commit can also be
triggered with a request to the following URL, for example in your browser with
http://localhost:44080/solr/studio/update?commit=true for the
Solr core named studio on the Solr master running on localhost and port
44080.

Note that depending on the index size, replication of the new core may take
some seconds up to a few minutes during which the old index is still used when
searching from Solr slaves. You can see the progress of replication on the Solr
slave's Admin UI on page Replication after selecting the corresponding core.

9. To clean things up, you can now unload the old Solr core from the Solr master
with the [Unload] button on the Core Admin page of the Solr Admin UI. In
the example, this would be the core named studio2.

Figure 3.3. Unload old
Solr Core

If you like, you can now also delete the old Feeder installation and the directory
of the old Solr core with its index. In this example that would be <solr-
home>/cores/studio

23CoreMedia DXP 8

Search Engine | Reindexing

You can use HTTP requests to perform the [SWAP] and [UNLOAD] actions
instead of using the Solr Admin UI as described above. For details, see the Solr
Reference Guide at https://cwiki.apache.org/confluence/display/solr/CoreAd-
min+API.

24CoreMedia DXP 8

Search Engine | Reindexing

https://cwiki.apache.org/confluence/display/solr/CoreAdmin+API
https://cwiki.apache.org/confluence/display/solr/CoreAdmin+API

3.4 Creating Backups
In order to create a backup of the CoreMedia Search Engine you have to do two
things in the following order:

1. Back up the state of the Feeders

2. Back up the Solr index

Back up the state of the Feeders

For the Content Feeder this step can be skipped, as it stores its state in the Solr index.

The CAE Feeder in contrast stores its state in a dedicated SQL database. This database
has to be backed up and it is important to do so before taking the backup of the
Solr index.

The reason for this is that if the Solr index is fresher than the CAE Feeder database,
the CAE Feeder will possibly redundantly refeed some documents which is OK, but
if the Solr index is older than the CAE Feeder database the commits between the
time of the CAE Feeder backup and the Solr backup would be lost.

If your database / tools provide the feature of hot backup, you do not have to stop
the CAE Feeder for taking backups.

Back up of the Solr index

To take a hot back up of the Solr index you can use Solr's ReplicationHandler.
Once configured, a backup can be taken with the following HTTP request to the
Solr Master server. Replace <core> with the name of the Solr core you want to
back up.

http://<host>:<port>/solr/<core>/replication?command=backup

You can find the snapshot files under the Solr core's data directory afterwards.
For details see https://cwiki.apache.org/confluence/display/solr/Index+Replication.

25CoreMedia DXP 8

Search Engine | Creating Backups

https://cwiki.apache.org/confluence/display/solr/Index+Replication

3.5 Searching in Different Languages
Processing steps for
multi-language use

The CoreMedia Search Engine enables you to search in documents of many languages.
This requires some preliminary processing steps:

➞ Detecting the used language

➞ Splitting the text into searchable words

➞ Indexing the words into language dependent fields

➞ Searching in language dependent fields

These steps are highly customizable. For standard western languages, such as
English, German, French, you do not necessarily need to change the configuration,
because the standard configuration already handles these languages quite well. If
you use Asian languages, such as Chinese, Japanese or Korean (known as CJK lan-
guages) you have to do some configuration because these languages must be
treated differently to extract searchable words.

3.5.1 Details of Language Processing Steps
The following paragraphs describe some details of the language processing steps.

Language DetectionLanguage detection

The Solr config sets content and cae for Content Feeder and CAE Feeder indices
define the field language in their index schema in schema.xml. This field holds
the language of the index document, if available.

It's recommended to let feeder applications set the language of index documents,
if a language is available at that point. The Content Feeder and CAE Feeder applica-
tions of the CoreMedia Blueprint automatically set the language field for CMLoc
alized documents and content beans. See Section 4.2.2, “Content Configura-
tion” [39] and Section 5.4.3, “Customizing Feedables” [68] to learn how to set
index fields such as the language field in the Content Feeder and CAE Feeder.

If the language field is not already set by the feeder, then the search engine will
try to detect the language of the index document by its content and set the field
accordingly. To this end, the file solrconfig.xml configures a Solr LangDetect
LanguageIdentifierUpdateProcessorFactory to detect the language of
incoming index documents. It is described in detail in the Solr Reference Guide at
https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+In-
dexing. See Section 6.6, “Supported Languages in Solr Language Detection” [125]
in the appendix of this manual for a list of supported languages. The language code
from that list is stored as value in language field.

26CoreMedia DXP 8

Search Engine | Searching in Different Languages

https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+Indexing
https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+Indexing
https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+Indexing

Language detection may not always return the correct language, especially for
very short texts. The language should be set by the feeder, if it is known in ad-
vance.

Knowing the language of an index document is a prerequisite to index text in a
language-specific way. The search engine can put the text in a field that is specially
configured for that language, for example with correct rules to break the text into
single words.

TokenizationTokenization

To provide search functionality, the search engine needs to split text into searchable
words. This process is commonly referred to as tokenization or word segmentation.
Most languages use whitespace to separate words, which means that text can be
tokenized by splitting it at whitespaces. Chinese, Japanese and Korean texts cannot
be tokenized this way. Chinese and Japanese don't use whitespaces at all and
Korean does not use whitespaces consistently.

Indexing into language
dependent fields

Indexing into language dependent fields

Text must be indexed into a separate language dependent field to tokenize or
preprocess it according to its language. This is the basis for efficient language de-
pendent search. Depending on your requirements you can configure correct
tokenization for CJK languages or add some language-specific analysis steps such
as stemming for western languages. In both cases you need to configure language
dependent fields.

Example

A customized schema.xml defines the index fields name_tokenized and
name_tokenized_jp. If the feeder feeds a document with Japanese text in its
name, then the text will be indexed in the field name_tokenized_jp. The index
field name_tokenized will be empty for that document. Another document con-
tains German text in its name that will be indexed in the field name_tokenized,
because schema.xml does not define a field name_tokenized_de.

Search in language-de-
pendent fields

Search in language-dependent fields

When searching in Studio, Site Manager or with Unified API's SearchService methods,
searches are automatically performed across multiple fields including language-
dependent fields. To this end, the Search Engine contains a CoreMedia-specific Solr
query parser named cmdismax. This parser is a variant of Solr’s standard dismax
query parser (see https://cwiki.apache.org/confluence/display/solr/The+Dis-
Max+Query+Parser for more details). The improvements of the cmdismax parser
are support for wildcard searches (for example, core*) and searching across all
language-dependent fields.

27CoreMedia DXP 8

Search Engine | Details of Language Processing Steps

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/search/SearchService.html
https://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser
https://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser

The default Solr config sets for Content Feeder and CAE Feeder indices configure
search request handlers to use the cmdismax parser in solrconfig.xml: the
handler /editor for editorial search in the content config set and the handler
/cmdismax for website search in the cae config set.

If you want to use a different query parser such as the default Lucene query parser
or the Solr Extended DisMax (edismax) query parser, you must explicitly search in
all required language-dependent fields. For the edismax query parser this would
mean enumerating all required language-dependent fields in the qf (query fields)
parameter.

3.5.2 Configuring Multi-Language Search
Configuring multi-lan-
guage search

The process of multi-language search configuration consists of the following steps,
that are described in the next paragraphs:

1. Defining text tokenization and filtering in different field types

2. Defining index fields for different languages

3. Defining the fields from which the language is determined

4. Defining where the detected language is stored.

5. Configuring language dependent field handling

6. Configuring the search request handler

It's not necessary to adapt the feeder configuration for multi-language support.
Feeders just feed text into some fields (for example name and textbody) and
the search engine puts the text into the correct language-dependent fields.

Configuring different
field types

Configuring different field types

Text tokenization and filtering in Apache Solr can be configured in the file
conf/schema.xml of a Solr config set. For example in <solr-home>/config
sets/content/conf/schema.xml for the content config set.

For each field, a field type is defined. That is, which kind of data is written to this
field. In the default content config set, for example, the field textbody is of type
text_general. The field type is connected with a certain analyzer which is used
to tokenize and filter the text. The default configuration contains some field types
with different analyzers, for example:

➞ text_general, configured for tokenization of non-CJK languages with
reasonable cross-language defaults

➞ text_zh, configured for tokenization of Chinese (Simplified and Traditional)

28CoreMedia DXP 8

Search Engine | Configuring Multi-Language Search

Apache Solr provides special field types for lots of languages in its example config-
uration, for example text_ja for Japanese and text_cjk which can be used for
Korean. Most of these field types are not defined in the default configuration of
the CoreMedia Search Engine to keep the configuration files simple and avoid unne-
cessary overhead. If required, add field types from the Solr example configuration
to your configuration. You can find these additional field types in the file ex
ample/solr/collection1/conf/schema.xml after downloading and unpacking
the Apache Solr distribution. You can download Solr from http://lu-
cene.apache.org/solr/.

Example

If you index Chinese text only, you can simply change field definitions from type
text_general to type text_zh in schema.xml:

<fields>
...
<field name="textbody" type="text_zh" ... />

</fields>

Configuring multi-lan-
guage index fields

Configuring multi-language index fields

You need to define language-dependent fields for all languages that need a special
analyzer. To do so, simply add a new field element with the name followed by the
language code. Section 6.6, “Supported Languages in Solr Language Detection” [125]
in the appendix shows the list of supported languages.

Note, that language-dependent fields must be indexed. A field declaration with
attribute indexed="false" cannot be used as language-dependent field.

Fields in the content config set must also be declared with attribute
stored="true" to make it possible to use partial document updates in the
Content Feeder.

The following example shows necessary fields and additional types in <solr-
home>/configsets/content/conf/schema.xml for supporting Simplified
Chinese, Japanese, Korean and non-CJK languages in the predefined fields
name_tokenized and textbody of the content config set.

<field name="name_tokenized" type="text_general"
indexed="true" stored="true"/>

<field name="name_tokenized_ja" type="text_ja"
indexed="true" stored="true"/>

<field name="name_tokenized_zh-cn" type="text_zh"
indexed="true" stored="true"/>

<field name="name_tokenized_ko" type="text_cjk"
indexed="true" stored="true"/>

...
<field name="textbody" type="text_general"

indexed="true" stored="false"
multiValued="true"/>

<field name="textbody_ja" type="text_ja"

29CoreMedia DXP 8

Search Engine | Configuring Multi-Language Search

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

indexed="true" stored="false"
multiValued="true"/>

<field name="textbody_zh-cn" type="text_zh"
indexed="true" stored="false"
multiValued="true"/>

<field name="textbody_ko" type="text_cjk"
indexed="true" stored="false"
multiValued="true"/>

<!-- field types "text_general" and "text_zh" are
already defined in default configuration -->

<!-- field types "text_cjk" and "text_ja" are
copied from the Apache Solr example configuration -->

...

In the above example, Japanese text goes into name_tokenized_ja and text
body_ja, Simplified Chinese text goes into name_tokenized_zh-cn and text
body_zh-cn, Korean text goes into name_tokenized_ko and textbody_ko
and text from all other languages is indexed in the fields name_tokenized and
textbody.

Besides Simplified Chinese you can also configure Traditional Chinese text with
the fields name_tokenized_zh-tw and textbody_zh-tw. The language code
zh from previous CoreMedia releases is not generated anymore, but existing fields
name_tokenized_zh and textbody_zh are still used as fallback when indexing
and searching.

Configuring language
detection

Configuring language detection

By default, the Search Engine detects the language of the index fields
name_tokenized and textbody for Content Feeder indices (config set content)
and of index field textbody for CAE Feeder indices (config set cae). Both use the
field language to store the detected language. Language detection is skipped if
the field language has been set by the feeder. You can change these settings in
the config set's file conf/solrconfig.xml below the element <updateRequest
ProcessorChain> with class LangDetectLanguageIdentifierUpdatePro
cessorFactory:

<processor class="org.apache.solr.update.processor.
LangDetectLanguageIdentifierUpdateProcessorFactory">

<str name="langid.fl">textbody,name_tokenized</str>
<str name="langid.langField">language</str>
<str name="langid.fallback">en</str>

</processor>

The parameter langid.langField defines the index field that will be filled with
the language code of the document. Section 6.6, “Supported Languages in Solr
Language Detection” [125] in the appendix shows the list of supported languages.
The value in parameter langid.fl is a comma-separated list of index fields that
are used for language detection. The parameter langid.fallback configures
English as fallback if the language can not be detected from the text.

30CoreMedia DXP 8

Search Engine | Configuring Multi-Language Search

For more details about the Solr LangDetectLanguageIdentifierUpdatePro
cessorFactory, see the Solr reference guide at https://cwiki.apache.org/conflu-
ence/display/solr/Detecting+Languages+During+Indexing.

Configuring index
feeding

Configuring language-dependent field handling

In order to be flexible, the Search Engine separates language detection and the
handling of language-dependent fields. Therefore, field handling is configured in
a separate class.

You can change these language-dependent field handling settings in the config
set's file conf/solrconfig.xml below the element <updateRequestPro
cessorChain> with class LanguageDependentFieldsProcessorFactory.

<processor class="com.coremedia.solr.update.processor.
LanguageDependentFieldsProcessorFactory">

<str name="languageField">language</str>
<str name="textFields">textbody,name_tokenized</str>

</processor>

The parameter languageField defines the index field that contains the language
code of the document. This must be the same value as configured for language
detection above.

The value in the parameter textFields is a comma-separated list of fields whose
content should be put into language-dependent fields if such fields exist for the
language. Normally, this is the same value as configured for language detection
except if you want to exclude some text fields from language detection.

Configuring the search
request handler

Configuring the search request handler

By default, the search request handlers for Content Feeder and CAE Feeder indices
are configured in solrconfig.xml to search across multiple index fields. For
example, the config set content configures the /editor search request handler
with the qf parameter to search in fields textbody, name_tokenized and nu
mericid. Matches in the field name_tokenized are scored higher than matches
in textbody because of the configured ^2 boost. Note that the language-dependent
fields name_tokenized_* and textbody_* are not configured here but will be
picked up automatically.

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
<str name="defType">cmdismax</str>
<str name="echoParams">none</str>
<float name="tie">0.1</float>
<str name="qf">textbody name_tokenized^2 numericid^10</str>
<str name="pf">textbody name_tokenized^2</str>
<str name="mm">100%</str>
<str name="q.alt">*:*</str>

<str name="suggest.spellcheck.dictionary">textbody</str>
</lst>
<arr name="last-components">
<str>suggest</str>

31CoreMedia DXP 8

Search Engine | Configuring Multi-Language Search

https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+Indexing
https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+Indexing

<str>spellcheck</str>
</arr>

</requestHandler>

Adapt the configuration of the request handler's qf and pf parameters if you want
to use other default search fields.

The predefined request handlers can also be used in custom search applications.
They can be selected in SolrJ by calling SolrQuery.setParam(Common
Params.QT, "/cmdismax"); or by appending /cmdismax to the URL used to
connect to Solr. If you prefer Solr's standard search handler you will have to expli-
citly search across language-dependent fields, by constructing "OR" queries in a
Lucene query syntax or by configuring all fields for standard Solr dismax or edismax
query parsers, for instance.

32CoreMedia DXP 8

Search Engine | Configuring Multi-Language Search

4. Searching for Content

This chapter describes how to configure and operate content search for editorial
applications such as the Site Manager, CoreMedia Studio or custom editor applica-
tions. While you may use this search service also for website search, in most cases
for website search it makes more sense to search for content beans as described
in Chapter 5, Searching for CAE Content Beans [60].

There are the following building blocks to search for content:

➞ the Content Feeder to feed the Search Engine with content

➞ the Search Engine itself, which indexes the content and makes it searchable

➞ the search service in the Content Server, which provides the search function-
ality of the Search Engine to its clients such as the Site Manager

➞ and search applications such as the Studio or custom ones, which connect
to the Search Engine directly

The Search Engine itself is covered in Chapter 3, Search Engine [15]. This chapter
describes the operation and configuration of the Content Feeder, the Content Server's
search service and the configuration of the Search Engine for content search in
custom applications and in Studio.

The next sections describe

➞ the concepts of content search in Section 4.1, “Concepts” [34]

➞ the configuration of the Content Feeder in Section 4.2, “Configure the Content
Feeder” [37]

➞ the configuration of the search service of the Content Server in Section 4.3,
“Configure Search for the Content Server” [50]

➞ the configuration of the Search Engine for search suggestions in the Studio
in Section 4.4, “Configure Search Suggestions for Studio” [52]

➞ the modification of the Search Engine index schema for custom search applic-
ations in Section 4.5, “Modify the Search Index” [55]

➞ the operation of the Content Feeder in Section 4.6, “Operation of the Content
Feeder” [56]

➞ Section 4.7, “Implementing Custom Search” [59] provides some hints for
implementing a custom search application

33CoreMedia DXP 8

Searching for Content |

4.1 Concepts
The Content Feeder sends content and metadata of documents to the CoreMedia
Search Engine. The Search Engine extracts the textual data of the documents, indexes
them and provides the possibility to search for these documents. The Content
Feeder is a web application that connects to the Content Server and to the Search
Engine.

The CoreMedia Content Server provides a search service which hides the functionality
of the CoreMedia Search Engine from clients. The server contacts the CoreMedia
Search Engine to serve client search requests. The Site Manager and custom clients
that use the Unified API SearchService get the search results directly from the
CoreMedia Content Server.

It is also possible to send search requests from custom clients directly to the Core-
Media Search Engine using the native API of the underlying search engine. This is
recommended in most cases because the search service of the Content Server does
not support all search features of Apache Solr and adds some performance overhead
compared to a direct connection. The Studio back-end is an example for a search
client that sends search requests directly to the Search Engine.

Figure 4.1. Search En-
gine Integration

Site Manager

The CoreMedia Content Feeder feeds an index which is needed for the full-text search
feature in the Site Manager and in CoreMedia Studio. Multiple Content Feeders can
use the same CoreMedia Search Engine but require separate indices.

To provide full-text search for documents in the Content Delivery Environment, a
separate Content Feeder can be set up that connects to the CoreMedia Master Live
Server and feeds another index.

Feeding the Search Engine

When the Content Feeder starts for the first time, it iterates over the documents in
the repository and sends them to the Search Engine for indexing. After this initial-
ization phase, the Content Feeder sends documents to the Search Engine after they
have changed or when they are newly created.

34CoreMedia DXP 8

Searching for Content | Concepts

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/search/SearchService.html

When the Content Feeder restarts, it automatically continues its work with the next
document that needs to be indexed. This document is determined from a timestamp
stored by the Content Feeder in the same index of the Search Engine. During restart
the Content Feeder retrieves the timestamp from the Search Engine to continue
feeding.

The CoreMedia Search Engine indexes textual data from document properties and
a number of metadata attributes such as the path of the document, the name of
its creator and the last time the document was published. In the configuration of
the Content Feeder you can restrict the indexed documents by their type and its
indexed properties by their name and type. Note, that the CoreMedia Search Engine
only indexes the latest document version.

Partial Updates

The Content Feeder can use partial updates if only document metadata has changed.
This means, it does not need to send the whole document data to the search engine
but just a small set of changed metadata, for example a changed path after docu-
ments have been moved to another place in the repository. This can greatly improve
performance, especially if lots of documents are affected and expensive operations
such as parsing text from PDF can be avoided.

The Content Feeder can use partial updates, if the connected search engine supports
it. Apache Solr supports partial updates if index fields are configured as stored as
in the default configuration. See the description of the configuration properties
solr.partialUpdates, solr.partialUpdatesSkipIndexCheck and feed
er.partialUpdate.aspects in Section 6.1, “Content Feeder Configuration” [88]
for more details.

Batches

For better performance the Content Feeder sends batches to the Search Engine. A
batch contains changes of multiple documents. A batch that was sent to the Search
Engine is called an open batch until all contained changes have been written to the
Search Engine's index persistently.

Error conditions

If the Content Feeder or the Search Engine is unable to process a certain document,
an error document is indexed instead. It serves as placeholder for the original
document in the index of the Search Engine.

When a document contains binary data of an unsupported format, no error docu-
ment is written. Instead, such documents are indexed without the binary data and
the document can still be found based on the content of other fields.

Error documents contain the value ERROR in the index field feederstate and
are not returned as search result by the Content Server. You can search for error

35CoreMedia DXP 8

Searching for Content | Concepts

documents using the administration page of the Content Feeder. An error document
is replaced with the correct document when the document changes in the CoreMedia
Content Server and the cause of the error has been removed.

Communication problems to the CoreMedia Search Engine lead to search errors in
clients. The Content Feeder retries feeding until the Search Engine responds success-
fully. Search requests from clients succeed as soon as the communication problems
have been resolved.

