
CoreMedia Digital Experience Platform 8
//Version 7.5.45-10

CoreMedia Studio Manual

CoreMedia Studio Manual
Copyright CoreMedia AG © 2015

CoreMedia AG

Ludwig-Erhard-Straße 18

20459 Hamburg

International

All rights reserved. No part of this manual or the corresponding program may be reproduced or
copied in any form (print, photocopy or other process) without the written permission of CoreMedia
AG.

Germany

Alle Rechte vorbehalten. CoreMedia und weitere im Text erwähnte CoreMedia Produkte sowie die
entsprechenden Logos sind Marken oder eingetragene Marken der CoreMedia AG in Deutschland.
Alle anderen Namen von Produkten sind Marken der jeweiligen Firmen.

Das Handbuch bzw. Teile hiervon sowie die dazugehörigen Programme dürfen in keiner Weise (Druck,
Fotokopie oder sonstige Verfahren) ohne schriftliche Genehmigung der CoreMedia AG reproduziert
oder vervielfältigt werden. Unberührt hiervon bleiben die gesetzlich erlaubten Nutzungsarten nach
dem UrhG.

Licenses and Trademarks

All trademarks acknowledged.
07.Mar 2017

iiCoreMedia DXP 8

CoreMedia Studio Manual |

1. Introduction .. 1
1.1. Audience .. 2
1.2. Typographic Conventions .. 3
1.3. CoreMedia Services .. 5

1.3.1. Registration .. 5
1.3.2. CoreMedia Releases .. 5
1.3.3. Documentation .. 6
1.3.4. CoreMedia Training .. 8
1.3.5. CoreMedia Support . 9

1.4. Change Chapter . 12
2. Overview .. 13

2.1. Architecture .. 14
2.2. Technologies .. 16

3. Deployment .. 18
3.1. Connecting to the Repository .. 19
3.2. Control Room Configuration .. 20
3.3. Basic Preview Configuration .. 21
3.4. Advanced Preview Configuration .. 22
3.5. Development Setup .. 23

4. Quick Start . 24
5. Concepts and Technology .. 26

5.1. Ext JS Primer .. 27
5.1.1. Components .. 28
5.1.2. Declarative UI (Ext JSON) .. 29
5.1.3. Component Plugins .. 30
5.1.4. Actions .. 31

5.2. Ext JS with ActionScript and EXML .. 32
5.3. Client-side Model . 37

5.3.1. Beans .. 38
5.3.2. Remote Beans .. 40
5.3.3. Issues .. 41
5.3.4. Operation Results . 42
5.3.5. Model Beans for Custom Components 43
5.3.6. Value Expressions .. 44

5.4. Remote CoreMedia Objects . 51
5.4.1. Connection and Services .. 51
5.4.2. Content .. 52
5.4.3. Workflow .. 53
5.4.4. Structs . 54
5.4.5. Types and Property Descriptors . 56
5.4.6. Concurrency .. 56

iiiCoreMedia DXP 8

CoreMedia Studio Manual |

5.5. Studio Component IoC .. 57
5.5.1. Motivation .. 57
5.5.2. Inversion of Control . 57
5.5.3. Annotations of Context Consumer and Context
Provider .. 58

5.6. Web Application Structure .. 60
5.7. Localization .. 61
5.8. Multi-Site and Localization Management 63
5.9. Further Reading .. 64

6. Using the Development Environment .. 65
6.1. Configuring Connections .. 66
6.2. Build Process .. 67
6.3. IDE Support . 69
6.4. Debugging .. 70

6.4.1. Browser Developer Tools . 70
6.4.2. Ext JS debug.js . 72
6.4.3. Illuminations .. 73
6.4.4. Tracing Memory Leaks .. 75

7. Customizing CoreMedia Studio .. 83
7.1. Studio Plugins .. 84
7.2. Localizing Labels . 94
7.3. Document Type Model . 97

7.3.1. Localizing Types and Fields .. 97
7.3.2. Defining Content Type Icons .. 98
7.3.3. Customizing Document Forms .. 101
7.3.4. Image Cropping and Image Transformation 108
7.3.5. Enabling Image Map Editing .. 111
7.3.6. Disabling Preview for Specific Document
Types .. 112
7.3.7. Configuring Translation Support . 112
7.3.8. Excluding Document Types from the Lib-
rary .. 113
7.3.9. Client-side initialization of new Documents 114

7.4. Customizing Property Fields .. 115
7.4.1. Conventions for Property Fields 115
7.4.2. Standard Component StringPropertyField 116
7.4.3. Compound Field .. 119
7.4.4. Complex Setups .. 122
7.4.5. Customizing RichText Property Fields 122

7.5. Upgrading the CKEditor . 133

ivCoreMedia DXP 8

CoreMedia Studio Manual |

7.5.1. Upgrading RichTextArea Plugins from CKEditor
3 to 4 .. 133
7.5.2. Migrating Richtext Editor Dialogs 134
7.5.3. CKEditor plugins available .. 135

7.6. Coupling Studio and Embedded Preview 138
7.6.1. Built-in Processing of Content and Property
Metadata .. 138
7.6.2. Using the Preview Metadata Service 138

7.7. Storing Preferences .. 142
7.8. Customizing Studio using Component IoC 143

7.8.1. Content Actions .. 143
7.8.2. Example: Add a disapprove button to the actions
toolbar .. 143
7.8.3. Studio Component Map .. 144

7.9. Customizing Central Toolbars .. 145
7.9.1. Adding buttons to the Favorites Toolbar 145
7.9.2. Providing default Search Folders 146
7.9.3. Adding a Button with a Custom Action 148
7.9.4. Adding a Button to the Apps Menu 149
7.9.5. Adding Disapprove Buttons .. 150

7.10. Inheritance of Property Values .. 151
7.11. Customizing the Library Window ... 152

7.11.1. Defining List View Columns in Repository
Mode .. 152
7.11.2. Defining Additional Data Fields for List
Views .. 153
7.11.3. Defining List View Columns in Search
Mode .. 154
7.11.4. Configuring the Thumbnail View 155
7.11.5. Adding Search Filters . 155
7.11.6. Make Columns Sortable in Search and Reposit-
ory View .. 158

7.12. Work Area Tabs .. 160
7.12.1. Configuring a Work Area Tab .. 160
7.12.2. Configure an Action to Open a Work Area
Tab .. 160
7.12.3. Configure a Singleton Work Area Tab 161
7.12.4. Storing the State of a Work Area Tab 161
7.12.5. Customizing the Start up Behavior 162
7.12.6. Customizing the Work Area Tab Context
Menu .. 164

vCoreMedia DXP 8

CoreMedia Studio Manual |

7.13. Dashboard .. 166
7.13.1. Concepts .. 166
7.13.2. Defining the Dashboard .. 167
7.13.3. Predefined Widget Types .. 169
7.13.4. Adding Custom Widget Types .. 170

7.14. Configuring MIME Types .. 175
7.15. Server-Side Content Processing .. 176

7.15.1. Validators .. 176
7.15.2. Intercepting Write Requests . 180
7.15.3. Immediate Validation .. 183
7.15.4. Post-processing Write Requests 184

7.16. Available Locales .. 186
7.17. Notifications .. 187

7.17.1. Configure Notifications .. 187
7.17.2. Adding Custom Notifications .. 187
7.17.3. Creating Notifications (Server Side) 188
7.17.4. Displaying Notifications (Client Side) 188

8. Security . 191
8.1. Preview Integration .. 192
8.2. Content Security Policy .. 193
8.3. Single Sign On Integration .. 196
8.4. Auto Logout .. 201
8.5. Logging .. 202

Glossary .. 205
Index .. 212

viCoreMedia DXP 8

CoreMedia Studio Manual |

List of Figures
2.1. Architecture of CoreMedia Studio .. 14
2.2. Runtime components .. 15
5.1. Ext JSON ... 28
5.2. EXML compared to Ext JSON ... 28
6.1. Studio project within the Project workspace in IntelliJ
Idea .. 69
6.2. Firebug: console .. 72
6.3. Ext component tree .. 72
6.4. Illuminations: objects . 74
6.5. Illuminations: methods .. 74
6.6. Illuminations: highlighting .. 75
6.7. Illuminations: inspect . 75
6.8. Google Chrome's Developer Tools Support Comparing Heap
Snapshots .. 81
7.1. plugin structure .. 85
7.2. Document form with content and metadata properties 102
7.3. Document form with a collapsible form panel . 107
7.4. Premular and Actions Toolbar .. 144
7.5. Collection View .. 144
7.6. Apps Menu .. 150
7.7. Dashboard UML overview .. 168

viiCoreMedia DXP 8

CoreMedia Studio Manual |

List of Tables
1.1. Typographic conventions .. 3
1.2. Pictographs .. 3
1.3. CoreMedia manuals . 6
1.4. Log files check list . 10
1.5. Changes .. 12
7.1. Content Type Icons .. 98
7.2. Property Fields .. 104
7.3. ImageEditorPropertyField Configuration Settings 108
7.4. CKEditor plugins loaded by default . 135
7.5. CM richtext plugins loaded by default . 136
7.6. Predefined widget types .. 169
7.7. Selected predefined validators available in CoreMedia Stu-
dio .. 176

viiiCoreMedia DXP 8

CoreMedia Studio Manual |

List of Examples
5.1. Ext JSON ... 27
5.2. Viewport definition as Ext JSON ... 29
5.3. Plugin usage in Ext JSON ... 31
5.4. Component instantiation using Ext JSON ... 35
5.5. Component instantiation using typed setters . 35
5.6. Component instantiation using typed wrapper .. 35
5.7. Updating multiple bean properties .. 39
5.8. Model bean factory method .. 43
5.9. Model bean access .. 44
5.10. Adding a listener and initializing .. 46
5.11. Creating a property path expression .. 47
5.12. The valueExpression EXML element .. 48
5.13. Creating a function value expression .. 48
5.14. Creating a value expression from a private function 48
5.15. Creating a value expression from a static function 49
5.16. Manual dependency tracking .. 49
5.17. The bindPropertyPlugin EXML element .. 49
5.18. Property paths into struct . 55
5.19. Adding struct properties .. 55
6.1. Detecting public API violations .. 68
7.1. Adding a plugin rule to customize the actions toolbar 88
7.2. Adding a separator and a button with a custom action to a
toolbar .. 89
7.3. Adding a plugin rule to customize all LinkList property field
toolbars .. 90
7.4. Using <ui:nestedRulesPlugin> to customize a sub-component
using its container's API . 90
7.5. Using <ui:nestedRulesPlugin> to customize a sub-compon-
ent .. 91
7.6. Registering a plugin .. 92
7.7. Loading an external script . 93
7.8. Loading an external style sheet .. 93
7.9. Adding a search button .. 95
7.10. Example property file . 95
7.11. Overriding properties .. 96
7.12. Localizing document types .. 97
7.13. Article form ... 102
7.14. Configuring the Image Editor . 108

ixCoreMedia DXP 8

CoreMedia Studio Manual |

7.15. Configuring the variants . 109
7.16. Configuring an Image Map Editor . 111
7.17. Configuring a validator for image maps .. 111
7.18. Defining document types without preview .. 112
7.19. Blueprint source language document resolver 112
7.20. Configuring a source language document resolver 113
7.21. Defining excluded document types .. 113
7.22. Defining excluded document types in EXML .. 114
7.23. Defining a content initializer . 114
7.24. Custom property field .. 116
7.25. Using a base class method .. 122
7.26. Inline images in richtext . 123
7.27. Configuring the rich text symbol mapping .. 127
7.28. Customizing the rich text editor toolbar .. 129
7.29. Adding a custom icon to the rich text editor toolbar 129
7.30. Adding resource path to pom.xml . 129
7.31. Customizing the CKEditor . 130
7.32. Adding a search for documents to be published 146
7.33. Adding a custom search folder .. 147
7.34. Creating a custom action .. 148
7.35. Creating a custom action configuration class 149
7.36. Using a custom action .. 149
7.37. Adding disapprove action using enableDisapprovePlu-
gin .. 150
7.38. Configuring Property Inheritance .. 151
7.39. Defining list view columns in the repository mode 152
7.40. Defining list view fields .. 153
7.41. Defining list view columns in the search mode 154
7.42. Configuring the thumbnail view .. 155
7.43. Two additional attributes for sorting. 158
7.44. Optional extendOrderBy Attribute for sort by more than one
column. .. 159
7.45. Optional sortDirection Attribute to enable only one sort
direction. 159
7.46. defaultSortColumn Attribute to configure one column as the
default for sorting. 159
7.47. Adding a button to open a tab .. 160
7.48. Adding a button to open a browser tab .. 161
7.49. Base class for browser tab .. 162
7.50. Dashboard Configuration .. 167
7.51. Fixed Search widget Configuration .. 169

xCoreMedia DXP 8

CoreMedia Studio Manual |

7.52. Simple Search Widget Configuration .. 170
7.53. Simple Search Widget Type .. 171
7.54. Simple Search Widget Component .. 171
7.55. Simple Search widget Type with Editor Component 172
7.56. Simple Search widget Editor Component .. 173
7.57. widget State Class for Simple Search widget .. 174
7.58. Configuring MIME types .. 175
7.59. Implementing a property validator . 177
7.60. Configuring a property validator . 178
7.61. Implementing a content validator . 178
7.62. Configuring a content validator . 179
7.63. Configuring validator messages .. 179
7.64. Defining a Write Interceptor .. 182
7.65. Configuring a Write Interceptor .. 182
7.66. Configuring Immediate Validation .. 183
8.1. Import base context . 196
8.2. Spring Security context . 197
8.3. Delegating entry point . 198
8.4. Logout filter . 198
8.5. User finder .. 200
8.6. Enable user finder .. 200
8.7. Example Output .. 202
8.8. Marker Hierarchy .. 202
8.9. Configure Access Log .. 202
8.10. Configure Security Log .. 203
8.11. Configure Default Log .. 203
8.12. Configure Logger .. 204
8.13. Suppress Security Logging .. 204

xiCoreMedia DXP 8

CoreMedia Studio Manual |

1. Introduction

This manual describes the configuration of and development with CoreMedia Studio.
You will learn, for example, how to add your own Favorites, how to change or add
labels, or how to customize forms.

➞ Chapter 2, Overview [13] gives a short overview of CoreMedia Studio.

➞ Chapter 3, Deployment [18] describes how to deploy CoreMedia Studio into
different servlet containers.

➞ Chapter 4, Quick Start [24] describes how to set up a development workspace
that is ready for CoreMedia Studio development.

➞ Chapter 5, Concepts and Technology [26] gives an overview of the concepts
and technologies used by CoreMedia Studio. It is not a prerequisite for the
following chapters, but will give you valuable insight into the underlying
concepts.

➞ Chapter 6, Using the Development Environment [65] introduces the build tools
and processes that are recommended for the development of CoreMedia
Studio.

➞ Chapter 7, Customizing CoreMedia Studio [83] explains specific customizations
of CoreMedia Studio.

Since version 1.3, the CoreMedia Studio API is marked final, meaning that changes
and extensions to the API are guaranteed to be backwards compatible. Any
changes to the API are however described in the release notes, and it is recom-
mended to consult these when upgrading to a newer version, so that you can
benefit from added functionality or more convenient or powerful ways to make
use of certain features.

1CoreMedia DXP 8

Introduction |

1.1 Audience
This manual is intended for developers who want to customize CoreMedia Studio.
You should know the basics of CoreMedia CMS. Knowledge about the Unified API is
particularly helpful. You should also have a solid understanding of Maven, Action-
Script, JavaScript and Ext JS.

2CoreMedia DXP 8

Introduction | Audience

1.2 Typographic Conventions
CoreMedia uses different fonts and types in order to label different elements. The
following table lists typographic conventions for this documentation:

Table 1.1. Typographic
conventions

ExampleTypographic formatElement

cm systeminfo startCourier newSource code

Command line entries

Parameter and values

Class and method names

Packages and modules

Open the menu entry

Format|Normal

Bold, linked with |Menu names and entries

Enter in the field Heading

The CoreMedia Component

ItalicField names

CoreMedia Components

Use ChefApplications

Enter "On"In quotation marksEntries

Press the keys <Ctrl>+<A>Bracketed in "<>", linked with
"+"

(Simultaneously) pressed
keys

It is not savedItalicEmphasis

Click on the [OK] buttonBold, with square bracketsButtons

cm systeminfo \

-u user

\Code lines in code examples
which continue in the next
line

See the [Studio Developer
Manual] for more information.

Square BracketsMention of other manuals

In addition, these symbols can mark single paragraphs:

Table 1.2. PictographsDescriptionPictograph

Tip: This denotes a best practice or a recommendation.

Warning: Please pay special attention to the text.

3CoreMedia DXP 8

Introduction | Typographic Conventions

DescriptionPictograph

Danger: The violation of these rules causes severe damage.

4CoreMedia DXP 8

Introduction | Typographic Conventions

1.3 CoreMedia Services
This section describes the CoreMedia services that support you in running a Core-
Media system successfully. You will find all the URLs that guide you to the right
places. For most of the services you need a CoreMedia account. See Section 1.3.1,
“Registration” [5] for details on how to register.

CoreMedia User Orientation for CoreMedia Developers and Partners

Find the latest overview of all CoreMedia services and further references at:

http://documentation.coremedia.com/new-user-orientation

➞ Section 1.3.1, “Registration” [5] describes how to register for the usage of
the services.

➞ Section 1.3.2, “CoreMedia Releases” [5] describes where to find the
download of the software.

➞ Section 1.3.3, “Documentation” [6] describes the CoreMedia documentation.
This includes an overview of the manuals and the URL where to find the
documentation.

➞ Section 1.3.4, “CoreMedia Training” [8] describes CoreMedia training. This
includes the training calendar,the curriculum and certification information.

➞ Section 1.3.5, “CoreMedia Support” [9] describes the CoreMedia support.

1.3.1 Registration
In order to use CoreMedia services you need to register. Please, start your initial
registration via the CoreMedia website. Afterwards, contact the CoreMedia Support
(see Section 1.3.5, “CoreMedia Support” [9]) by email to request further access
depending on your customer, partner or freelancer status so that you can use the
CoreMedia services.

1.3.2 CoreMedia Releases

Downloading and Upgrading the Blueprint Workspace

CoreMedia provides its software as a Maven based workspace. You can download
the current workspace or older releases via the following URL:

http://releases.coremedia.com/dxp8

Refer to our Blueprint Github mirror repository for recommendations to upgrade
the workspace either via Git or patch files.

5CoreMedia DXP 8

Introduction | CoreMedia Services

http://documentation.coremedia.com/new-user-orientation
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://www.coremedia.com/webflow/coremedia-en/24856/registration.html
http://releases.coremedia.com/dxp8
https://github.com/coremedia-contributions/dxp8-blueprint

If you encounter a 404 error then you are probably not logged in at GitHub or
do not have sufficient permissions yet. See Section 1.3.1, “Registration” [5]
for details about the registration process. If the problems persist, try clearing
your browser cache and cookies.

Maven artifacts

CoreMedia provides its release artifacts via Maven under the following URL:

https://repository.coremedia.com

You have to add your CoreMedia credentials to your Maven settings file as described
in section CoreMedia Digital Experience Platform 8 Developer Manual.

License files

You need license files to run the CoreMedia system. Contact the support (see Section
1.3.5, “CoreMedia Support” [9]) to get your licences.

1.3.3 Documentation
CoreMedia provides extensive manuals and Javadoc as PDF files and as online
documentation at the following URL:

http://documentation.coremedia.com/dxp8

The manuals have the following content and use cases:
Table 1.3. CoreMedia
manualsContentAudienceManual

This manual lists the third-party software used
by CoreMedia and lists, when required, the li-
cence texts.

Developers, ar-
chitects, admin-
istrators

CoreMedia Utilized Open-
Source Software

This document lists the third-party environ-
ments with which you can use the CoreMedia

Developers, ar-
chitects, admin-
istrators

Supported Environments

system, Java versions or operation systems for
example.

This manual describes the usage of CoreMedia
Studio for editorial and administrative work. It

EditorsStudio User Manual, Eng-
lish

also describes the usage of the Adaptive Person-
alization and Elastic Social GUI that are integ-
rated into Studio.

6CoreMedia DXP 8

Introduction | Documentation

https://repository.coremedia.com
livecontext-en.pdf#CoreMediaManual
http://documentation.coremedia.com/dxp8

ContentAudienceManual

This manual gives an overview over the struc-
ture and features of CoreMedia LiveContext.

Developers, ar-
chitects, admin-
istrators

LiveContext for IBM Web-
Sphere Manual

It describes the integration with the IBM
WebSphere Commerce system, the content
type model, the Studio extensions, folder and
user rights concept and many more details. It
also describes administrative tasks for the
features.

It also describes the concepts and usage of the
project workspace in which you develop your
CoreMedia extensions. You will find a descrip-
tion of the Maven structure, the virtualization
concept, learn how to perform a release and
many more.

This manual describes some overall concepts
such as the communication between the

Developers, ad-
ministrators

Operations Basics Manual

components, how to set up secure connec-
tions, how to start application or the usage of
the watchdog component.

This manual describes the configuration of and
development with Adaptive Personalization, the

Developers, ar-
chitects, admin-
istrators

Adaptive Personalization
Manual

CoreMedia module for personalized websites.
You will learn how to configure the GUI used
in CoreMedia Studio, how to use predefined
contexts and how to develop your own exten-
sions.

This manual describes how you can connect
your CoreMedia website with external analytic
services, such as Google Analytics.

Developers, ar-
chitects, admin-
istrators

Analytics Connectors
Manual

This manual describes concepts and develop-
ment of the Content Application Engine (CAE).

Developers, ar-
chitects

Content Application De-
veloper Manual

You will learn how to write JSP or Freemarker
templates that access the other CoreMedia
modules and use the sophisticated caching
mechanisms of the CAE.