Restrictions

The CoreMedia Search Engine provides a fast and efficient full-text search for the
indexed documents. However, because of the asynchronous nature of the indexing
process, search results do not always reflect the current state of the repository. A
document may need a couple of seconds after it was sent to the Search Engine,
before it appears in the search results. Sometimes you can query for changes faster
if you use the more powerful but in general slower built-in query feature of the
CoreMedia Content Server.

The CoreMedia Search Engine supports search in the content of the latest document
version. If you want to search for older versions or for folders you have to use the
query feature of the CoreMedia Content Server or use the CoreMedia CAE Feeder to
index the required data as part of content beans.

36CoreMedia DXP 8

Searching for Content | Concepts

4.2 Configure the Content Feeder
Configure the Content Feeder to provide full-text search for documents of the
Content Management Environment, for example in the Site Manager.

Configuration of the Content Feeder is described in the following sections:

➞ Section 4.2.1, “Required Configuration” [37]

In this section you can read how to configure the essential Feeder settings.
These are the connection settings with the Search Engine and the Content
Server.

➞ Section 4.2.2, “Content Configuration” [39]

This section explains which information for which document types and
properties you want to index into which fields. This configuration is not re-
quired, because by default all relevant document types and properties are
indexed for search.

➞ Section 4.2.3, “Advanced Configuration” [47]

Here, you can read how to optimize your Content Feeder in order to improve
speed and error handling.

For custom search applications, you may also want to set up a Content Feeder con-
nected to the CoreMedia Master Live Server to provide full-text search for documents
in the Content Delivery Environment. Note that for website search you typically
search for content beans that were fed by a CAE Feeder, see Chapter 5, Searching
for CAE Content Beans [60] for details.

Configuration of the Content Feeder

Like most CoreMedia web applications the Content Feeder web application uses the
Application architecture. Therefore, configuration of properties can be done in
WEB-INF/application.properties, via JNDI or JVM system properties or in
an additional property files. Bean configuration can be done in WEB-INF/applic
ation.xml. For details please consult the [CoreMedia DXP 8 Manual].

4.2.1 Required Configuration

Configuring the Content Server URL

The property repository.url has to be set to the IOR URL of the Content Server.

Example

repository.url=http://localhost:44441/coremedia/ior

37CoreMedia DXP 8

Searching for Content | Configure the Content Feeder

Configuring the Search Engine Location

The Content Feeder needs the URL of the search engine. Configure the URL of
Apache Solr in property feeder.solr.url. The URL has the following format

http://<host>:<port>/<solr-webapp>/<solr-core>

The Solr core is the index used by the Content Feeder. See Section 3.2, “Solr Home
Directory” [17] for a description of Solr cores and their configuration in Apache
Solr.

Example

feeder.solr.url=http://localhost:8082/solr/studio

If the Apache Solr web application has been secured and needs HTTP Basic authen-
tication, you must also configure the required user name and password in the
properties feeder.solr.username and feeder.solr.password.

Configuring the Search Engine Collection

Configure the propertyfeeder.solr.collectionwith the name of the CoreMedia
Search Engine collection. The Content Feeder writes the collection name to the field
collection in the Solr index.

Example

feeder.solr.collection=studio

Configuring the user account

The Content Feeder requires a user account to access the documents of the Content
Server. During the initialization of the Content Server a dedicated user is created
with the name and password feeder. For security reasons, change the password
afterwards. The account requires at least read rights on the content to be indexed.
A license of the service feeder is consumed by a running Content Feeder.

If you migrated from a release prior to CMS 2005, the Content Feeder fails to
start when the CoreMedia Content Server starts, the first time because the user
account does not exist. In that case, create the user account manually. Afterwards
you can use the administration page to start the Content Feeder.

➞ Configure the user account for the Content Feeder with the properties repos
itory.user and repository.password.

For example:

38CoreMedia DXP 8

Searching for Content | Required Configuration

repository.user=feeder
repository.password=secret

4.2.2 Content Configuration

Configuring Document Types

You can restrict the indexed documents by their type in the file feeder.proper
ties. The document types are configured with the following two properties:

feeder.content.type.includes=Document_
feeder.content.type.excludes=\
EditorPreferences,Preferences,Dictionary,Query

Configuration not mandatory: The default configuration includes all document
types except EditorPreferences, Preferences, Dictionary and Query.

The property feeder.content.type.includes contains a comma-separated
list of document types to be included. Contrary the property feeder.con
tent.type.excludes contains a comma-separated list of document types to be
excluded. With a specified type all subtypes are included and excluded, respectively.
It is an error to specify the same document type in both properties. Rules for more
specific types override rules for less specific types.

Note, that the Content Feeder does not update already processed documents
after changing the document types to index. A configuration change only affects
newly processed documents. If you want to update all documents, restart the
Content Feeder with an empty index.

Configuring Properties for Indexing

You can restrict the indexed properties of a document by their name and type. You
can further restrict the indexed XML properties by their grammar and the indexed
blob properties by their MIME type and size.

Configuration not mandatory: The default configuration includes all String
and CoreMedia RichText XML properties. It also includes blob properties of the
MIME types text/*, application/pdf, application/msword and applic
ation/vnd.openxmlformats-officedocument.wordprocessingml.doc
ument (docx files) that are not larger than 5 MB.

39CoreMedia DXP 8

Searching for Content | Content Configuration

You can configure indexed document properties by their name by customizing the
Spring beans feederContentPropertyIncludes and feederContentProp
ertyExcludes in the file applicationContext.xml. The following example
configures the Content Feeder to index only the properties 'Author' and 'Text' of
document type Article and all properties of document type Picture except the
property 'Copyright'.

<customize:append id="feederContentPropertyIncludesCustomizer"
bean="feederContentPropertyIncludes">
<map>
<entry key="Article" value="Author,Text"/>

</map>
</customize:append>

<customize:append id="feederContentPropertyExcludesCustomizer"
bean="feederContentPropertyExcludes">
<map>
<entry key="Picture" value="Copyright"/>

</map>
</customize:append>

Note that it is an error to specify both included and excluded properties for the
same type.

See the description of the beans in file applicationContext.xml for more de-
tails.

The CoreMedia Feeder applications use Apache Tika for text extraction from
binary formats. You can find the list of formats supported by Tika at ht-
tps://tika.apache.org/1.13/formats.html. Note however, that the Blueprint
Feeder applications do not include all transitive Tika libraries to reduce the total
number of dependencies and avoid potential version conflicts. Libraries for less
common formats such as NetCDF scientific files, Java class files and many more
have been excluded. Have a look at the classpath of the Feeder applications and
extend it if needed. Libraries for common formats such as Microsoft Office or
PDF are supported by default.

You can also change the indexed document properties by their type in the file
feeder.properties. The following example shows the default configuration for
property types:

indexed property types
feeder.content.propertyType.string=true
feeder.content.propertyType.integer=false
feeder.content.propertyType.date=false
feeder.content.propertyType.linkList=false
feeder.content.propertyType.struct=false

Indexed xml properties, configured by xml grammar
comma separated grammar names (as used in the document
type definition, attribute Name of element XmlGrammar)
feeder.content.propertyType.xmlGrammars=coremedia-richtext-1.0

40CoreMedia DXP 8

Searching for Content | Content Configuration

https://tika.apache.org/1.13/formats.html
https://tika.apache.org/1.13/formats.html

Indexed blob properties, configured by comma-separated MIME-types
If you don't configure any MIME-types in the includes property,
no blob properties will be indexed.
You can exclude a more specific type (for example, text/xml) while
including the corresponding primary type (for example, text/*)
feeder.content.propertyType.blobMimeType.includes=text/*, \
application/pdf,application/msword,application/ \
vnd.openxmlformats-officedocument.wordprocessingml.document
feeder.content.propertyType.blobMimeType.excludes=

The maximum size in byte for included blob properties;
larger blobs will be skipped.
This configuration can be overridden in a Spring XML configuration
file where you can configure the maximum size per MIME-type by
customizing the bean 'feederContentBlobMaxSizePerMimeType'.
See applicationContext.xml for an example.
feeder.content.propertyType.blobMaxSize=5242880

Note, that the Content Feeder does not update already processed documents
after changing the properties. A configuration change only affects newly pro-
cessed documents. If you want to update all documents, restart the Content
Feeder with an empty index.

Configuring Fields to Index in

The Content Feeder can be configured to index document properties into special
index fields. You can search for content in these fields if your Search Engine indexes
these fields. To this end, the fields must be added to the file schema.xml in the
Apache Solr config set for the Content Feeder in directory <solr-home>/config
sets/content/conf. Please refer to the Apache Solr documentation for more
information.

Configuration not mandatory: By default, all document properties are indexed
in the index field textbody. They are also indexed in fields whose name starts
with cm and ends with the lowercase name of the property - if such fields exist
in the index. For example, a property Headline is indexed in the field cmhead
line. This configuration allows you to use different index field names.

The Content Feeder supports two types of field configuration, the PropertyField
and the FeedablePopulator. A PropertyField maps a document property to
an index field and whether the property value should also be indexed in the field
textbody. The more flexible FeedablePopulator interface allows you to popu-
late a Feedable object from a given document.

If you configure a new field in the Solr schema.xml, you can search for text in
that specific field. Note, that searching in specific fields is not possible in the Site
Manager and CoreMedia Studio but only in custom search applications using Core-
Media APIs or native Search Engine APIs.

41CoreMedia DXP 8

Searching for Content | Content Configuration

https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide

The following example adds a field with the name myfield to the Apache Solr
schema.xml. Fields must be configured with the attributes stored="true" and
indexed="true". For a more information, see the Apache Solr documentation.

<fields>
...
<field name="myfield" type="text_general"

stored="true" indexed="true"/>
</fields>

Configuring PropertyField Beans

Beans of type PropertyField are configured in a customize:append element
in fileapplicationContext.xml. APropertyField bean requires the attributes
name, doctype and property. Attribute name specifies the index field name as
configured in the Solr schema.xml. Attribute doctype specifies the name of the
document type and attribute property specifies the name of the document
property, which is mapped to the index field. Furthermore, it's possible to configure
whether the property's value should also be indexed in the field textbody. By
default, it will be indexed in textbody but you can disable this by setting the at-
tribute textBody="false". Another optional attribute ignoreIfEmpty config-
ures whether a missing or empty property value should be indexed. The default
value is false meaning an empty value is indexed.

Note that excluded document types will not be indexed even if a matching Prop
ertyField is configured. The following example configures indexing of the
property headline of document type Article into the index field myfield. It is not
indexed in field textbody and empty values are ignored:

<customize:append id="addFeedableProperties"
bean="contentConfiguration" property="propertyFields">
<list>
<bean class="com.coremedia.cms.feeder.content.PropertyField">
<property name="name" value="myfield"/>
<property name="doctype" value="Article"/>
<property name="property" value="headline"/>
<property name="textBody" value="false"/>
<property name="ignoreIfEmpty" value="true"/>

</list>
</bean>
</customize:append>

Configuring FeedablePopulator Beans

FeedablePopulator Spring beans are configured in the list property feedable
Populators and/or in the list property partialUpdateFeedablePopulators
of Spring bean index using a customize:append element, for example in file
applicationContext.xml. The following FeedablePopulator classes already
exist:

➞ PropertyPathFeedablePopulator: Index specific values from a struct
document property.

42CoreMedia DXP 8

Searching for Content | Content Configuration

➞ XPathFeedablePopulator: Extracts a text fragment from an XML docu-
ment property.

➞ ImageDimensionFeedablePopulator: Set image attributes like image
orientation, dimension, and size category.

➞ ContentStatusFeedablePopulator: Set the document status (approved,
deleted, etc).

Your own populator classes just need to implement the FeedablePopulator in-
terface and can then be configured the same way. The method FeedablePopu
lator#populatewill be called with a com.coremedia.cap.content.Content
object, that is the type parameter T of FeedablePopulator implementations
must be Content or a super type of Content.

Populators registered at property feedablePopulators of Spring bean index
are called when a document gets added or updated and the whole document data
is sent to the search engine. Populators registered at property partialUpdate
FeedablePopulators are called for partial updates, when only document
metadata is sent to the search engine. You can also register a custom Feedable
Populator at both list properties and use method isPartialUpdate of the
passed in Feedable to detect whether a partial update is being processed. Method
getUpdatedAspects of the extended interface Feedable2 returns which aspects
of the index document are changed with a partial update.

PropertyPathFeedablePopulator

The PropertyPathFeedablePopulator is configured with a dot-separated property
path to index a specific property value from a struct document property. The first
name in the property path denotes the struct document property itself while the
following names specify nested properties of the struct. The constructor argument
type selects the type of the documents. The argument element maps to the field
name in the index. Furthermore, it's possible to configure whether the value should
also be indexed in the field textbody using the property textBody. By default,
it will not be indexed in the textbody field but you can enable this by setting the
property textBody to true.

The following example configures a populator to feed the index field author from
a localSettings.metadata.author struct property path of Article docu-
ments.

<customize:append id="addAuthorFeedablePopulator"
bean="index" property="feedablePopulators">
<list>
<ref bean="authorFeedablePopulator"/>

</list>
</customize:append>

<bean class=
"com.coremedia.cap.feeder.populate.PropertyPathFeedablePopulator">
<constructor-arg index="0" name="type" value="Article"/>
<constructor-arg index="1" name="propertyPath"

value="localSettings.metadata.author"/>

43CoreMedia DXP 8

Searching for Content | Content Configuration

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/Feedable.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/Feedable2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html

<constructor-arg index="2" name="element" value="author"/>
</bean>

XPathFeedablePopulator

XPathFeedablePopulators extract text of a fragment from an XML property.
The fragment is specified with an XPath expression in the property XPath. The
required property element maps to the field name in the index. The property
contentType selects the type of the document and the property property selects
the document property. Furthermore, it's possible to configure whether the prop-
erty's value should also be indexed in the field textbody. By default, it will be
indexed in textbody but you can disable this by setting the property textBody
to false. The namespaces property defines namespaces which can be used in the
XPath expression.

The following example configures a populator to feed the index field tabletext
from Text properties in Article documents.

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean
class="com.coremedia.cap.feeder.populate. \
XPathFeedablePopulator">
<property name="element" value="tabletext"/>
<property name="contentType" value="Article"/>
<property name="property" value="Text"/>
<property name="textBody" value="false"/>
<property name="XPath" value="/r:div/r:table"/>
<property name="namespaces">
<map>

<entry key="r"
value="http://www.coremedia.com/2003/richtext-1.0"/>

</map>
</property>

</bean>
</list>

</customize:append>

ImageDimensionFeedablePopulator

The ImageDimensionFeedablePopulator is used to detect the orientation
(portrait, square, landscape), dimension (width, height) and size category (small,
medium, large) of an image. After detection the following index fields are set:

➞ imageOrientation: portrait (value=0), square (value=1) and landscape
(value=2) mode.

➞ imageSizeCategory: small (value=0), medium (value=1) and large
(value=2) mode.

➞ imageWidth: image width in pixel.

➞ imageHeight: image height in pixel.

44CoreMedia DXP 8

Searching for Content | Content Configuration

➞ imageMaxLength: maximum of imageWidth and imageHeight

An image has portrait(landscape) mode if its height(width) is larger than its
width(height). If width and height are equal, it has square mode. An image is cat-
egorized as large(as medium) if its width is larger than or equal to the configured
largeWidth (mediumWidth) property and its height is also larger than or equal
to the configured largeHeight (mediumHeight) property. The image is small,
if its width is smaller than mediumWidth or its height is smaller than medium-
Height.

To categorize image orientation (portrait, square, landscape) and image size (small,
medium, large), some filter properties must be configured:

➞ docType: the document type of the content to be indexed, including sub-
types

➞ widthPropertyName: the property name of the content which holds the
width value

➞ heightPropertyName: the property name of the content which holds the
height value

➞ dataPropertyName: the property name of the content which holds the
image data. The value of this object must be of type com.core
media.cap.common.Blob.

You must set either widthPropertyName and heightPropertyName or data
PropertyName or both. If the two dimension properties do not exist, the blob
data is read to determine the dimension.

➞ largeWidth: lower bound width of large images

➞ largeHeight: lower bound height of large images

➞ mediumWidth: lower bound width of medium images

➞ mediumHeight: lower bound height of medium images

The following example shows an ImageDimensionFeedablePopulator config-
uration.

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean
class=

"com.coremedia.cap.feeder.populate.ImageDimensionFeedablePopulator">

<property name="largeWidth"
value="${feeder.populator.imageDimension.largeWidth}"/>
<property name="largeHeight"
value="${feeder.populator.imageDimension.largeHeight}"/>
<property name="mediumWidth"
value="${feeder.populator.imageDimension.mediumWidth}"/>

45CoreMedia DXP 8

Searching for Content | Content Configuration

<property name="mediumHeight"
value="${feeder.populator.imageDimension.mediumHeight}"/>
<property name="docType"
value="${feeder.populator.imageDimension.docType}"/>
<property name="widthPropertyName"
value="${feeder.populator.imageDimension.widthPropertyName}"/>

<property name="heightPropertyName"

value="${feeder.populator.imageDimension.heightPropertyName}"/>
<property name="dataPropertyName"
value="${feeder.populator.imageDimension.dataPropertyName}"/>

</bean>
</list>

</customize:append>

The property values of the populator bean are filtered from a property file.

ContentStatusFeedablePopulator

The ContentStatusFeedablePopulator classifies a document in one of four
status categories:

➞ 0: in production (not approved and not deleted)

➞ 1: approved (place and content)

➞ 2: published (place and content)

➞ 3: deleted

After classification, the status value of the document is stored in the index field
status. The following example shows a ContentStatusFeedablePopulator
configuration:

<customize:append id="addFeedablePopulators"
bean="index" property="feedablePopulators">
<list>
<bean class="com.coremedia.cap.feeder. \
populate.ContentStatusFeedablePopulator"/>
</list>

</customize:append>

Note, that the Content Feeder does not update already processed documents
after changing the fields to index. A configuration change only affects newly
processed documents. If you want to update all documents, restart the Content
Feeder with an empty index.

46CoreMedia DXP 8

Searching for Content | Content Configuration

4.2.3 Advanced Configuration

Configuring Batch Handling

The Content Feeder sends document changes to the CoreMedia Search Engine in
batches. You can configure the number of documents in a batch and when to send
a batch. Batch sizes and sending rate influence the indexing speed.

Configuration not mandatory: Normally you do not need to change the default
settings.

The Content Feeder sends a batch when one of the following conditions is fulfilled:

➞ The maximum number of documents in a batch has been reached.

➞ The batch size in bytes would exceed the configured maximum if more
documents were added.

➞ Maximum time delays are reached.

The file feeder.properties contains properties to configure batch sending.

➞ feeder.maxBatchSize: The maximum number of index documents in a
batch. A smaller batch may be sent if the maximum byte size is reached be-
fore.

➞ feeder.maxBatchByteSize: The maximum number of bytes allowed in
a batch. A smaller batch may be sent if the maximum batch size is reached
before.

➞ feeder.sendIdleDelay: The maximum seconds to wait sending a new
batch if the Content Feeder is idle. This value normally is small to feed a
document quickly for low latency, such as when a document was changed
by an editor.

➞ feeder.sendMaxDelay: The maximum seconds to wait sending a new
batch if the batch is not yet full. This value normally is higher to avoid
sending small batches, for example when large amounts of documents are
imported with an importer.

Note, that open batches are kept in main memory. You have to reserve
2*maxBatchByteSize bytes for the batches.

47CoreMedia DXP 8

Searching for Content | Advanced Configuration

Configuring Error Handling

The Content Feeder automatically retries operation after some communication
problems with the CoreMedia Search Engine. The following properties configure the
retry behavior:

➞ feeder.retrySendIdleDelay: The maximum seconds to wait sending a
failed batch again, if the Content Feeder is idle.

➞ feeder.retrySendMaxDelay: The maximum seconds to wait sending a
failed batch again, if the batch is not yet full.

➞ feeder.solr.sendRetryDelay: The delay in seconds between a failed
batch sending and the next try. The default value is 30 seconds.

➞ feeder.retryConnectToIndexDelay.seconds: The delay in seconds
between retries to connect to the Search Engine on startup. The default value
is 10 seconds.

➞ feeder.solr.connection.timeout: The connection timeout set on the
SolrJ SolrServer. It determines how long the client waits to establish a
connection without any response from the server. The default value is 0.
That means it will wait forever. You can configure the timeout in milliseconds.

➞ feeder.solr.socket.timeout: The socket timeout set on the SolrJ
SolrServer. It determines how long the client waits for a response from
the server after the connection was established and the request was already
sent. The default value is set to 600000 milliseconds. That means it will wait
for 10 minutes.

Configuring Tika

Apache Tika is used to extract text from blob properties for indexing. It provides
parsers for various formats, which can be customized in a special Apache Tika XML
configuration file. The default configuration covers typical formats so that a custom
configuration is rarely needed. If you need to fine-tune the configuration of Apache
Tika, please have a look at the documentation of Apache Tika for the format of the
Tika Config XML file. The location of this file can be configured with the Spring
configuration property feeder.tika.config. The value of this property is a
Spring Resource location. The following example configures an Apache Tika Config
file from the local file system:

Example

feeder.tika.config=file:/opt/path/tika-config.xml

Configuring Tika metadata extraction

In addition to extracting body text, Tika can extract metadata for some binary
formats such as the creator of a Microsoft Word file. You can use the configuration

48CoreMedia DXP 8

Searching for Content | Advanced Configuration

properties feeder.tika.appendMetadata and feeder.tika.copyMetadata
to extract and index metadata from binary formats.

The property feeder.tika.appendMetadata takes a comma-separated list of
metadata identifiers. The Content Feeder simply appends the matching metadata
values to the indexed body text when Apache Tika extracts such a value.

The property feeder.tika.copyMetadata takes a comma-separated list where
each entry consists of a metadata identifier followed by an equal sign (=) and the
name of the index field the metadata should be copied to. When a matching
metadata value is found, it will be stored in the configured index field. Note that
with Apache Solr target index fields must be defined as multiValued="true"
to avoid indexing errors if there are multiple metadata values with the same
identifier. See also Section 4.5, “Modify the Search Index” [55].

Example

feeder.tika.copyMetadata=creator=author

The above example configures the Content Feeder to store the creator as extracted
from the metadata in the index field author. Note that the index field must be
declared in the Solr schema for this to work.

Metadata identifiers are specific to Apache Tika. You can find some of them in the
API documentation of Apache Tika class org.apache.tika.metadata.Tika-
CoreProperties.

Configuring updates of rights rule changes

The Content Feeder indexes the groups with potential read rights to a document in
the index field groups. The set of groups is then used to narrow a user's search
down to the documents where he could have read rights to. This is an optimization
to reduce the number of search results on which the client must check read rights
and for more accurate search suggestion numbers. The downside of this optimiza-
tion is an increased feeding load, because documents must be reindexed after
changing rights rules on any parent folder up to the root folder. You can disable
this optimization by setting the property feeder.indexGroups to false in the
file feeder.properties. If you've set that property to false, then you should
also configure the Studio application to not add a superfluous query condition for
the indexed groups by setting its property studio.rest.searchSer
vice.useGroupsFilterQuery to false.

Because rights changes may lead to lots of reindexing, the Content Feeder treats
these changes differently than normal editorial changes. It updates index documents
after rights changes in the background when it is idle. Rights changes are processed
with lower priority than editorial changes. Feeding of rights changes does not block
feeding of editorial changes.

49CoreMedia DXP 8

Searching for Content | Advanced Configuration

4.3 Configure Search for the Content Server
To search for documents in the Site Manager, Studio or custom client applications,
you need to configure the CoreMedia Search Engine with the CoreMedia Content
Server. The CoreMedia Content Server connects to the CoreMedia Search Engine to
handle search requests for its clients.

Configure in the following files below WEB-INF:

➞ properties/corem/contentserver.properties

➞ config/contentserver/spring/search/search-solr.proper
ties

➞ config/contentserver/spring/search/applicationCon
text.xml

Configuring the Search Engine Location

In file search-solr.properties configure the property search.solr.urls
with the URL of the Apache Solr core. For example http://local
host:8081/solr/studio. If you change this setting, you have to restart the
server. You can also configure multiple comma-separated URLs in this property if
you want to use multiple Solr servers for failover and simple load balancing, but
note that Studio always uses only the first configured URL.

If the Apache Solr web application has been secured and needs HTTP Basic authen-
tication, you must also configure the required user name and password in the
properties search.solr.username and search.solr.password.

Configuring the Search Engine Collection

In file search-solr.properties configure the property search.solr.col
lection with the name of the CoreMedia Search Engine collection.

search.solr.collection=studio

The Content Feeder stores the collection name in the field collection of Solr index
documents. A search result only contains documents belonging to the same collec-
tion. To achieve this, the content server automatically adds the collection name to
a user query. If you change this setting, you have to restart the server.

Enable or Disable Search

Search functionality is enabled by default. You can disable it by setting property
cap.server.search.enable to false in the file contentserver.proper

50CoreMedia DXP 8

Searching for Content | Configure Search for the Content Server

ties. If disabled in the Content Management Server, no search dialog will be available
in the Site Manager. Note that Studio requires search to be enabled in the Content
Management Server.

Configuring the CoreMedia Search Engine Timeout

In file search-solr.properties configure the property search.solr.con
nection.timeout with a timeout value in milliseconds used in HTTP requests
to the search engine. The default value is 0, which means no timeout is applied.

search.solr.connection.timeout=0

51CoreMedia DXP 8

Searching for Content | Configure Search for the Content Server

4.4 Configure Search Suggestions for Studio

Configuration not mandatory: Search suggestions in Studio work with the
default configuration. This section describes how you can configure the index
fields used for suggestions and how you can tune the performance of suggestions.

CoreMedia Studio shows autocomplete search suggestions when a user starts typing
search queries in the library window. These suggestions are based on the indexed
documents and computed by a special search component in Apache Solr, which
can be configured in the Solr configuration file <solr-home>/configsets/con
tent/conf/solrconfig.xml.

The configuration consists of:

➞ Request handler parameters

Studio uses the Solr request handler /editor for searching and getting
search suggestions. Suggestions are configured with parameter sug
gest.spellcheck.dictionary as in the following example (the other
parameters may vary in your configuration):

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
<str name="defType">cmdismax</str>
<str name="echoParams">none</str>
<float name="tie">0.1</float>
<str name="qf">textbody name_tokenized^2 numericid^10</str>
<str name="pf">textbody name_tokenized^2</str>
<str name="mm">100%</str>
<str name="q.alt">*:*</str>
<str name="suggest.spellcheck.dictionary">textbody</str>
</lst>
...

The parameter suggest.spellcheck.dictionary references a Suggester
dictionary to compute suggestions from. This dictionary must be configured
in solrconfig.xml as well as described further below. In the default con-
figuration it is named after the index field textbody but you can use differ-
ent dictionary names as you like. You can also use multiple dictionaries to
compute suggestions from the content of multiple document fields. To this
end, you just need to repeat the element <str name="sug
gest.spellcheck.dictionary"> multiple times with different values.
Note that you must also configure multiple dictionaries if you want to suggest
words from language dependent fields. For example, if you've defined the
fields textbody, textbody_en and textbody_de in the index schema as
described in Section 3.5, “Searching in Different Languages” [26], then you
need to add three dictionaries to get suggestions from all of these fields.

➞ Request handler components

52CoreMedia DXP 8

Searching for Content | Configure Search Suggestions for Studio

The same request handler /editor is configured to use the necessary search
components for suggestions as shown below. These referenced components
are configured as <searchComponent ...> elements in solrconfig.xml
as well.

<requestHandler name="/editor" class="solr.SearchHandler">
<lst name="defaults">
...

</lst>
<arr name="last-components">
<str>suggest</str>
<str>spellcheck</str>

</arr>
</requestHandler>

➞ SpellCheckComponent and dictionary configuration

The above configuration references the search component named
spellcheck with a dictionary textbody. Now it's time to look at the con-
figuration of that component. The relevant part for suggestions looks as
follows:

<searchComponent name="spellcheck"
class="solr.SpellCheckComponent">

<str name="queryAnalyzerFieldType">text_general</str>

<lst name="spellchecker">
<str name="name">textbody</str>
<str name="classname">
org.apache.solr.spelling.suggest.Suggester

</str>
<str name="lookupImpl">
org.apache.solr.spelling.suggest.fst.WFSTLookupFactory

</str>
<str name="field">textbody</str>
<float name="threshold">0.0001</float>

</lst>

</searchComponent>

If you choose different names for spell check component or dictionary, make
sure that you use the correct names in the configuration of the /editor
request handler.

The element <lst name="spellchecker"> configures a dictionary for
suggestions based on the content of the index field textbody. The parameter
threshold configures the dictionary to just consider words that occur in
at least the given percentage of documents. It can take a value between 0
and 1. A value of 0.01 would mean that a word must appear in at least 1%
of the documents in that field. More rare words will be ignored and not re-
turned as suggestions. While you can set this value to 0 to include all words,
this would increase the size of the in-memory data structure and the time
needed to build it. You can use the parameter to tune the suggestions:

53CoreMedia DXP 8

Searching for Content | Configure Search Suggestions for Studio

higher values lead to smaller memory usage and better performance while
smaller values provide more detailed suggestions.

To define dictionaries for multiple index fields, you just need to repeat the
<lst name="spellchecker"> section but use a different name for the
dictionary in <str name="name"> and set the name of the index field in
<str name="field">.

➞ Dictionary rebuilding configuration

Suggester dictionaries are in-memory data structures that must be rebuilt
after index changes to make new words appear in the suggestions. The
search component DictionaryRebuilder, which is also configured in file
solrconfig.xml, rebuilds all configured dictionaries after index updates.
Its configuration takes the name of the spell check component with parameter
spellCheckComponent and the names of the dictionaries with parameter
dictionary. For multiple dictionaries you just need to repeat the <str
name="dictionary"> element with different values.

<searchComponent name="dictionaryRebuilder"
class="com.coremedia.solr.suggest.DictionaryRebuilder">

<str name="spellCheckComponent">spellcheck</str>
<str name="dictionary">textbody</str>
<long name="minimumIntervalSeconds">60</long>

</searchComponent>

With the default configuration in parameter minimumIntervalSeconds,
the dictionary will be rebuilt at most once per minute if the index is constantly
changed.

Note that Solr already provides a different method to rebuild dictionaries
after commits, which can be enabled with parameter <str name="buil
dOnCommit">true</str> in the <lst name="spellchecker"> diction-
ary configuration. However, while it rebuilds the dictionary similarly to the
DictionaryRebuilder, it will do this after every Solr commit even if
commits come in very fast. It will also delay the visibility of the committed
index changes in the search results as long as the dictionary is built. Depend-
ing on the size of the dictionary (affected by index size and the configured
threshold parameter) it may take some seconds to rebuild a suggestion
dictionary. Use the DictionaryRebuilder and not buildOnCommit to
avoid such delays.

54CoreMedia DXP 8

Searching for Content | Configure Search Suggestions for Studio

4.5 Modify the Search Index

Configuration not mandatory: Change the Apache Solr schema.xml in <solr-
home>/configsets/content/conf if you want to add an index field used
for search with CoreMedia or native search engine APIs.

By default, search is performed in index fields textbody, name_tokenized, nu
mericid and their language-dependent variants textbody_* and name_token
ized_* when using the /editor request handler configured in file <solr-
home>/configsets/content/conf/solrconfig.xml. This request handler
is used when you perform a search in Studio or in the Site Manager. The content
from the document properties is fed into the textbody index field. This default
request handler configuration is useful for most situations.

Only if you want to search in an additional field but not in the textbody field,
you can add the additional index field in the file schema.xml. Then you can feed
the field with a PropertyField or FeedablePopulator as described in Section
4.2, “Configure the Content Feeder” [37].

You can search in a specific field with the method SearchService#searchNative
from the Unified API (for details see CoreMedia Unified Developer Manual, Section
"Search Service" in chapter "The Content Repository"). Another possibility is to use
the search engine native API directly.

55CoreMedia DXP 8

Searching for Content | Modify the Search Index

4.6 Operation of the Content Feeder
This section describes the operation of the Content Feeder.

Administration Page

The Content Feeder provides a site for administration. The URL to the administration
site: http://<FEEDER_HOST>:<FEEDER_PORT>/<FEEDER_CONTEXT>/admin

The administration page requires HTTP authentication. The user and password are
configured in the following properties:

feeder.management.user=feeder
feeder.management.password=feeder

It is recommended to change the password in productive environments.

56CoreMedia DXP 8

Searching for Content | Operation of the Content Feeder

Figure 4.2. Content
Feeder Administration

57CoreMedia DXP 8

Searching for Content | Operation of the Content Feeder

The administration page shows the current status, statistic information and config-
uration of the Content Feeder. At the top of the page is a link to stop the Content
Feeder.

Furthermore, there is a link to show error documents. They represent documents
that were not processed successfully by the Content Feeder or the CoreMedia Search
Engine. The page contains links to manually retry indexing of error documents. If
not used, the Content Feeder retries indexing of error documents the next time the
document changes.

Error documents can also be found with a search engine query for all documents
with the value ERROR in the index field feederstate. The field feederinfo
contains an error description.

Index documents below

This option enables the user to reindex all documents below a particular folder.
Reindexing documents below a folder is achieved by entering the folder ID of the
targeted folder in the "index documents below" input field and clicking on "Index
Below" button.

Start and Stop the Content Feeder

The Content Feeder is started and stopped like any other web application. You can
also manually stop the Content Feeder with the stop link on the administration page.
Note that the Content Feeder can only be restarted by restarting the web application.

Clear Search Engine index

You can clear the Search Engine index of the Content Server by clicking on a corres-
ponding link at the Content Feeder admin page. The Content Feeder must be stopped
using the stop link on the administration page before the collection can be cleared.
When stopped, a link "Clear the Search Engine index" shows up on the Content
Feeder admin page.

This will remove all documents of the Content Server from the Search Engine index.
All documents will be reindexed when the Content Feeder is restarted.

Alternatively, you can use the JMX operation clearCollection() of the Feeder
MBean. See the appendix of the Content Server Manual for a description of all
available JMX attributes and operations.

See also Section 3.3, “Reindexing” [20] to learn how to reindex without search
downtime.

58CoreMedia DXP 8

Searching for Content | Operation of the Content Feeder

4.7 Implementing Custom Search
Custom search applications can use the full power of Apache Solr through Solr's
Java API SolrJ. Please see the documentation of Apache Solr and its SolrJ API for
details.

There are just a few things to keep in mind when implement search for content
beans:

➞ Feeder applications such as the CAE Feeder and the Content Feeder require
separate Apache Solr cores. When searching you must specify a core in the
Apache Solr URL to get results for the specific application only.

➞ Successfully indexed documents carry the value SUCCESS in the index field
feederstate. To avoid finding placeholder index documents for feeding
errors or internal index documents, you should always add a feeder
state:SUCCESS filter query to your queries.

You can restrict the number of returned fields in a search result by setting the Solr
fl (field list) parameter. Generally you just need the content id, which is stored
in field id. You can use IDs of the search results to get the Content objects back
from the Unified API. See the CoreMedia Unified API Developer Manual for details.

59CoreMedia DXP 8

Searching for Content | Implementing Custom Search

5. Searching for CAE Content Beans

This chapter describes concepts and structure of the CoreMedia CAE Feeder and
contains information on how to make content beans of the CoreMedia CAE search-
able with the CoreMedia Search Engine. It also describes configuration and operation
of the CAE Feeder.

➞ Section 5.1, “Architectural Overview” [61] gives an overview over the archi-
tecture of the CAE Feeder

➞ Section 5.2, “Configuring the CAE Feeder” [62] describes the configuration
of the CAE Feeder environment

➞ Section 5.3, “Operations of the CAE Feeder” [65] describes the operation
of the CAE Feeder

➞ Section 5.4, “Indexing Content Beans” [67] describes how to configure and
customize the CAE Feeder to make the content beans of your application
searchable

➞ Section 5.5, “Integrating a Different Search Engine” [81] describes how to
use the CAE Feeder with a different search engine or external system

➞ Section 5.6, “CAE Feeder for API Use” [84] describes how to set up a CAE
Feeder to develop custom applications using its public API

➞ Section 5.7, “Implementing Custom Search” [86] provides some hints for
implementing search in a CAE application

You can find a helpful tool for the work with the CAE Feeder in the CoreMedia
contributions repository at https://github.com/coremedia-contributions/cae-
feeder-tools. Select the appropriate branch for your CoreMedia version.

60CoreMedia DXP 8

Searching for CAE Content Beans |

https://github.com/coremedia-contributions/caefeeder-tools
https://github.com/coremedia-contributions/caefeeder-tools

5.1 Architectural Overview
The CAE Feeder is a web application, which enables search functionality not only
for single CoreMedia documents, as the Content Feeder does, but for content beans,
where data may be computed from multiple source documents. To do so, the CAE
Feeder sends the content bean's data to the Search Engine, which adds it to the index.

FeedableThe process of sending data to the Search Engine is called feeding the Search Engine.
A piece of data used to add a new or update an existing index document is called
a feedable. For efficiency reasons, the CAE Feeder sends batches of multiple feed-
ables to add or update index documents and batches of multiple identifiers to re-
move index documents.

The CAE Feeder can share the content bean code with an existing CAE web applica-
tion. The CAE Feeder proactively sends data to the Search Engine after new content
beans were added, changed or removed. It keeps the index up-to-date after changes
in the data of the underlying content beans. Furthermore, it keeps track of the
current feeding state to continue seamlessly after restarts of the application. To
this end, it stores its state in a database.

The following figure shows the overall architecture:

Figure 5.1. CAE Feeder
architecture

Content Server CAE Feeder Search Engine

IndexDBDB

content
changes

batches

Create your own applic-
ation

If you do not want to have updates automatically send to the search engine after
content changes, but control yourself when data is sent to the search engine, then
you can use the API of the CAE Feeder and develop a custom application as described
in Section 5.6, “CAE Feeder for API Use” [84].

61CoreMedia DXP 8

Searching for CAE Content Beans | Architectural Overview

5.2 Configuring the CAE Feeder
This section describes common configuration tasks. See Section 6.3, “CAE Feeder
Configuration” [107] for a detailed description of configuration settings. All proper-
ties can be configured in the file WEB-INF/application.properties of the
CAE Feeder web application.

Configuring the Content Server

The CAE Feeder can be used to index content beans for content from the Content
Management Server or a Live Server. Configure the Content Server for the CAE Feeder
as in the following example:

Example 5.1. Configure
the Content Serverrepository.url=http://localhost:44441/coremedia/ior

repository.user=webserver
repository.password=webserver
repository.domain=

The property repository.url specifies the URL of the Content Server. The prop-
erties repository.user, repository.password and repository.domain
define the account of the user used by the CAE Feeder to log in to the Content
Server.

Configuring the Database

The CAE Feeder persists the feeding state in a database. Configure the connection
to the database with the following properties:

jdbc.driver Specifies the class of the database driver

jdbc.url Contains the URL of the database

jdbc.user Specifies the account name of the database user

jdbc.password Specifies the account password of the database user

For example:

Example 5.2. Configure
the databasejdbc.driver=oracle.jdbc.driver.OracleDriver

jdbc.url=jdbc:oracle:thin:@localhost:1521:oracle
jdbc.user=username
jdbc.password=password

Do not run multiple CAE Feeder applications on the same database schema.

62CoreMedia DXP 8

Searching for CAE Content Beans | Configuring the CAE Feeder

Configuring the Search Engine

The configuration of the connection to the CoreMedia Search Engine includes setting
host name and port of the installed search engine and the name of the target Solr
core. This is done by setting the properties feeder.solr.url and feed
er.solr.collection. Each feeding application needs a different index. Do not
use the same index for multiple instances of the CAE Feeder or the Content Feeder.

If the Apache Solr web application has been secured and needs HTTP basic authen-
tication, you must also configure the required user name and password in the
properties feeder.solr.username and feeder.solr.password.

Example 5.3. Configure
the Search Engine for
Apache Solr

feeder.solr.url=http://localhost:8001/solr/preview
feeder.solr.username=
feeder.solr.password=
feeder.solr.collection=preview

Configuring Tika

Extracting metadataApache Tika is used to extract text from blob properties for indexing. It provides
parsers for various formats, which can be customized in a special Apache Tika XML
configuration file. The default configuration covers typical formats so that a custom
configuration is rarely needed. If you need to fine-tune the configuration of Apache
Tika, please have a look at the documentation of Apache Tika for the format of the
Tika Config XML file. The location of this file can be configured with the Spring
configuration property feeder.tika.config. The value of this property is a
Spring Resource location. The following example configures an Apache Tika Config
file from the local file system:

Example

feeder.tika.config=file:/opt/path/tika-config.xml

Configuring Tika metadata extraction

In addition to extracting body text, Tika can extract metadata for some binary
formats such as the creator of a Microsoft Word file. You can use the following
properties to extract and index metadata from binary formats:

➞ feeder.tika.appendMetadata

➞ feeder.tika.copyMetadata

The property feeder.tika.appendMetadata takes a comma-separated list of
metadata identifiers. The CAE Feeder simply appends the matching metadata values
to the indexed body text when Apache Tika extracts such a value.