This manual describes the concepts and admin-
istration of the main CoreMedia component,

Developers, ar-
chitects, admin-
istrators

Content Server Manual

the Content Server. You will learn about the
content type model which lies at the heart of
a CoreMedia system, about user and rights
management, database configuration, and
more.

7CoreMedia DXP 8

Introduction | Documentation

ContentAudienceManual

This manual describes the concepts and admin-
istration of the Elastic Social module and how
you can integrate it into your websites.

Developers, ar-
chitects, admin-
istrators

Elastic Social Manual

This manual describes the structure of the in-
ternal CoreMedia XML format used for storing

Developers, ar-
chitects

Importer Manual

data, how you set up an Importer application
and how you define the transformations that
convert your content into CoreMedia content.

This manual describes the configuration and
customization of the CoreMedia Search Engine

Developers, ar-
chitects, admin-
istrators

Search Manual

and the two feeder applications: the Content
Feeder and the CAE Feeder.

This manual describes the configuration and
customization of Site Manager, the Java based

Developers, ar-
chitects, admin-
istrators

Site Manager Developer
Manual

stand-alone application for administrative
tasks. You will learn how to configure the Site
Manager with property files and XML files and
how to develop your own extensions using the
Site Manager API.

This manual describes the concepts and exten-
sion of CoreMedia Studio. You will learn about

Developers, ar-
chitects

Studio Developer Manual

the underlying concepts, how to use the devel-
opment environment and how to customize
Studio to your needs.

This manual describes the concepts and usage
of the CoreMedia Unified API, which is the re-

Developers, ar-
chitects

Unified API Developer
Manual

commended API for most applications. This
includes access to the content repository, the
workflow repository and the user repository.

This manual describes the Workflow Server. This
includes the administration of the server, the

Developers, ar-
chitects, admin-
istrators

Workflow Manual

development of workflows using the XML lan-
guage and the development of extensions.

If you have comments or questions about CoreMedia's manuals, contact the Docu-
mentation department:

Email: documentation@coremedia.com

1.3.4 CoreMedia Training
CoreMedia's training department provides you with the training for your CoreMedia
projects either in the CoreMedia training center or at your own location.

8CoreMedia DXP 8

Introduction | CoreMedia Training

mailto:documentation@coremedia.com

You will find information about the CoreMedia training program, the training
schedule and the CoreMedia certification program at the following URL:

http://www.coremedia.com/training

Contact the Training department at the following email address:

Email: training@coremedia.com

1.3.5 CoreMedia Support
CoreMedia's support is located in Hamburg and accepts your support requests
between 9 am and 6 pm MET. If you have subscribed to 24/7 support, you can al-
ways reach the support using the phone number provided to you.

To submit a support ticket, track your submitted tickets or receive access to our
forums visit the CoreMedia Online Support at:

http://support.coremedia.com/

Do not forget to request further access via email after your initial registration as
described in Section 1.3.1, “Registration” [5]. The support email address is:

Email: support@coremedia.com

Create a support request

Support requestCoreMedia systems are distributed systems that have a rather complex structure.
This includes, for example, databases, hardware, operating systems, drivers, virtual
machines, class libraries and customized code in many different combinations.
That's why CoreMedia needs detailed information about the environment for a
support case. In order to track down your problem, provide the following informa-
tion:

➞ Which CoreMedia component(s) did the problem occur with (include the
release number)?

➞ Which database is in use (version, drivers)?

➞ Which operating system(s) is/are in use?

➞ Which Java environment is in use?

➞ Which customizations have been implemented?

➞ A full description of the problem (as detailed as possible)

➞ Can the error be reproduced? If yes, give a description please.

➞ How are the security settings (firewall)?

In addition, log files are the most valuable source of information.

9CoreMedia DXP 8

Introduction | CoreMedia Support

http://www.coremedia.com/training
mailto:training@coremedia.com
http://support.coremedia.com
mailto:support@coremedia.com

Support checklistTo put it in a nutshell, CoreMedia needs:

1. a person in charge (ideally, the CoreMedia system administrator)

2. extensive and sufficient system specifications

3. detailed error description

4. log files for the affected component(s)

5. if required, system files

Log filesAn essential feature for the CoreMedia system administration is the output log of
Java processes and CoreMedia components. They're often the only source of in-
formation for error tracking and solving. All protocolling services should run at the
highest log level that is possible in the system context. For a fast breakdown, you
should be logging at debug level. The location where component log output is
written is specified in its < appName>-logback.xml file.

Which Log File?

Mostly at least two CoreMedia components are involved in errors. In most cases,
the Content Server log files in coremedia.log files together with the log file from
the client. If you are able locate the problem exactly, solving the problem becomes
much easier.

Where do I Find the Log Files?

By default, log files can be found in the CoreMedia component's installation direct-
ory in /var/logs or for web applications in the logs/ directory of the servlet
container.See the "Logging" chapter of the [Operations Basics Manual] for details.

Table 1.4. Log files
check list

Log filesProblemComponent

generalCoreMedia Studio CoreMedia-Studio.log
coremedia.log

generalCoreMedia Editor editor.log
coremedia.log
workflowserver.log
capclient.properties

check-in/check-out editor.log
coremedia.log
workflowserver.log
capclient.properties

publication or pre-
view

coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

10CoreMedia DXP 8

Introduction | CoreMedia Support

Log filesProblemComponent

workflowserver.log
capclient.properties

import importer.log
coremedia.log
capclient.properties

workflow editor.log
workflow.log
coremedia.log
capclient.properties

spell check editor.log
MS Office version details
coremedia.log

licenses coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)

communication errorsServer and client editor.log
coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
*.jpif files

preview not running coremedia.log (content server)
preview.log

website not running coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
Blueprint.log
capclient.properties
license.zip

not startingServer coremedia.log
(Content Management Server)
coremedia.log
(Master Live Server)
coremedia.log
(Replication Live Server)
capclient.properties
license.zip

11CoreMedia DXP 8

Introduction | CoreMedia Support

1.4 Change Chapter
In this chapter you will find a table with all major changes made in this manual.

Table 1.5. ChangesDescriptionVersionSection

Add chapter about security
and Content Security Policy in
particular.

7.5.24Chapter 8, Security [191]

Added new section about Noti-
ficationService configuration.

7.5.26Removed in 7.5.34

Removed section about Notific-
ationsService configuration,

7.5.34Section 7.4.5, “Customizing
RichText Property
Fields” [122] added broader section about

in-memory replacement of
several MongoDB-based fea-
tures to the CoreMedia Manual

Removed properties con
trolroom.jdbc.driver,

7.5.41Section 3.2, “Control Room
Configuration” [20]

controlroom.jdbc.url,
controlroom.jd
bc.user and control
room.jdbc.password.
Control Room no longer sup-
ports IBM DB2 for persisting
collaboration data. See [Core-
Media DXP 8 Manual], Section
"In-Memory Replacement for
MongoDB-Based Services".

Added description of th
onlyIf Plugin

7.1.12???

12CoreMedia DXP 8

Introduction | Change Chapter

2. Overview

CoreMedia Studio is a web application that is in the center of your web activities.
It gives you complete control over context's determinants and lets you easily create
compelling and engaging content experiences. Technically, CoreMedia Studio is a
single-page Ajax application, using a REST based network protocol for communic-
ation.

13CoreMedia DXP 8

Overview |

2.1 Architecture
Figure 2.1, “Architecture of CoreMedia Studio” [14] shows the architecture of
CoreMedia Studio. The top-level layer comprises content editing applications such
as the CoreMedia Studio core application and its plugins. CoreMedia Blueprint defines
several plugins, showcasing Studio's various extension points.

Editing applications are built on a layer of editing components that deal with
CoreMedia content objects. Editing components are built on the UI Toolkit layer
which provides generic components for building rich internet applications. On this
layer, components can be implemented in ActionScript 3 or declared in EXML and
then compiled down to Ext JS. UI components separate layout, model and function-
ality according to the MVC paradigm. Models that are backed by server-side data
are implemented as client-side beans that fetch the requested values via REST. UI
components offer localization support. The lower level layers comprise the REST
API of the CoreMedia CMS.

Figure 2.1. Architecture
of CoreMedia Studio

Studio Frame
and

Extension Points

Editing Components
R

ich
Text

P
review

Im
ag

e
U

p
lo

ad

...

D
o

ctyp
e

D
isp

atch

Content REST
Service

C
o

n
ten

t
A

ctio
n

s

Custom Editing Apps

Other REST Services

S
tu

d
io

P
lu

g
-In

s

Blueprint Studio
Plugins

C
o

n
ten

t
Tree

Ext JS

REST
Beans

EXML

Maven

Action -
Script 3

MVC

REST Protocol Wire Format

REST Protocol Linking Framework

l10n

Custom Studio
Plugins

As shown below, the CoreMedia Studio web application serves static and dynamic
resources. The static resources are those that define the client-side UI structure
(HTML and JavaScript) and the client-side layout (CSS and images). The dynamic
resources can be accessed via the Content REST Service. When you start CoreMedia
Studio from your browser, it loads the static resources and initializes the Ext JS UI
component tree, Studio plugins and model beans. Model beans issue Ajax requests

14CoreMedia DXP 8

Overview | Architecture

to access the Content REST Service, which is the interface to the CoreMedia back-
end systems, and load data from the returned JSON objects.

Figure 2.2. Runtime
components

15CoreMedia DXP 8

Overview | Architecture

2.2 Technologies
This section gives you a brief overview of CoreMedia Studio's underlying technolo-
gies. These are the ActionScript to JavaScript framework Jangaroo, including its
declarative language EXML, the JavaScript UI framework Ext JS, and the CKEditor
for richtext editing.

Jangaroo

Jangaroo is CoreMedia's open source JavaScript framework, supporting ActionScript
as a source language, which is then compiled down to JavaScript.

A detailed description of the Jangaroo compiler jooc is given on the Jangaroo
website https://github.com/CoreMedia/jangaroo-tools/wiki/Compiler. The compiler
is integrated into the Maven build process of the CoreMedia CMS distribution, so
in a Maven-based project you should never need to invoke the compiler directly.

EXML

EXML is an XML dialect developed by CoreMedia that supports the declarative
development of complex Ext JS components. It is Jangaroo's equivalent to Adobe
Flex MXML. Jangaroo compiles EXML down to ActionScript.

The rationale behind this is to benefit from static typing (provided by XML) when
developing dynamically typed Ext JS components. To this end, Jangaroo provides
an IntelliJ IDEA plugin supporting documentation lookup of EXML tags, navigation
between EXML components, and compilation of EXML to ActionScript. See Section
5.2, “Ext JS with ActionScript and EXML” [32] for details.

Ext JS

Ext JS is a cross-browser rich internet application framework developed by Sencha
Inc. It offers JavaScript UI widgets and client side MVC. To this end, Ext JS provides
components, actions and data abstractions. Components can be customized by
plugins. Component trees are described in JSON notation. Ext JS defines the
JavaScript properties xtype and ptype to distinguish between components and
plugins.

In short, Ext JS has the following features:

➞ clean object-oriented design,

➞ hierarchical component architecture (component tree),

➞ large UI library with mature widgets, especially mature business components
(Store abstraction, DataGrid),

➞ built-in layout management,

16CoreMedia DXP 8

Overview | Technologies

https://github.com/CoreMedia/jangaroo-tools/wiki/Compiler

➞ good drag and drop support with sophisticated visual feedback,

➞ declarative UI description language (JSON).

Ext JS also provides a rich set of utility functions to deal with components or plain
JavaScript objects and functions. The complete Ext JS documentation can be found
on http://www.sencha.com/learn/Learn_About_the_Ext_ JavaScript_Library.

The CoreMedia Studio builds on Ext JS 3: http://www.sencha.com/products/extjs3/.

CKEditor

The CKEditor is a browser based open source WYSIWYG text editor (http://ckedit-
or.com/). Common editing features found on desktop editing applications like
Microsoft Word and OpenOffice are brought to the web browser by using CKEditor.

The CKEditor is the default editor for richTextPropertyField in a document
form. Thereby the CKEditor is encapsulated by the wrapper richTextArea,
making it possible to use the CKEditor with the same look and feel as the rest of
the Ext JS based CoreMedia Studio. The wrapper takes the editing area of the
CKEditor and adds Ext JS based dialogs.

The CKEditor can be extended by custom plugins. CoreMedia Studio comes with
several extra plugins supporting CoreMedia richtext specific formats and operations.
Likewise, you can add more plugins to integrate your own functionality. See Section
7.4.5, “Customizing RichText Property Fields” [122] for more on this topic.

17CoreMedia DXP 8

Overview | Technologies

http://www.sencha.com/learn/Learn_About_the_Ext_JavaScript_Library
http://www.sencha.com/products/extjs3/
http://ckeditor.com/
http://ckeditor.com/

3. Deployment

In this chapter you will get to know how to deploy CoreMedia Studio to different
servlet containers.

Perform all configurations of CoreMedia Studio described in this chapter in the
module studio-webapp of CoreMedia Blueprint workspace before building or
later on during deployment of Studio.

18CoreMedia DXP 8

Deployment |

3.1 Connecting to the Repository
CoreMedia Studio needs to know the URL of the Content Server to connect to and
the URL of the preview server. To this end, adjust the repository.url property
in WEB-INF/application.properties of the Studio web application and let it
point to your Content Management Server.

repository.url=http://<Host>:<Port>/coremedia/ior

Alternatively, you may configure the URL to connect to by modifying the content
server.* properties in the same file.

contentserver.host=localhost
contentserver.port=44441

CoreMedia Studio offers connectivity to the CoreMedia Workflow Server. Therefore,
a Workflow Server has to run when starting CoreMedia Studio. If this is not desired,
you should set the property repository.workflow in the file WEB-INF/applic
ation.properties to false.

repository.workflow=false

Studio supports "Simple Publication" and "Two Step Publication" publication
workflows. To use these workflows, upload the workflow definitions studio-
simple-publication.xml and studio-two-step-publication.xml to the
Workflow Server with the cm upload tool. See section "Predefined Publication
Workflows" of the [CoreMedia Digital Experience Platform 8 Developer Manual]
for more information on these workflows.

19CoreMedia DXP 8

Deployment | Connecting to the Repository

3.2 Control Room Configuration
The Control Room consists of the following components:

➞ Control Room Plugin is a Studio plugin, which enables users to manage pro-
jects, work with workflows, and collaborate by sharing content with other
Studio users.

➞ User Changes web application is a repository listener, which collects content
modified by a user working with Studio. To this end, the modified content
can be managed in the Control Room plugin as projects, shared and used in
workflows, for example.

➞ Extensions of the Workflow Server - Control Room comes with adapted
workflow definitions that among other things persist finished workflows.

Perform all configurations concerning the User Changes web application in the
module user-changes-webapp in CoreMedia Blueprint before building or later
on during deployment of the User Changes web application.

The Control Room stores and manages contents sets and finished workflows,
commonly specified as collaboration data, by connecting to a MongoDB. Therefore,
a MongoDB installation is necessary for utilizing CoreMedia Studio with the Control
Room.

➞ Deploying Control Room with MongoDB Database

See [CoreMedia Operations Basics] on how to deploy Control Room with
MongoDB.

➞ Saving Control Room data in memory

See [CoreMedia DXP 8 Manual], Section "In-Memory Replacement for Mon-
goDB-Based Services".

20CoreMedia DXP 8

Deployment | Control Room Configuration

3.3 Basic Preview Configuration
Since the preview CAE web application and CoreMedia Studio communicate via an
internal messaging system, they can be deployed either in the same servlet con-
tainer or in separate ones. In both scenarios the configuration of Studio is done
via the studio.previewUrlPrefix key of the WEB-INF/application.prop
erties property file.

Please note that running the preview in the same container under the same origin
(the origin includes protocol, host, port) is not recommended in a production en-
vironment. Security and performance is increased significantly when the two ap-
plications are deployed independently from each other.

If CoreMedia Studio and the preview are deployed together in one servlet container,
the property studio.previewUrlPrefix is set to the path of the preview's
Spring servlet. For a project based on the standard CoreMedia DXP 8, this would
be:

studio.previewUrlPrefix=/blueprint/servlet

If Studio and the preview are deployed independently, the aforementioned property
must be set to the absolute URL of the preview web application. In a Blueprint re-
lated project, this could be:

studio.previewUrlPrefix=http://localhost:40081/blueprint/servlet

21CoreMedia DXP 8

Deployment | Basic Preview Configuration

3.4 Advanced Preview Configuration
In case of a separate deployment, security can be improved even further by config-
uring a whitelist of valid Studio URLs in the preview CAE web application. This is
done via the pbe.studioUrlWhitelist property in the WEB-INF/applica
tion.properties file of the preview CAE web application. If left empty, all URLs
are considered valid.

In the opposite direction, it is possible to configure a whitelist of valid preview
URLs in Studio (including protocol, host and port). This is done via the studio.pre
viewUrlWhitelist property in the WEB-INF/application.properties file
of the Studio web application. If left empty, the only valid preview URL is the one
that is determined based on the studio.previewUrlPrefix property (that is,
the given preview URL or the Studio URL itself if a relative preview URL prefix is
given). When configuring valid preview URLs it is possible to use wildcards as in
the following example:

studio.previewUrlWhitelist=https://host1:port1, https://host2:port2,
http://localhost*, *company.com

Note, that once a preview URL whitelist is configured, CoreMedia Studio has no
chance to set a target origin in outgoing messages anymore. Be aware that this is
a minor security drawback.

In case of a separate deployment, enabling Elastic Social tenants in the embedded
preview requires including a placeholder in the aforementioned studio.pre
viewUrlPrefix key of the property file WEB-INF/application.properties.
The CoreMedia Studio then replaces the token with the current tenant. In a Core-
Media Blueprint related project, this could be:

studio.previewUrlPrefix=http://{0}.localhost:40081/blueprint/servlet

22CoreMedia DXP 8

Deployment | Advanced Preview Configuration

3.5 Development Setup
During development, it may be convenient to specify the property contentserv
er.host and optionally the property contentserver.port for connecting to
the Content Server as system properties on the command line when starting the
Studio servlet container.

23CoreMedia DXP 8

Deployment | Development Setup

4. Quick Start

This chapter presents the basic steps to set up a CoreMedia Studio development
environment quickly.

Setting Up the Workspace

CoreMedia Digital Experience Platform 8 comes with a fully preconfigured, Maven-
based development workspace. Details on how to get and set up your development
environment are described in the [CoreMedia Digital Experience Platform 8 De-
veloper Manual] You will find guidance for the following topics:

1. Required third-party software, such as Maven.

2. Getting CoreMedia Project.

3. Installing CoreMedia Project.

4. Configuring all components.

5. Building the workspace.

6. Starting the components.

The recommended development setup is to use the studio module in the work-
space, which is placed under modules/studio.

Setting Up the IDE

Once you have set up the workspace, you may configure your IDE as described in
Section 6.3, “IDE Support” [69]. If you are using IntelliJ IDEA, this means that you
need to get the plugin Jangaroo 0.9, which you can install via IDEA's plugin
manager. There are other Jangaroo plugins available in that dialog ("Jangaroo
Language", "Jangaroo EXML", and "Jangaroo"), which are intended for older releases
and must not be activated together with the current plugin Jangaroo 0.9.

Building

A detailed description on how to build the CoreMedia Studio module can be found
in Chapter 6, Using the Development Environment [65]. If you are using IntelliJ IDEA
and the IDE is set up correctly, you can build the whole project via Maven from
within the IDE. If you prefer building from the command line, you can do it by using
standard Maven commands like

24CoreMedia DXP 8

Quick Start |

mvn clean install -DskipTests

The CoreMedia Studio application can then be launched by changing into the mod
ules/studio/studio-webapp directory and using the following command:

mvn tomcat7:run

More details on how to build and start CoreMedia Studio, as well as how to run tests
with it, are described in Section 6.2, “Build Process” [67].

Debugging

Firebug is the recommended JavaScript debugger. To facilitate debugging, single
class JavaScript files of the CoreMedia Studio components can be loaded by attaching

#joo.debug

to the CoreMedia Studio URL. An Ext JS debugger allowing component inspection
can be invoked by executing the following JavaScript statement:

Ext.log('')

Refer to Section 6.4, “Debugging” [70] for more details on how to debug.

If you have finished these steps you are ready to customize CoreMedia Studio as
described in Chapter 7, Customizing CoreMedia Studio [83].

25CoreMedia DXP 8

Quick Start |

5. Concepts and Technology

This chapter describes the basic concepts and technologies on a more detailed
level than in the Overview chapter. It is not a prerequisite for the subsequent
chapters, but it will give you valuable insight into the underlying concepts.

26CoreMedia DXP 8

Concepts and Technology |

5.1 Ext JS Primer
Ext JS is a JavaScript library for building interactive web applications. It provides
a set of UI widgets like panels, input fields or toolbars and cross-browser abstrac-
tions (Ext core).

CoreMedia Studio uses Ext JS on the client side. With plain Ext JS, widgets are defined
in JSON format as displayed in the following example:

Example 5.1. Ext JSON
{
xtype: "panel",
title: "Teaser Properties",
items: [
{
xtype:
"com.coremedia.cms.editor.sdk.config.stringPropertyField",
itemId: "linktextEditor"
propertyName: "linktext"

},
{
xtype:
"com.coremedia.cms.editor.sdk.config.richTextPropertyField",
propertyName: "teaserText",
anchor: "98%",
height: 300

}
],
defaults: {
xtype: "com.coremedia.cms.editor.sdk.config.propertyField",
beanValueExpresion: config.beanValueExpresion
}
}

The above code example defines a component of xtype "panel" with two property
editors for editing a string and a richtext property, respectively. The xtype of the
surrounding panel, like that of all Ext JS components, is a simple string without a
namespace prefix. The xtype of a plain Ext JS component is, in most cases, the
name of the component class, in all lowercase characters.