63CoreMedia DXP 8

Searching for CAE Content Beans | Configuring the CAE Feeder

The property feeder.tika.copyMetadata takes a comma-separated list where
each entry consists of a metadata identifier followed by an equal sign (=) and the
name of the index field the metadata should be copied to. When a matching
metadata value is found, it will be stored in the configured index field. Note that
with Apache Solr target index fields must be defined as multiValued="true"
to avoid indexing errors if there are multiple metadata values with the same
identifier. See also Section 5.4.4, “Modifying the Search Index” [73].

Example

feeder.tika.copyMetadata=creator=author

The above example configures the CAE Feeder to store the creator as extracted
from the metadata in the index field author. You have to declare the index field
in the Solr schema for this to work.

Metadata identifiers are specific to Apache Tika. You can find some of them in the
API documentation of Apache Tika class org.apache.tika.metadata.Tika-
CoreProperties.

Configuring Error Handling

The CAE Feeder automatically retries operation after some communication problems
with the Solr Search Server. The following properties configure the retry behavior:

Table 5.1. Properties
for retry on Solr serverDescriptionDefaultValueProperty

The delay between a failed batch
sending and the next try.

30time in
seconds

feed
er.solr.sendRetry
Delay

The connection timeout set on the
SolrJ SolrServer. It determines

0time in milli-
seconds

feeder.solr.con
nection.timeout

how long the client waits to establish
a connection without any response
from the server. The default value 0
means, that it will wait forever.

The socket timeout set on the SolrJ
SolrServer. It determines how

600000
(10
minutes)

time in milli-
seconds

feeder.solr.sock
et.timeout

long the client waits for a response
from the server after the connection
was established and the request was
already sent.

64CoreMedia DXP 8

Searching for CAE Content Beans | Configuring the CAE Feeder

5.3 Operations of the CAE Feeder
This section describes administration and operation of the CoreMedia CAE Feeder.
The CAE Feeder provides full-text search capabilities for custom content applications
by sending the data of content beans to the CoreMedia Search Engine. Custom ap-
plications can use the Search Engine to find the content beans afterwards.

The CAE Feeder is available as a web application that can be deployed into a sup-
ported servlet container. The resetcaefeeder command-line tool of the CAE Feeder
is available as a separate stand-alone application.

5.3.1 Starting and Stopping
You can start and stop the CAE Feeder with the servlet container.

The CAE Feeder will wait for the Content Management Server and for Apache Solr to
become available if necessary.

5.3.2 Resetting
To reset the CAE Feeder and feed all documents again, both the CAE Feeder database
and the used Search Engine index must be cleared. You can trigger clearing the
database and Solr index with the cm resetcaefeeder command-line tool. The
tool sets a reset flag for the CAE Feeder in the database and the CAE Feeder drops
its database and index when it is restarted.

The cm resetcaefeeder tool is available in the Blueprint module caefeeder-
tools-application and can be used as follows:

cm resetcaefeeder reset Trigger a reset of the CAE Feeder for the next
restart

cm resetcaefeeder cancel Cancel a triggered reset

cm resetcaefeeder status Show whether a reset was triggered or not

Note that the CAE Feeder must be able to connect to both the database and to Solr
when restarted after calling cm resetcaefeeder reset. Do not stop the CAE
Feeder when it is clearing database and search index. However, if it was stopped
between clearing database and search index, then you must call cm resetcae
feeder reset once more and restart the CAE Feeder.

See also Section 3.3, “Reindexing” [20] to learn how to reindex without search
downtime.

65CoreMedia DXP 8

Searching for CAE Content Beans | Operations of the CAE Feeder

5.3.3 Disabling Invalidations
The CAE Feeder refeeds content beans when dependencies of these beans are inval-
idated. In some cases, this behavior might be cumbersome. If you have content
beans with a lot of dependencies, for example, and you want to use the CAE Feeder
to feed these beans into the Search Engine you might face problems when contents
change during the initial feeding process. Because in this case, even few changes
of the content beans might lead to a lot of invalidations of already fed beans.

To prevent this, you can temporarily disable invalidations of already fed beans.

To do so, set the property contentDependencyInvalidator.invalidation
Stopped=true and restart the CAE Feeder.

After initially feeding the content beans, set the property back to "false" otherwise
no invalidations will reach the CAE Feeder.

66CoreMedia DXP 8

Searching for CAE Content Beans | Disabling Invalidations

5.4 Indexing Content Beans
Indexing of content beans requires the following steps, which are described in the
subsections of this section:

1. Specify by type and location the content beans you want to index

2. Provide content bean classes

3. Customize feedables to define which and how properties of content beans are
indexed

4. Adapt the Solr index schema, if necessary

5.4.1 Specifying the Set of Indexed Content Beans
Each content bean in the CAE represents a content object from the CoreMedia
Content Server.

In order to specify the indexed content beans, you have to define the set of source
contents using a content selector.

Configuring the Content Selector

Definition of content
selector

The file caefeeder-triggers.xml located in classpath /frame
work/spring/caefeeder/ contains the Spring Framework bean definition of
the content selector. The default implementation PathAndTypeContentSelector
selects contents by type and path. You can configure it with the following properties:

feeder.contentSelect
or.basePath

Specifies a comma-separated list of content
repository folder paths.

feeder.contentSelector.con
tentTypes

Contains a comma-separated list of content
types.

feeder.contentSelector.in
cludeSubTypes

Specifies whether subtypes of the con-
figured content types are selected as well.
The default is true.

Example

Example 5.4, “ContentSelector example” [67] selects all contents of type CMMedia,
CMArticle, CMDownload and CMCollection (including sub types) which are
located below the path /Sites:

Example 5.4. Con-
tentSelector examplefeeder.contentSelector.basePath=/Sites

feeder.contentSelector.contentTypes=CMMedia,CMArticle,CMDownload,CMCollection
feeder.contentSelector.includeSubTypes=true

67CoreMedia DXP 8

Searching for CAE Content Beans | Indexing Content Beans

Customizing the content types list

You can extend the set of indexed content beans by customizing a property of the
content selector called contentTypeNames. This is useful when you use extensions
(see the [CoreMedia DXP 8 Manual] for details), because an extension can not ex-
tend a property file but it can extend Spring configuration.

The following example defines a simple configuration which customizes the bean
contentTypeNames, defined in file caefeeder-triggers.xml, by adding a
CMPicture to the set of content types defined infeeder.contentSelector.con
tentTypes:

<customize:append id="contentTypeNamesCustomizer"
bean="contentTypeNames">
<list>
<value>CMPicture</value>

</list>
</customize:append>

5.4.2 Configuring Content Bean Classes
The CAE Feeder needs a definition of the content bean classes in its Spring context
and the implementation of the content beans in its classpath similar to the config-
uration of the CAE. So you can reuse, your CAE configuration.

Configure the content bean classes in the Spring application context as described
in the [CoreMedia Content Application Developer Manual].

Make sure, that the configured classes are available in the classpath of the CAE
Feeder.

5.4.3 Customizing Feedables
A FeedableA feedable is an object which is generated from the data of a content bean and

which the CAE Feeder sends to the Search Engine for indexing. Customizing feedables
means that you define which content of a content bean is mapped to fields of the
feedable and is therefore added to the index if a corresponding Solr index field
exists. The following paragraphs describe the involved classes.

The FeedableContentBeanEvaluator creates feedables from ContentBean
objects. You can find the configuration in the file caefeeder-triggers.xml,
which is located in the classpath /framework/spring/caefeeder.

Example 5.5. Definition
of FeedableContent-
BeanEvaluator

<bean name="contentEvaluator" class=
"com.coremedia.amaro.cae.feeder.FeedableContentBeanEvaluator">
<property name="contentBeanFactory" ref="contentBeanFactory"/>
<property name="keyTransformer" ref="feederKeyTransformer"/>
<property name="feedableFactory" ref="feedableFactory"/>
<property name="feedablePopulator"

68CoreMedia DXP 8

Searching for CAE Content Beans | Configuring Content Bean Classes

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html

ref="errorHandlingFeedablePopulator"/>
</bean>

Create an identifier for
search documents

An implementation of com.coremedia.cap.feeder.persistentcache.KeyTransformer
is used to create identifiers for Search Engine documents in the index. The default
KeyTransformer implementation creates identifiers of the same format as the Id-
Provider of the CoreMedia CAE.

Example: a content bean for the content with the numerical id 42 is represented
by an Apache Solr document with the value contentbean:42 in the field id.
Search applications can use the IdProvider to get a content bean for the identi-
fier again.

Filling the Feedable
with a FeedablePopulat-
or

The FeedableContentBeanEvaluator uses an implementation of com.core-
media.cap.feeder.populate.FeedablePopulator to fill the elements of the feedable
with the values of a content bean. By default, a BeanMappingFeedablePopulator
is used which maps Java bean properties of ContentBean objects to elements of
the created feedable as configured.

If required, you can configure additional FeedablePopulator implementations
in the property populators of the bean compositeFeedablePopulator. The
property takes a list of FeedablePopulator<T> beans, which makes it possible
to combine data from different implementations into the same feedable. The type
parameter <T> of a configured FeedablePopulator bean must be ContentBean,
Content or a super type of these. You can find some existing FeedablePopulator
implementations in package com.coremedia.cap.feeder.populate. For example,
you may configure an additional PropertyPathFeedablePopulator to index certain
nested values of struct properties.

Error handlingIf a bean property's get method throws an exception, the CAE Feeder will index a
so-called error document in the index as placeholder. Error documents can be re-
cognized by the value ERROR in the index field feederstate. The stack trace of
the exception is stored in the index field feederinfo. Do not forget to always
add a feederstate:SUCCESS clause to your queries to find successfully indexed
documents. Bean feeding will by default automatically be retried after 10 minutes
or if a dependency is invalidated that was accessed before the exception was
thrown. Errors are handled by an instance of class com.coremedia.cap.feeder.pop-
ulate.ErrorHandlingFeedablePopulator which wraps all FeedablePopulator in-
stances. It is available in the Spring Context as bean errorHandlingFeedable
Populator and can be customized as described in its API documentation.

Defining the Properties for Indexing

The BeanMappingFeedablePopulator class has two properties that you can use for
customizing the mapping between content bean properties and Feedable.

69CoreMedia DXP 8

Searching for CAE Content Beans | Customizing Feedables

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/persistentcache/KeyTransformer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/FeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/FeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/package-summary.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/PropertyPathFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/ErrorHandlingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/populate/ErrorHandlingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html

➞ beanPropertiesByClass

➞ beanMappings

beanMappings offers more powerful options. You can, for example, add a property
converter implementation that maps to a specific type.

Using beanPropertiesByClass

This configuration provides a simple way for bean properties which are mapped
to feedable elements with the same name. The values of these bean properties are
written to an index field with the same name, if it exists. Furthermore, the bean
property values will always be appended to the textbody index field.

In more detail, the property beanPropertiesByClass of the BeanMappingFeed-
ablePopulator takes a java.util.Map object, which maps bean classes to comma-
separated strings of their indexed bean properties. This map is available in the
Spring application context under the name caeFeederBeanPropertiesByClass
and can be customized.

The following example defines the mapping for content beans of classes
com.coremedia.example.contentbeans.Text and com.coremedia.ex
ample.contentbeans.Download. For content beans of classText and subclasses,
the Java bean properties headline and text map to elements of the feedable.
When constructing a feedable the BeanMappingFeedablePopulator calls the
property methods getHeadline and getText of class Text to retrieve the values
for these elements.

<customize:append id="caeFeederBeanPropertiesByClassCustomizer"
bean="caeFeederBeanPropertiesByClass">

<map>
<entry key="com.coremedia.example.contentbeans.Text"

value="headline,text"/>
<entry key="com.coremedia.example.contentbeans.Download"

value="data"/>
</map>

</customize:append>

Using beanMappings

A more powerful configuration is available with the property beanMappings of
the BeanMappingFeedablePopulator. The new options are:

➞ Define to which search field a content bean property is mapped

➞ Define that a content bean property should not be mapped to the textBody
field of Solr

➞ Define your own property converter

70CoreMedia DXP 8

Searching for CAE Content Beans | Customizing Feedables

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html

➞ Define a default value when a property returns null

➞ Adding parameters to a feedable

The property beanMappings takes a list of mappings where each mapping applies
to one bean class. You can customize this list of mappings as shown below. A
mapping for a single bean class is represented by a com.coremedia.cap.feed-
er.bean.BeanFeedableMapping. Each BeanFeedableMapping contains a list of
mappings for Java bean properties of the bean class in the property beanProper
tyMappings. A mapping for a single Java bean property to an element of the
Feedable is represented by a com.coremedia.cap.feeder.bean.BeanPropertyFeed-
ableElementMapping. See Example 5.6, “Example Content Bean to Feedable Map-
ping” [71] for an example.

A content bean can inherit from or extend other content beans. In this case, you
might have different BeanFeedableMapping elements that match for an instance
of a content bean. If so, the order of the BeanFeedableMapping elements in
the list of mappings is important: The first mapping of a property that matches
overwrites all following mappings that match.

Example mapping us-
ing beanMappings

Example 5.6, “Example Content Bean to Feedable Mapping” [71] defines a mapping
for the superclass of all content beans com.coremedia.objectserver.beans.Content-
Bean. The bean property content.modificationDate maps to the feedable
element named freshness. The default Solr index schema defines an index field
with that name, to which the bean property's value is written. The bean property
uses the syntax of Spring framework's bean wrapper for nested properties. When
constructing a feedable the BeanMappingFeedablePopulator calls the property
methods getContent().getModificationDate() of class ContentBean to
retrieve the value for the element. Furthermore, the value is not added to the
textbody index field.

Overwritten mappingsKeep in mind, that if you define a mapping for freshness for any other content
bean class and add it behind this example mapping to the list of mappings, it would
be overwritten by our example definition and you would get a warning in the log
file. So, avoid this.

Example 5.6. Example
Content Bean to Feed-
able Mapping

<customize:append id="caeFeederBeanMappingsCustomizer"
bean="caeFeederBeanMappings">

<list>
<ref local="exampleBeanFeedableMapping"/>

</list>
</customize:append>

<bean id="exampleBeanFeedableMapping"
class="com.coremedia.cap.feeder.bean.BeanFeedableMapping">

<property name="beanClass"
value="com.coremedia.objectserver.beans.ContentBean"/>

<property name="beanPropertyMappings">

71CoreMedia DXP 8

Searching for CAE Content Beans | Customizing Feedables

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/objectserver/beans/ContentBean.html

<list>
<bean class="com.coremedia.cap.feeder.bean.

BeanPropertyFeedableElementMapping">
<property name="beanProperty"

value="content.modificationDate"/>
<property name="feedableElement" value="freshness"/>
<property name="textBody" value="false"/>

</bean>
</list>

</property>
</bean>

See the API documentation for a description of all properties of the classes Bean-
MappingFeedablePopulator, BeanFeedableMapping and BeanPropertyFeedableEle-
mentMapping in package com.coremedia.cap.feeder.bean.

Mapping of Property Types

The CAE Feeder supports String, Number, Date, XML and binary element types. The
following table describes the default mapping from Java bean property value classes
to element types:

Table 5.2. Feedable
Element Types for Java
Bean Properties

element typeproperty value class

Binarycom.coremedia.cap.common.Blob

Datejava.util.Date and java.util.Calendar

XMLcom.coremedia.xml.Markup

Numberjava.lang.Number and primitive number types

Stringjava.lang.String

depends on collection's element
type

java.lang.Collectionwith elements of above
types

Values of other classes map to String elements with the value of their toString
method. Collections must contain elements of one type, otherwise the value of the
elements' toString method will be used.

Collection elements can be used to feed multi-value fields in Apache Solr.

Configuring your own
Property Converter

You can configure a property converter to convert the value to one of the supported
types. A property converter implements the interface com.coremedia.cap.feed-
er.bean.PropertyConverter and can be configured with the propertyConverter
property of the BeanPropertyFeedableElementMapping. Property converters
are for example useful when indexing collection properties. The property converter
implementations com.coremedia.cap.feeder.bean.CollectionPropertyConverter and
com.coremedia.cap.feeder.bean.CollectionToStringPropertyConverter can be used
for this purpose. Please see the Javadoc for details.

72CoreMedia DXP 8

Searching for CAE Content Beans | Customizing Feedables

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanFeedableMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanPropertyFeedableElementMapping.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/common/Blob.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/xml/Markup.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/PropertyConverter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/PropertyConverter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/CollectionPropertyConverter.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/CollectionToStringPropertyConverter.html

Default value for null
results

Furthermore, it is possible to configure a default value which should be indexed
if a bean property is null or a configured PropertyConverter returns null. A default
value can be configured with the defaultValue property of the BeanProperty-
FeedableElementMapping. Again, please see the Javadoc for details.

5.4.4 Modifying the Search Index

Configuration not mandatory

Change the Apache Solrschema.xml in<solr-home>/configsets/cae/conf
if you want to add index fields.

By default, search is performed in the index field textbody and language-depend-
ent variants textbody_*when using the /cmdismax request handler configured
in file <solr-home>/configsets/cae/conf/solrconfig.xml.

If you want to search in a different field, or want to use a special field for sorting,
faceting or anything like that, then you must add that field to the Solr configuration
file schema.xml.

The CAE Feeder sets the additional field when an indexed feedable contains an
element whose name matches the field's name. See Section 5.4.3, “Customizing
Feedables” [68] for details on feedables and their construction.

5.4.5 Using Revalidating Fragments
Recorded dependenciesWhen computing the data for a feedable, dependencies on accessed objects are

tracked and recorded by the CAE Feeder. Modifications of recorded dependencies
will lead to the invalidation of the feedable. The CAE Feeder will then construct a
new feedable with recomputed data and send it to the search engine. For example,
a content bean will be reindexed after changing some content that was used to
compute the feedable for that content bean.

In some cases, however, the invalidation of a dependency does not necessarily
lead to a different value for feeding and the overhead of reindexing could be
avoided for better performance.

Unnecessary invalida-
tion

For example, an indexed bean property gets its data from a document with global
settings. Such a document may contain lots of different settings in different prop-
erties or in a single struct property. Imagine, that a single setting S1 from this
document is accessed during the construction of each indexed feedable. Because
of this, each indexed bean will depend on the properties of the settings document.
Now, if somebody changes the document, for example by changing setting S2, all
indexed beans will be invalidated and reindexed. This can take some time. And the
data did not even change.

73CoreMedia DXP 8

Searching for CAE Content Beans | Modifying the Search Index

Skipping re-indexing
with fragment keys

Of course, you want to avoid such situations. One possibility is to disable such ex-
pensive dependencies by wrapping the code that creates them with the methods
disableDependencies() and enableDependencies() of the class
com.coremedia.cache.Cache. But often this is not possible, because sometimes an
invalid dependency really indicates changed data and the index must be updated.
To solve this problem, the CAE Feeder supports fragment keys, which can be used
to revalidate an unchanged result of a computation after some of its dependencies
became invalid. Revalidation means that the CAE Feeder recognizes that an invalid-
ation of a dependency does not change the result so that expensive reindexing
can be skipped.

Revalidating fragment keys should be used when it's possible to encapsulate a
fragment that is used for the computation of many feedables, and if dependencies
get invalidated without changing the feedable's data.

You should not use fragment keys, if each fragment is used in just one feedable
instance. The overhead of maintaining a lot of fragment keys in the CAE Feeder
can be much higher than reindexing a few content beans. The number of frag-
ment keys should be lower than the number of indexed content beans, for which
the fragment keys are used.

This section continues with an example how to use revalidating fragments to avoid
unnecessary reindexing.

Example: Using Revalidating Fragments for the Repository Path

In the following example, users should be able to search for articles below a given
repository path. Therefore, the CAE Feeder is configured to feed the repository path
into the field folderpath. The path is indexed as path of numeric IDs. For example
for a document that resides in folder /foo/bar the value /1/41/43/ will be in-
dexed if foo's ID is 41 and bar's ID is 43. /1 represents the root folder here. The
advantage of this approach is that folders can be renamed without the need to
reindex documents. To find all articles below the folder /foo, the search application
can simply use foo's ID in a query.

The CAE Feeder is configured to index the folder path for content beans of type
Article by setting the following property:

feeder.contentSelector.contentTypes=Article

and customizing the bean caeFeederBeanPropertiesByClass:

<customize:append id="caeFeederBeanPropertiesByClassCustomizer"
bean="caeFeederBeanPropertiesByClass">

<map>
<entry key="com.customer.example.beans.Article"

value="folderpath"/>

74CoreMedia DXP 8

Searching for CAE Content Beans | Using Revalidating Fragments

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html

</map>
</customize:append>

Without fragment keys the implementation of the Article's bean property might
look like:

public String getFolderPath() {
Content content = getContent().getParent();
StringBuilder sb = new StringBuilder();
while (content != null) {
sb.insert(0, "/" + IdHelper.parseContentId(content.getId()));
content = content.getParent();

}
return sb.toString();

}

Content#getParent creates a dependency on the place of the content, which is in-
validated if either the name or the parent of the content changes. If the name of
a parent folder changes, the article will be reindexed, even though the indexed
value has not changed. You can avoid this by using revalidating fragments. Using
revalidating fragments in this example consists of the following steps:

1. Implement a fragment key that encapsulates the part of the computation that
can be revalidated when collecting data for the feedable.

2. Implement a fragment key factory that returns a fragment key from a serialized
version of the key.

3. Register your factory in the Spring context.

4. Inject the factory into the content bean and use the factory to get the fragment
key's value.

5. Configure the capacity of the internally used cache.

Implementing a Fragment Key

First, implement a fragment key class that extends RevalidatingFragmentPersist-
entCacheKey. This key encapsulates the computation of the repository path in its
evaluate() method. The computed path constitutes a fragment of the overall
computation of the feedable's data. The implementation uses the Persistent Cache,
which is an internal component of the CAE Feeder, to recursively get the fragment
value for the parent folder.

Example 5.7. Example
of a fragment key im-
plementation

package com.customer.example;
import com.coremedia.cap.content.*;
import com.coremedia.cap.common.IdHelper;
import com.coremedia.cap.persistentcache.*;
import java.io.UnsupportedEncodingException;

public class IdPathKey
extends RevalidatingFragmentPersistentCacheKey<String> {

static final String PREFIX = "idpath:";

75CoreMedia DXP 8

Searching for CAE Content Beans | Using Revalidating Fragments

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/Content.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/RevalidatingFragmentPersistentCacheKey.html

private final PersistentCache2 persistentCache;
private final ContentRepository contentRepository;
private final String contentId;

public IdPathKey(PersistentCache2 persistentCache,
ContentRepository contentRepository,
String contentId) {

this.persistentCache = persistentCache;
this.contentRepository = contentRepository;
this.contentId = contentId;

}

@Override
public String getSerialized() {
return PREFIX + contentId;

}

@Override
public String evaluate() throws Exception {
Content content = contentRepository.getContent(contentId);
if (content==null) {
String s = getSerialized();
throw new InvalidPersistentCacheKeyException(s);

}
return getPath(content.getParent()) + '/' +

IdHelper.parseContentId(contentId);
}

private String getPath(Content content) {
if (content == null) {
return "";

}
IdPathKey key = new IdPathKey(persistentCache, contentRepository,

content.getId());
return (String)persistentCache.getCached(key);

}

@Override
public byte[] getBytesForHashing(String value) {
try {
return String.valueOf(value).getBytes("UTF-8");

} catch (UnsupportedEncodingException e) {
throw new RuntimeException("UTF-8 not supported", e);

}
}

To implement a fragment key, the methods getSerialized(), evaluate() and
getBytesForHashing(String) are implemented. In the following, the methods
are described in general.

evaluate()

Method evaluate() computes the fragment value. It does not take any parameters
that specify the source data for the computation. Such parameters are part of the
key's identity and are passed to its constructor. In the example, the contentId is
such a key parameter.

Method calls on com.coremedia.cap.content.Content objects in the implementation
of evaluate() implicitly trigger all relevant dependencies. These content depend-
encies are automatically invalidated after corresponding content changes.

76CoreMedia DXP 8

Searching for CAE Content Beans | Using Revalidating Fragments

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/content/Content.html

There may be situations where you want to avoid content dependencies. To this
end, you can use the following pattern to disable dependency tracking for a code
block by calling static methods of class com.coremedia.cache.Cache:

Cache.disableDependencies();
try {
// dependencies are disabled for this code block
...

} finally {
Cache.enableDependencies();

}

Additional dependencies may be triggered explicitly by calling the following static
methods from inside the evaluate() method:

➞ com.coremedia.cache.Cache#cacheFor(long millis): Triggers a relative time
dependency making the value become invalid when the time is reached.

➞ com.coremedia.cache.Cache#cacheUntil(Date date): Triggers an absolute
time dependency again making the value become invalid when the time is
reached.

➞ com.coremedia.cache.Cache#dependencyOn(Object dependent): Triggers
an explicit dependency on a certain object. The CAE Feeder only supports
dependencies on java.lang.String values. Dependencies of other types
are ignored.

Custom dependencies on java.lang.String values can be invalidated
programmatically by invoking method invalidate(Object) of class
com.coremedia.cap.persistentcache.dependencycache.PersistentDependen-
cyCacheManagement on the Spring bean persistentDependencyCacheM
anager. Alternatively, you can invalidate a String dependency with the JMX
operation invalidateSerialized(String) of the PersistentDepend
encyCache MBean. The parameter of this JMX operation is the String de-
pendency itself, prefixed with "string:" (i.e. "string:" + value).

getSerialized()

Method getSerialized() returns the key's serialized form as
java.lang.String as it is stored in the database of the CAE Feeder. The returned
string contains all parameters that are needed to reconstruct the fragment key in-
stance. It is good practice to use different prefixes for different types of fragment
keys. In the example, the prefix "idpath:" and the Content ID are used to create
serialized keys such as idpath:coremedia:///cap/content/41.

Keep in mind, that the serialized key is stored in the database when making the
dependencies persistent. Thus, using short keys will result in less disk space usage.

getBytesForHashing(String value)

Method getBytesForHashing(String) returns a byte representation for a
computed value. The CAE Feeder computes a hash from these bytes and stores it

77CoreMedia DXP 8

Searching for CAE Content Beans | Using Revalidating Fragments

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/Cache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/dependencycache/PersistentDependencyCacheManagement.html

in its database. The hash is used to detect if a fragment value has changed after it
was recomputed. The CAE Feeder avoids reindexing if nothing has changed.

Implementing a Factory for Fragment Keys

Next, you need a PersistentCacheKeyFactory, which is used to create fragment key
instances based on the keys' serialized representations. Its method cre
ateKey(String) is the inverse function for the fragment key's method getSeri
alizedKey().

In an environment where several types of fragment keys and therefore several
PersistentCacheKeyFactory instances are used, a mechanism for selecting
the right factory needs to be provided. As a convention, a PersistentCacheKey
Factorymay answer null to signal that it is not responsible for a given serialized
key. The CAE Feeder sequentially asks all known PersistentCacheKeyFactories
until a factory returns a non null result.

In case that the PersistentCacheKeyFactory is asked to reconstruct a key
whose resources are no longer available, it nevertheless must return a fragment
key. This returned key should throw an com.coremedia.cap.persistentcache.Inval-
idPersistentCacheKeyException when its evaluate() method is called. You may
use the static methodInvalidPersistentCacheKeyException.wrap(String
serializedKey) for creating such an instance.

In the example, the PersistentCacheKeyFactory just creates an instance of
IdPathKey with the Content ID extracted from the serialized key. It returns null
if the serialized key does not start with the correct prefix:

Example 5.8. Example
of a PersistenCacheKey-
Factory implementa-
tion

package com.customer.example;
import com.coremedia.cap.content.*;
import com.coremedia.cap.persistentcache.*;

public class IdPathKeyFactory
implements PersistentCacheKeyFactory {

private PersistentCache2 persistentCache;
private ContentRepository contentRepository;

public void setPersistentCache(PersistentCache2 pc) {
this.persistentCache = pc;

}

public void setContentRepository(ContentRepository cr) {
this.contentRepository = cr;

}

public PersistentCacheKey createKey(String serializedKey) {
if (serializedKey.startsWith(IdPathKey.PREFIX)) {
int l = IdPathKey.PREFIX.length();
String contentId = serializedKey.substring(l);
return keyForContent(contentId);

}
return null;

}

private PersistentCacheKey keyForContent(String contentId) {

78CoreMedia DXP 8

Searching for CAE Content Beans | Using Revalidating Fragments

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/InvalidPersistentCacheKeyException.html

return new IdPathKey(persistentCache, contentRepository,
contentId);

}

public String get(Content content) {
String contentId = content.getId();
PersistentCacheKey key = keyForContent(contentId);
return (String)persistentCache.getCached(key);

}
}

The PersistentCacheKeyFactory for creating fragment keys must be defined
in the Spring application context and registered as a fragment key factory. Note,
that the key factory is initialized with the persistentDependencyCache bean
for the persistentCache property. It's important to always use the persistent
DependencyCache bean to get fragment keys.

Example 5.9. Define
and register the factory
in the Spring context

<bean id="idPathKeyFactory"
class="com.coremedia.amaro.feeder.beans.IdPathKeyFactory">

<property name="persistentCache"
ref="persistentDependencyCache"/>

<property name="contentRepository"
ref="contentRepository"/>

</bean>

<customize:append id="idPathKeyFactoryCustomizer"
bean="fragmentPersistentCacheKeyFactory"
property="keyFactories">

<list>
<ref local="idPathKeyFactory"/>

</list>
</customize:append>

Using the Fragment Key Value in a Content Bean

The IdPathKeyFactory example class contains the convenience method
get(Content), which can be used in the content bean implementation to get
the path for a Content:

Example 5.10. Using
the fragment key in the
content bean

package com.customer.example.beans;

public class ArticleImpl extends ArticleBase implements Article {
private IdPathKeyFactory factory;

public void setIdPathKeyFactory(IdPathKeyFactory factory) {
this.factory = factory;

}

public String getFolderPath() {
Content parent = getContent().getParent();
if (parent == null) {
return "";

}
return factory.get(parent);

}
}

79CoreMedia DXP 8

Searching for CAE Content Beans | Using Revalidating Fragments

The content bean definition for the article bean must be configured with the key
factory:

Example 5.11. Config-
ure content bean with
factory

<bean name="contentBeanFactory:Article"
class="com.customer.example.beans.ArticleImpl"
scope="prototype" parent="abstractContentBean">

<property name="idPathKeyFactory" ref="idPathKeyFactory"/>
</bean>

This example's content bean implementation depends directly on the Persistent-
CacheKeyFactory and can only be used in the CAE Feeder. If you want to use the
same implementation in the CAE web application, you should extract the logic to
compute the path into a strategy interface.

Getting the Fragment Key Value from the Persistent Cache

IdPathKeyFactory#get(Content) and IdPathKey#getPath(Content) use
method getCached of com.coremedia.cap.persistentcache.PersistentCache2 to
retrieve a fragment value. This method uses in-memory CacheKeys to cache frag-
ment values. Cached lookup improves performance if lots of keys access the frag-
ment's value. It does not only avoid the repeated computation of the fragment but
it also avoids database queries to check whether newly computed values have
changed since the last computation.

Configure the cacheIn-memory cache keys created by the method getCached have the default cache
class java.lang.Object and a default cache weight equal to one. You must
configure a reasonable cache capacity for that cache class, for example:

<bean id="objectClassCacheCapacityConfigurer"
class="com.coremedia.cache.CacheCapacityConfigurer"
init-method="init">

<property name="cache" ref="cache"/>
<property name="capacities">
<map>
<entry key="java.lang.Object" value="10000"/>

</map>
</property>

</bean>

If you forget to configure the cache capacity, the value is not cached and the cache
will log warnings about an unreasonable cache size. If you want to use a different
cache class or weight, you can still create an in-memory CacheKey yourself which
then calls PersistentCache#get(PersistentCacheKey) in its evaluate
method.

Do not introduce cyclesBe careful to not introduce cycles when calling PersistentCache#get or Persist-
entCache2#getCached from another fragment key's evaluate method. Simple
cycles on the same thread will result in an IllegalStateException, for example
if key:1 gets key:2 which in turn gets key:1 again. But code might still hang if
multiple threads are involved, for example if one thread gets key:1 which gets
key:2 while another thread gets key:2 which gets key:1.

80CoreMedia DXP 8

Searching for CAE Content Beans | Using Revalidating Fragments

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/PersistentCacheKeyFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/PersistentCache2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cache/CacheKey.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/PersistentCache.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/PersistentCache2.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/persistentcache/PersistentCache2.html

5.5 Integrating a Different Search Engine
This section describes the necessary steps to make the CAE Feeder feed content
bean data to a different search engine or another external system. The default in-
tegration uses Apache Solr but the CAE Feeder provides an Indexer interface that
can be implemented to feed other external systems such as a search engine that
is integrated in your company's IT infrastructure.

The following simple example explains how you can replace the standard Apache
Solr indexer with a custom indexer that just writes messages to the log file.

1. Create a new Maven module, for example caefeeder-custom-component
with the following pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<parent>
...

</parent>

<modelVersion>4.0.0</modelVersion>
<artifactId>caefeeder-custom-component</artifactId>

<dependencies>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>caefeeder-base-component</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-search-api</artifactId>

</dependency>

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>

</dependency>

</dependencies>
</project>

2. Create a new source folder src/main/java in the module.

3. Create the java class LogIndexer for the new indexer in package com/custom
er:

package com.customer;

81CoreMedia DXP 8

Searching for CAE Content Beans | Integrating a Different Search Engine

import com.coremedia.cap.feeder.Feedable;
import com.coremedia.cap.feeder.FeedableElement;
import com.coremedia.cap.feeder.index.IndexException;
import com.coremedia.cap.feeder.index.IndexerResult;
import com.coremedia.cap.feeder.index.direct.DirectIndexerBase;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

public class LogIndexer extends DirectIndexerBase {
private static final Logger LOG
= LoggerFactory.getLogger(LogIndexer.class);

public IndexerResult index(
Collection<? extends Feedable> feedables,
Collection<String> removeIds) throws IndexException {

if (LOG.isInfoEnabled()) {
for (Feedable feedable: feedables) {
Collection<FeedableElement> elements
= feedable.getElements();

Map<String, Object> values
= new HashMap<>(elements.size());

for (FeedableElement element: elements) {
values.put(element.getName(), element.getValue());

}
LOG.info("Updating {} with {}",
feedable.getId(), values);

}
if (!removeIds.isEmpty()) {
LOG.info("Removing {}", removeIds);

}
}
return IndexerResult.persisted();

}

public String getDocumentInfo(String s) throws IndexException {
return null;

}
}

4. Create a new source folder src/main/resources/META-INF/coremedia
in the module.

5. Create a Spring configuration file for the component named component-cae
feeder-custom.xml in this folder

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
">

<bean id="feederIndexer" class="com.customer.LogIndexer"/>
</beans>

82CoreMedia DXP 8

Searching for CAE Content Beans | Integrating a Different Search Engine

6. In the file pom.xml of the CAE Feeder web application replace the dependency
on caefeeder-solr-componentwith a dependency to your new component:
caefeeder-custom-component.

7. Add a corresponding logger to the logback configuration of the CAE Feeder web
application.

<logger name="com.customer" additivity="false" level="debug">
<appender-ref ref="file"/>
</logger>

83CoreMedia DXP 8

Searching for CAE Content Beans | Integrating a Different Search Engine

5.6 CAE Feeder for API Use
If you need more control, you can set up a CAE Feeder which does not automatically
send updates to the search engine. Instead, you can use the public API to do so.
Such a setup does not require a database. It is based on the CAE Feeder but requires
some manual configuration.

For wiring such a Feeder, use the following Spring bean definitions, for example,
as file config/feeder/spring/applicationContext.xml.

Example 5.12. caefeed-
er.xml<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/
spring-beans.xsd">

<bean class="org.springframework.beans.factory.config.
PropertyPlaceholderConfigurer">

<property name="ignoreUnresolvablePlaceholders"
value="true"/>

<property name="locations" value=
"file:config/feeder/spring/environment.properties"/>
</bean>
<import resource=

"classpath:/framework/spring/feeder/feeder-core.xml"/>
<import resource=

"classpath:/framework/spring/feeder/solr/feeder-solr.xml"/>
<import resource=

"classpath:/framework/spring/feeder/tika/feeder-tika.xml"/>
<bean class="com.coremedia.springframework.context.

LifecycleManager">
<property name="startableBeans" ref="feederStartables"/>

</bean>

</beans>

The first bean PropertyPlaceholderConfigurer makes the CAE Feeder use
the settings from the configured property files. Create the file environment.prop
erties with the search engine connection settings as follows:

feeder.solr.url=http://localhost:8082/solr/mycore
feeder.solr.collection=collection

Next, required beans are imported using Spring import statements. To this end,
you need the following libraries on your classpath as runtime dependencies.

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-search-impl</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-search-solr</artifactId>
<scope>runtime</scope>

</dependency>

84CoreMedia DXP 8

Searching for CAE Content Beans | CAE Feeder for API Use

<dependency>
<groupId>com.coremedia.cms</groupId>
<artifactId>cap-search-tika</artifactId>
<scope>runtime</scope>

</dependency>

The LifecycleManager bean starts the feeder when the Spring application context
is created and stops it when the application context is closed.

In your custom Java code, access the Feeder API as follows. The example has a
compile dependency to the artifact cap-search-api.

Example 5.13. Create
CAE FeederFileSystemXmlApplicationContext context =

new FileSystemXmlApplicationContext(
"config/feeder/spring/applicationContext.xml");

context.registerShutdownHook();
Feeder feeder = (Feeder)context.getBean("feeder");
FeedableFactory feedableFactory =

(FeedableFactory)context.getBean("feedableFactory");

First the Spring application context is created. FileSystemXmlApplicationCon
text is part of the Spring Framework in the Java package org.springframe
work.context.support. The next statements retrieve Feeder and FeedableFact-
ory implementations from the application context. You can use them to send data
to the Search Engine as described in the API documentation of the Java package
com.coremedia.cap.feeder.

85CoreMedia DXP 8

Searching for CAE Content Beans | CAE Feeder for API Use

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/Feeder.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/FeedableFactory.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/FeedableFactory.html

5.7 Implementing Custom Search
Custom search applications can use the full power of Apache Solr through Solr's
Java API SolrJ. Please see the documentation of Apache Solr and its SolrJ API for
details.

There are just a few things to keep in mind when implement search for content
beans:

➞ Feeder applications such as the CAE Feeder and the Content Feeder require
separate Apache Solr cores. When searching you must specify a core in the
Apache Solr URL to get results for the specific application only.

➞ Successfully indexed documents carry the value SUCCESS in the index field
feederstate. To avoid finding placeholder index documents for feeding
errors or internal index documents, you should always add a feeder
state:SUCCESS filter query to your queries.

You can restrict the number of returned fields in a search result by setting the Solr
fl (field list) parameter. In a CAE application you generally just need the content
bean id, which is stored in field id. You can use IDs of the search results to get the
Content Bean objects back from the CAE using an IdScheme or IdProvider. See
the Content Application Developer Manual for details on Content Beans and IDs.

86CoreMedia DXP 8

Searching for CAE Content Beans | Implementing Custom Search

6. Appendix

87CoreMedia DXP 8

Appendix |

6.1 Content Feeder Configuration
The Content Feeder is configured in the files WEB-INF/application.properties
and WEB-INF/application.xml.

Solr specific configuration properties

These properties are configured in file application.properties of the Content
Feeder.

Table 6.1. Solr specific
properties

DescriptionDefaultValueAttribute

The URL where the Content Feeder can
reach the Search Engine. The URL

http://local-
host:8082/solr/core-
media

URLfeed-
er.solr.url

points to the Apache Solr core for the
Content Feeder.

User name for HTTP Basic authentica-
tion when connecting to the Apache

(empty)user name or
empty

feed-
er.solr.user-
name Solr web application. Leave empty for

no authentication.

Password for HTTP Basic authentica-
tion when connecting to the Apache
Solr web application.

(empty)user name or
empty

feed-
er.solr.pass-
word

The collection that should be used by
the Content Feeder.

coremediaStringfeed-
er.solr.collec-
tion

Delay in seconds between trying to
send a batch.

10time in
seconds

feed-
er.solr.sendRetry-
Delay

Specifies whether partial updates are
supported for updating document

truetrue or falsesolr.partialUp-
dates

metadata in Solr. This requires that all
fields in the Solr index are configured
as stored="true" except fields
that are <copyField/> destina-
tions, which must be configured as
stored="false". This is because
partial updates are applied to the in-
dex document reconstructed from the
existing stored field values. Note that
configuration propertyfeeder.par
tialUpdate.aspects may still
restrict usage of partial updates to
certain document aspects.