The property editors shown above are CoreMedia Studio components, that are based
on plain Ext JS components, but add Studio-specific functionality. Their xtype is
by convention the same as the name of the component class, but using a lowercase
first character after a module specific prefix. See Section 5.2, “Ext JS with Action-
Script and EXML” [32] for details.

The optional itemId property can be understood as a per-container id which
identifies the component uniquely within its container. Note that itemIds are not
to be confused with DOM element ids or Ext JS component ids which are unique
within the entire application.

27CoreMedia DXP 8

Concepts and Technology | Ext JS Primer

Figure 5.1. Ext JSON

When developing CoreMedia Studio extensions, you don't need to use the Ext JSON
format directly. Instead, you're encouraged to specify widgets using the much
more convenient and powerful EXML notation. The example below shows the
corresponding EXML and JSON specifications:

Figure 5.2. EXML com-
pared to Ext JSON

The following sections describe Ext JS components, plugins, and actions in more
detail.

Ext JS-specific examples of advanced components are available on the Official Ext
JS examples page. The full Ext JS API documentation is also available at Sencha.com.

5.1.1 Components
Ext JS defines three basic types of components

28CoreMedia DXP 8

Concepts and Technology | Components

http://dev.sencha.com/deploy/ext-3.4.0/examples/
http://dev.sencha.com/deploy/ext-3.4.0/examples/
http://docs.sencha.com/ext-js/3-4/#!/api

➞ ext.Component

➞ ext.Container

➞ ext.ViewPort

The base class for Ext JS UI controls is ext.Component. Components are registered
with the ext.ComponentMgr at construction time. They can be referenced at any
time by id using the Ext.getCmp utility function. Component classes are required
to define a static property named "xtype" that is used by the component manager
to determine the runtime type of a component given in JSON notation. Note that
when you use EXML to declare your components, the Jangaroo framework will take
care of that for you.

Components are nested in containers of class ext.Containerwhich is a subclass
of ext.Component. Containers manage the lifecycle (that is, control creation,
rendering and destruction) of their child components.

The top-level component of Studio's component tree is ext.Viewport, which
represents the viewable application area of the browser.

The API documentation of Ext JS is available at sencha.com. Specifically, the docu-
mentation of Ext.Component provides a list of component types available in Ext
JS. It is also worth looking into the API documentation of ComponentMgr, Element,
and the Ext utility class.

5.1.2 Declarative UI (Ext JSON)
Ext JS builds on common JSON notation to describe the application's component
tree declaratively. The root of an Ext JS component tree is a viewport component.
Its constructor takes a JSON object that declares the UI's component structure, and
initializes it. CoreMedia Studio's top-level component tree is shown below:

Example 5.2. Viewport
definition as Ext JSON{

id: com.coremedia.cms.editor.sdk.desktop.EditorMainView.ID,
ctCls: "main-view",
layout: {
align: "stretch",
type: "hbox"

},
items: [
{
id: "favorites-toolbar",
itemId: "favorites-toolbar",
width: 100,
xtype:

com.coremedia.cms.editor.sdk.config.favoritesToolbar.xtype
},
{
id: "desktop",
flex: 1.0,
xtype: com.coremedia.cms.editor.sdk.config.desktop.xtype

},

29CoreMedia DXP 8

Concepts and Technology | Declarative UI (Ext JSON)

http://docs.sencha.com/ext-js/3-4/#!/api

{
width: 34,
id: "actions-toolbar",
xtype: com.coremedia.cms.editor.sdk.config.actionsToolbar.xtype

}
]

}

This object defines the layout and the basic items of the application (or more spe-
cifically, the application's view port). The main items are the favoritesToolbar,
the desktop and the actionsToolbar. When this configuration object is loaded,
instances of the child components identified by the following xtypes are instanti-
ated.

➞ com.coremedia.cms.editor.sdk.config.favoritesToolbar.xtype

➞ com.coremedia.cms.editor.sdk.config.desktop.xtype

➞ com.coremedia.cms.editor.sdk.config.actionsToolbar.xtype

The configuration of these components is specified by the sibling attributes of the
respective xtype attribute (the favorites toolbar, for example, has width 100),
and is merged with the component's default configuration.

5.1.3 Component Plugins
In general, the recommended strategy for extending Ext JS components is to use
the component plugin mechanism, rather than subclassing. Reusable functionality
should be separated out into component plugins, and can then be used by compon-
ents of completely different types, without requiring them to inherit from a common
base class.

Plugins are configured in a component's plugins property. A plugin must provide
an init method accepting the component it is plugged into as parameter. This
method is called by the component when the component is initialized.

If a plugin defines a ptype property, its type can be registered at the Component
Mgr.

ext.ComponentMgr.registerPlugin(pytpe, class)

Once registered, plugins of the given type can be instantiated using

ext.ComponentMgr.createPlugin(pluginConfig, defaultType)

The following code defines a field component and adds the plugins Immediat
eChangeEventsPlugin and BindPropertyPlugin.

30CoreMedia DXP 8

Concepts and Technology | Component Plugins

Example 5.3. Plugin
usage in Ext JSON{

xtype: 'field',
name: 'properties.' + config.propertyName,
plugins: [
{ptype:

com.coremedia.ui.config.immediateChangeEventsPlugin.ptype},
{
bindTo: config.bindTo.extendBy('properties',
config.propertyName),

bidirectional: true,
ptype: com.coremedia.ui.config.bindPropertyPlugin.ptype

}
]

}

Refer to http://www.sencha.com/blog/advanced-plugin-development-with-ext-js/
for further details on Ext JS plugins.

5.1.4 Actions
Actions combine some functional parts of your application with UI details to be
attached to a component. Buttons, for example, are commonly associated with an
action. The difference between designing an action and attaching a mere event
handler to a component is that an action combines the handler code with UI details
such as a name or a button icon, which simplifies reuse. CoreMedia Studio defines
actions that work on content objects, for example for creating new content objects
or publishing contents.

Actions are most commonly used in conjunction with buttons or (context) menu
items. In general, you should avoid invoking Actions directly - use the corresponding
API method instead. For example, assume you want to publish some content pro-
grammatically. You should not invoke PublishAction in this case; instead, use
the API method PublicationService#publish(content, callback).

31CoreMedia DXP 8

Concepts and Technology | Actions

http://www.sencha.com/blog/advanced-plugin-development-with-ext-js/

5.2 Ext JS with ActionScript and EXML
While the CoreMedia Studio code you see at runtime is all JavaScript, CoreMedia
Studio is completely written in ActionScript and EXML, an XML format to describe
components declaratively. CoreMedia calls this combination of tools and approach
Ext AS (where obviously, "ActionScript" replaces the "JavaScript" in Ext JS.

Ext AS is designed to provide a statically typed way to implement Ext JS applications.
EXML is used to declaratively describe Ext UI components (or component trees),
validated through a W3C standards compliant XML Schema. During the build pro-
cess, EXML files are compiled down to ActionScript 3, which in a second step are
then compiled further to JavaScript. For localization, property files can be converted
to ActionScript classes, too, so that you can access a localization key as if it was a
constant defined in a class.

While it is possible to extend CoreMedia Studio with components written in JavaS-
cript, it is recommended to use Ext AS. With the Jangaroo project, CoreMedia offers
Open Source tools and libraries that provide complete support for this development
approach. All public CoreMedia Studio APIs are available as ActionScript 3 ASDoc
and source stubs, so that you can set up your IDE to provide code completion,
validation, and documentation lookup.

This section states the rationale for using Ext AS, gives you a rough overview of
the approach and tools, and contains references to the detailed online document-
ation, which is part of the Jangaroo open source project.

Ext AS: the Typed Version of Ext JS

In contrast to JavaScript and JSON, ActionScript and EXML are typed languages.
While originally, typed languages were chosen to find errors early at compile time,
the more important advantage today is that much better tools can be built to ease
and speed up development. In a good IDE, errors and possible mistakes are detected
as you type, and the IDE even makes suggestions as to what to type next, how to
resolve errors, and lets you look up documentation easily. Using a typed language
is important for the IDE to be able to derive what the code is referring to. With an
untyped language, only limited IDE support is possible, and the IDE has use more
or less imprecise heuristics, and will in many cases make ambiguous (or even erro-
neous) suggestions.

Source File Types and Compilers

CoreMedia Studio is an Ext AS application and as such uses four different kinds of
source files:

➞ EXML files to specify reusable UI components declaratively

➞ Property files for localized texts and labels

32CoreMedia DXP 8

Concepts and Technology | Ext JS with ActionScript and EXML

http://www.jangaroo.net

➞ ActionScript files for all other application code

➞ JavaScript files for bootstrapping code and CKEditor extensions

Consequently, the Jangaroo tool set contains three compilers:

➞ EXML to ActionScript

➞ Property files to ActionScript

➞ ActionScript to JavaScript

The first two compilers are chained with the last one, resulting in pure JavaScript
output. CoreMedia chooses to let the additional compilers generate ActionScript,
not JavaScript directly, as the generated ActionScript classes are better suited for
access from ActionScript code, and integrate seamlessly in Jangaroo's lazy class
initialization and automatic class loading.

Fitting into the Maven build process, all compilers are usually invoked through
Maven, but there are also plugins for IntelliJ IDEA that extend IDEA's incremental
build process and invoke the compilers directly, resulting in a much faster turn-
around. Currently, CoreMedia strongly recommends using IntelliJ IDEA 10.x for
Jangaroo development for highest productivity.

Online Jangaroo Documentation

Since CoreMedia is not primarily a manufacturer of development tools, all these
tools are released as open source under an Apache 2 license. Consequently, the
tools are not documented here, but on the Jangaroo Website and in Jangaroo's
Wiki.

Since the CoreMedia Project workspace uses Maven, you can ignore all references
to direct compiler command line interfaces or Ant. When starting with Jangaroo
development, it is recommended to work through the documentation in the follow-
ing order:

1. Start with the Jangaroo Tutorial to get familiar with writing, building, and
starting a Jangaroo application.

2. Continue with Developing Jangaroo Applications with IntelliJ IDEA. This adds
two aspects: on the one hand, the example project, like CoreMedia Studio, uses
a multi-module setup, on the other hand, working with Jangaroo in IntelliJ IDEA
is explained in detail. Please consider the multi-module example even if you
use another IDE!

3. In parallel, you can start getting acquainted with Ext JS (see Section 5.1, “Ext JS
Primer” [27]).

33CoreMedia DXP 8

Concepts and Technology | Ext JS with ActionScript and EXML

https://github.com/CoreMedia/jangaroo-tools/wiki/Runtime-~-Lazy-Class-Initialization
https://github.com/CoreMedia/jangaroo-tools/wiki/Runtime-~-Lazy-Class-Initialization
https://github.com/CoreMedia/jangaroo-tools/wiki/Runtime-~-Lazy-Class-Initialization
http://www.jangaroo.net
https://github.com/CoreMedia/jangaroo-tools/wiki
https://github.com/CoreMedia/jangaroo-tools/wiki
https://github.com/CoreMedia/jangaroo-tools/wiki/Tutorial
https://github.com/CoreMedia/jangaroo-idea/wiki/Developing-Jangaroo-Applications-with-IntelliJ-IDEA

4. Now you are ready to face Ext AS, including EXML, which is documented as Ext
AS: Creating Ext JS Applications with ActionScript and EXML.

5. Integrating Ext AS and especially EXML in IntelliJ IDEA requires some additional
explanation; there is an IDEA plugin Jangaroo EXML that you're highly encouraged
to install to get optimal EXML support. All about Ext AS and IDEA is documented
as Developing Ext AS Applications with IntelliJ IDEA.

If you have questions about any Jangaroo tool, please post in the Jangaroo user
group. You can also write an email to info@jangaroo.net.

If the question or problem is Studio related, please contact CoreMedia support.

ActionScript Documentation

Being integrated in our ActionScript programming model, the documentation of
all Ext JS components and public API components of CoreMedia Studio is accessible
through the ASDoc (ActionScript Documentation) linked from the Studio's most
recent release page, which is available at the CoreMedia download section or from
our documentation site at http://documentation.coremedia.com.

In the ASDoc, you will find two ActionScript classes per component. One class
represents the component itself. This component class describes the type of the
component at runtime, for example when registering event listeners or when up-
dating the state of the component. For Ext JS components, the name and package
of each class matches the official Ext JS documentation by Sencha, except that the
top-level package is ext instead of Ext.

A second class defines the component's configuration time API, that is, when you
create a JSON configuration object or an EXML component definition. Configuration
classes are by convention placed in a package ending in config. For Ext JS com-
ponents, all configuration classes are located in the package ext.config and are
named like the xtype (or ptype for plugins) of the component. For Studio com-
ponents, the name of the configuration class is identical to that of the component
class, but with a lowercase initial character, and the package is chosen based on
the module in which the component is defined:

➞ module ui-components: package com.coremedia.ui.config;

➞ module editor-components: package com.coremedia.cms.edit
or.sdk.config.

By convention, the inheritance hierarchy of configuration classes matches the
hierarchy of component classes.

34CoreMedia DXP 8

Concepts and Technology | Ext JS with ActionScript and EXML

https://github.com/CoreMedia/jangaroo-tools/wiki/Ext-AS
https://github.com/CoreMedia/jangaroo-tools/wiki/Ext-AS
https://github.com/CoreMedia/jangaroo-tools/wiki/Developing-Ext-AS-Applications-with-IntelliJ-IDEA
http://groups.google.com/group/jangaroo-users/
http://groups.google.com/group/jangaroo-users/
mailto:info@jangaroo.net
http://www.coremedia.com/web-content-management/community/support/-/5626/5626/-/_561202z/-/index.html
http://download.coremedia.com
https://documentation.coremedia.com

Configuring Components

Each configuration class defines the configuration attributes of that class. You can
use instances of the configuration classes for configuring Ext JS components in a
type-safe way, although it is still possible to write component configurations as a
plain JSON object. The code fragments

Example 5.4. Compon-
ent instantiation using
Ext JSON

ComponentMgr.create({
xtype:
"com.coremedia.cms.editor.sdk.config.stringPropertyField",

itemId: "linktextEditor",
propertyName: "linktext"

}, null);

and

Example 5.5. Compon-
ent instantiation using
typed setters

var stringPropertyFieldConfig:stringPropertyField =
new stringPropertyField();

stringPropertyFieldConfig.itemId = "linktextEditor";
stringPropertyFieldConfig.propertyName = "linktext";
ComponentMgr.create(stringPropertyFieldConfig, null);

and

Example 5.6. Compon-
ent instantiation using
typed wrapper

ComponentMgr.create(new stringPropertyField({
itemId: "linktextEditor",
propertyName: "linktext"

}), null);

are equivalent. Choose a programming style that suits you. Note however that the
most convenient (and thus recommended) way to write component configurations
is to use EXML rather than ActionScript.

The last example shows how a configuration class itself can be initialized untyped,
while still allowing typed accesses later. Note that an instance creation performed
in this way is not the same as a type cast: The xtype attribute of the configuration
object is set implicitly when the constructor is run.

When developing with EXML, you don't have to deal with the ActionScript code
manually: The EXML compiler automatically generates code equivalent to the third
variant shown above. In this case, the reduced type checking is offset by the checks
at XML level during development.

EXML files are described in more detail in the Jangaroo tools wiki. The namespaces
to use in EXML files in the context of CoreMedia Studio are:

➞ exml:com.coremedia.ui.config for the reusable components of the
CoreMedia UI toolkit and

35CoreMedia DXP 8

Concepts and Technology | Ext JS with ActionScript and EXML

https://github.com/CoreMedia/jangaroo-tools/wiki/Ext-AS

➞ exml:com.coremedia.cms.editor.sdk.config for the actual CoreMedia
Studio components.

36CoreMedia DXP 8

Concepts and Technology | Ext JS with ActionScript and EXML

5.3 Client-side Model
MVC patternThe CoreMedia Studio user interface is implemented following the Model-view-

controller (MVC) pattern. The widgets provided by Ext JS are considered the view,
whereas Ext JS actions take the role of controllers. To deal with the model layer
efficiently, the Studio framework provides the key concepts of beans and value ex-
pressions.

BeansA bean is an object that aggregates a number of properties, where property values
may be arbitrary JavaScript objects, including arrays or even other beans. Beans
are capable of sending events when one of their properties changes, making it
possible to update the view components dynamically when a bean changes.

Simple and complex
wiring

While wiring up a UI component property to a plain bean property is mostly
straightforward and can be as simple as connecting a button label to a simple string
bean property, you will inevitably run into situations where you need to "compute"
a UI component property based on complex model state that might span different
bean properties, or even completely separate beans.

value expressionsBoth the simple and the complex case can be conveniently solved using value ex-
pressions, which can encapsulate the computation of mutable values on the bean
level. A frequently used value expression takes a start bean and follows property
references from beans to beans to arrive at a target bean or value. Value expres-
sions, too, generate events whenever their value changes, and you can attach event
listeners to them to dynamically update the UI.

Using Ext JS pluginsWhile it is possible to hand code the view response to model changes, you are
encouraged to make use of the Studio SDK's predefined Ext JS plugins. Plugins are
available for setting UI component properties, selections, displayed values, and so
on. All of these plugins transfer state between a value expression and an Ext JS
component, sometimes in both directions ("bidirectional").

Uniform access layerFor experienced Ext JS developers, it may seem strange that an explicit model in
the form of beans is used, instead of widget-internal state as an implicit model.
However, the chosen approach allows for a more consistent representation of the
model. By wrapping remote data sources as beans, a uniform access layer
throughout CoreMedia Studio is achieved. In other words, from a developer's per-
spective, it is transparent whether model state is wired up to remote (server-side)
or local (client-side) data. This also means that as a developer, you don't need to
manually write code to make Ajax calls in order to update server-side data - you
make sure that your model is properly wired up to your UI, and the framework
takes care of the details for you.

For details about the ActionScript classes mentioned in the following sections,
refer to the ActionScript documentation as found on the Studio release page,
available at the CoreMedia download section.

37CoreMedia DXP 8

Concepts and Technology | Client-side Model

http://download.coremedia.com

5.3.1 Beans
Beans are objects with an arbitrary number of properties. Properties can be updated,
generating events for each change. The name "bean" originates from the concept
of Java Beans, which are also characterized by their properties and event handling
capabilities. Unlike Java beans, the Studio beans do not enforce a strict typing and
naming policy, whereby each property must be represented by individual getter
and setter functions. Instead, untyped generic methods for getting and setting
properties are provided. Specific bean implementations are allowed to add typed
accessors, but are not required to do so.

Remote beansAll beans implement the interface com.coremedia.ui.data.Bean. Remote
beans, which encapsulate server-side state, conform to the more specific interface
com.coremedia.ui.data.RemoteBean. Refer to Section 5.3.2, “Remote
Beans” [40] for more details about these concepts. At first, the more generic Bean
interface is described, which is agnostic of a potential backing by a remote store.

Properties

Retrieving bean proper-
ties

Individual properties of any bean can be retrieved using the get(propertyName)
method, which receives the name of the property as an argument. Arbitrary objects
and primitive values are allowed as property values. The set of property names is
not limited, but it is good practice to document the properties and their semantics
for any given bean. If non-string values are used as property names, they will be
converted to a string.

Beans may reference other beans. For example, the Content bean contains a
property properties that contains a bean with schema-specific properties,
whereas the Content bean itself contains the predefined content metadata, such
as creation and publication date, which are defined implicitly for all CoreMedia
content objects.

Updating propertiesBy calling set(propertyName, value):Boolean, a property value can be up-
dated. The method returns true if (and only if) the bean was actually changed.
Generally, the new value is considered to equal the old value if the === operator
considers them equal. There are a number of exceptions, though:

➞ Arrays are equal if they are of the same length and if all elements are equal
according to the bean semantics. That is, arrays are treated as values and
not as modifiable objects with state.

➞ Date and Calendar values are equal if they denote the same date and time,
with time zone information taken into account.

➞ Blobs as stored in the CMS are equal if they contain the same content with
the same content type. As long as the blobs are not fully loaded from the
server, a conservative heuristic is used that considers the blobs equal if it is
known that they will ultimately represent the same value when loaded.

38CoreMedia DXP 8

Concepts and Technology | Beans

By using the method updateProperties(newValues), you can set multiple
properties at once. The argument object must contain one ActionScript property
per bean property to be set. Bean properties not mentioned in the argument object
are left unchanged. Consider the following example:

Example 5.7. Updating
multiple bean proper-
ties

bean.updateProperties({
a: 1,
b: ["a", "b"],
c: anotherBean

});

The above code sets the three properties a, b, and c simultaneously, but the
property d keeps its previous value if it was set. Apart from convenience, the main
difference compared to three calls like bean.set("a", 1) is that events will be
sent only after all properties have been updated. This can be useful when you want
to update a bean atomically.

Calling toObject() on a bean will return a snapshot of the current bean state in
the form of an object that contains one ActionScript property per bean property.

Events

Register and remove
property event listener

Property event listeners for a single property are registered with addProper
tyChangeListener(propertyName, listener) and removed with remove
PropertyChangeListener(propertyName, listener). The listener argument
must be a function that receives a simple argument of type com.core
media.ui.data.PropertyChangeEvent. This event object contains information
about the bean, the changed property and the old and the new value.

Listener for all property
events

A listener function registered with addValueChangeListener(listener) re-
ceives events for all properties of the respective bean. When multiple properties
are updated, the listener receives one call per updated property. Such listeners
can be removed by calling removeValueChangeListener(listener).

For beans, events are dispatched synchronously, before the update call returns.

Bean State

Beans, especially remote beans, may enter different states. The possible states are
enumerated in the class com.coremedia.ui.data.BeanState. The method
getState() provides the current state of the bean. State changes are also reported
to all listeners. The event object provides the old and the new bean state.

The possible states are:

➞ UNKNOWN: The bean is still being set up.

➞ NON_EXISTENT: The bean represents an entity that does not exist. Typically,
the entity existed at one time in the past, but has been destroyed.

39CoreMedia DXP 8

Concepts and Technology | Beans

➞ UNREADABLE: The bean represents an entity that exists, but authorization
to access it is missing.

➞ READABLE: The bean can be accessed without restrictions.

Local beans are always in state READABLE.

Singleton Bean

The interface IEditorContext, whose default instance can be accessed as the
package field com.coremedia.cms.editor.sdk.editorContext, provides
the method getApplicationContext(), which returns a singleton local bean.
This bean is provided as a starting point for navigating to other singletons and for
sharing system-wide state. Individual APIs document the properties of the singleton
bean that are set by that API. Be careful when adding custom properties and avoid
name clashes.

5.3.2 Remote Beans
A remote bean encapsulates the state of a server-side object in the client-side ap-
plication. Its properties are loaded on demand - most commonly by invoking the
RemoteBean#load or RemoteBean#invalidate methods, respectively.

The SDK provides more specialized subclasses of remote beans, for example beans
of type Content, which represents CoreMedia CMS documents and folders.

Bean values may change when the remote bean is invalidated and reloaded. Note
however that currently, there is no active event mechanism that invalidates client-
side beans immediately after the data they represent changes on the server.

In the interface com.coremedia.ui.data.RemoteBean, the method getUri()
provides access to the URI from which its state is loaded. Its sibling method
getUriPath() returns a URI path relative to the base URI of the remote service
from which the bean is loaded. The latter value provides a more concise and still
unique identification of the remote bean. There is only ever one remote bean for
each URI path.

Asynchronous HTTP re-
quest

By calling load(Function), the bean is instructed to load its properties, using
an asynchronous HTTP request. Note that this is transparent to the developer, that
is, you never need to manually construct an XHR, for example by invoking Ext JS's
Ajax#request method.

Once the call has returned, an optional callback function is invoked, indicating the
new state of the bean. A remote bean is also loaded as soon as any of its properties
are read. However, the bean will report properties as undefined initially and fire
an event as soon as the property is updated to a different value after loading.

40CoreMedia DXP 8

Concepts and Technology | Remote Beans

To reload the bean state, call the method invalidate(Function), which takes
an optional callback function which is invoked after all properties have been re-
loaded.

Listen to events until
property is ready to use

Please note that computed bean properties may still be undefined when the
callback functions are invoked. For example, the Content bean contains a property
path that requires all the content's parents to be loaded recursively. Although the
Content bean itself might be completely loaded, the path property remains un
defined until all the content's parents have finished loading. Listen to the change
events for the computed property to find out when the property is ready or use a
ValueExpression. See Section 5.3.6, “Value Expressions” [44] for details.

Update properties on
server

When properties of a remote bean are set, they are eventually written back to the
server. The remote bean may bundle any number of writes before making its update
request. At least all updates made in the same JavaScript execution without an in-
tervening window.setTimeout() are bundled in one write. You can call the
method flush(Function) to ensure that a callback function is invoked after the
update call for all previously updated properties has completed, either successfully
or with an error. The callback function can determine the success status of a flush
call by its single argument, a FlushResult object. This object also carries a refer-
ence to the flushed bean and, in the case of an error, to a RemoteError object
indicating the source of the problem.

Remote beans may be unreadable or even nonexistent, which is indicated by the
method getState(). A bean's state can be observed by usual property change
listeners (see previous section), since bean state changes trigger property change
events and report the current state (see com.coremedia.ui.data.Proper
tyChangeEvent#newState). Working with remote beans generally requires more
attention to error conditions than working with local beans.

5.3.3 Issues
CoreMedia Studio has built-in support for server-side validation of content objects.
You can leverage the validation framework for your own (non CMS) data resources,
but for content objects managed in the CoreMedia Content Server, the framework
already offers convenient support (see Section 5.4.2, “Content” [52] for a general
description of the Studio Content API.)

Server-side validation always works on values already saved (persisted) - in other
words, a validator will never prevent the user from saving data, so that the risk of
data loss is minimal. You can however set up Studio to prevent the user from ap-
proving or checking in documents that have validation issues with severity ERROR
(see Section “Tying Document Validation to Editor Actions” [180] for details on how
to configure this).

Getting issues from the
server

The client can ask the server to compute issues of an entity (most commonly Con-
tent), where they become accessible as a com.coremedia.ui.data.valida

41CoreMedia DXP 8

Concepts and Technology | Issues

tion.Issues object. Once received, the client can do things like highlight a
property field that contains an invalid value, or open a dialog. Studio offers built-
in support for marking standard property fields invalid, and offers the user a con-
venient interface to step through and correct detected validation issues in one go.

The issues object provides access to individual Issue objects through a number
of methods:

➞ getAll() returns all issues of the entity in a single array.

➞ getByProperty() returns a sub bean whose properties match the proper-
ties of the entity. Each property contains an array of issues that affect exactly
that property.

➞ getGlobal() returns an array of issues that do not affect a specific property,
but that describe the state of the entity as a whole. A common example for
this is a validator that checks for the correct folder path of a document - you
could set up a validator to raise a WARNING when a document is created in
a wrong folder, for example.

An issue links back to its entity by means of the entity property. The severity
property indicates a level of "INFO", "WARN", and "ERROR". You can freely define
the severity level for any validator.

The property property stores the name of the property whose value causes the
issue. If null, this indicates a global issue that affects the entity as a whole, rather
than one of its properties. In the property code, each issue stores a string identifier
indicating the type of issue detected. Applications are expected to localize this
identifier as needed. Depending on the code, the array property argumentsmight
store additional data in a specific layout.

Error codes and further
information

The issue code identifiers depend on the type of entity that has been validated. In
fact, each server-side validator may introduce its own code and you have to refer
to the documentation of the validators for details. Some validators allow you to
configure the error code that they report. In custom validators, you can also pass
on additional ("runtime") information describing the error in more detail, and use
this additional information to present user-friendly descriptions of the problem in
the UI. See Section 7.15.1, “Validators” [176] for details.

5.3.4 Operation Results
Callback functionsComplex remote operations typically allow you to specify a callback function. The

callback function is called after the operation has completed, either successfully
or unsuccessfully. This allows you to postpone subsequent steps until a remote
resource is in a defined state again.

Callback functions often receive an OperationResult argument. Such objects indicate
in their success attribute whether the attempted operation was successful. In

42CoreMedia DXP 8

Concepts and Technology | Operation Results

the case of errors, the attribute error points to a RemoteError object further de-
tailing the problems. Individual operations may return richer result objects. For
example, the previous section already mentioned the FlushResult, which also
references the modified bean in the remoteBean property.

5.3.5 Model Beans for Custom Components
When creating complex GUI components, it is good practice to provide an abstract
model in the form of a bean to back the view. It is often helpful to provide an Ac-
tionScript base class (MyComponentBase below) for the component and extend
it by an EXML component, bundling the application logic in the base class. The
base class should therefore also take care of building the model bean.

Note however that when creating the Ext JS component configuration in the EXML
component, the constructor of the base class has not yet been invoked. Because
the component configuration must reference the model to bind the component's
states, the model bean must be created before the base class constructor is used.
This can be achieved by an accessor method that creates the bean using the call
com.coremedia.cms.editor.sdk.editorContext.getBeanFactory().cre
ateLocalBean() upon first access. This is shown in the getModel() method
below.

Example 5.8. Model
bean factory methodimport com.coremedia.ui.data.Bean;

import com.coremedia.ui.data.beanFactory;
import mypackage.config.myComponent;
import ext.Panel;

public class MyComponentBase extends Panel {
...
private var model:Bean;

/**
* ...
* @param config the config object
*/
public function MyComponentBase(config:myComponent = undefined)

{
super(config);
initModel(config);
...

}

public function getModel():Bean {
if (!model) {
model = beanFactory.createLocalBean();

}
return model;

}

private function initModel(config:myComponent):void {
getModel().set('myProperty', ...);
...

}
...

}

43CoreMedia DXP 8

Concepts and Technology | Model Beans for Custom Components

Given this base class, you can access the model in the EXML class as follows:

Example 5.9. Model
bean access<exml:component xmlns:exml="http://www.jangaroo.new/exml/0.8"

xmlns="exml:ext.config"
xmlns:ui="exml:com.coremedia.ui.config"
xmlns:mm="exml:mypackage.config"
baseClass="MyComponentBase">

<panel>
<items>
...
<textfield>
<plugins>
<ui:immediateChangeEventsPlugin/>
<ui:bindPropertyPlugin bidirectional="true">
<ui:bindTo>
<ui:valueExpression expression="myProperty"

context="{getModel()}"/>
</ui:bindTo>

</ui:bindPropertyPlugin>
</plugins>

</textfield>
...

</items>
</panel>

</exml:component>

Here a text field is configured to display the value of a property, but of course ar-
bitrary widgets can be used.

In fact, the property is not directly accessed by the plugin, but indirectly through
a value expression that, in this case, simply evaluates to a property value. Value
expressions will be discussed in the next section.

5.3.6 Value Expressions
The interface com.coremedia.ui.data.ValueExpression describes objects
that provide access to a possibly mutable value and that notify listeners when the
value changes. They may also allow you to receive a value that can then become
the next value of the expression. Value expressions may be as simple as defining
a one-to-one wiring of a widget property to a model property, but they may encap-
sulate complex logic that accesses many objects to determine a result value. As
an application developer, you can think of value expressions as an abstraction
layer that hides that potential complexity from you, and use a common, simple
interface when wiring up UI state to complex model state.

The Studio SDK offers the following primary implementations of the ValueExpres
sion interface. You can use the factory methods from com.core
media.ui.data.ValueExpressionFactory to create a ValueExpression
programmatically from ActionScript.

➞ PropertyPathExpression. This is meant to be used in simple scenarios,
where you want to attach a simple bean property to a corresponding widget
property. It starts from a bean and navigates through a path of property

44CoreMedia DXP 8

Concepts and Technology | Value Expressions

names to a value. Long paths can be separated with a dot. You can obtain
this value expression flavor using ValueExpressionFactory#create(ex
pression, bean).

➞ FunctionValueExpression. Use this in scenarios where your UI state
requires potentially complex calculations on the model, using multiple beans
(remote or local). This value expression object wraps an ActionScript function
computing the expression's value. When a listener is attached to the returned
value expression, the current value of the expression is cached, and depend-
encies of the computation are tracked. As soon as a dependency is invalid-
ated, the cached value is invalidated and eventually a change event is sent
to all listeners (if the computed value has actually changed). You can use
ValueExpressionFactory#createFromFunction(function,
...args) to create this flavor. See below for details on how to use Func
tionValueExpressions.

In many cases, you can use the facilities provided by plugins (and thus use EXML
to specify your value expression), without ever constructing a value expression
programmatically. Nevertheless, value expressions are a vital part of the Studio
SDK's data binding framework, so it is helpful to understand how they work.

Values

The method getValue() returns the current value of the expression. How this
value is computed depends on the type of value expression used. Like bean prop-
erties, value expressions may evaluate to any ActionScript value.

Be sure that the value
is not undefined

When a value expression accesses remote beans that have not yet been loaded,
its value is undefined. Getting the value or attaching a change listener (see below)
subsequently triggers loading all remote bean necessary to evaluate the expression.
If you need a defined value, you can use the loadValue(Function) method in-
stead. The loadValue method ensures that all remote beans have been loaded
and only then calls back the given function (and, in contrast to change listeners,
only once, see below) with the concrete value, which is never undefined.

Like remote beans, value expressions may turn out to be unreadable due to missing
read rights. In this case, getValue() returns undefined, too, and the special
condition is signaled by the method isReadable() returning false.

Events

A listener may be attached to a value expression using the method addChangeL
istener(listener) and removed using the method removeChangeListen
er(listener). The listener must be a function that takes the value expression
as its single argument. The listener may then query the value expression for the
current value.

45CoreMedia DXP 8

Concepts and Technology | Value Expressions

Contrary to bean events, value expression events are sent asynchronously after
the calls modifying the value have already completed. The framework does however
not guarantee that listeners are notified on all changes of the value. When the
value is updated many times in quick succession, some intermediate values might
not be visible to the listener.

The listener is also notified when the readability of the value changes.

As long as you have a listener attached to a value expression, the value expression
may in turn be registered as a listener at other objects. To make sure that the value
expression can be garbage collected, you must eventually remove all listeners added
to it.

A common pattern when adding a listener to a value expression involves an upfront
initialization and subsequent updates on events:

Example 5.10. Adding
a listener and initializ-
ing

import com.coremedia.ui.data.ValueExpression;

public class MyComponentBase extends AnExtJSComponent {
public function MyComponentBase(config:Object = undefined) {
...
var valueExpr:ValueExpression = ...;
valueExpr.addChangeListener(valueExprChanged);
valueExprChanged(valueExpr);
...

}

private function valueExprChanged(valueExpr:
ValueExpression):void

{
var value:* = valueExpr.getValue();
...

}
...

}

By calling the private function once immediately after adding the listener, it is
possible to reuse the functionality of the listener for initializing the component.

Property Path Expressions

The most commonly used value expression is the property path expression. It allows
you to navigate from an object to a value by successively reading property values
on which the next read operation takes place. For example, a property path expres-
sion may operate on the object obj and be configured to read the properties a,
b, and then c. If the property a of obj is obj1, the property b of obj1 is obj2,
and the property c of obj2 is 4, then the expression will evaluate to 4. A path of
property names is denoted by a string that joins the property names with dots, in
this case "a.b.c". If you want to address array elements you have to add the index
of the element with another dot, such as a.b.c.3, and not use the more obvious
but false a.b.c[3] notation.

46CoreMedia DXP 8

Concepts and Technology | Value Expressions

You can create a property path expression manually in the following way:

Example 5.11. Creating
a property path expres-
sion

import com.coremedia.ui.data.ValueExpression;
import com.coremedia.ui.data.ValueExpressionFactory;
...
var ppe:ValueExpression =
ValueExpressionFactory.create("a.b.c", obj);

The dot notation above might suggest that property path expressions operate ex-
actly like ActionScript expressions, but that is not quite correct. Property path ex-
pressions support the following access methods for properties:

➞ read the property of a bean using the get(property) method;

➞ call a publicly defined getter method whose name consists of the string "get"
followed the name of the property, first letter capitalized;

➞ call a publicly defined getter method whose name consists of the string "is"
followed the name of the property, first letter capitalized;

➞ read from a publicly defined field of an object. This is the classic ActionScript
case.

At different steps in the property path, different access methods may be used.

Even if there are many properties in the path, changes to any of the objects tra-
versed while computing the value will trigger a recomputation of the expression
value and potentially, if the value has changed, an event. This is only possible,
however, for objects that can send property change events.

➞ For beans, a listener is registered using addPropertyChangeListener().

➞ For instances of ext.util.Observable, a listener is registered using ad
dListener().

Property path expressions may be updated. When invoking setValue(value),
a new value for the value expression is established. This will only work if the last
property in the property path is writable for the object computed by the prefix of
the path. More precisely, a value may be

➞ written into a property of a bean using the set(property,value)method;

➞ passed to a publicly defined setter method that takes the new value as its
single argument and whose name consists of the string "set" followed by
the name of the property, first letter capitalized;

➞ written into a publicly defined field of an ActionScript class.

At various points of the API, a value expression is provided to allow a component
to bind to varying data. Using the method extendBy(extensionPath) adds
further property dereferencing steps to the existing expression. For example,

47CoreMedia DXP 8

Concepts and Technology | Value Expressions

ValueExpressionFactory.create("a.b.c", obj) is equivalent to Value
ExpressionFactory.create("a", obj).extendBy("b.c").

To create a property path expression from within an EXML file, you can use the
valueExpression element from the exml:com.coremedia.ui.config
namespace.

Example 5.12. The
valueExpression EXML
element

...
<ui:valueExpression expression="myProperty"
context="{getModel()}"/>

...

Function Value Expressions

Function value expressions differ from property path expressions in that they allow
arbitrary ActionScript code to be executed while computing their values. This
flexibility comes at a cost, however: such an expression cannot be used to update
variables, only to compute values. They are therefore most useful to compute
complex GUI state that is displayed later on.

To create a function value expression, you use the method createFromFunction
of the class ValueExpressionFactory.

Example 5.13. Creating
a function value expres-
sion

ValueExpressionFactory.createFromFunction(function():Object {
return ...;

});

The function in the previous example did not take arguments. In this case, it can
still use all variables in its scope as starting point for its computation or it might
access global variables. To make the code more readable, you might want to define
a named function in your ActionScript class and use that function when building
the expression.

Example 5.14. Creating
a value expression
from a private function

private function doSomething():void {
...
expr = ValueExpressionFactory.
createFromFunction(calculateSomething);

...
}

private function calculateSomething():Object {
return ...;

}

If you want to pass arguments to the function, you can provide them as additional
argument of the factory method. The following code fragment uses this feature to
pass a model bean to a static function.

48CoreMedia DXP 8

Concepts and Technology | Value Expressions

Example 5.15. Creating
a value expression
from a static function

private function doSomething():void {
...
expr = ValueExpressionFactory.
createFromFunction(calculateSomething, getModel());

...
}

private static function calculateSomething(model:Bean):Object
{
return ...;

}

value change eventsFunction value expressions fire value change events when their value changes. To
this end, they track their dependencies on various objects when their value is
computed. For accessed beans and value expressions, the dependency is taken
into account automatically: whenever the bean or the value expression changes
relevantly, the value of the function value expression changes automatically, and
an event for the function value expression is fired.

If you access other mutable objects, you should make sure that these objects in-
herit from Observable, so that you can register the dependencies yourself. To
this end, you can use the static methods of the class DependencyTracker. In
particular, the method dependOnObservable(Observable,String) provides
a way to specify the observable and the event name that indicates a relevant
change. As a shortcut, the method dependOnFieldValue(Field) allows you to
depend on the value of an input field.

Example 5.16. Manual
dependency trackingvar observable:Obserable;

var field:Field;

private function calculateSomething():Object {
DependencyTracker.dependOnObservable(observable, "fooEvent");
DependencyTracker.dependOnFieldValue(field);
... observable.fooMethod() ...;
... field.getValue() ...;
return ...;

}

If you register a dependency while no function value is being computed, the call
to DependencyTracker is ignored. This means that you can register dependencies
in your own functions, and the methods will work whether they are called in the
context of a function value expression or not.

To create a function value expression in EXML, you have to insert an ActionScript
block into the EXML:

Example 5.17. The
bindPropertyPlugin
EXML element

...
<exml:import
class="com.coremedia.ui.data.ValueExpressionFactory"/>
...
<ui:bindPropertyPlugin bindTo="{ValueExpressionFactory.

49CoreMedia DXP 8

Concepts and Technology | Value Expressions

createFromFunction(calculateSomething)}"/>
...

This assumes that you have defined a function calculateSomething in the base
class of your EXML component with visibility protected. Of course, you may also
use static functions or anonymous functions specified inline in the EXML file, but
the latter might be more difficult to read.

50CoreMedia DXP 8

Concepts and Technology | Value Expressions

5.4 Remote CoreMedia Objects
Accessing content on
the server

For accessing content, users and groups from CoreMedia Studio, a rich API is
provided on top of the Bean/RemoteBean API. In particular, the interfaces Con
tent, User, and Group all inherit from RemoteBean. The API aims at being sim-
ilar to the Unified API, which provides access to the CoreMedia servers from Java.
However, some adjustments were necessary to support the different flavor of
concurrency found in JavaScript/ActionScript.

Please refer to the ActionScript documentation (ASDoc) for details about the indi-
vidual interfaces and methods listed in the following overview.

5.4.1 Connection and Services
Usually, the Studio framework will already have taken care of the login when your
code is invoked.

Creating a connection
when not logged in

In special cases, for example if you are not in CoreMedia Studio, you can use the
static method com.coremedia.cap.Cap.prepare(Function) to create a
connection to the remote server. The URL of the CMS remote service to use is read
from the global variable coremediaRemoteServiceUri. The prepare method
calls the callback function when the connection has been established, passing a
com.coremedia.cap.common.CapConnection as the single argument. This
connection is not yet bound to a user, but it provides the method getLoginSer
vice(). On the returned com.coremedia.cap.common.LoginService you
can call the login(String, String, String, Function)method to authen-
ticate the current user, which enables access to other services of the connection.

Once a connection is established, the current session is stored under the key
session in the application scope bean (obtainable from the current editorCon
text instance). The session provides access to the current user and back to the
connection.

The methods getContentRepository(), getUserRepository(), and get
WorkflowRepository() of the connection return objects of type com.core
media.cap.content.ContentRepository, com.core
media.cap.user.UserRepository, and com.coremedia.cap.work
flow.WorkflowRepository, respectively. These repositories serve the same
purpose as the identically named objects of the Unified API. However, the supported
functionality is limited to the use cases required for content editing.

Content repository and
services

The ContentRepository provides access to the PublicationService and the
content AccessControl through the method getPublicationService() and
getAccessControl(), respectively.

Unlike the Unified API, approval operations using the publication service also ap-
prove all folders on the path to a content. Publication is very similar to the Unified

51CoreMedia DXP 8

Concepts and Technology | Remote CoreMedia Objects

API counterpart, but withdrawals are performed in a single step without the need
to successively set a mark, approve it, and publish the withdrawal.

The AccessControl class in the package com.coremedia.cap.content.au
thorization allows you to check whether certain operations on contents are
permitted for the current user. Some methods like mayMove() and mayCreate()
are provided for special cases, but most checks are made using the method
mayPerform, which takes a Right enumeration value to indicate the intended
operation.