88CoreMedia DXP 8

Appendix | Content Feeder Configuration

DescriptionDefaultValueAttribute

Ifsolr.partialUpdates is true,
the Solr index schema is analyzed

falsetrue or falsesolr.partialUp-
datesSkipIndex-
Check whether fields are stored as required

for partial updates. The Feeder will log
a warning and not use partial update
functionality if the index seems to not
support it. You can set this property
to true to skip the check.

General Feeder configuration properties

These properties are configured in file application.properties of the Content
Feeder.

Login data

The following properties are used to define the login data for the Content Server
and the administration page of the Search Engine.

Table 6.2. Properties
for login

DescriptionDefaultValueAttribute

The user name to be used in the
HTTP authentication of the adminis-

feederuser namefeeder.man-
age-
ment.user tration page of the Content Feeder.

This is not an account from the user
management of the Content Server.

The password to be used in the HTTP
authentication of the administration
page of the Content Feeder.

feederpasswordfeeder.man-
age-
ment.pass-
word

The user account the Content Feeder
uses to read content.

feederuser namereposit-
ory.user

The password for the user account
of the Content Feeder.

feederpasswordreposit-
ory.pass-
word

Partial update configuration

With this property you can configure the usage of partial updates, if supported by
the connected Indexer - for example for Solr as configured with property
solr.partialUpdates.

89CoreMedia DXP 8

Appendix | Content Feeder Configuration

Table 6.3. Partial up-
date configuration

DescriptionDefaultValueAttribute

The aspects of index documents that
can be updated with a partial update,

multiSitecomma-separ-
ated list of

feeder.partia-
lUpdate.as-
pects provided that the connected Indexer

supports partial updates (for example,
document as-
pects or *

solr.partialUpdates=true
for Solr). Multiple values are separated
by comma. Use the special value * to
use partial updates for all aspects, if
possible. An empty value means that
partial updates are not used. See the
API documentation of Feed-
able.isPartialUpdate,
FeedableAspect andContent-
FeedableAspect in package
com.coremedia.cap.feeder
for more details.

Batch configuration

With these properties you can configure the processing of batches.

Table 6.4. Properties
for batch configuration

DescriptionDefaultValueAttribute

The maximum number of documents
in a batch.

500number of
documents

feed-
er.maxBatchS-
ize

The maximum batch size in byte.5242880 (5
MB)

number of
bytes

feed-
er.maxBatch-
ByteSize

The time to wait between adding a
document to a batch and sending that

3time in
seconds

feeder.sen-
dIdleDelay

batch to the search engine if the Con-
tent Feeder is idle. If a document was
changed and no further changes are
made within sendIdleDelay
seconds, the document will be sent
after that time to the search engine.
This setting leads to a low latency for
changes to become visible in search
as long as the system is not very busy.

The maximum time to wait between
adding a document to a batch and

20time in
seconds

feeder.send-
MaxDelay

90CoreMedia DXP 8

Appendix | Content Feeder Configuration

DescriptionDefaultValueAttribute

sending that batch. This setting is
typically larger than sen
dIdleDelay to allow batches to
grow for better throughput.

The maximum number of batches in-
dexed in parallel. This setting is not

5intfeeder.maxOpen-
Batches

used with the default integration of
Apache Solr but only with custom im-
plementations of the com.core-
media.cap.feeder.index.async.AsyncIn-
dexer interface. The Content Feeder
does not call the index method of the
AsyncIndexer interface to index anoth-
er batch if the maximum number of
parallel batches has been reached. The
method will not be called until a call-
back about the persistence of one of
these batches has been received.

The maximum number of batches
processed by the Indexer in parallel.

1intfeeder.maxPro-
cessedBatches

This setting is not used with the de-
fault integration of Apache Solr but
only with custom implementations of
the com.coremedia.cap.feeder.in-
dex.async.AsyncIndexer interface. The
Content Feeder does not call the index
method of the AsyncIndexer interface
to index another batch if the con-
figured number of currently processed
batches has been reached. The meth-
od will not be called until a callback
about completed processing or persist-
ence of one of these batches has been
received.

What to feed

You can use the following properties to define which elements the Content Feeder
should feed to the Search Engine.

91CoreMedia DXP 8

Appendix | Content Feeder Configuration

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

Table 6.5. Properties to
feed additional items

DescriptionDefaultValueAttribute

true if documents in the trash
should be indexed. If you do not

truetrue or falsefeeder.in-
dexDeleted

need to find documents in the trash
and want to keep your index smal-
ler, you can change this to false.

Indicate whether a document's
folder path is indexed in field

falsetrue or falsefeeder.ind-
exPath

'folder'. If set to true (not recom-
mended), folder renames lead to
refeeding of all documents below
that folder. The alternative field
'folderpath' which contains the
folder path as folder ids is the recom-
mended way to refer to a folder
path.

true to reindex a document after
its referrers have changed.

falsetrue or falsefeeder.in-
dexRefer-
rers

Configures whether the document
name should be indexed in index

truetrue or falsefeeder.in-
dexNameIn-
TextBody field textbody. It can make sense to

disable this if lots of document
names contain unique identifiers
(from third-party systems, for ex-
ample) to avoid problems with too
many unique terms in field text-
body.

true to index the groups with po-
tential read rights with the docu-

truetrue or falsefeeder.in-
dexGroups

ment in the index field groups.
This set of groups is then used to
narrow a user's search to the docu-
ments where he might have read
rights to. This is an optimization to
get smaller search results for some
queries and content structures and
to get more accurate search sugges-
tion counts. The client has to check
for read rights anyway.

If set to false, then you should
also configure the Studio application
to not add a superfluous query con-
dition for the indexed groups by
setting its property stu

92CoreMedia DXP 8

Appendix | Content Feeder Configuration

DescriptionDefaultValueAttribute

dio.rest.searchSer
vice.useGroupsFilter
Query to false.

If feeder.indexGroups is
true, configures whether the field

falsetrue or falsefeeder.up-
dateGroups.im-
mediately groups is updated immediately

after a change of a folder's right
rule. It is recommended to keep this
set to false and let the Content
Feeder update the index field
groups in the background with
lower priority than updates for edit-
orial changes. It is quite expensive
to set this to true because all doc-
uments below the folder will be
reindexed.

Document types to feed

You can restrict the indexed documents by their type using the includes and
excludes properties.

Table 6.6. Properties to
specify document
types.

DescriptionDefaultValueAttribute

The name of the abstract or concrete
document type whose documents

Document_document type
name

feeder.con-
tent.type.in-
cludes should be indexed. Regular expres-

sions are not allowed.

The name of the abstract or concrete
document type whose documents

Preferences, Edit-
orPreferences,

document type
name

feeder.con-
tent.type.ex-
cludes should not be indexed. Regular ex-

pressions are not allowed.
Dictionary,
Query

Properties to feed

The default configuration feeds all properties for all specified document types. For
configuration of indexed properties by their name, see the section for XML config-
uration below.

Property types to feed

You can only select a document property from a document type if its property type
is specified with the following rules.

93CoreMedia DXP 8

Appendix | Content Feeder Configuration

Table 6.7. Include
property types

DescriptionDefaultValueProperty

Set this property to false in order
to exclude String properties from
indexing.

truetrue or
false

feeder.con-
tent.property-
Type.string

Set this property to true in order to
include Integer properties when
indexing.

falsetrue or
false

feeder.con-
tent.property-
Type.integer

Set this property to true in order to
include Date properties when index-
ing.

falsetrue or
false

feeder.con-
tent.property-
Type.date

Set this property to true in order to
include LinkList properties when
indexing.

falsetrue or
false

feeder.con-
tent.property-
Type.linkList

Set this property to true in order to
include Struct properties when in-
dexing.

falsetrue or
false

feeder.con-
tent.property-
Type.struct

You can define which XML properties
should be indexed by specifying their
grammar.

core
media-
richtext-
1.0

List of in-
cluded gram-
mar names
separated by
comma

feeder.con-
tent.property-
Type.xmlGram-
mars Example

feeder.content.property
Type.xmlGrammars=core
media-richtext-1.0

You can define which blob properties
are indexed, depending on the MIME
type.

See fileList of in-
cluded MIME
types separ-

feeder.con-
tent.property-
Type.blobMime-
Type.includes Example

ated by
comma

feeder.content.property
Type.blobMimeType.in
cludes=text/*

All blobs of MIME type text/* are
indexed.

Exclude some blobs from indexing
depending on the MIME type. If you've

(empty)List of ex-
cluded MIME

feeder.con-
tent.property-

included a primary MIME type suchtypes separ-Type.blobMime-
Type.excludes as text/* or even the catch all type

/, you can exclude some concrete
types with this property.

ated by
comma

Example

94CoreMedia DXP 8

Appendix | Content Feeder Configuration

DescriptionDefaultValueProperty

feeder.content.property
Type.blobMimeType.ex
cludes=text/plain

Blobs of MIME type text/plain
will not be indexed.

Configure the maximum size of in-
dexed blob properties. Larger values
will be skipped.

5242880 (5
MB)

size in bytesfeeder.con-
tent.property-
Type.blobMax-
Size

This configuration can be overridden
in a Spring XML configuration file
where you can configure the maxim-
um size per MIME type by customizing
the bean feederContentBlob-
MaxSizePerMimeType. See XML
configuration for an example.

Tika configuration

You can customize text extraction with Apache Tika using the following properties:

Table 6.8. Tika config-
uration

DescriptionDefaultValueProperty

The location of an optional custom
Apache Tika Config XML file with cus-

(empty)location of
Apache Tika
Config XML

feed-
er.tika.config

tom Tika parsers. The value is a Spring
Resource location, for example a value
such as file:/path/tika-con
fig.xml can be used to reference a
local file. Use an empty value for the
default configuration.

Comma-separated list of metadata
identifiers extracted from blob proper-

(empty)comma-separ-
ated list of

feeder.tika.ap-
pendMetadata

ties by Apache Tika that are appendedmetadata
identifiers to the extracted body text. See Section

4.2.3, “Advanced Configuration” [47]

Comma-separated list of metadata
identifiers extracted from blob proper-

(empty)comma-separ-
ated list of

feed-
er.tika.copy-
Metadata ties by Apache Tika and index field

names to copy the metadata to. See
entries for the
format

Section 4.2.3, “Advanced Configura-
tion” [47]

<metadata
identifi-

95CoreMedia DXP 8

Appendix | Content Feeder Configuration

DescriptionDefaultValueProperty

er>=<index
field name>

Set the maximum time after which
text extraction from binary data with

120000 (2
minutes)

millisecondsfeed-
er.tika.timeout.mil-
liseconds Apache Tika fails. If extraction fails,

the binary data will be skipped for the
index document. Lower values will
avoid that the Feeder is blocked for a
long time in text extraction.

Set the time after which a warning is
logged when text extraction from

15000 (15
seconds)

millisecondsfeed-
er.tika.warn.mil-
liseconds binary data with Apache Tika takes

some time.

Configuration of ImageDimensionFeedablePopulator

The following properties configure the ImageDimensionFeedablePopulator bean.

Table 6.9. Properties to
configure ImageDimen-
sionFeedablePopulator.

DescriptionDefaultValueAttribute

The document type of the content to
be indexed, including subtypes.

none (re-
quired)

document
type name

feeder.populat-
or.imageDimen-
sion.docType

The property name of the content
which holds the width value. If not set,

nonedocument
property
name

feeder.populat-
or.imageDimen-
sion.widthProp-
ertyName

feeder.populator.imageDi
mension.dataPropertyName

must be set.

The property name of the content
which holds the height value.

nonedocument
property
name

feeder.populat-
or.imageDimen-
sion.height-
PropertyName

If not set,feeder.populator.im
ageDimension.dataProperty
Name

must be set.

The name of the blob property which
holds the image data. The value of this

nonedocument
property
name

feeder.populat-
or.imageDimen-
sion.dataProp-
ertyName

object must be of type com.core
media.cap.common.Blob. If not
set,feeder.populator.imageD

96CoreMedia DXP 8

Appendix | Content Feeder Configuration

DescriptionDefaultValueAttribute

imension.widthProperty
Name

andfeeder.populator.imageD
imension.heightProperty
Name must be set.

Lower bound width of large images.none (re-
quired)

positive num-
ber

feeder.populat-
or.imageDimen-
sion.largeWidth

Lower bound height of large images.none (re-
quired)

positive num-
ber

feeder.populat-
or.imageDimen-
sion.large-
Height

Lower bound width of medium im-
ages.

none (re-
quired)

positive num-
ber

feeder.populat-
or.imageDimen-
sion.medium-
Width

Lower bound height of medium im-
ages.

none (re-
quired)

positive num-
ber

feeder.populat-
or.imageDimen-
sion.medium-
Height

Error behavior

You can use the following properties to customize the Content Feeder behavior in
case of errors.

Table 6.10. Properties
for Content Feeder
configuration

DescriptionDefaultValueAttribute

The time to wait before retrying to
send documents to the search engine

60time in
seconds

feed-
er.retrySen-
dIdleDelay after failures to do so. This delay is

used if the Content Feeder is idle.

The maximum time to wait before
retrying to send documents to the
search engine after failures.

600time in
seconds

feed-
er.retrySend-
MaxDelay

The time to wait between retries to
connect to the search engine on star-
tup.

10time in
seconds

feeder.retry-
ConnectToIn-
dexDelay.seconds

97CoreMedia DXP 8

Appendix | Content Feeder Configuration

DescriptionDefaultValueAttribute

The delay to wait before the Content
Feeder retries to access the source
data after failures.

60000time in milli-
seconds

feeder.execut-
orRetryDelay

The connection timeout set on the
SolrJ SolrServer. It determines

0time in milli-
seconds

feed-
er.solr.connec-
tion.timeout how long the client waits to establish

a connection without any response
from the server. The default value of
0 means it will wait forever.

The socket timeout set on the SolrJ
SolrServer. It determines how

600000 (10
minutes)

time in milli-
seconds

feed-
er.solr.sock-
et.timeout long the client waits for a response

from the server after the connection
was established and the request was
already sent. The value of 0 means it
will wait forever.

Configure Statistics

You can configure time intervals to show statistics on the Content Feeder admin
page and in the content server log.

Table 6.11. Attributes
for statistics time inter-
vals

DescriptionDefaultValueAttribute

Maximum time interval to show
statistics on the administration

3600000time in milli-
seconds

statisticIn-
terval

page. With the default you can show
overall statistics (since starting the
Content Feeder) and statistics for the
last n seconds, where n <= stat
isticInterval.

Interval to log statistic information
of the Content Feeder in the log file

600000time in milli-
seconds

statisticLo-
gInterval

of the CoreMedia Content Server
(coremedia.log).

XML configuration

The Spring XML configuration file application.xml allows more advanced
configuration and customization. This section just describes the possibility to
configure indexed document properties by name.

98CoreMedia DXP 8

Appendix | Content Feeder Configuration

Properties to feed

If you want to restrict the document fields, you can specify a map entry with in-
cluded or excluded fields for some or all document types. A map entry for a super
type is valid for all subtypes, if not overridden with an entry for a subtype. If no
entry is specified for a document type or its ancestors, all document properties are
included. The wildcard * stands for all properties and can be used to include or
exclude all properties of a type. Note however that you can either configure a list
of included or excluded properties for a certain type but not both, and property
lists from different entries will not be merged.

Configure included properties

The following example configures a map from document type names (abstract or
concrete) to indexed properties. The values of the map are comma-separated
property names of the respective document type. Only the listed properties will
be indexed. Document types not listed here will by default be indexed with all
properties if not configured otherwise via excluded properties.

<customize:append id="feederContentPropertyIncludesCustomizer"
bean="feederContentPropertyIncludes">
<map>
<entry key="doctype1" value="prop1,prop2"/>
<entry key="doctype2" value="prop3"/>

</map>
</customize:append>

Configure excluded properties

The following example configures a map from document type names (abstract or
concrete) to properties excluded from indexing. The values of the map are comma-
separated property names of the respective document type. Only the properties
not listed here will be indexed. Document types not listed here will by default be
indexed with all properties if not configured otherwise via included properties.

<customize:append id="feederContentPropertyExcludesCustomizer"
bean="feederContentPropertyExcludes">
<map>
<entry key="doctype4" value="prop4,prop5"/>

<!--
exclude all properties of doctype5
only meta-data gets indexed
-->
<entry key="doctype5" value="*"/>

</map>
</customize:append>

99CoreMedia DXP 8

Appendix | Content Feeder Configuration

6.2 Content Feeder JMX Managed Beans
The Content Feeder exports an additional managed bean named SolrIndexer
(Section 6.5, “Solr Indexer JMX Managed Beans” [124]).

MBean Attributes

Table 6.12. JMX man-
ageable attributes of
the Content Feeder

DescriptionTypeAttribute

Average batch creation time in the statistics
interval.

Read-onlyIndexAverageBatch-
CreationTime

Average batch indexing time in the statistics
interval. If Apache Solr is used, this property

Read-onlyIndexAverage-
BatchIndexingTime

is 0 because documents are indexed immedi-
ately when they are sent to the search engine.
Indexing time is then part of IndexAver
ageBatchSendingTime.

Average batch sending time in the statistics
interval.

Read-onlyIndexAverageBatch-
SendingTime

Number of indexed batches in the statistics
interval.

Read-onlyIndexBatches

Number of indexed bytes in the statistics in-
terval.

Read-onlyIndexBytes

Number of indexed documents in the statist-
ics interval.

Read-onlyIndexDocuments

Number of documents indexed per second in
the statistics interval.

Read-onlyIndexDocumentsPer-
Second

The maximum batch size in bytes.Read-onlyIndexMaxBatchBytes

The maximum number of documents in a
batch.

Read-onlyIndexMaxBatchSize

The average delay in seconds of last indexed
documents for the last <n> seconds, where

Read-onlyIndexAverageLag-
Time

<n> is the value of the attributeIndexStat
isticInterval. If <n> is0 or greater than
the value of attribute IndexMaxStat
isticInterval, this attribute will contain
the value since the start of the Content Feeder.
The difference of the time when a batch was
successfully sent and the feedable field
freshness are used for each feedable object
where feederstate is SUCCESS.

100CoreMedia DXP 8

Appendix | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

The set of feedables used to compute the
delay can be restricted by introducing a
com.coremedia.common.util.Pre
dicate. This predicate can be injected into
the Spring bean index. The include
method accepts an object of type
com.coremedia.cap.feeder.Feed
able. The custom implementation decides
to include this feedable into these statistics.

To inject a custom predicate use the bean
customizer and replace theBatchStatist
icsFeedablePredicate of the index
bean:

<customize:replace id="batchS
tatisticsFeedablePredicateCus
tomizer" bean="index" custom-
ref="myPredicate" prop
erty="batchStatisticsFeedable
Predicate" />

The number of last indexed documents for
the last <n> seconds, where <n> is the value

Read-onlyIndexContentDocu-
ments

of the attributeBatchStatisticsInter
valSeconds. If <n> is 0, this attribute will
contain the value since the start of the Con-
tent Feeder.

The set of feedables used to compute the
number of content documents can be restric-
ted by introducing acom.coremedia.com
mon.util.Predicate. This predicate
can be injected into the Spring bean index.
The include method accepts an object of
type com.coremedia.cap.feed
er.Feedable. The custom implementation
decides to include this feedable into these
statistics.

To inject a custom predicate use the bean
customizer and replace theBatchStatist
icsFeedablePredicate of the feeder
bean:

<customize:replace id="batchS
tatisticsFeedablePredicateCus
tomizer" bean="index" custom-
ref="myPredicate" prop

101CoreMedia DXP 8

Appendix | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

erty="batchStatisticsFeedable
Predicate" />

The maximum delay in seconds of last in-
dexed documents for the last <n> seconds,

Read-onlyIndexMaxLagTime

where <n> is the value of the attribute In
dexStatisticInterval. If <n> is 0 or
greater than the value of attribute In
dexMaxStatisticInterval, this attrib-
ute will contain the value since the start of
the Content Feeder. The difference of the time
when a batch was successfully sent and the
feedable field freshness are used for each
feedable object where feederstate is SUC
CESS.

The set of feedables used to compute the
delay can be restricted by introducing a
com.coremedia.common.util.Pre
dicate. This predicate can be injected into
the Spring bean index. The include
method accepts an object of type
com.coremedia.cap.feeder.Feed
able. The custom implementation decides
to include this feedable into these statistics.