All these methods track the dependencies and can be used from within a Func
tionValueExpression, even though you cannot register change listeners directly.

Workflow repository
and services

The WorkflowRepository provides access to the WorklistService and the
workflow AccessControl through the method getWorklistService() and
getAccessControl(), respectively.

The WorklistService corresponds closely to the WorklistService of the
Unified API. It provides access to all user-specific lists, but not the administration
lists. In particular, you can retrieve the list of process definition that the current
user may instantiate, the processes the user has created, but not started, the pro-
cesses the user has created and started, the offered task and the accepted tasks.
You can also obtain lists of tasks that encountered problems during their execution.

All these methods track the dependencies and can be used from within a Func
tionValueExpression, even though you cannot register change listeners directly.

The AccessControl class in the package com.coremedia.cap.workflow.au
thorization allows you to check whether certain operations on workflow objects
are permitted for the current user. The methods match the methods defined in the
Unified API. While the rights are being retrieved, the methods will return un
defined. Afterwards a Boolean value is answered. Note, however, that no changes
of rights are propagated to the client. This is not normally a problem, because the
built-in rights policies depend on the current user, only, and not on the workflow
state.

5.4.2 Content
Content on the serverThe package com.coremedia.cap.content of CoreMedia Studio provides classes

for accessing content. A Content object represents a document or folder in the
CoreMedia system. It can be obtained through the methods getChild(...) or
getContent(String) of the content repository. Note that unlike in Unified API,
the String parameter to the latter method is not an ID, but a URI path. You can
get the URI path of a Contentwith the Content#getUriPath()method (inher-
ited from com.coremedia.ui.data.RemoteBean).

52CoreMedia DXP 8

Concepts and Technology | Content

You can also initiate a search request using the search service returned by get
SearchService() or by navigating to a content from the root folder returned
by getRoot().

Accessing properties of
content

Using getProperties(), it is possible to navigate to a secondary bean of type
com.coremedia.cap.content.ContentProperties that contains all schema-
defined properties of a content item. When updating properties, use the inherited,
generic set(property, value) method of com.coremedia.ui.data.Bean
with Calendar, String, or Number objects or arrays of Content objects as ap-
propriate for the individual properties. Refrain from setting blob-valued and XML-
valued properties at this time. As for all remote beans, the method flush(call
back) can be called to force properties to be written to the server immediately.

The Content object itself is only responsible for the meta properties that are the
same for all contents, for example the name property. The class ContentProper
tyNames lists all these property names for your reference. As usual, these are also
the property names for the events that are sent when a content changes.

The property lifecycleStatus is a special property that does not correspond
to any Unified API feature. It indicates the simplified way in which Studio represents
the approval, deletion, and publication flags to the user. The class Life
cycleStatus contains constants for the supported states.

Following the Unified API, every content object is associated to a ContentType
object by means of the getType() method. You can also retrieve types by name
from the content repository. Given a type, you can create new instances of the
type by means of the create(Content, String, Function) method.

The move() and rename() methods are shortcuts for setting the parent and
name properties. As such, a callback provided with these calls receives a
FlushResult as its single argument. The methods copy(), checkIn(), check
Out(), revert(), and doDelete() correspond to the equivalent Unified API
methods. (The unusual name of the doDelete() method is caused by delete
being a reserved word in ActionScript.)

Getting result objectsAll operations receive result objects indicating whether the operation was success-
ful. The result of a delete operation is recorded in a DeleteResult, with result
codes being documented inDeleteResultCodes. Similarly, there areCopyResult
and CheckInResult objects. Please see the ASDoc for details.

Through the method getIssues(), a Content object provides access to issues
detected by the server-side validators. See Section 5.3.3, “Issues” [41] for details
about the issue API.

5.4.3 Workflow
Workflows on the serv-
er

The package com.coremedia.cap.workflow of CoreMedia Studio provides classes
for accessing worklists and workflow objects. A WorkflowObject represents a

53CoreMedia DXP 8

Concepts and Technology | Workflow

Task or Process in the Workflow Server. Tasks provide the method getContain
ingProcess() to navigate to its process. Each task and process links to a definition
object by means of its getDefinition() method. Definition objects are either
instances of TaskDefinition or ProcessDefinition. Each task definition in-
dicates a TaskDefinitionType through the method getType(), for example
USER or AUTOMATED.

Using the methods getTaskState() and getProcessState() the current state
of a task or process can be obtained as an enumeration value.

Accessing properties of
workflow objects

The methods available for workflow objects and definitions correspond to the
equivalent Unified API methods.

Using getProperties() on a task or process, it is possible to navigate to a sec-
ondary bean of type WorkflowObjectProperties that contains all schema-
defined properties of a workflow object. When updating properties, use the inher-
ited, generic set(property, value) method of Bean with Boolean, String,
Number, User, Group, Content, or Version objects or arrays of such objects as
appropriate for the individual properties. At the moment, timer are not supported.
As for all remote beans, the method flush(callback) can be called to force
properties to be written to the server immediately.

5.4.4 Structs
Structs are part of the Unified API and are thus a core product feature.

Storing dynamically
structured content with
Structs

Implemented by the interfaces Struct and StructBuilder in the Java API,
structs provide a way to store dynamically typed, potentially nested objects in the
content repository, and thus add the possibility of storing dynamically structured
content to the Content Server's static content type system. To this end, the document
type schema may define XML properties with the grammar name coremedia-
struct-2008. This grammar should use the XML schema http://www.core
media.com/2008/struct as defined in coremedia-struct-2008.xsd.

In the ActionScript API, structs are modeled as Bean objects. They are directly
modifiable. They implement the additional interface com.core
media.cap.struct.Struct to provide access to their dynamic type.

Like every content property value, struct beans are provided as properties of the
ContentProperties beans. If a struct bean contains a substruct at some property,
that substruct is again represented as a struct bean.

Atomic properties of structs may be accessed just like regular bean properties.
Structs can store strings, integers, Boolean, and links to documents as well as lists
of these values. All struct properties can be read and written using the ordinary
Bean interface. As usual, lists are represented as ActionScript Array objects. Do
not modify the array returned for a list-valued property. To modify an array, clone
the array, modify the clone, and set the new value at the bean.

54CoreMedia DXP 8

Concepts and Technology | Structs

In the special case of lists of structs, use the methods addAt() and removeAt()
(of the struct containing the struct list) to insert or delete individual entries in the
struct list. Note that Struct objects in struct lists represent a substruct at a fixed
position of the list. For example, the Struct objects at position 2 will contain the
values of the struct previously at position 1 after you insert a new struct at position
0 or 1.

Structs and substructs support property change events. Substructs do not support
value change events. You can only listen to a single property of a substruct.

Top-level structs in the ActionScript API are never null. If a content property is
bound to an empty XML text, a struct without properties is still accessible on the
client. This makes it easier to fill initially empty struct properties.

The most convenient way to access a struct property is by means of a value expres-
sion. For example, for navigating from a content property bean to the property
bar of the struct stored in the content property foo, you would use the property
path foo.bar. You can use these property paths in the standard property fields
provided by CoreMedia Studio. This case is shown in the following code fragment:

Example 5.18. Property
paths into struct<?xml version="1.0" encoding="UTF-8"?>

<exml:component xmlns:exml="http://www.jangaroo.net/exml/0.8"
xmlns="exml:ext.config"
xmlns:editor="exml:com.coremedia.cms.editor.sdk.config">

<editor:documentForm itemId="MyDocumentType">
<items>
...
<editor:stringPropertyField propertyName="foo.bar"/>
...

</items>
</editor:documentForm>

</exml:component>

Dynamic addition of
new property values

Structs support the dynamic addition of new property values. To this end, the in-
terface Struct provides access to a type object implementing com.core
media.cap.struct.StructType through the method getType(). You can call
the addXXXProperty() methods for various property types during the initializa-
tion code that runs after the creation of a document.

Example 5.19. Adding
struct propertiespublic function init(editorContext:IEditorContext):void {

...
editorContext.registerContentInitializer("MyDocumentType",
initStruct);

...
}

private function initStruct(content:Content):void {
var properties:ContentProperties = content.getProperties();
var struct:Struct = properties.get('foo') as Struct;
struct.getType().addStringProperty('bar', 200);

}

55CoreMedia DXP 8

Concepts and Technology | Structs

While it is possible to add a property automatically during the first write, this is
not recommended. Some property fields cannot handle an initial value of un
defined. You should therefore only bind property fields to initialized properties.

5.4.5 Types and Property Descriptors
Both Content and Struct are derived from a common parent interface Cap
Struct, which takes the same responsibilities as its Unified API equivalent. It
augments Bean objects by providing a type in the form of a CapType, the common
parent of, for example, ContentType and StructType. Types can be arranged
in a type hierarchy and they can be given a name.

A CapType provides access to CapPropertyDescriptor objects, which describe
the individual properties allowed for a CapObject. In the type property a property
descriptor indicates which value the property can take according to the constants
defined in CapPropertyDescriptorType: string, integer, markup, and so on.
Each property descriptor also declares whether the property is atomic and accepts
plain values or is a collection and accepts arrays of appropriate values.

For certain descriptor types, more specific interfaces provide access for additional
limitations on the property. A StringPropertyDescriptor declares a length
attribute indicating the maximum length of a string stored in the property. A
BlobPropertyDescriptor can limit the contentType (a MIME type string) of
the property values. A LinkPropertyDescriptor specifies the type of linked
objects and a MarkupPropertyDescriptor the grammar of stored XML data.

5.4.6 Concurrency
Being remote beans, the Content objects inherit the concurrent behavior of the
bean layer. A request to load content data is issued upon first querying any property
except for isDocument() and isFolder()). However, since the response arrives
asynchronously and is handled in a subsequent execution, the getter methods will
initially return undefined. You must therefore make your code robust to handle
this situation - which commonly is done by attaching a value change listener that
is invoked once the content properties become available, or create a property path
expression and use its loadValue(Function)method (see Section 5.3.6, “Value
Expressions” [44]). Depending on the execution sequence, content may be loaded
due to some other, potentially unrelated request before you access it - but your
code must not rely on it.

All singletons (Cap,CapConnection,CapLoginService,session/CapSession,
ContentRepository, UserRepository) and all ContentType objects, however,
are fully loaded before the Studio application's initialization process is finished
(which is why these interfaces do not extend RemoteBean).

When you want to make sure that values have actually hit the server after an update,
you can use RemoteBean#flush(Function), and register a callback function.

56CoreMedia DXP 8

Concepts and Technology | Types and Property Descriptors

5.5 Studio Component IoC
This section describes the component IoC concept for CoreMedia Studio and its use
cases.

5.5.1 Motivation
CoreMedia Studio - based on Ext JS - consists of UI components. Each component
is responsible for the user interaction of a local part of the whole Studio UI. The
components are organized in the component hierarchy and the state of a component
can depend on its place in the hierarchy. For example the publish button in the
actions toolbar publishes the current content of the work area. The publish button
in the library view however publishes the selected items in the library. So the
content state of the publish button must be transferred from the outer container
(the library or a premular) to the button. Even more: the state of the outer container
must be synchronized with the state of child components when it changes.

A straight approach for the requirement combines the Ext JS configuration and the
event mechanism: The container defines a value expression of the state and hands
it down the component hierarchy - until the target component (the publish button
in the example) is finally configured to use the value expression. This approach
has two major drawbacks:

1. Many components along the way from the container to the component just
pass the state configuration from one hierarchy level to the next without being
interested in the state by themselves. This leads to a bunch of boilerplate, error-
prone code. For example an intermediate container might forget to pass the
configuration.

2. Second there are cases where the state configuration of the container is not
available for the child components - For example in a plugin rule you want to
add a new button to the toolbar of the library which will do some actions on
the selected items. Hence, the value expression of the selected items must be
passed to the button but you cannot access the value expression in the plugin
rule in the standard, well-defined way. Alternatively all containers along the
hierarchy could use the defaults configuration to apply default settings to all
added items. Again it leads to boilerplate, error-prone code.

5.5.2 Inversion of Control
The approach above passes the state configuration between components that are
statically assigned to one another. Instead, the state of a container could be passed
dynamically in the runtime to its child components. This is exactly what the Studio
component IoC does: It uses annotations in the ActionScript classes to declare
which components provide or consume a component state (in the following context)

57CoreMedia DXP 8

Concepts and Technology | Studio Component IoC

and leverages the Ext JS component hierarchy in the runtime to establish the de-
pendency between the context provider and context consumer.

5.5.3 Annotations of Context Consumer and Context
Provider
Instead of passing the state configuration from the container down to the child
component Studio IoC requires that context providers and consumers declare
themselves as provider or consumer and in which context they are interested in.

Assume that you have a property exampleProperty of a context consumer ex
ampleConsumer and want to inject a provided property to the example property.
The setter method of the property in the class exampleConsumer must be annot-
ated:

[InjectFromExtParent]
public function setExampleProperty(value:String):void {
exampleProperty = value;

}

The Studio Component IoC generates the name of the provided property out of
the annotated method name. This annotation is called implicit. In the example the
assumed name of the provided property is exampleProperty. But in most cases
the method name will not reflect the name of the provided property. Hence, the
annotation supports the optional parameter variable:

[InjectFromExtParent(variable='providedProperty')]
public function setExampleProperty(value:String):void {
exampleProperty = value;

}

This annotation is called explicit. The name of the provided property in the example
is then providedProperty. Still, the annotation is not flexible enough if you
want to reuse exampleConsumer and to configure the name of the provided
property. The optional parameter variableNameConfig does the job:

[InjectFromExtParent(variableNameConfig='examplePropertyVariableName')]
public function setExampleProperty(value:String):void {
exampleProperty = value;

}

This annotation is called configurable. Then in order to inject the provided property,
the name of the provided property has to be configured explicitly for each consumer
in the EXML:

<editor:contextConsumer
examplePropertyVariableName="providedProperty"/>

The annotation of a context provider is done in similar way but will not be described
in details here. To customize Studio you only need to know how to inject a provided

58CoreMedia DXP 8

Concepts and Technology | Annotations of Context Consumer and Context Provider

property and which (and where) provided properties exist. Section 7.8, “Customizing
Studio using Component IoC” [143] describes how to customize Studio using the
Studio component IoC.

59CoreMedia DXP 8

Concepts and Technology | Annotations of Context Consumer and Context Provider

5.6 Web Application Structure
CoreMedia Studio uses a web application for delivering both static content (like the
JavaScript code defining the application) and dynamic content stored in the CMS.

Dynamic content is provided by means of a REST service embedded in a Spring
web application context. See http://www.springsource.org/ for details about the
Spring framework. In the following section, it is assumed that you know about the
essential concepts of the Spring inversion of control (IoC) container.

You can extend and modify the application context by providing additional config-
uration files in the classpath. Such files must be named according to the pattern
component-*.xml and they must be put into the directory META-INF/core
media. It is recommended that the variable part of the file name is equivalent to
the name of the Maven module in which you define the XML file and optionally
Java classes required for your extension.

You must modify the application context to configure your content validation setup.
See Section 7.15.1, “Validators” [176] for the details.

60CoreMedia DXP 8

Concepts and Technology | Web Application Structure

http://www.springsource.org/

5.7 Localization
Text properties in CoreMedia Studio can be localized. English and German are sup-
ported out of the box; you can add your own localization bundles if required. To
do so, proceed as follows:

1. Add the new locale to the studio.locales property in your Studio application's
application.properties file.

This property contains a comma-separated list of locales. The first element in
the list is en and specifies the locale of values in the default properties files
(that is, the files without a locale suffix). Therefore, you must not change this
first entry; it must always remain en (see below).

2. Add properties files that follow the naming scheme for your added locale, as
explained below.

Localized texts are stored in property files according to the Java property file syntax.
The naming scheme of these files is:

<FileName>_<IsoLanguageCode>.properties

A property file with no language code contains properties in the default language
English. Note that English is only a technical default. The default locale used for
users opening CoreMedia Studio for the first time is determined by the best match
between their browser language settings and all supported locales.

When one or several properties are missing in locale-specific properties files,
their values are inherited from the default language (that is, they will appear in
English rather than in the locale the user has set). However, there must be a
.properties file for every supported locale as per the studio.locales
property in the application.properties. The locale-specific properties file
may be empty, but a missing file will result in an error on Studio startup.

Property files are placed beside ActionScript and EXML files in the proper package
below the src/main/joo directory. They are compiled into ActionScript classes
with the base file name (without the ISO language code), followed by _properties.

Each such class contains a static field INSTANCE which at runtime references an
object declaring one attribute for each property declared in the *.properties
file, using the property key as the attribute name and the localized value depending
on the selected locale. For each property key that is a valid ActionScript identifier,
the generated class also declares a getter function to simplify typed access.

Overriding existing
properties

If you want to change predefined labels, tooltips or similar, you can override
properties from existing properties classes. To this end, you should first define a
new property class and then call the static method ResourceBundle#override

61CoreMedia DXP 8

Concepts and Technology | Localization

Properties(destination, source) to overwrite an existing property class
with the values stored in your new property class. This method will never remove
a property key, it will only update existing values.

Note that the call to ResourceBundle.overrideProperties references the
ActionScript classes, not the property maps reachable through the static INSTANCE
fields.

Generally, each Studio plugin module will contain at least one set of property files
for localizing its own components or for adapting existing property files.

62CoreMedia DXP 8

Concepts and Technology | Localization

5.8 Multi-Site and Localization Management
CoreMedia provides a concept to handle multi-site and multi-language in a stand-
ardized way.

Configuration

The CoreMedia Site Model is defined via the bean siteModel of the CoreMedia
Studio web application. Please refer the to the [[CoreMedia Digital Experience
Platform 8 Developer Manual]] to know, how CoreMedia has designed multi-site
and multi-language support.

SitesService

To access all the features of multi-site and multi-language, you can use the
SiteService. The SitesService is available via the EditorContext with its
getSiteService() Method.

With this, you have access to all available Sites and their properties - the root folder,
the site indicator, etc. Furthermore, you have access to the Site Model specifications
like the properties for master relations or of which document type the Site Indicator
is. For a detailed understanding, you are asked to read the Studio API documentation
as well.

63CoreMedia DXP 8

Concepts and Technology | Multi-Site and Localization Management

5.9 Further Reading
At http://www.senchaexperts.com/api/extjs3.3/ you can find the API document-
ation of Ext JS 3.3.

http://www.jangaroo.net/ and https://github.com/CoreMedia/jangaroo-tools/wiki
describe the Jangaroo language and tool chain.

http://cksource.com/ provides information about the rich text editor CKEditor.

The documentation of the ActionScript API is linked from the documentation page
of CoreMedia DXP 8. The overview page can be found at https://documenta
tion.coremedia.com/cm7/overview/ . Note that classes or interfaces not
mentioned in the API documentation pages are not public API. They are subject
to change without notice.

The remote API for content is closely related to the Unified API provided for Java
projects, although there are changes to accommodate for the different semantics
of the base languages. Still, the Unified API Developers Guide gives a good overview
of the involved concepts when dealing with content. Documents, folder, versions,
properties, types, and the like are explained in detail as well as the structuring of
the API into repositories, identifiable objects and immutable values.

64CoreMedia DXP 8

Concepts and Technology | Further Reading

http://www.senchaexperts.com/api/extjs3.3/
http://www.jangaroo.net/
https://github.com/CoreMedia/jangaroo-tools/wiki
http://cksource.com/

6. Using the Development
Environment

This section describes how to connect the Content Server and the Preview CAE. It
provides pointers to information on Jangaroo tools supporting the build process
and the IntelliJ IDEA IDE. Furthermore, some basic information on debugging Studio
customizations is given.

65CoreMedia DXP 8

Using the Development Environment |

6.1 Configuring Connections
CoreMedia Studio needs to be connected with the Content Management Server to
access the repository and with the preview CAE to show the preview of the opened
form. If you use CoreMedia Blueprint, everything is already configured properly for
your local workspace. If you use a distributed environment you have to adapt the
following properties:

Connecting with the Content Server

When you start the Studio web application with mvn tomcat7:run during devel-
opment, you can configure the connection by supplying the arguments -Dcontent
server.host=MYHOST and (optionally) -Dcontentserver.port=MYPORT at
the command line. Alternatively, you can configure the connection in the applic
ation.properties file in the src/main/webapp/WEB-INF directory. Use the
contentserver.host and contentserver.port properties for the host and
port of your Content Server , respectively.

Refer to the [CoreMedia DXP 8 Manual] to learn about building deployable artifacts.

Connecting with the Preview CAE

When you start the Studio web application with mvn tomcat7:run during devel-
opment, you can configure the connection to the preview CAE in the override-
web.xml file in the CoreMedia Studio web application directory. Simply change the
value of the parameter ProxyTo to the URL of your CAE. When you deploy Studio
in an application server like Tomcat, you should change the application.prop
erties in the src/main/webapp/WEB-INF directory. The property studio.pre
viewUrlPrefix contains the path to the preview controller up to, but not including
the preview suffix.

If a different prefix is required for the final deployment, you have to add the stu
dio.properties file to the deploy workspace in the WEB-INF directory and make
the appropriate changes.

The property studio.previewControllerPattern contains the configurable
preview controller pattern. If it is empty or not defined, then the Studio web applic-
ation will use the default preview controller pattern preview?id={0}. If you want
to use simple numeric IDs instead, then you can configure in the studio.prop
erties as the following: studio.previewControllerPattern=pre
view?id={1}. The placeholder 0 and 1 are representing the CoreMedia ID and
the numeric ID, respectively.

Note that Elastic Social users and user comments do not have numeric IDs. Hence,
you should configure preview?id={0}. However, when using preview?id={1},
the placeholder 1 is replaced with the non-numeric ID as well and the preview
application has to handle this special case or will fail to deliver.

66CoreMedia DXP 8

Using the Development Environment | Configuring Connections

6.2 Build Process
CoreMedia Studio provides artifacts for use with Maven. Since CoreMedia Studio
builds upon Jangaroo, its build process is basically identical to Jangaroo's. The
Jangaroo compiler documentation explains how to use the Jangaroo tools from the
command line and how to use them with Ant or Maven. This covers the conversion
from EXML to ActionScript and further down to Ext JS.

A detailed description of the Jangaroo build process with Maven is given in the
Jangaroo tools wiki.

In the following section, you will find a description of some of the typical use cases
that appear during CoreMedia Studio development using the CoreMedia Project
workspace.

Compiling the Studio Project

Open a command line at the CoreMedia Project root directory. To compile all Studio
modules, change to the modules/studio/ directory and run

mvn clean install

This will remove all generated files before starting the compilation. To only recom-
pile updated files, run

mvn install

Running the Studio Web Application

In the modules/studio/studio-webapp/ directory of CoreMedia Blueprint, you
can start the Studio web application in a Tomcat servlet container via Maven, like
so:

mvn tomcat7:run

The recommended way of dynamically reassigning the server URLs that you want
Studio to connect to is to add one or several Maven profiles to your local set
tings.xml, that redefine connection properties as follows:

<profile>
<id>myStudio</id>
<properties>
<installation.host>myserver.mycompany.com</installation.host>
<database.host>mydatabase.mycompany.com</database.host>
<solr.host>mysolr.mycompany.com</solr.host>
<mongo.db.host>mymongoserver.mycompany.com</mongo.db.host>

</properties>
</profile>

You can then start your local Studio development web application by running

67CoreMedia DXP 8

Using the Development Environment | Build Process

https://github.com/CoreMedia/jangaroo-tools/wiki/Compiler
https://github.com/CoreMedia/jangaroo-tools/wiki/Maven-Build-Process
https://github.com/CoreMedia/jangaroo-tools/wiki/Maven-Build-Process

mvn -PmyStudio tomcat7:run

When only EXML and ActionScript files are recompiled from within IntelliJ IDEA,
the Tomcat servlet container automatically serves the updated compiled class files.
There is no need to stop and restart Tomcat.

In contrast, before recompiling any Java files, make sure to kill the Tomcat process.
The Java Virtual Machine might not be able to load additional classes when JAR
files are modified concurrently.

Configuring the Build Process

The Jangaroo compiler can be configured to check whether compiled code uses
non-public API. To this end, the parameter publicApiViolations of the Jangaroo
Maven plugin controls how the compiler handles usages of non-public API classes
in your project code. The parameter can take the values warn to log a warning
whenever such a class is used, allow to suppress such warnings, and error to
stop the build with an error. The default value is warn, but you can set it to error
as follows:

Example 6.1. Detecting
public API violations<plugin>

<groupId>net.jangaroo</groupId>
<artifactId>jangaroo-maven-plugin</artifactId>
<configuration>
<publicApiViolations>error</publicApiViolations>

</configuration>
</plugin>

68CoreMedia DXP 8

Using the Development Environment | Build Process

6.3 IDE Support
One of the rationales behind Jangaroo is to make the good parts of static typing,
such as getting reliable and useful IDE support, available for the dynamic language
JavaScript. This is described in more detail in the Jangaroo tools wiki.

Recent versions of the IDE IntelliJ IDEA Ultimate Edition have built-in support for
ActionScript and JavaScript development. Jangaroo provides an IDEA plugin called
Jangaroo 0.9, which bundles the functionality of two older plugins (Jangaroo Lan-
guage for compiling ActionScript as described at https://github.com/Core-
Media/jangaroo-tools/wiki/Developing-Jangaroo-Applications-with-IntelliJ-IDEA
and Jangaroo EXML for compiling .exml files as described at https://git-
hub.com/CoreMedia/jangaroo-tools/wiki/Developing-Ext-AS-Applications-with-
IntelliJ-IDEA). The older plugins should not be activated jointly with the current
unified Jangaroo 0.9 plugin. They are still available for projects working with older
Jangaroo versions, but will eventually be deleted.

Figure 6.1. Studio pro-
ject within the Project
workspace in IntelliJ
Idea

69CoreMedia DXP 8

Using the Development Environment | IDE Support

https://github.com/CoreMedia/jangaroo-tools/wiki/IDE-Support
https://github.com/CoreMedia/jangaroo-tools/wiki/Developing-Jangaroo-Applications-with-IntelliJ-IDEA
https://github.com/CoreMedia/jangaroo-tools/wiki/Developing-Jangaroo-Applications-with-IntelliJ-IDEA
https://github.com/CoreMedia/jangaroo-tools/wiki/Developing-Ext-AS-Applications-with-IntelliJ-IDEA
https://github.com/CoreMedia/jangaroo-tools/wiki/Developing-Ext-AS-Applications-with-IntelliJ-IDEA
https://github.com/CoreMedia/jangaroo-tools/wiki/Developing-Ext-AS-Applications-with-IntelliJ-IDEA

6.4 Debugging
CoreMedia Studio components and plugins consist of static resources (images, style
sheets, JavaScript files) and JavaScript objects. Debugging a custom CoreMedia
Studio component or plugin involves the following tasks:

➞ check whether the static resources have been loaded

➞ explore the runtime behavior of the customization, that is, the relevant
JavaScript code or DOM nodes

In this section, tools and best practices for debugging your CoreMedia Studio cus-
tomizations are described.

6.4.1 Browser Developer Tools
All modern browsers provide tools for web application debugging. These are usually
simply called "Developer Tools" and can be invoked via a menu entry, a toolbar
button, the F12 key or the key combination Ctrl+Shift+I.

As of today, using Google Chrome for debugging is recommended, since it currently
offers the most mature developer tools and is the fastest, especially while debug-
ging. Internet Explorer 11 is quite good in both disciplines, too, while Firefox trails
the field especially in execution performance during debugging.

All modern browsers' developer tools provide tabs for different tools:

➞ DOM Explorer / Element / Inspector — Inspect the page's actual DOM ele-
ments as a DOM tree, with the option to select an element on the rendered
page to reveal it in the tree. Selected DOM tree nodes are highlighted on
the rendered page. The DOM can be watched for changes and modified in-
teractively.

➞ Console — All JavaScript messages and errors are logged to this console, and
it provides a read-eval-loop for JavaScript expressions.

➞ Network — Inspect all HTTP network traffic between the client-side applica-
tion and the server, static resources as well as Ajax (XHR) requests. Most
developer tools offer to disable the cache while they are active, to make sure
that you always load the most recent version of code and other resources
you just changed.

➞ Debugger / Sources — Inspect all loaded JavaScript and CSS sources, set
breakpoints to debug in step-by-step mode. Most modern developer tools
allow you to change sources interactively with immediate effect.

➞ Profiles / Profiler / Audits / Memory / Analysis — Diverse tools to measure
your web application's client-side and network performance and memory

70CoreMedia DXP 8

Using the Development Environment | Debugging

usage. Helpful to find memory leaks (see below) and track performance is-
sues.

Using the debug ver-
sions of the JavaScript
files

Since CoreMedia Studio is a Jangaroo application, please refer to the tutorial about
Jangaroo debugging with Firebug at https://github.com/CoreMedia/jangaroo-
tools/wiki/Tutorial-~-Debugging. Essentially, you have to load CoreMedia Studio
with the #joo.debug parameter appended to the URL to debug the JavaScript
code of your component. This parameter loads the debug versions of the JavaScript
files. In particular, it loads every class in a separate file, which greatly simplifies
debugging. In debugging mode, both the Network tab and the list of loaded scripts
in the Sources / Debugger tab show the script files of your components. The line
numbers in the script files match the line numbers from your ActionScript source
files, which simplifies setting breakpoints at the appropriate spots in your code.
Also, third-party-libraries like Ext JS and CKEditor are loaded in their human-read-
able (as opposed to "minified") versions when in Jangaroo debug mode. Last but
not least, for developer convenience, CoreMedia Studio, skips the confirmation
dialog that normally appears before reloading (F5).

All browser developer tools offer a convenient way to navigate to a certain script
file or Jangaroo class (which, in debug mode, is a one-to-one mapping): With the
Sources / Debugger tab active, press Ctrl-P (note that this invokes the print dialog
when the focus is not on the developer tools!) and just start typing the name of
the class (file) you want to debug, and the list is filtered incrementally. Some tools
even support typing camel case prefixes of the class name, for example to find the
class PreviewPanelToolbarBase in Google Chrome, press Ctrl-P and type "PrevP-
aToBa" to quickly reduce the number of suggestions.

To navigate to the desired line in the file, you can either add a colon (:) and the
line number directly after the file search term, or press Ctrl-L or Ctrl-G (Goto Line)
and enter the line number.

A very efficient way to locate a certain line of a Jangaroo class in Google Chrome's
Developer Tools (to set a breakpoint, for instance) when working with IntelliJ IDEA
is as follows. In IDEA, jump to the very start of the line (press Pos 1 repeatedly
until there). Then, press Ctrl-Alt-Shift-C ("Copy Reference"). IDEA's status line shows
a message that the file/line reference has been copied to the clipboard. Switch to
Chrome Developer Tool's Sources tab (Alt-Tab suffices when changing back and
forth) and press Ctrl-P. Now paste the file/line reference and replace the "a" of
".as" by "j" (for ".js"). The fastest way to do so is to use Ctrl-Left-Arrow twice, then
Shift-Right, then type "j". Hitting Return, Chrome accepts the syntax file-path:line
and takes you to the exact file and line.

The debugger allows you to set breakpoints, to automatically pause on errors, to
step through the script at runtime and to evaluate expressions in the current scope
of the script. In this context, the Console tab is also very helpful, because it offers
a JavaScript shell for direct interaction with the current script. The console displays

71CoreMedia DXP 8

Using the Development Environment | Browser Developer Tools

https://github.com/CoreMedia/jangaroo-tools/wiki/Tutorial-~-Debugging
https://github.com/CoreMedia/jangaroo-tools/wiki/Tutorial-~-Debugging

the results of the expressions evaluated in the shell and also messages generated
by the current script runtime.

Figure 6.2. Firebug:
console

6.4.2 Ext JS debug.js

Ext JS comes with a built-in debug console. Before you can use the console, you
have to run CoreMedia Studio in debug mode by appending the #joo.debug URL
parameter as described in the previous section. Then, you can activate the console
by executing

Ext.log();

in the JavaScript console. The Ext debug console offers capabilities tailored for
debugging the Ext component tree.

Figure 6.3. Ext compon-
ent tree

72CoreMedia DXP 8

Using the Development Environment | Ext JS debug.js

The Component Inspector tab shows the Ext component tree, displaying the
components' xtypes and ids. The element associated with the selected node is
highlighted. The figure below shows that the properties form of the active article
is highlighted when the component of xtype CMArticleForm with id 1152 is se-
lected. Double-clicking this component opens a new view showing the properties
of this component.

The Ext debug console also offers capabilities to explore the HTML structure of the
current document and to execute JavaScript. However, compared to the browser's
developer tools, these capabilities are rather limited.

6.4.3 Illuminations
Illuminations for Developers is a commercial third-party Firebug add-on that
makes developing more intuitive when using Ext JS. It can be purchased at ht-
tp://www.illuminations-for-developers.com.

Illuminations changes the concept of inspecting from HTML elements to Ext JS
components in an extra overview panel in Firebug for Ext JS called Illuminations.
The Illuminations panel lets you inspect widgets (usually derived from Ext.Com
ponent, but not always), data (Ext stores, records/models, fields), and elements
(Ext. Element). These views show the hierarchical structure that results from your
code.

Illuminations makes it easier to understand the Ext JS framework, makes objects
more transparent and helps to debug the code.

Object Naming

Illuminations recognizes objects as named objects instead of "Object" in the console.
Additionally, it gives you the information about the ID of the current component
and the corresponding value.

73CoreMedia DXP 8

Using the Development Environment | Illuminations

http://www.illuminations-for-developers.com
http://www.illuminations-for-developers.com

Figure 6.4. Illumina-
tions: objects

Method Naming

Utilizing the option "Name Methods" as found in the Illuminations panel options
menu, you get more telling names.

Figure 6.5. Illumina-
tions: methods

Element Highlighting

When you hover the mouse over the items in the Illuminations panel, Illuminations
highlights the components on the page, as hovering over an HTML element in
firebug would do. It works for Ext components, Ext elements and composite ele-
ments.

74CoreMedia DXP 8

Using the Development Environment | Illuminations

Figure 6.6. Illumina-
tions: highlighting

Contextual Menu

By right-clicking on an element of the page, you can open a context menu with a
new inspect item to open the selected Ext component in the properties panel.
Ideally, Illuminations inspects some sort of UI widget, else an Ext element.

Figure 6.7. Illumina-
tions: inspect

6.4.4 Tracing Memory Leaks
Ext JS applications can consume high amounts of memory in the browser. As long
as memory is de-allocated when UI elements are disposed, the user has the choice
to limit memory usage. But it becomes a problem when there are memory leaks.
Fortunately, reloading the application's page (F5), with a few exceptions, frees
memory again, but still, frequent reloading is undesirable for the user.

Memory leaks occur when an object is supposed to be no longer used, but undesired
references to that object remain that keep it "alive", that is, from being garbage-
collected. Such references are called retainers. In an Ext JS applications, such retain-
ers are typically

➞ Ext's component manager. It maintains a global list of all active components.
See below how to tackle memory leaks cause by the component manager
(component leaks).

➞ Event listeners. When attaching your event listener function to some object,
that object retains the event listener function and every object in the scope
of that function, typically at least this.

75CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

➞ Drop zones. Like for components, Ext keeps a global list of all active drop
zones. So when your custom component creates a drop zones, remember
to explicitly destroy it together with your component.

Component Leaks

If a component is destroyed, it and, if it is a container, all its items, are removed
from Ext's component manager registry. But there are cases when components
fail to be destroyed:

➞ If two items of the same container use the same itemId, Ext does not com-
plain, but one of them is kept even if the container is destroyed.

Components that are created manually via ComponentMgr.create() have to
be destroyed manually unless they are added to the items of a container.

Memory Leaks Caused by Non-Detached Listeners

Always remove any listeners that you attach to an ext.util.Observable,
com.coremedia.ui.data.Bean, com.coremedia.ui.data.ValueExpres
sion, or any other object that emits events. Even when using the option {single:
true}, the event might not have been fired at all when your component is des-
troyed.

A typical error pattern is to attach some method handleFoo as event listener, but
by mistake hand in another method with a similar name handleFuuwhen intending
to remove the listener. No error whatsoever is reported, because trying to remove
a function as listener that is not in the current set of listeners is silently ignored
by Observable#removeListener() and all other event emitters.

A useful utility to automate removing listeners is to use Observable#mon() in-
stead of Observable#on() (alias: Observable#addListener()). mon does
not attach the listener to the caller, but to the first parameter, but binds it to the
lifetime of the caller. For example, when your custom component creates a DOM
element elem and registers a click listener like so: this.mon(elem, "click",
handleClick), the listener is automatically detached when your component (the
caller, this) is destroyed.

It never makes sense to call comp.mon(comp, ...), because when a compon-
ent is destroyed, it removes its own listeners, anyway. Using comp.mon(comp,
"destroy", handleDestroy) even leads to the handler never being called,
because a component removes all mon listeners already in its beforedestroy
phase. In contrast, comp.on("destroy", handleDestroy)works as expec-
ted.

Not only components, but any objects that register event handlers, most promin-
ently actions, have to detach all event handlers again.

76CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

As actions do not have a destroy event and onDestroymethod like components,
you have to override addComponent() and removeComponent() to detect when
an action starts and ends being used by any component. Introducing a simple
counter field starting with zero, you should acquire resources (for example, register
event listeners, populate fields) when addComponent() is called while the counter
is zero before increasing, and release resources (remove event listeners, set fields
to null) when removeComponent() is called while the counter is zero after de-
creasing.

To minimize the impact in case event listeners are not detached, and to avoid
cyclic dependencies, keep the scope of any event handler function or method as
small as possible. In the optimal case, the event handler function is a private static
method, for example if it just toggles a style class of the DOM element given in
the event object:

private function attachListeners():void {
var el:Element = getEl();
// bad style: using an anonymous function that
// does not need its outer scope at all:
el.addListener("mouseover", function(e:IEventObject) {
e.getTarget().addClass("my-hover");

});
// good style: for such cases, use a static method:
el.addListener("mouseout", removeHoverCls);

}

private static function removeHoverCls(e:IEventObject):void {
e.getTarget().removeClass("my-hover");

});

If your event handler only needs access to this, declare it as a method as opposed
to an anonymous function:

private var hoverCounter:int = 0;

private function attachListeners():void {
var el:Element = getEl();
// bad style: using an anonymous function that
// only needs to access "this":
el.addListener("mouseover", function(e:IEventObject) {
++hoverCounter;

});
// good style: for such cases, use a (non-static) method:
el.addListener("mouseout", countHoverEvent);

}

private function countHoverEvent(e:IEventObject):void {
++hoverCounter;

});

In ActionScript, like in JavaScript, anonymous or inline functions have lexical scope,
that is they can access any variable declared in the surrounding function or method.
Since this scope usually contains a reference to the object that emits events (here:
el), and that object stores your event handler function in its listener set, you create
a cyclic reference between the two. Cyclic references are not bad per se, because
garbage collection can handle them if all objects contained in the cycle are not

77CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

referenced from "outside". But firstly, as long as any of the objects is kept alive,
all others are retained, too, and secondly, as discussed below, this makes finding
the real culprit for memory leaks harder.

Memory Leaks Caused by Other References

Any reference to an object can cause it to stay alive. Thus, to find unwanted retain-
ers, it makes sense to null-out all references a component keeps in its onDestroy()
method, like in this code sketch:

public class MyComponent extends Component {

private var foo:SomethingExpensive;

public function MyComponent(config:myComponent) {
super(config);
foo = new SomethingExpensive();

}

protected function onDestroy():void {
foo = null;
super.onDestroy();

}
}

You have to be careful that even after your component has been destroyed, certain
asynchronous event callbacks may occur. Your event handlers have to be robust
against fields already being null. Consider this example using a fictitious timeout
event:

public class MyComponent extends Component {

private var foo:SomethingExpensive;

public function MyComponent(config:myComponent) {
super(config);
foo = new SomethingExpensive();
addListener("timeout", handleTimeout);

}

private function handleTimeout():void {
// Although we remove the listener in onDestroy,
// an event may already be underway, so foo may
// already be null in time it arrives:
if (foo) {
foo.doSomething();

}
}

protected function onDestroy():void {
removeListener("timeout", handleTimeout);
foo = null;
super.onDestroy();

}
}

78CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

Detecting Memory Leaks

To check whether your customized Studio contains any component leaks, proceed
as follows.

1. Open the suspicious UI, for example, a document tab containing your new
property field. Wait until everything is rendered correctly and close the UI again.
This is to ensure that helper components (a context menu, for instance) that
are shared between instances and created with the first instance do not blur
the view on real component leaks.

2. Store a snapshot of the current Ext component manager registry by executing
the following command in the JavaScript console:

before = Ext.ComponentMgr.all.items.concat()

3. Open and close the UI again like before. Take a second snapshot:

after = Ext.ComponentMgr.all.items.concat()

4. In theory, the second snapshot should be exactly equal to the first. But some
components are recreated occasionally, which is not bad if their old version is
correctly destroyed. Thus, the first check is to simply compare the component
count:

after.length - before.length

5. If there are more components in the second snapshot (positive difference), next
goal is to determine their component type (xtype). This is achieved by the fol-
lowing code:

newComponents = after.filter(function(c) {
return before.indexOf(c) === -1;

})

6. To get an overview of the new components, count how many components are
of which type (xtype), using the following code:

byXtype = {};
newComponents.forEach(function(c) {
var xtype = c.constructor.xtype;
byXtype[xtype] = (byXtype[xtype] || 0) + 1;

});
byXtype

7. For custom EXML components, the xtypes in the resulting map indicate the
config package, from which you can derive the Maven module, and the config
class name, which corresponds to the EXML file name (using an upper case first
letter).

79CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

To check whether your customized Studio contains any other memory leaks, proceed
as follows.

1. Always append #joo.debug to the Studio web-app URL (see above). The rep-
resentation of heap snapshots is a lot more detailed (at least in Chrome) and
should even display your ActionScript class names as (guessed) object types.

2. Open the suspicious UI, for example, a document tab containing your new
property field. Wait until everything is rendered correctly and close the UI again.
In addition to what has been said regarding component leaks, this is to ensure
that all needed data objects (remote beans) have been fetched from the server.
In Studio, remote beans are cached, so they are not garbage-collected on pur-
pose.

3. Take a heap snapshot. In Google Chrome, this is achieved as follows. In Developer
Tools, select "Profiles". Under "Select profiling type", the option "Take Heap
Snapshot" is preselected. The third option, "Record Heap Allocations", claims
to be suitable for isolating memory leaks, but CoreMedia founds comparing
heap snapshots simpler. Press the button "Take Snapshot". In the left column,
Chrome adds an icon for the snapshot and shows a progress indicator while it
is recorded. When recording is finished, the heap snapshot is shown as an ex-
pandable list of all JavaScript objects is shown, grouped by their (internal) type.

4. Repeat opening and closing the suspicious UI like in step 2.

5. Take a second heap snapshot. To do so, either you have to select "Profiles" on
the left and proceed like in step 3, or simply click the "record" button (a gray
filled circle).

6. Where the label "Summary" is shown, you can switch to "Comparison". The first
snapshot is automatically selected for comparison. Now, you no longer see all
objects, but only those that either have been removed ("Deleted") or have been
created ("New") between snapshot one and two ("Delta").