To inject a custom predicate use the bean
customizer and replace theBatchStatist
icsFeedablePredicate of the index
bean:

<customize:replace id="batchS
tatisticsFeedablePredicateCus
tomizer" bean="index" custom-
ref="myPredicate" prop
erty="batchStatisticsFeedable
Predicate" />

The minimum delay in seconds of last indexed
documents for the last <n> seconds, where

Read-onlyIndexMinLagTime

<n> is the value of the attributeIndexStat
isticInterval. If <n> is0 or greater than
the value of attribute IndexMaxStat
isticInterval, this attribute will contain
the value since the start of the Content Feeder.
The difference of the time when a batch was
successfully sent and the feedable field
freshness are used for each feedable object
where feederstate is SUCCESS.

102CoreMedia DXP 8

Appendix | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

The set of feedables used to compute the
delay can be restricted by introducing a
com.coremedia.common.util.Pre
dicate. This predicate can be injected into
the Spring bean index. The include
method accepts an object of type
com.coremedia.cap.feeder.Feed
able. The custom implementation decides
to include this feedable into these statistics.

To inject a custom predicate use the bean
customizer and replace theBatchStatist
icsFeedablePredicate of the index
bean:

<customize:replace id="batchS
tatisticsFeedablePredicateCus
tomizer" bean="index" custom-
ref="myPredicate" prop
erty="batchStatisticsFeedable
Predicate" />

Maximum interval in seconds for the compu-
tation of statistics.

Read-onlyIndexMaxStat-
isticInterval

Number of open batches.Read-onlyIndexOpenBatches

Time interval in seconds for which the statist-
ics are calculated.

Read/WriteIndexStatisticIn-
terval

Last failure that led to a stop of the Content
Feeder.

Read-onlyLastFailure

The time when last indexing happened for
the last <n> seconds, where <n> is the value

Read-onlyLatestIndexing

of the attribute IndexStatisticInter
val.

The set of feedables used to compute the
latest index time can be restricted by introdu-
cing a com.coremedia.com
mon.util.Predicate. This predicate
can be injected into the Spring bean index.
The include method accepts an object of
type com.coremedia.cap.feed
er.Feedable. The custom implementation
decides to include this feedable into these
statistics.

103CoreMedia DXP 8

Appendix | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

To inject a custom predicate use the bean
customizer and replace theBatchStatist
icsFeedablePredicate of the index
bean:

<customize:replace id="batchS
tatisticsFeedablePredicateCus
tomizer" bean="index" custom-
ref="myPredicate" prop
erty="batchStatisticsFeedable
Predicate" />

The number of events the Content Feeder is
behind the most recent event.

Read-onlyPendingEvents

It is computed as the difference between the
sequence number of the Content Server's
current timestamp and the sequence number
of the timestamp of the last event whose
changes have been persisted in the index.
Unified API subsequence numbers are not
taken into account, that is two Unified API
events with the same sequence number (but
different subsequence numbers) are counted
as single event. Each document is counted as
one additional event when the Content Feeder
is still initializing.

The value of this attribute increases with
changes to content, users or groups in the
Content Server. It is decreased after the Content
Feeder has processed these changes.

Note that the value of this attribute may stay
at a non-zero value for a short time after
starting the Content Feeder and before the
next change happens in the Content Server.
This only happens if the latest events in the
Content Server are user or group changes. This
exceptional case does not indicate a lagging
Content Feeder.

The number of persisted events for the last
<n> seconds, where <n> is the value of the

Read-onlyPersistedEvents

attributeIndexStatisticInterval. If
<n> is zero or greater than the value of attrib-
ute IndexMaxStatisticInterval,
this attribute contains the total number of

104CoreMedia DXP 8

Appendix | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

persisted events since starting the Content
Feeder.

Persisted events are computed as difference
between sequence numbers of timestamps
for which all changes have been persisted in
the index. Unified API subsequence numbers
are not taken into account, that is, two Uni-
fied API events with the same sequence
number (but different subsequence numbers)
are counted as single event.

This attribute contains the number of per-
sisted documents as long as the Content
Feeder is still initializing.

The number of persisted events per second
for the last <n> seconds, where <n> is the

Read-onlyPersistedEventsPer-
Second

value of the attributeIndexStatisticIn
terval. If <n> is zero or greater than the
value of attributeIndexMaxStatisticIn
terval, this attribute contains the persisted
events per second since starting the Content
Feeder.

Persisted events are computed as difference
between sequence numbers of timestamps
for which all changes have been persisted in
the index. Unified API subsequence numbers
are not taken into account, that is, two Uni-
fied API events with the same sequence
number (but different subsequence numbers)
are counted as single event.

This attribute contains the persisted docu-
ments per second as long as the Content
Feeder is still initializing.

The number of documents in the currently
fed folder to reindex after rights rule changes.

Read-onlyCurrentPendingDoc-
uments

The ids of all pending folders which are not
yet reindexed completely due to rights rule

Read-onlyPendingFolders

changes. The feeder may already have started
indexing documents from the first folder in
the result.

The time in seconds between retries to con-
nect to the Search Engine on startup

Read-onlyRetryConnectToIn-
dexDelay

105CoreMedia DXP 8

Appendix | Content Feeder JMX Managed Beans

DescriptionTypeAttribute

State of the Content Feeder (running or
stopped).

Read-onlyState

Uptime of the Content Feeder in milliseconds.Read-onlyUptime

MBean Operations

Table 6.13. JMX opera-
tions of the Content
Feeder

DescriptionParameterOperation

Stop the Content Feederstop

Clears the Search Engine index. The Content
Feeder must have been stopped with the stop

clearCollection

operation before. All documents will be rein-
dexed when the Content Feeder is restarted.

Returns the total number of documents to
reindex after rights rule changes, that is, the

getPendingDocuments

number of documents in the folders with ids
returned by the JMX attribute Pending-
Folders above. This might be an expensive
operation.

106CoreMedia DXP 8

Appendix | Content Feeder JMX Managed Beans

6.3 CAE Feeder Configuration
In this reference chapter you will find a description of the CAE Feeder configuration
properties.

Table 6.14. Configura-
tion of general proper-
ties independent from
the type of the search
engine

DescriptionDefaultValueProperty

The name of the user to connect to
the CoreMedia Content Server.

noneuser namereposit-
ory.user

The password of the user to connect
to the CoreMedia Content Server.

nonepasswordreposit-
ory.password

The domain of the user to connect to
the CoreMedia Content Server. Empty
String for a built-in user.

nonedomainrepository.do-
main

The URL to the IOR of the CoreMedia
Content Server.

noneURLrepository.url

The class of the database driver. For
example: oracle.jd
bc.driver.OracleDriver

nonedriver classjdbc.driver

The URL to connect to the database.noneURLjdbc.url

The name of the user to connect to
the database.

noneuser namejdbc.user

The password of the user to connect
to the database.

nonepasswordjdbc.password

A comma-separated list of base
folders for which content beans are
indexed.

/SitesStringfeeder.con-
tentSelect-
or.basePath

A comma-separated list of content
types for which content beans are in-
dexed.

Document_Stringfeeder.con-
tentSelect-
or.content-
Types

Specifies whether the sub types of the
content types configured with prop-

trueBooleanfeeder.con-
tentSelect-

erty feeder.contentSelector.includeSub-
Types or.contentTypes are selected as

well.

Capacity of the CAE Feeder's executor
queue, which is internally used to
transfer evaluated values

2000intfeeder.execut-
orQueueCapa-
city

The delay in milliseconds to wait be-
fore the CAE Feeder retries to access
the source data after failures to do so.

60000millisecondsfeeder.execut-
orRetryDelay

107CoreMedia DXP 8

Appendix | CAE Feeder Configuration

DescriptionDefaultValueProperty

The maximum size of a batch in bytes.
The CAE Feeder sends a batch to the

20971520
(20 MB)

bytesfeed-
er.maxBatch-
Bytes Search Engine if its maximum size

would be exceeded when adding more
entries. Note, that byte computation
is a rough estimate only.

The maximum number of entries in a
batch. If the maximum number is

500intfeed-
er.maxBatchS-
ize reached, the CAE Feeder sends the

batch to the Search Engine.

The maximum number of batches in-
dexed in parallel. This setting is not

5intfeeder.maxOpen-
Batches

used with the default integration of
Apache Solr but only with custom im-
plementations of the com.core-
media.cap.feeder.index.async.AsyncIn-
dexer interface. The CAE Feeder does
not call the index method of the
AsyncIndexer interface to index anoth-
er batch if the maximum number of
parallel batches has been reached. The
method will not be called until a call-
back about the persistence of one of
these batches has been received.

The maximum number of batches
processed by the Indexer in parallel.

1intfeeder.maxPro-
cessedBatches

This setting is not used with the de-
fault integration of Apache Solr but
only with custom implementations of
the com.coremedia.cap.feeder.in-
dex.async.AsyncIndexer interface. The
CAE Feeder does not call the index
method of the AsyncIndexer interface
to index another batch if the con-
figured number of currently processed
batches has been reached. The meth-
od will not be called until a callback
about completed processing or persist-
ence of one of these batches has been
received.

The CAE Feeder sends a batch which
only contains retried entries and is not

60000millisecondsfeed-
er.retrySen-
dIdleDelay full with regard to the feed

er.maxBatchSize and feed
er.maxBatchBytes properties

108CoreMedia DXP 8

Appendix | CAE Feeder Configuration

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

DescriptionDefaultValueProperty

after the CAE Feeder was idle for the
time configured in this property. A
retried entry is an entry which was
sent to the Search Engine before but
could not be indexed successfully. If
the batch contains entries which are
not retried, the value of property
feeder.sendIdleDelay is used
instead.

The maximum time in milliseconds
between the time the CAE Feeder re-

600000millisecondsfeed-
er.retrySend-
MaxDelay ceived an error from the Search Engine

and the time, the CAE Feeder tries to
send the failed entry as part of a batch
to the Search Engine again. The time
is exceeded if an error occurs while
contacting the Search Engine. If the
batch contains entries which are not
retried, the value of property feed
er.sendMaxDelay is used instead.

The maximum size in bytes for the
value of a bean property or -1 for no

-1number of
bytes

feeder.bean-
PropertyMax-
Bytes limitation. Larger values are ignored

and will not be sent to the Search En-
gine.

List of included MIME types for blob
properties configured for indexing at

*/*comma-separ-
ated list of in-

feeder.beanMap-
ping.mime-
Type.includes the BeanMappingFeedablePopulator.cluded MIME

types For details, see the API documentation
of method setMimeTypeIn
cludes of com.coremedia.cap.feed-
er.bean.BeanMappingFeedablePopu-
lator

Example

feeder.beanMapping.mime
Type.includes=text/*

Only indexes blobs of MIME type
text/*.

List of excluded MIME types for blob
properties configured for indexing at

comma-separ-
ated list of ex-

feeder.beanMap-
ping.mime-
Type.excludes the BeanMappingFeedablePopulator.cluded MIME

types For details, see the API documentation
of method setMimeTypeEx

109CoreMedia DXP 8

Appendix | CAE Feeder Configuration

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html

DescriptionDefaultValueProperty

cludes of com.coremedia.cap.feed-
er.bean.BeanMappingFeedablePopu-
lator

Example

feeder.beanMapping.mime
Type.excludes=text/xml

Indexes all blobs except blobs of
MIME type text/xml.

The CAE Feeder sends a batch which is
not full with regard to the feed

10000millisecondsfeeder.sen-
dIdleDelay

er.maxBatchSize and feed
er.maxBatchBytes properties
after the CAE Feeder was idle for the
configured time in milliseconds.

The maximum time in milliseconds
after which the CAE Feeder sends a

120000millisecondsfeeder.send-
MaxDelay

batch which is not full with regard to
the feeder.maxBatchSize and
feeder.maxBatchBytesproper-
ties. The time may be exceeded if an
error occurs while contacting the
Search Engine or if the CAE Feeder is
under high load.

The location of an optional custom
Apache Tika Config XML file with cus-

(empty)location of
Apache Tika
Config XML

feed-
er.tika.config

tom Tika parsers. The value is a Spring
Resource location, for example a value
such as file:/path/tika-con
fig.xml can be used to reference a
local file. Use an empty value for the
default configuration.

Comma-separated list of metadata
identifiers extracted from blob proper-

(empty)comma-separ-
ated list of

feeder.tika.ap-
pendMetadata

ties by Apache Tika that are appendedmetadata
identifiers to the extracted body text. See Section

5.2, “Configuring the CAE Feed-
er” [62]

Comma-separated list of metadata
identifiers extracted from blob proper-

(empty)comma-separ-
ated list of

feed-
er.tika.copy-
Metadata ties by Apache Tika and index fieldentries for the

names to copy the metadata to. Seeformat

110CoreMedia DXP 8

Appendix | CAE Feeder Configuration

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/bean/BeanMappingFeedablePopulator.html

DescriptionDefaultValueProperty

<metadata
identifi-

Section 5.2, “Configuring the CAE
Feeder” [62]

er>=<index
field name>

Set the maximum time after which
text extraction from binary data with

120000 (2
minutes)

millisecondsfeed-
er.tika.timeout.mil-
liseconds Apache Tika fails. If extraction fails,

the binary data will be skipped for the
index document. Lower values will
avoid that the Feeder is blocked for a
long time in text extraction.

Set the time after which a warning is
logged when text extraction from

15000 (15
seconds)

millisecondsfeed-
er.tika.warn.mil-
liseconds binary data with Apache Tika takes

some time.

Number of evaluator threads in the
CAE Feeder. The number of threads in-

50number of
threads

proactiveen-
gine.senders.eval-
uators fluences performance not only be-

cause evaluations can execute concur-
rently but also because higher values
increase the probability that the CAE
Feeder writes the state of multiple
evaluations to the database in one
database transaction.

Minimum delay in milliseconds
between notifications of the Feeder

0millisecondsproactiveen-
gine.senders.delay

by the internal Proactive Engine sub
component. Higher values lead to re-
duced throughput.

Delay in milliseconds between notific-
ations of the Feeder by the internal

10000millisecondsproactiveen-
gine.senders.idledelay

Proactive Engine sub component if the
application is idle. Smaller values can
be configured to reduce the latency
of the CAE Feeder but may lead to in-
creased load on the database.

The maximum weight of a database
transaction to change stored depend-

2500maximum
number of

dependencyS-
tore.maxTrans-
actionWeight encies. The weight is interpreted aschanged keys

the number of changed keys, that is,per database
transaction a transaction with one deleted key has

weight 1. Multiple transactions will be
used to process an event that causes
the invalidation of more keys.

111CoreMedia DXP 8

Appendix | CAE Feeder Configuration

The following properties are only used for a CoreMedia Search Engine based on
Apache Solr:

Table 6.15. Configura-
tion properties for
Apache Solr

DescriptionDefaultValueProperty

The URL where the CAE Feeder can
reach the Search Engine. The URL

http://local-
host:8082/solr/core-
media

URLfeeder.solr.url

points to the Apache Solr core for
the CAE Feeder.

The collection that should be used
by the CAE Feeder.

coremediacollection
name

feeder.solr.collec-
tion

User name for HTTP Basic authentic-
ation when connecting to the

(empty)user name
or empty

feeder.solr.user-
name

Apache Solr web application. Leave
empty for no authentication.

Password for HTTP Basic authentica-
tion when connecting to the Apache
Solr web application.

(empty)user name
or empty

feeder.solr.pass-
word

The delay in milliseconds to wait
before sending a batch to the Search

30000millisecondsfeed-
er.solr.sendRetry-
Delay Engine again after sending failed

with an error in the Search Engine.

The connection timeout set on the
SolrJ SolrServer. It determines

0time in milli-
seconds

feeder.solr.connec-
tion.timeout

how long the client waits to estab-
lish a connection without any re-
sponse from the server. The default
value of 0 means it will wait forever.

The socket timeout set on the SolrJ
SolrServer. It determines how

600000 (10
minutes)

time in milli-
seconds

feeder.solr.sock-
et.timeout

long the client waits for a response
from the server after the connection
was established and the request was
already sent. The value of 0 means
it will wait forever.

112CoreMedia DXP 8

Appendix | CAE Feeder Configuration

6.4 CAE Feeder JMX Managed Beans
The CAE Feeder exports multiple JMX MBeans. The following overview describes
attributes of the MBeans Feeder and ProactiveEngine. The MBean SolrIn
dexer is described in Section 6.5, “Solr Indexer JMX Managed Beans” [124]. The
CAE Feeder exports more MBeans and attributes, which aren't documented in detail
here.

Feeder MBean
Table 6.16. Attributes
of the Feeder MBeanDescriptionUnitTypeAttribute

The average creation time of persisted
batches for the last <n> seconds,

millisecondsread-onlyBatchAver-
ageCreation-
Time where <n> is the value of the attribute

BatchStatisticsInter
valSeconds. If <n> is 0, this attrib-
ute will contain the average time since
the start of the Feeder.

The creation time is the time span
between the time the first entry was
put into a batch and the time the
batch was ready for sending to the
CoreMedia Search Engine.

The average sending time of persisted
batches for the last <n> seconds,

millisecondsread-onlyBatchAver-
ageSendingTime

where <n> is the value of the attribute
BatchStatisticsInter
valSeconds. If <n> is0, this attrib-
ute will contain the average time since
the start of the Feeder.

The sending time indicates how long
it took to actually send the batch to
the CoreMedia Search Engine, that is,
the time it took to invoke the index
method on the AsyncIndexer or
DirectIndexer interfaces.

The average processing time of per-
sisted batches for the last <n>

millisecondsread-onlyBatchAverage-
ProcessingTime

seconds, where <n> is the value of the
attribute BatchStatisticsIn
tervalSeconds. If <n> is 0, this
attribute will contain the average time
since the start of the Feeder.

113CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

The processing time is the time span
between the time a batch was success-
fully sent to the CoreMedia Search En-
gine and the time when the Feeder
received a callback from the Search
Engine which indicates that the batch
has been processed. Callbacks are only
used with custom AsyncIndexer
implementations. For Apache Solr, this
attribute is always 0.

The average persisting time of batches
for the last <n> seconds, where <n>

millisecondsread-onlyBatchAver-
agePersisting-
Time is the value of the attribute BatchS

tatisticsIntervalSeconds.
If <n> is 0, this attribute will contain
the average time since the start of the
Feeder.

The persisting time is the time span
between the time a batch was pro-
cessed by the CoreMedia Search Engine
and the time when the Feeder re-
ceived a callback from the Search En-
gine which indicates that the batch
has been persisted. Callbacks are only
used with custom AsyncIndexer
implementations. For Apache Solr, this
attribute is always 0.

The sum of the byte size of persisted
batches for the last <n> seconds,

byteread-onlyBatchBytes

where <n> is the value of the attribute
BatchStatisticsInter
valSeconds. If <n> is 0, this attrib-
ute will contain the value since the
start of the Feeder.

Note that byte computation is a rough
estimate only.

The number of persisted batches for
the last <n> seconds, where <n> is the

batchesread-onlyBatchCount

value of the attribute BatchStat
isticsIntervalSeconds. If <n>
is 0, this attribute will contain the
value since the start of the Feeder.

114CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

The number of persisted batch entries
per second in the last <n> seconds,

batch entries
/ second

read-onlyBatchEntries-
PerSecond

where <n> is the value of the attribute
BatchStatisticsInter
valSeconds. If <n> is 0, this attrib-
ute will contain the value since the
start of the Feeder.

Batch entries are basically creations,
updates or removals of documents.
Note that this value decreases if the
Feeder is idle.

The number of persisted batch entries
for the last <n> seconds, where <n>

batch entriesread-onlyBatchEntry-
Count

is the value of the attribute BatchS
tatisticsIntervalSeconds.
If <n> is 0, this attribute will contain
the value since the start of the Feeder.

Batch entries are basically creations,
updates or removals of documents.

The time in seconds used to compute
statistic values for other attributes. If

secondsread/writeBatchStatistic-
sInter-
valSeconds the value is 0 or greater than

BatchStatisticsMaxInter
valSeconds, the time since the
start of the Feeder is used.

The maximum value that can be used
for BatchStatisticsInter

secondsread/writeBatchStatistic-
sMaxInter-
valSeconds valSeconds. It defines how long

statistic data will be kept by the
Feeder. You cannot recover statistics
for the past by increasing the value.

The time interval in seconds in which
the Feeder writes statistics to its log
file (log level INFO).

secondsread/writeBatchStatistic-
sLogInter-
valSeconds

The number of pending com.core-
media.cap.feeder.FeederCallback ob-
jects in the internal callback queue.

callback ob-
jects

read-onlyCallbackQueueS-
ize

The number of batch entries that are
currently deferred. New batch entries

batch entriesread-onlyDeferredEntry-
Count

will be deferred as long as a batch
with an entry that affects the same
document is currently being sent to

115CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/FeederCallback.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/FeederCallback.html

DescriptionUnitTypeAttribute

the Search Engine or was not yet per-
sisted by the Search Engine.