Since the application is in the same state after opening and closing the suspicious
UI, ideally, the comparison would be empty. In practice, however, this can never
be achieved. What you have to look for are "expensive" objects, consuming lots of
memory ("Alloc. Size", "Freed Size", "Size Delta"). The focus is "Size Delta", which
tells you how much memory has leaked between snapshot one and two.

Since you cannot do much about memory leaks in Ext JS or in Studio Core, concen-
trate on your own extensions. Fortunately, you have loaded Studio with
#joo.debug, and Chrome's Profiler manages to find the Jangaroo class names of
objects. Thus, you can filter the comparison by the name of your ActionScript class,
and it will only show objects of that class whose set of instances has changed.

Each entry in the upper part represents the set of all object. To inspect a concrete
instance and its retainers, you have to expand the entry using the triangle / arrow,

80CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

and select an instance from the expanded list. For the selected instance, all retainers
are now shown in the lower part of the heap analyzer.

Each root node in the "Retainers" tree represents the property of the instance dir-
ectly referencing (retaining) the instance selected in the upper part. By expanding
any node, you can drill down into its retainers, until you reach an instance that is
globally retained, usually by the global JavaScript object window.

By default, the heap analyzer sorts child nodes by "Distance" (first column), so that
you inspect the longest path when always expanding the first child node. This most
likely, but not necessarily leads you to the "culprit" retainer, that is the instance
that should no longer refer to the inspected instance. Many other retainers result
from cyclic references, that is, they would have been garbage-collected together
with the inspected object, if the "culprit" did not reference the inspected object.
This is why it is recommended to reduce the number of references by cleaning up
fields and listeners, even if this would not have been necessary without the memory
leak (see above).

Hopefully, by inspecting retainers, you'll find a listener that has not been detached
or a global reference that should be removed on destroy. If not, you can still clean
up your component or action so that it at least leaks less memory.

Figure 6.8. Google
Chrome's Developer
Tools Support Compar-
ing Heap Snapshots

The screenshot shows Google Chrome's developer tools in action. Blueprint Studio
has been loaded in debug mode. A document tab has been opened and closed

81CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

again, "Snapshot 1" has been taken, and after repeating this, "Snapshot 2" has
been added. Then, both snapshots have been compared as described above and
the developer has filtered for "PreviewPanel". The only retained instance of Pre
viewPanelToolbar has been selected, so that its retainers are shown in the lower
part. In the expanded path, the mouse hovers over the almost-leaf HTMLDivEle
ment, which is also automatically highlighted in the Studio UI. This reveals the
culprit of the memory leak: The highlighted "Bookmarks" button in the favorites
toolbar is the one who keeps an indirect reference to the PreviewPanel through
its context menu.

82CoreMedia DXP 8

Using the Development Environment | Tracing Memory Leaks

7. Customizing CoreMedia Studio

This chapter describes different customization tasks for CoreMedia Studio.

➞ Section 7.1, “Studio Plugins” [84] describes the structure of CoreMedia Studio
plugins.

➞ Section 7.2, “Localizing Labels” [94] describes how you can localize labels
of CoreMedia Studio.

➞ Section 7.3, “Document Type Model” [97] describes how you can adapt
CoreMedia Studio to your document type model, for example by localizing
types and properties, defining document forms, and so on.

➞ Section 7.4, “Customizing Property Fields” [115] describes how you can create
custom property fields and how you can customize the existing rich text
property field.

➞ Section 7.6, “Coupling Studio and Embedded Preview” [138] describes how
you can couple the Preview and Form of a document in the JSP templates
of the CAE preview.

➞ Section 7.8, “Customizing Studio using Component IoC” [143] describes how
to customize CoreMedia Studio using the Studio component IoC.

➞ Section 7.9, “Customizing Central Toolbars” [145] describes how to customize
the CoreMedia toolbar with additional search folders or custom actions.

➞ Section 7.11, “Customizing the Library Window” [152] describes how you
can customize the Library Window.

➞ Section 7.12, “Work Area Tabs” [160] describes how to integrate your own
tab to CoreMedia Studio. how to determine which tabs are opened at start
time and how to add actions to the work area tab context menu.

➞ Section 7.13, “Dashboard” [166] describes how to configure the dashboard
of CoreMedia Studio.

➞ Section 7.14, “Configuring MIME Types” [175] describes how to configure
MIME types for additional file types for CoreMedia Studio.

➞ Section 7.15, “Server-Side Content Processing” [176] describes how the pro-
cessing of content can be influenced by custom strategies and how incon-
sistencies in the content structure can be detected or avoided.

➞ Section 7.16, “Available Locales” [186] describes how CoreMedia Studio assists
the user in choosing a locale and how to configure the available locales.

➞ Section 7.17, “Notifications” [187] describes how to enrich CoreMedia Studio
with custom notifications.

83CoreMedia DXP 8

Customizing CoreMedia Studio |

7.1 Studio Plugins
The way to easily customize and extend CoreMedia Studio is by using plugins. The
Studio module in the CoreMedia Blueprint workspace demonstrates the usage of the
plugin mechanism, and defines several plugins for Studio.

Note that a Studio plugin is not to be confused with an Ext JS component plugin.
The former is an application-level construct; Studio plugins are designed to ag-
gregate various extensions (custom UI elements and their functional code, to-
gether with the required UI elements to trigger the respective functionality).
The latter means a per-component plugin and is purely an Ext JS mechanism.
This section deals with Studio plugins; Ext JS plugins are described in Section
5.1.3, “Component Plugins” [30]. In this manual, the terms Studio plugin and
component plugin are used, respectively, to avoid ambiguity.

Examples for CoreMedia Studio extension points that plugins may hook into are:

➞ Localization of document types and properties

➞ Custom forms for document types

➞ Custom collection thumbnail view, and custom columns in collection list view

➞ Custom tab types (example in Blueprint: Taxonomy Manager tab)

➞ Custom library search filters

➞ Allowed image types and respective blob properties for drag and drop into
rich text fields

➞ Additional extensions to extension menu

➞ Document types without a valid preview

A plugin for CoreMedia Studio usually has the following structure:

84CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

Figure 7.1. plugin
structure

Structure of exampleThe example above depicts the layout of a typical Studio module in the CoreMedia
Blueprint workspace. All plugins contain a pom.xml file that defines the dependen-
cies of the plugin. The actual source code goes into a subdirectory named joo. The
resources subfolder contains some bootstrapping code to register the plugin
with CoreMedia Studio, and it may also contain additional static resources such as
images or CSS files.

The module blueprint-components, for example, has a main package
com.coremedia.blueprint.studio and holds two resource bundles, and an
EXML file declaring the plugin and its applicable rules and configuration.

It is recommended to put the source of your plugin into a custom package. This
package is reflected in the folder structure below joo. The package name for the
example above is com.coremedia.blueprint.studio as it is CoreMedia Blue-
print's main Studio plugin.

Each plugin is described in an EXML file (in this example, this is BlueprintStu
dioPlugin.exml). This file declares the plugin's rule definitions (that is the various

85CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

Studio extension points that this plugin hook into) and configuration options.
Typically, that EXML file is sufficient for a plugin declaration.

However, if you want to run arbitrary ActionScript code as part of your plugin's
initialization phase, you can also introduce an ActionScript base class. In this case,
you need to declare that base class in your main EXML file, make your base class
extend StudioPlugin, and then override the init() method in your base class.

The Main Class

The main class of a plugin can either be defined as ActionScript code or as EXML.
In the example in Figure 7.1, “plugin structure” [85] the main class is Blueprint-
StudioPlugin as EXML. For your own plugins, it is recommended to use a name
schema like <your plugin name>StudioPlugin.

The main class for a plugin must implement the interface com.coremedia.cms.ed
itor.sdk.EditorPlugin. The interface defines only one init() method that
receives a context object implementing IEditorContext as its only parameter,
which is supposed to be used to configure CoreMedia Studio.

In ActionScript, you can simply implement the interface in your source code. In
EXML, on the other hand, you cannot implement interfaces. Therefore, Studio
provides a base EXML element to inherit from, namely <editor:studioPlugin>.
The corresponding ActionScript class com.coremedia.cms.editor.configur
ation.StudioPlugin not only implements the IEditorContext interface, it
also delegates the init() call to all Studio plugins specified in its configura
tions config option.

The IEditorContext instance handed in to the init() method can be used for
the following purposes:

➞ Configure which document types can be instantiated by the CoreMedia Studio
user. This basically restricts the list of content types offered after clicking
on the Create Document Icon in the Collection View (see Section 7.3.8, “Ex-
cluding Document Types from the Library” [113] for details). Note that only
those documents are offered in the create content menu that the current
user has the appropriate rights for in the selected folder - excluded document
types will be placed on top of that rule (that is, you can exclude document
type X from the menu even when the user has technically the rights to create
documents of type X).

➞ Configure image properties for display in the thumbnail view and for drag
and drop;

➞ Register hooks that fill certain properties after initial content creation (see
Section 7.3.9, “Client-side initialization of new Documents” [114] for details);

➞ Add properties to the localization property bundles, or override existing
properties (see Section 7.2, “Localizing Labels” [94] for details),

➞ Get access to the central bean factory and the application context bean,

86CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

➞ Get access to the REST session and indirectly to the associated repositories.

➞ Register content types for which Studio should not attempt to render an
embedded preview

➞ Register a transformer function to post-process the preview URL generated
for an existing content item for use in the embedded preview

➞ Get access to persistent per-user application settings, such as the tabs opened
by the user or custom search folders

➞ Register symbol mappings for pasting external text from the system clipboard
into a RichText property field, which can be useful when you have to paste
documents from Microsoft Word with special non-standard characters

Note that a Studio plugin's init() method is allowed to perform asynchronous
calls, which is essential if it needs server-side information (access user, groups,
Content, and so on) during initialization. CoreMedia Studio waits for the plugin to
handle all callbacks, only then the next plugin (if any) is initialized and eventually,
CoreMedia Studio is started. However, you cannot use window.setTimeout() or
window.setInterval() in Studio plugin initialization code!

Plugin Rules

The other essential part of a CoreMedia Studio plugin is the plugin rules it declares
in its <ui:rules> element. Plugin rules are applied to components whenever
they are created, which allows you to modify behavior of standard CoreMedia Studio
components with component plugins. The BlueprintStudio plugin, for example,
declares rules that add buttons to the favorites toolbar and to the preview panel's
toolbar.

The rules elementThe studio plugin file consists of one "rules" element that contains component
elements. The components can be either identified by their global id or by
namespace and xtype. For the latter case, you need to declare the required
namespace(s) in the <exml> tag of the Plugin file. You can read a Studio plugin
rule like this: "Whenever a component of the given xtype is built, add the following
component plugin(s)."

You can use predefined Ext JS component plugins to modify framework components.
The BlueprintStudioPlugin plugin, for example, uses the addItemsPlugin
to add buttons to the favorites toolbar.

In the BlueprintFormsStudioPlugin, custom forms for the various Blueprint-
defined document types are added by using the addTabbedDocumentFormsPlu
gin (which is a component plugin).

While in simple cases, the items to add can be specified directly inline in the
Studio plugin EXML file, this is generally discouraged.

87CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

The reason is that the Studio plugin class is instantiated as a singleton, and all
EXML elements that represent objects that are not components or plugins, most
prominently Actions, are instantiated immediately, too. This means that Actions
are instantiated (too) early, and that a plugin rule may be applied several times
with the same Action instance, leading to unexpected results.

The best practice is to move the whole component plugin to a separate EXML
file and reference this new plugin subclass from the Studio plugin rule. Since
the new plugin is referenced by its ptype, a new plugin instance and thus a new
Action instance is created for each application of the plugin rule as expected.

Execution orderThe Ext JS plugins of any component are executed in a defined order:

1. Plugins provided directly in the component definition are initialized

2. Plugins defined in Studio plugin rules, starting with the plugins for the most
generic applicable xtype, then those with successively more specific xtypes

3. Plugins configured for the component's ID

If that specification does not unambiguously decide the order of two plugins, plugins
registered earlier are executed earlier. To make sure that a certain module's Studio
plugins are registered after another module's Studio plugin, the former module
must declare a Maven dependency on the latter module. This way, the Studio plugins
run and register in a defined order.

For your own Studio plugin, you might want to use the file from the CoreMedia
Project workspace as a starting point. The name of the Studio plugin file should
reflect the functionality of the plugin, for example <My-plugin-Name>StudioPlu
gin.exml for better readability.

The following example shows how a button can be added to the actions toolbar
on the right side of the work area:

Example 7.1. Adding a
plugin rule to custom-
ize the actions toolbar

<editor:studioPlugin>
<ui:rules>
...
<editor:actionsToolbar>
<plugins>
<my:addActionsToolbarItemsPlugin/>

</plugins>
</editor:actionsToolbar>
...

</ui:rules>
</editor:studioPlugin>

Because it is embedded in the element <editor:actionsToolbar> in the above
declaration, your custom plugin <my:addActionsToolbarItemsPlugin> will
be added to all instances of the ActionsToolbar class (which uses the action
sToolbar configuration class).

88CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

Your custom plugin is defined in a separate EXML file AddActionsToolbarItem
sPlugin.exml that configures an <addItemsPlugin> to add a separator and
a button with a custom action to the ActionsToolbar at index 5:

Example 7.2. Adding a
separator and a button
with a custom action
to a toolbar

<exml:plugin xmlns...>
<ui:addItemsPlugin index="5">
<ui:items>
<tbseparator/>
<button>
<baseAction>
<my:myAction .../>

</baseAction>
</button>

</ui:items>
</ui:addItemsPlugin>

</exml:plugin>

Relative position of
new component

While you can insert a component at a fixed position as shown above, it might also
make sense to add the component after or before another component with a certain
(global) ID, itemId, or xtype. To that end, the addItemsPlugin allows you to
specify pattern objects so that new items are added before or after the represented
objects. If the component you want to use as an "anchor component" is not a direct
child of the component you plug into, you can set the recursive attribute in your
rules declaration to true.

Nested extension
points

When the component you want to modify is located inside a container that is also
a public API extension point, you might have to access that container's API to
provide context for your customizations. A typical use case for this is that you want
to add a button to a toolbar that is nested below a container, but you need to apply
your plugin rule to the container (and not the toolbar), because you need to access
some API of that Container to configure the items to add (for example, access to
the current selection managed by that container), or because the toolbar is reused
by other containers, and you want your button to only appear in one specific con-
text. Some Studio components define public API interfaces for accessing the run-
time component instance, for example <editor:collectionView> creates a
component that is documented to implement the public API interface ICollec
tionView (package com.coremedia.cms.editor.sdk.collectionview).

To express such nested extension point plugin rules, there is the plugin
<ui:nestedRulesPlugin>. Its usage is similar to CoreMedia Studio plugin rules,
namely is must contain an element <ui:rules> that again contains nested plugin
rules. A nested plugin rule consists of the element of the sub-component to locate
with an optional itemId, which in turn contains a <plugins> element with the
plugins to add to that component. Typical plugins to use here are addItemsPlugin,
removeItemsPlugin, and replaceItemsPlugin, all located in namespace
exml:com.coremedia.ui.config.

For example, assume that to every LinkList property field, you want to add a custom
action that needs access to the current selection of content items in the LinkList
given as a config option contentValueExpression of type ValueExpression.

89CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

Like in the example above, you have to add a custom plugin to a CoreMedia Studio
extension point in your CoreMedia Studio plugin EXML file:

Example 7.3. Adding a
plugin rule to custom-
ize all LinkList property
field toolbars

<editor:studioPlugin>
<ui:rules>
...
<editor:linkListPropertyField>
<plugins>
<my:customizeLinkListPropertyFieldPlugin/>

</plugins>
</editor:linkListPropertyField>
...

</ui:rules>
</editor:studioPlugin>

Now, in your plugin CustomizeLinkListPropertyFieldPlugin.exml, instead
of using <ui:addItemsPlugin> directly, you apply <ui:nestedRulesPlugin>
to locate the toolbar you want to customize. Still, the component you plug into is
a LinkList property field, and when your custom plugin is instantiated, that com-
ponent is instantiated, too, and handed in as the config option component. It is
good practice to assign the LinkList property field component as well as its initial
configuration (when needed) to typed local EXML variables to avoid repeating
longish expressions and type casts in inline code.

Example 7.4. Using
<ui:nes
tedRulesPlugin>
to customize a sub-
component using its
container's API

<exml:plugin
xmlns:exml="http://www.jangaroo.net/exml/0.8"
xmlns="exml:ext.config"
xmlns:ui="exml:com.coremedia.ui.config"
xmlns:editor="exml:com.coremedia.cms.editor.sdk.config"
xmlns:my="exml:...">

<exml:import
class="com.coremedia.cms.editor.sdk.premular.fields.LinkListPropertyField"/>

<exml:import
class="com.coremedia.cms.editor.sdk.config.linkListPropertyField"/>

<exml:var name="myLinkListPropertyField"
type="LinkListPropertyField"
value="{LinkListPropertyField(config.component)}"/>

<exml:var name="linkListPropertyFieldConfig"
type="linkListPropertyField"
value="{linkListPropertyField(

config.component.initialConfig)}"/>

<ui:nestedRulesPlugin>
<ui:rules>
<editor:linkListPropertyFieldToolbar>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<tbseparator/>
<ui:iconButton>
<baseAction>
<my:myAction
contentValueExpression=
"{myLinkListPropertyField

90CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

.getSelectedValuesExpression()}"
forceReadOnlyValueExpression=
"{linkListPropertyFieldConfig
.forceReadOnlyValueExpression}"/>

</baseAction>
</ui:iconButton>

</ui:items>
<ui:before>
<component
itemId="{linkListPropertyFieldToolbar

.LINK_LIST_SEP_FIRST_ITEM_ID}"/>
</ui:before>

</ui:addItemsPlugin>
</plugins>

</editor:linkListPropertyFieldToolbar>
</ui:rules>

</ui:nestedRulesPlugin>
</exml:plugin>

Note how the above code makes use of the xtype / EXML element linkList
PropertyFieldToolbar to locate the toolbar inside the linkListProperty
Field, as well as to use an ..._ITEM_ID constant from that config class to specify
the new items' location.

Customizing nested
components

As another example, assume you want to create your own component inheriting
from <editor:linkListPropertyField>. You want to reuse the default toolbar
that the standard link list component defines, but you want to add one additional
button to that toolbar. In a very similar fashion to the example above concerning
CoreMedia Studio plugins, you can then write your custom component's EXML file
like this:

Example 7.5. Using
<ui:nes
tedRulesPlugin>
to customize a sub-
component

<exml:component xmlns...>
<exml:cfg name="additionalToolbarItems" type="Array"/>
<editor:linkListPropertyField>
<plugins mode="append">
<ui:nestedRulesPlugin>
<ui:rules>
<editor:linkListPropertyFieldToolbar>
<plugins>
<ui:addItemsPlugin
items="{config.additionalToolbarItems}"/>

</plugins>
</editor:linkListPropertyFieldToolbar>

</ui:rules>
</ui:nestedRulesPlugin>

</plugins>
</editor:linkListPropertyField>

</exml:component>

Note that when you inherit from a component and use the <plugins> element
to declare the plugins you want to apply to this component, you overwrite the
plugins definition of the component you inherit from. That means that all the
plugins that the super component defines would not be used in your custom
component. To avoid that, you have to set the mode attribute of the plugins
element to either append or prepend, which will then add your custom plugin

91CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

definitions to the end of the super component's declarations, or insert them at the
beginning, respectively.

Removing componentsYou might also want to remove certain components from their containers. In that
case, you can add the removeItemsPlugin to the container component and re-
move items, again identifying them by pattern objects that can specify id, item id,
or xtype.

In order the replace an existing component, you can use the replaceItemsPlu
gin. For this plugin, you specify one or more replacement components in the
items property. Each item must specify an id or an item id and replaces the existing
component with exactly that id or item id.

Register the pluginFinally, a custom CoreMedia Studio plugin needs to be registered with the Studio
application. This is done in a JavaScript file in the resources folder. In the example,
this file is called blueprint-components.module.js. It is recommended that
you choose a name following the schema <put your plugin name
here>.module.js. The purpose of this file is to add the fully qualified main plugin
class to the list of Studio plugins. For your own plugin, you need to change the
third and fourth lines of the following example accordingly:

Example 7.6. Register-
ing a pluginjoo.loadModule('${project.groupId}', '${project.artifactId}');

coremediaEditorPlugins.push({
name:"My Plugin",
mainClass:"com.my.company.MyStudioPlugin"

});

Group-specific pluginIf your plugin should only be active for a certain group of users, you can add a
requiredGroup property to the plugin descriptor. The plugin will only be loaded
if the user is a member of the given group.

The object pushed onto the array coremediaEditorPluginsmay use the attrib-
utes defined by the class EditorPluginDescriptor, especially name and
mainClass as shown above. In addition, the name of a group may be specified
using the attribute requiredGroup, restricting access to the plugin to members
of that group.

OnlyIf pluginYou can also implement group specific and own conditions using the onlyIf plugin.
Find further information in the ASDoc of com/coremedia/cms/editor/sdk/con-
fig/onlyIf.

To recapitulate, this is a brief overview of the configuration chain:

1. Maven dependencies introduce Studio plugin modules to CoreMedia Studio.

2. Studio plugin modules register Studio plugins in the *-module.js file.

3. Studio plugin rules definitions denote components by ID or xtype and add Ext
JS plugins to those components.

92CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Plugins

https://releases.coremedia.com/dxp8/7.5.45-10/distribution/asdoc/com/coremedia/cms/editor/sdk/config/onlyIf.html
https://releases.coremedia.com/dxp8/7.5.45-10/distribution/asdoc/com/coremedia/cms/editor/sdk/config/onlyIf.html

4. The Ext JS plugins shown here change the list of items of the components. Any
other Ext JS plugins can be used in the same way.