Batch entries are basically creations,
updates or removals of documents.

The number of java.lang.Run
nable objects that fit into the intern-

objectsread/writeExecut-
orQueueCapa-
city al executor queue. This is an internal

setting and does not need to be
changed.

The number of pending
java.lang.Runnable objects in
the internal executor queue.

objectsread-onlyExecutorQueueS-
ize

The time to wait before the CAE Feeder
retries to access the source data after

millisecondsread/writeExecutorRetry-
Delay

errors. This is used if custom code
calls method execute of
com.coremedia.cap.feed
er.Feeder.

The average delay in seconds of last
indexed documents for the last <n>

secondsread-onlyIndexAver-
ageLagTime

seconds, where <n> is the value of the
attribute BatchStatisticsIn
tervalSeconds. If <n> is 0, this
attribute will contain the value since
the start of the Feeder. The difference
of the time when a batch was success-
fully sent and the feedable field fresh-
ness are used for each feedable object
where feederstate is SUCCESS.

The set of feedables used to compute
the delay can be restricted by introdu-
cing a com.coremedia.com
mon.util.Predicate. This pre-
dicate can be injected into Spring
beanfeeder. Theincludemethod
accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom imple-
mentation decides to include this
feedable into these statistics.

To inject a custom predicate use the
bean customizer and replace the

116CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

BatchStatisticsFeedable
Predicate of the feeder bean:

<customize:replace
id="batchStatisticsFeed
ablePredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The number of last indexed docu-
ments for the last <n> seconds, where

documentsread-onlyIndexContent-
Documents

<n> is the value of the attribute
BatchStatisticsInter
valSeconds. If <n> is 0, this attrib-
ute will contain the value since the
start of the Feeder.

The set of feedables used to compute
the number of content documents can
be restricted by introducing a
com.coremedia.com
mon.util.Predicate. This pre-
dicate can be injected into Spring
beanfeeder. Theincludemethod
accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom imple-
mentation decides to include this
feedable into these statistics.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedable
Predicate of the feeder bean:

<customize:replace
id="batchStatisticsFeed
ablePredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The longest delay in seconds of last
indexed documents for the last <n>

secondsread-onlyIndexMaxLag-
Time

seconds, where <n> is the value of the
attribute BatchStatisticsIn

117CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

tervalSeconds. If <n> is 0, this
attribute will contain the value since
the start of the Feeder. The difference
of the time when a batch was success-
fully sent and the feedable field fresh-
ness are used for each feedable object
where feederstate is SUCCESS.

The set of feedables used to compute
the delay can be restricted by introdu-
cing a com.coremedia.com
mon.util.Predicate. This pre-
dicate can be injected into Spring
beanfeeder. Theincludemethod
accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom imple-
mentation decides to include this
feedable into these statistics.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedable
Predicate of the feeder bean:

<customize:replace
id="batchStatisticsFeed
ablePredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The shortest delay in seconds of last
indexed documents for the last <n>

secondsread-onlyIndexMinLag-
Time

seconds, where <n> is the value of the
attribute BatchStatisticsIn
tervalSeconds. If <n> is 0, this
attribute will contain the value since
the start of the Feeder. The difference
of the time when a batch was success-
fully sent and the feedable field fresh-
ness are used for each feedable object
where feederstate is SUCCESS.

The set of feedables used to compute
the delay can be restricted by introdu-
cing a com.coremedia.com
mon.util.Predicate. This pre-

118CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

dicate can be injected into Spring
beanfeeder. Theincludemethod
accepts an object of type
com.coremedia.cap.feed
er.Feedable. The custom imple-
mentation decides to include this
feedable into these statistics.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedable
Predicate of the feeder bean:

<customize:replace
id="batchStatisticsFeed
ablePredicateCustomizer"
bean="feeder" custom-
ref="myPredicate" prop
erty="batchStatisticsFeed
ablePredicate" />

The time when last indexing happened
for the last <n> seconds, where <n>

date and
time

read-onlyLatestIndexing

is the value of the attribute BatchS
tatisticsIntervalSeconds.

The set of feedables used to compute
the latest index time can be restricted
by introducing a com.core
media.common.util.Predic
ate. This predicate can be injected
into Spring bean feeder. The in
clude method accepts an object of
typecom.coremedia.cap.feed
er.Feedable. The custom imple-
mentation decides to include this
feedable into these statistics.

To inject a custom predicate use the
bean customizer and replace the
BatchStatisticsFeedable
Predicate of the feeder bean:

<customize:replace
id="batchStatisticsFeed
ablePredicate"
bean="feeder" custom-
ref="myPredicate" prop

119CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

erty="batchStatisticsFeed
ablePredicate" />

The maximum number of entries in a
batch. It is sent to the Search Engine

batch entriesread/writeMaxBatchSize

when the maximum number is
reached.

It defaults to the configured property
feeder.maxBatchSize.

The maximum size of a batch in bytes.
The CAE Feeder sends a batch to the

byteread/writeMaxBatchBytes

Search Engine if its maximum size
would be exceeded when adding more
entries.

It defaults to the configured property
feeder.maxBatchBytes.

Note that byte computation is a rough
estimate only.

The maximum number of batches in-
dexed in parallel. This setting is not

batchesread/writeMaxOpenBatches

used with the default integration of
Apache Solr but only with custom im-
plementations of the com.core-
media.cap.feeder.index.async.AsyncIn-
dexer interface. The CAE Feeder does
not call the index method of the
AsyncIndexer interface to index anoth-
er batch if the maximum number of
parallel batches has been reached. The
method will not be called until a call-
back about the persistence of one of
these batches has been received.

It defaults to the configured property
feeder.maxOpenBatches.

The maximum number of batches
processed by the Indexer in parallel.

batchesread/writeMaxProcessed-
Batches

This setting is not used with the de-
fault integration of Apache Solr but
only with custom implementations of
the com.coremedia.cap.feeder.in-
dex.async.AsyncIndexer interface. The
CAE Feeder does not call the index
method of the AsyncIndexer interface

120CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

DescriptionUnitTypeAttribute

to index another batch if the con-
figured number of currently processed
batches has been reached. The meth-
od will not be called until a callback
about completed processing or persist-
ence of one of these batches has been
received.

It defaults to the configured property
feeder.maxOpenBatches.

The number of currently open batches
which have been passed to a custom

batchesread-onlyOpenBatches

implementation of the com.core-
media.cap.feeder.index.async.AsyncIn-
dexer interface but for which the CAE
Feeder has not received a persisted
callback yet.

The number of currently processed
batches which have been passed to a

batchesread-onlyProcessed-
Batches

custom implementation of the
com.coremedia.cap.feeder.in-
dex.async.AsyncIndexer interface but
for which the CAE Feeder has not re-
ceived a processed callback yet.

The CAE Feeder sends a batch which
only contains retried entries and is not

millisecondsread/writeRetrySen-
dIdleDelay

full with regard to the MaxBatchS
ize attribute after the CAE Feeder was
idle for the time configured in this
property. A retried entry is an entry
which was sent to the Search Engine
before but could not be indexed suc-
cessfully. If the batch contains entries
which are not retried, the value of at-
tributeSendIdleDelay is used in-
stead.

It defaults to the configured property
feeder.retrySendIdleDelay.

The maximum time in milliseconds
between the time the CAE Feeder re-

millisecondsread/writeRetrySend-
MaxDelay

ceived an error from the Search Engine
and the time, the CAE Feeder tries to
send the failed entry as part of a batch
to the Search Engine again. The time
is exceeded ifMaxOpenBatches or

121CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html
http://releases.coremedia.com/dxp8/7.5.45-10/distribution/apidocs/com/coremedia/cap/feeder/index/async/AsyncIndexer.html

DescriptionUnitTypeAttribute

MaxProcessedBatches are
reached or an error occurs while con-
tacting the Search Engine. If the batch
contains entries which are not retried,
the value of attribute Send
MaxDelay is used instead.

It defaults to the configured property
feeder.retrySendMaxDelay.

The CAE Feeder sends a batch which is
not full with regard to the

millisecondsread/writeSendIdleDelay

MaxBatchBytes attribute after the
CAE Feeder was idle for the configured
time in milliseconds. A CAE Feeder is
idle when it is not processing a re-
quest from clients such as the Proact-
ive Engine.

It defaults to the configured property
feeder.sendIdleDelay.

The maximum time in milliseconds
between the points in time where the

millisecondsread/writeSendMaxDelay

CAE Feeder receives a request from a
client and sends this request as part
of a batch to the Search Engine. The
time is exceeded if MaxOpen
Batches or MaxProcessed
Batches are reached or an error
occurs while contacting the Search
Engine.

It defaults to the configured property
feeder.sendMaxDelay.

The time when the CAE Feeder was
started.

date and
time

read-onlyStartTime

ProactiveEngine MBean

Table 6.17. Attributes
of the ProactiveEngine
MBean

DescriptionUnitTypeAttribute

The total number of "keys" that need
to be kept up-to-date by the CAE

numberread-onlyKeysCount

Feeder. This is the sum of the number
of Content Beans selected for feeding

122CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

DescriptionUnitTypeAttribute

(that is, beans that have been sent or
need to be sent to the search engine)
plus the number of used fragment
keys as described in Section 5.4.5,
“Using Revalidating Fragments” [73].

The value is initialized when the CAE
Feeder is started. It increases if new
content is created that needs to be
indexed.

The number of "keys" whose latest
evaluation is still up-to-date. This is a

numberread-onlyValuesCount

subset of the total number of keys re-
turned by attribute KeysCount.

The value decreases after content has
changed and when the CAE Feeder
needs to recompute data that is then
sent to the search engine.

The difference of KeysCount and
ValuesCount is a good indicator
for the remaining work until the CAE
Feeder has processed changes or
completed initial feeding. When the
CAE Feeder is idle, then Val
uesCount is equal to KeysCount.

123CoreMedia DXP 8

Appendix | CAE Feeder JMX Managed Beans

6.5 Solr Indexer JMX Managed Beans
This managed bean is exported by the CAE Feeder and the Content Feeder.

SolrIndexer MBean
Table 6.18. Properties
of SolrIndexer MBeanDescriptionUnitTypeAttribute

The name of an existing collection of the
Search Engine to use as configured in

read-onlyCollection

property feeder.solr.collec
tion.

The URL of the Apache Solr web applica-
tion for feeding as configured in property
feeder.solr.url.

read-onlyUrl

The time to wait before sending a batch
to the Search Engine again after sending
failed with an error in the Search Engine.

millisecondsread/writeSendRetry-
Delay

It defaults to the configured property
feeder.solr.sendRetryDelay.

Document IDs for which indexing must
not be retried after errors.

comma-separ-
ated string val-
ues

read/writeNoRetryDoc-
umentIdsC-
sv

The SolrIndexer automatically triggers a
retry when a document cannot be sent to
Solr because of temporary errors such as
connection problems to Solr. Permanent
errors that are caused by the content (for
example, if it was destroyed in the mean-
time) are not retried. In rare cases, the
SolrIndexer may treat an error that cannot
be resolved quickly as temporary one and
indexing is retried forever. In such a case,
an administrator can add the document
ID to the value of this JMX attribute to
make the SolrIndexer skip errors for the
document.

IDs must conform to the value of the Solr
id field, for example core
media:///cap/content/42 for a
document indexed with the Content Feeder
and contentbean:42 for a content
bean indexed with the CAE Feeder.

The value is empty by default after start-
ing the Feeder. It is not persisted.

124CoreMedia DXP 8

Appendix | Solr Indexer JMX Managed Beans

6.6 Supported Languages in Solr Language
Detection
The Solr language detection implementation is based on the Google Code language
detection project http://code.google.com/p/language-detection which supports
the following 53 languages and has some advanced CJK support.

Table 6.19. Supported
LanguagesLanguageLanguage Code

Afrikaansaf

Arabicar

Bulgarianbg

Bengalibn

Czechcs

Danishda

Germande

Greekel

Englishen

Spanishes

Estonianet

Persianfa

Finnishfi

Frenchfr

Gujaratigu

Hebrewhe

Hindihi

Croatianhr

Hungarianhu

Indonesianid

Italianit

Japaneseja

Kannadakn

Koreanko

125CoreMedia DXP 8

Appendix | Supported Languages in Solr Language Detection

http://code.google.com/p/language-detection

LanguageLanguage Code

Lithuanianlt

Latvianlv

Macedonianmk

Malayalamml

Marathimr

Nepaline

Dutchnl

Norwegianno

Punjabipa

Polishpl

Portuguesept

Romanianro

Russianru

Slovaksk

Slovenesl

Somaliso

Albaniansq

Swedishsv

Swahilisw

Tamilta

Telugute

Thaith

Tagalogtl

Turkishtr

Ukrainianuk

Urduur

Vietnamesevi

Simplified Chinesezh-cn

Traditional Chinesezh-tw

126CoreMedia DXP 8

Appendix | Supported Languages in Solr Language Detection

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in
other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content, that
is managed in CoreMedia CMS and third-party systems. Technically, a content
bean is a Java object that encapsulates access to any content, either to Core-
Media CMS content items or to any other kind of third-party systems. Various
CoreMedia components like the CAE Feeder or the data view cache are built
on this layer. For these components the content beans act as a facade that
hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is
delivered to the end-user.

It may contain any of the following modules:

➞ CoreMedia Master Live Server

➞ CoreMedia Replication Live Server

➞ CoreMedia Content Application Engine

➞ CoreMedia Search Engine

➞ Elastic Social

127CoreMedia DXP 8

Glossary |

➞ CoreMedia Adaptive Personalization

Content Feeder The Content Feeder is a separate web application that feeds content items of
the CoreMedia repository into the CoreMedia Search Engine. Editors can use
the Search Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following modules:

➞ CoreMedia Content Management Server

➞ CoreMedia Workflow Server

➞ CoreMedia Importer

➞ CoreMedia Site Manager

➞ CoreMedia Studio

➞ CoreMedia Search Engine

➞ CoreMedia Adaptive Personalization

➞ CoreMedia CMS for SAP Netweaver ® Portal

➞ CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is
stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

➞ Content Management Server

➞ Master Live Server

➞ Replication Live Server

128CoreMedia DXP 8

Glossary |

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it clients,
partners or CoreMedia employees. CoreMedia contributions are hosted on
Github at https://github.com/coremedia-contributions.

Controm Room Controm Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed
object standard which enables interoperation between heterogenous applic-
ations over a network. It was created and is currently controlled by the Object
Management Group (OMG), a standards consortium for distributed object-
oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all of the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exists.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the docu-
ment prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier.
The System Identifier is just that: a URL to the DTD. The Public Identifier is
an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can
moderate user generated content from their common workplace. Elastic Social
bases on NoSQL technology and offers nearly unlimited scalability.

129CoreMedia DXP 8

Glossary |

https://github.com/coremedia-contributions

EXML EXML is an XML dialect supporting the declarative development of complex
Ext JS components. EXML is Jangaroo's equivalent to Adobe Flex MXML and
compiles down to Actions Script.

Folder A folder is a resource in the CoreMedia system which can contain other re-
sources. Conceptually, a folder corresponds to a directory in a file system.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for all
subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engin-
eering Task Force (IETF). It includes the definition of IETF language tags, which
are an abbreviated language code such as en for English, pt-BR for Brazilian
Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using
traditional Han characters.

Importer Component of the CoreMedia system for importing external content of
varying format.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with which
a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
ActionScript as an input language which is compiled down to JavaScript. You
will find detailed descriptions on the Jangaroo webpage ht-
tp://www.jangaroo.net.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification are
already integrated with Java 5. JMX provides a tiered architecture with the
instrumentation level, the agent level and the manager level. On the instru-
mentation level, MBeans are used as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It re-
ceives the published content from the Content Management Server and makes
it available to the CAE. If you are using the CoreMedia Multi-Site Management
Extension you may use multiple Master Live Server in a CoreMedia system.

130CoreMedia DXP 8

Glossary |

http://www.jangaroo.net
http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part,
multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects A project is a collection of content items in CoreMedia CMS created by a
specific user. A project can be managed as a unit, published or put in a
workflow, for example.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content items depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers
and to improve the robustness of the Content Delivery Environment. The Rep-
lication Live Server is a complete Content Server installation. Its content is an
replicated image of the content of a Master Live Server. The Replication Live
Server updates its database due to change events from the Master Live Server.
You can connect an arbitrary number of Replication Live Servers to the Master
Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number of
key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes re-
ferred to as localized site. In CoreMedia CMS a site especially consists of a site
folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

131CoreMedia DXP 8

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a
site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users
and workflows.

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site and
that they accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined
by typically an administrative user a content editor can use this template to
quickly create a complete new page including, for example, navigation, pre-
defined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in
the Control Room, as a part of projects and workflows.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can
be declared with the weak attribute, so that they are not checked during
publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

WebDAV WebDAV stands for World Wide Web Distributed Authoring and Versioning
Protocol. It is an extension of the Hypertext Transfer Protocol (HTTP), which
offers a standardised method for the distributed work on different data via
the internet. This adds the possibility to the CoreMedia system to easily access
CoreMedia resources via external programs. A WebDAV enabled application
like Microsoft Word is thus able to open Word documents stored in the
CoreMedia system. For further information, see http://www.webdav.org.

132CoreMedia DXP 8

Glossary |

http://www.webdav.org

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the work-
flow software ensures that the individuals responsible for the next task are
notified and receive the data they need to execute their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environ-
ment. It comes with predefined workflows for publication and global-search-
and-replace but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated but
also metadata about the text. For example, the source and target language.
CoreMedia Studio allows you to export content items in the XLIFF format and
to import the files again after translation.

133CoreMedia DXP 8

Glossary |

Index

A
adding index fields, 55, 73
Apache Lucene

index, 17
Apache Solr

config set, 18
core discovery, 17-18
Solr Core, 17-18
Solr Home directory, 17
solr.xml, 17

B
batches, 35

C
CAE Feeder, 60, 65

API use, 84
configure content bean classes, 68
configure Content Server, 62
configure database, 62
customize feedables, 68
disabling invalidations, 66
revalidating fragments, 73

CJK languages, 28
configure

other search engines, 50
configuring multi-language search, 28
Content Feeder

administration page, 56
configure batch handling, 47
configure document types, 39
configure fields, 41
configure properties, 39
configure user account, 38
starting, 58

D
delay, 36

E
error conditions, 35

I
Index document, 14
index fields, 55

L
language depending fields

indexing into, 27
search in, 27

language detection, 26

S
Search Engine, 13

different languages, 26
starting, 16

Search Engine integration, 34

T
tokenization, 27

134CoreMedia DXP 8

Index |

	CoreMedia Search Manual
	Table of Contents
	1. Preface
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Change Chapter

	2. Overview
	3. Search Engine
	3.1 Starting
	3.2 Solr Home Directory
	3.3 Reindexing
	3.4 Creating Backups
	3.5 Searching in Different Languages
	3.5.1 Details of Language Processing Steps
	3.5.2 Configuring Multi-Language Search

	4. Searching for Content
	4.1 Concepts
	4.2 Configure the Content Feeder
	4.2.1 Required Configuration
	4.2.2 Content Configuration
	4.2.3 Advanced Configuration

	4.3 Configure Search for the Content Server
	4.4 Configure Search Suggestions for Studio
	4.5 Modify the Search Index
	4.6 Operation of the Content Feeder
	4.7 Implementing Custom Search

	5. Searching for CAE Content Beans
	5.1 Architectural Overview
	5.2 Configuring the CAE Feeder
	5.3 Operations of the CAE Feeder
	5.3.1 Starting and Stopping
	5.3.2 Resetting
	5.3.3 Disabling Invalidations

	5.4 Indexing Content Beans
	5.4.1 Specifying the Set of Indexed Content Beans
	5.4.2 Configuring Content Bean Classes
	5.4.3 Customizing Feedables
	5.4.4 Modifying the Search Index
	5.4.5 Using Revalidating Fragments

	5.5 Integrating a Different Search Engine
	5.6 CAE Feeder for API Use
	5.7 Implementing Custom Search

	6. Appendix
	6.1 Content Feeder Configuration
	6.2 Content Feeder JMX Managed Beans
	6.3 CAE Feeder Configuration
	6.4 CAE Feeder JMX Managed Beans
	6.5 Solr Indexer JMX Managed Beans
	6.6 Supported Languages in Solr Language Detection

	Glossary
	Index