Load external resources
If you want to load external resources like style sheets or JavaScript files into Studio,
you can load them with the module JS files mentioned above. Loading a JavaScript
file works as follows:

Example 7.7. Loading
an external scriptjoo.loadScript('<path to JavaScript file

relative to the web application root>');

Adding the following line loads a style sheet into Studio:

Example 7.8. Loading
an external style sheetjoo.loadStyleSheet('<path to CSS-file

relative to the web application root>');

See the CoreMedia Blueprint's main Studio plugin bootstrap code in blueprint-
components.module.js for an example on how to load custom style sheets.

93CoreMedia DXP 8

Customizing CoreMedia Studio | Load external resources

7.2 Localizing Labels
Many labels besides document types and property names can also be localized.
Typical cases are labels or button texts, error messages or window titles. The local-
ized texts are stored in property files. To use these property values, classes are
generated by the EXML compiler following the singleton pattern. Property classes
can be adapted as described in Section 5.7, “Localization” [61], typically overriding
the existing value with values from a new customizing property class.

Predefined property classes of CoreMedia Studio

The following classes are predefined property classes defining labels and messages
used throughout CoreMedia Studio.

➞ Actions_properties

➞ Editor_properties

➞ EditorErrors_properties

➞ Publisher_properties

➞ Validators_properties

See the ActionScript documentation for a list of defined properties.

Predefined property files of Blueprint Studio

The CoreMedia Studio Blueprint plugin contains two property files with localization
entries in the studio/blueprint-components/src/main/joo/com/core
media/cms/studio/blueprint directory: BlueprintStudio.properties
and BlueprintStudio_de.properties. These files are used for custom search
buttons in the favorites toolbar and for other labels that are not content type spe-
cific.

You can simply change the value of any of the properties as needed. While you
can also add new properties to these files when building extensions of CoreMedia
Studio, it is preferable to put new localization keys into new property files.

Adding a new resource bundle

If you want to add a new property file to contain your own localization key, proceed
as follows:

1. Create a directory corresponding to the desired package of your resource bundle,
for example, <ModuleName>/src/main/joo/<PackagePath>.

94CoreMedia DXP 8

Customizing CoreMedia Studio | Localizing Labels

2. Create new properties files following the naming schema: <PropertyFile
Name>.properties and <PropertyFileName>_de.properties.

3. Add one or more keys and values, like so: <KeyName>=<PropertyValue>

4. Optionally, add the same key to each locale-specific properties file, using an
appropriate translation. By default, there is only one translation (German), but
you can add your own.

5. In an EXML file describing your custom component, import the resource bundle,
using its fully qualified class name: <exml:import class="<FullyQuali
fiedName>_properties"/>

6. Address the resource bundle and key in the text attribute of the component
where you want to use the label:{<FileName>_properties.INSTANCE.<Key
Name>}. You will get code completion in a properly configured IDE once the
properties bundle was compiled.

7. Alternatively, reference the INSTANCE object from an ActionScript class.

Example: Adding a search button

In order to introduce a new localized button to the favorites toolbar you could add
the following component to the file BlueprintFavoritesToolbarBu
ttons.exml:

Example 7.9. Adding a
search button<button itemId="exampleButton">

<baseAction>
<editor:showCollectionViewAction

text="{BlueprintStudio_properties.INSTANCE.doc_example_txt}"
published="false" editedByMe="true" contentType="CMArticle"/>
</baseAction>

</button>

The attribute text of the editor:ShowCollectionView Element defines the
text to be displayed in the Studio web application. On the top of the file Blueprint
FavoritesToolbarButtons.exml you will see the following line:

<exml:import class="com.coremedia.cms.studio. \
blueprint.BlueprintStudio_properties"/>

This line imports the BlueprintStudio.properties file into the scope. Of
course, you could also import your own file.

In order to have the label you want, you need to add it to the properties file. The
BlueprintStudio.properties file starts like this after adding a string for the
label:

Example 7.10. Ex-
ample property filedoc_example_txt=My Example Button

SpacerTitle_navigation=Navigation
SpacerTitle_versions=Versions

95CoreMedia DXP 8

Customizing CoreMedia Studio | Localizing Labels

SpacerTitle_layout=Layout
...

Override Standard Studio Labels

It is also possible to override the standard Studio labels, like so:

1. Create a property file with all labels you want to override, for example Custom
Labels.properties and CustomLabels_de.properties.

2. Search for the key of the property that should be changed. All the keys are
documented in the ActionScript API, such as Action_withdraw_tooltip in
the resource bundle class Actions_properties.

3. In your CustomLabels bundle, set the new value for the key.

4. In the init() method of the EditorPlugin, override the Actions_proper
ties bundle with the following code:

Example 7.11. Overrid-
ing properties//override the standard studio labels with custom properties

ResourceBundle.overrideProperties(Actions_properties,
CustomLabels_properties);

This can be done with every property of Studio. An example can also be found in
the BlueprintStudioPlugin.

96CoreMedia DXP 8

Customizing CoreMedia Studio | Localizing Labels

7.3 Document Type Model
Each CoreMedia CMS content application is based on an object-oriented document
type model. Documents of different types often require different treatment. By
tailoring CoreMedia Studio to the document type model, the support for dealing
with documents is greatly improved.

➞ Section 7.3.1, “Localizing Types and Fields” [97] describes how to localize
the names of document types and document properties.

➞ Section 7.3.2, “Defining Content Type Icons” [98] describes how to define
icons for your document types in CoreMedia Studio.

➞ Section 7.3.3, “Customizing Document Forms” [101] describes how you can
add or remove property fields to or from a document form.

➞ Section 7.3.4, “Image Cropping and Image Transformation” [108] describes
how to enable the image cropping feature.

➞ Section 7.3.6, “Disabling Preview for Specific Document Types” [112] describes
how you can disable the preview for a specific document type.

➞ Section 7.3.7, “Configuring Translation Support” [112] describes how you
can configure the translation support.

➞ Section 7.3.8, “Excluding Document Types from the Library” [113] describes
how you can exclude document types from the dropdown lists for document
creation and document type search filtering.

➞ Section 7.3.9, “Client-side initialization of new Documents” [114] describes
how you can initialize newly created documents.

7.3.1 Localizing Types and Fields
You can localize the names of document types and document properties by means
of property files as described in Section 5.7, “Localization” [61]. To this end, you
provide property files and use them to override the properties defined in
com.coremedia.cms.editor.ContentTypes_properties. Typically, this is
done while initializing a Studio plugin.

Example 7.12. Localiz-
ing document typespublic function init(editorContext:IEditorContext):void {

ResourceBundle.overrideProperties(ContentTypes_properties,
MyDocumentTypes_properties);
}

There are several kinds of property keys to overwrite when localizing document
types:

➞ <ContentTypeName>_text: the name of the content type <ContentType
Name> in the given language;

➞ <ContentTypeName>_toolTip: the tooltip shown for the content type
<ContentTypeName>;

97CoreMedia DXP 8

Customizing CoreMedia Studio | Document Type Model

➞ <ContentTypeName>_icon: the CSS class to attach to the HTML <div>
elements that show the type icons for the content type <ContentTypeName>
(see Section 7.3.2, “Defining Content Type Icons” [98] for details about these
style classes);

➞ <ContentTypeName>_<PropertyName>_text: the name of the property
<PropertyName> of a document of type <ContentTypeName> or a subtype
thereof;

➞ <ContentTypeName>_<PropertyName>_toolTip: the tooltip shown for
the property <PropertyName> of a document of type <ContentTypeName>
or a subtype thereof.

➞ <ContentTypeName>_<PropertyName>_emptyText: the text to shown
in the field when the property <PropertyName> of a document of type
<ContentTypeName> is empty. This message typically prompts the user to
enter a value.

When multiple localizations are defined for a single property, but different content
types, the most specific type is used.

Content Types in Blueprint Studio

The CoreMedia Studio Blueprint plugin contains two property files BlueprintDoc
umentTypes.properties and BlueprintDocumentTypes_de.properties
for localizing document type names and property names in the studio/blue
print-forms/src/main/joo/com/coremedia/blueprint/studiodirectory.

You can simply change the value of any of the properties as needed.

7.3.2 Defining Content Type Icons
A significant number of content type icons are already defined. See Table 7.1,
“Content Type Icons” [98] for an overview. Special cases, though, might not be
covered by these icons.

Table 7.1. Content
Type IconsCSS classIcon

content-type-CMArticle-icon

content-type-CMAudio-icon

content-type-CMCSS-icon

content-type-CMChannel-icon

98CoreMedia DXP 8

Customizing CoreMedia Studio | Defining Content Type Icons

CSS classIcon

content-type-CMCollection-icon

content-type-CMDownload-icon

content-type-CMExternalLink-icon

content-type-CMFavDirectory-icon

content-type-CMFolder-icon

content-type-CMGallery-icon

content-type-CMHTML-icon

content-type-CMImageMap-icon

content-type-CMInteractive-icon

content-type-CMJavaScript-icon

content-type-CMMedia-icon

content-type-CMNamedDynamicList-icon

content-type-CMObject-icon

content-type-CMPicture-icon

content-type-CMSettings-icon

content-type-CMSearchDirectory-icon

content-type-CMSite-icon

content-type-CMSitemap-icon

99CoreMedia DXP 8

Customizing CoreMedia Studio | Defining Content Type Icons

CSS classIcon

content-type-CMTaxonomy-icon

content-type-CMTeaser-icon

content-type-CMVideo-icon

content-type-CMViewtype-icon

content-type-Dictionary-icon

content-type-Preferences-icon

content-type-Query-icon

If you want to provide custom icons, you should use black outlines (#3d4242) and
white fill (#ffffff). Instead of white, you may also use a gray gradient form
#ffffff to #b3b3b3. A gradient is actually preferred for large icons. In order to
maintain a style that is consistent with the default icons, use color sparingly, if at
all. The icons have to be placed on a transparent background. All standard icons
are strictly 2-dimensional.

You have to provide four different images. You can then add CSS rules to use your
own icons as background images of type icon HTML elements. The four images
are used in the following cases:

➞ 16x16-pixel icons for use on a white background. Your CSS styles should
use this image when an element is tagged with your style class and the style
class content-type-xs.

➞ 16x16-pixel icons for use on a light gray or colored background. Unlike the
other icons, these icons should not use a white fill. Instead, use a transparent
fill or a black to transparent gradient. Your CSS styles should use this image
when an element is tagged with your style class and the style classes con
tent-type-xs and content-type-transparent.

➞ 64x64-pixel icons for use on a white background. As a rule of thumb, use
2-pixel outlines instead of single pixels for 16x16 icons. Your CSS styles
should use this image when an element is tagged with your style class and
the style class content-type-l.

100CoreMedia DXP 8

Customizing CoreMedia Studio | Defining Content Type Icons

➞ 128x128-pixel icons for use on a white background. Your CSS styles should
use this image when an element is tagged with your style class and the style
class content-type-xl.

Assuming your style class is called myIconClass, you might want to define the
following rules:

.content-type-xs.myIconClass{
background-image:url('...')!important;

}
.content-type-transparent.content-type-xs.myIconClass{
background-image:url('...')!important;

}
.content-type-l.myIconClass{
background-image:url('...')!important;

}
.content-type-xl.myIconClass{
background-image:url('...')!important;

}

If you omit the rule for the content-type-transparent class, the browser will
fall back to the first rule, showing icons with a solid fill.

If you define many content type icons, consider grouping the icons in a single
sprite image, using the background-position attribute in your CSS to select
the correct icon.

If you want to show the content type icons in your Studio document tab, then you
need to include the following rules for each content type style class:

.silicium-tab .x-tab-strip-text.content-type-myIconClass{
background-image:url('.../16x16/myIcon-pos')!important;

}
.silicium-tab.x-tab-strip-active
.x-tab-strip-text.content-type-myIconClass{
background-image:url('.../16x16/myIcon-neg')!important;

}

By using the rules above, the status icon (checked-out state, editing state etc.) will
replace the content type icon, if applicable.

7.3.3 Customizing Document Forms
The following section describes how to customize the document forms, which
constitute the main working component that your users will use. In earlier Studio
versions, property fields were all contained in the main work area of the document
form, and document metadata such as the filing information and version history
were grouped in a collapsible section at the bottom of the form.

Using tabs for group-
ing

Current Studio versions offer a more flexible way of organizing your - potentially
quite big - set of property fields into horizontal tabs. You can either use the default
of two tabs, one for the main content properties, one for the metadata, respectively,
or you can arrange properties freely on an arbitrary number of tabs.

101CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Document Forms

Default two-tabbed document forms

In the simple (default) case, a CoreMedia document form has two tabs: the primary
form fields (1) that enable you to edit the content of the object and another tab
(2) that shows metadata such as the path to the document, and the versioning in-
formation for that document.

Figure 7.2. Document
form with content and
metadata properties

Both tabs of the form are defined in separate definition files. Forms should be
defined by subclassing the predefined DocumentForm component.

CoreMedia Studio offers at least one predefined property field for each property
type available for CoreMedia documents. See Table 7.2, “Property Fields” [104] for
a list of all provided field types.

To customize a form, you need to adapt the respective form definition file (an
EXML component) in studio/blueprint-forms/src/main/joo/com/core
media/blueprint/studio/forms/. Containers used in the forms are defined
in separate EXML files in the /containers sub directory. The following code
shows a simple example for a standard CMArticle form definition:

Example 7.13. Article
form<?xml version="1.0" encoding="UTF-8"?>

<exml:component xmlns:exml="http://www.jangaroo.net/exml/0.8"

102CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Document Forms

xmlns="exml:ext.config"
xmlns:ui="exml:com.coremedia.ui.config"

xmlns:editor="exml:com.coremedia.cms.editor.sdk.config">
<editor:documentForm itemId="CMArticle">

<items>
<editor:stringPropertyField propertyName="subject"
cls="cm-textfield-header"/>
<editor:stringPropertyField propertyName="title"
cls="cm-textfield-header"/>
<editor:richTextPropertyField propertyName="text"/>
<editor:imageLinkPropertyField

propertyName="media"linkListContentType="CMPicture"

dataPropertyName="data" />
<editor:stringPropertyField propertyName="teaserSubject"

cls="cm-textfield-header"/>
<editor:stringPropertyField propertyName="teaserTitle"
cls="cm-textfield-header"/>
<editor:richTextPropertyField propertyName="teaserText"/>
<editor:blobPropertyField propertyName="thumbnail"
contentType="image/*"/>
<editor:linkListPropertyField propertyName="related" />
<editor:stringPropertyField propertyName="linktext"/>

</items>
</editor:documentForm>

</exml:component>

The property fields are defined in the <items> element of the <editor:docu
mentForm> element. Each property field has at least an attribute propertyName
which corresponds to the property name of the document type. The property name
must be specified for each field. The document form also provides three additional
properties to all fields without specifying them explicitly: bindTo, hideIssues,
and forceReadOnlyValueExpression. The standard property fields recognize
these options and custom property fields are encouraged to so, too. See Section
7.4, “Customizing Property Fields” [115] for details about developing new property
fields.

➞ bindTo: A value expression that evaluates to the content object to show in
the form. The content may change when the form content changes.

➞ hideIssues: This attribute is used to disable the highlighting of property
fields with issues originating from validators. Validators will be described in
Section 7.15.1, “Validators” [176]. If set on the document form, it applies to
all property fields.

➞ forceReadOnlyValueExpression: A value expression that evaluates to
true when the document form and all of its property fields should be shown
in read-only mode, for example when showing the document form on the
left side in master comparison mode.

Other attributes might vary depending on the property type. The BlobProperty
Field editor, for example, has a property contentType that defines the MIME
type. If you want to hide a property, you can simply remove the related <edit

103CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Document Forms

or:<PropertyType>propertyField> element. The order of the editor elements
defines the order in the form.

Table 7.2. Property
FieldsDescriptionUsed forProperty Field

Shows string data.String propertystringProperty-
Field

Shows integer number.Integer propertyintegerProper-
tyField

Shows integer number, with arrow buttons
to increase/decrease the current value, and
mouse wheel support

Integer propertyspinnerProper-
tyField

Shows a checkbox indicating checked=1, un-
checked=0.

Integer property with
0/1 Boolean values

booleanProper-
tyField

Shows date, time and time zone and provides
appropriate picker elements.

Date propertydateTimeProper-
tyField

Allows drag and drop.Link List propertylinkListProper-
tyField

Shows a list of linkable contents and the cur-
rent selection.

Link List propertycontentList-
ChooserProper-
tyField

Shows the text in a WYSIWYG style and
provides a fully featured toolbar.

CoreMedia RichText
(XML) property

richTextProper-
tyField

Shows the raw XML text.Generic XML propertyxmlProperty-
Field

Shows the image and provides an upload
dialog.

blob property for all
MIME types

blobProperty-
Field

Shows the text as plain text in a text area.CoreMedia RichText
(XML) property

textAreaProper-
tyField

Shows the text in a text area.String propertytextAreaString-
PropertyField

Shows the blob as plain text in a text area.blob property of
MIME type text/plain

textBlobProper-
tyField

Shows a generic editor for structs.CoreMedia Struct
property

structProperty-
Field

Showing derived contents

In a multi-site setting contents may be localized variants of each other. By including
the component DerivedContentsList into your form you can show the list of

104CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Document Forms

derived contents of any given document. Typically, this component is placed near
the link list property that associates a master document to a derived document.

<editor:documentForm>
<items>
...
<editor:derivedContentsList/>
...

</items>
</editor:documentForm>

Customizing columns in link list properties

Showing more columnsBy default, the linkListPropertyField shows a document type icon, the name
and the lifecycle status for each linked document. You can configure an array of
columns to be shown using the columns property of the field component. Each
array element must be an Ext JS grid column object. The available fields of the
store backing the grid panel are name, status, type, and typeCls, These fields
represent the name, the lifecycle status, the document type name and a style class
for a document type icon, respectively.

If you need additional fields for your custom columns, you can add them using the
fields property. Each field should be a com.coremedia.ui.con
fig.dataField. The following example shows how a new column uses a custom
field to display the locale property of linked documents.

<editor:linkListPropertyField propertyName="variants">
<editor:fields>
<ui:dataField name="locale"

mapping="properties.locale"
ifUnreadable=""/>

</editor:fields>
<editor:columns>
<editor:typeIconColumn/>
<editor:nameColumn/>
<editor:statusColumn/>
<gridcolumn id="locale"

width="30"
dataIndex="locale"/>

</editor:columns>
</editor:linkListPropertyField>

Whereas the configured fields are added to the default fields, the configured
columns completely replace the default columns. That is, if you want to keep the
predefined fields, you have to repeat their definitions as shown in the example.

Multi-tab document forms

In situations where the default split into a content and a properties tab is not suf-
ficient for your users, you can also define any number of arbitrary tabs, and freely
assign property fields to them. Doing so requires a slightly more complex definition
of your document forms, where individual tabs are nested within the root element
of your EXML definition. The following pseudo code snippet outlines the basic
structure of a tabbed document form.

105CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Document Forms

<?xml version="1.0" encoding="UTF-8"?>
<exml:component xmlns:exml="http://www.jangaroo.net/exml/0.8"

xmlns="exml:ext.config"

xmlns:editor="exml:com.coremedia.cms.editor.sdk.config">

<editor:documentTabPanel>
<items>
<editor:documentForm title="First tab">
<items>
<editor:stringPropertyField name="property1"/>
<editor:stringPropertyField name="property2"/>

</items>
</editor:documentForm>
<editor:documentForm title="Second tab">
<items>
<editor:stringPropertyField name="property3"/>
<editor:stringPropertyField name="property4"/>

</items>
</editor:documentForm>
<editor:documentForm title="Third tab">
<items>
<editor:stringPropertyField name="property5"/>
<editor:stringPropertyField name="property6"/>

</items>
</editor:documentForm>
...

</items>
</editor:documentTabPanel>

To register your custom document form, you need to add your EXML component
to the TabbedDocumentFormDispatcher, like so:

<editor:tabbedDocumentFormDispatcher>
<plugins>
<editor:addTabbedDocumentFormsPlugin>
<editor:documentTabPanels>
<my:myFormDefinition1 itemId="CMArticle"/>
<my:myFormDefinition2 itemId="CMTeaser"/>
...

</editor:documentTabPanels>
</editor:addTabbedDocumentFormsPlugin>

</plugins>
</editor:tabbedDocumentFormDispatcher>

The above code plugs into the TabbedDocumentFormDispatcher, and registers
two custom document forms from your own namespace titled my. Note that the
itemId still corresponds to the name of the document type you want to apply
your form for.

The document forms registered with the dispatcher are automatically used for
both the regular document form and for left-hand form of the version comparison
view and the master side-by-side view. When used on the left side, the for
ceReadOnlyValueExpression passed to the form is set to true, allowing your
form to switch into a read-only mode.

When you choose to use multi-tab document forms, also note that you need to
specify the built-in metadata components such as <editor:versionHistory>

106CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Document Forms

or <editor:documentInfo>, because they are not automatically added. It is
common practice to place these on a separate tab titled System or similar (which
is also what CoreMedia Blueprint does), but of course you can add them to any place
in the form that you want.

Collapsible Property Fields

To add several property fields to a group with an additional title, the component
<editor:collapsibleFormPanel> can be used. All documents forms of Core-
Media Blueprint do use it to provide a better overview about related fields.

Figure 7.3. Document
form with a collapsible
form panel

Additionally, the collapsible form panel persists the collapsed status. For example,
when the collapsible form panel is collapsed for the teaser title and teaser text of
an article, the group is collapsed for all newly opened article documents too (except
it contains an invalid field). This status information is stored in the user preferences
of the user, so if the user logs into Studio on another computer, the same state will
be restored.

<editor:collapsibleFormPanel
title="{CustomLabels_properties.INSTANCE.PropertyGroup_Details_label}"
itemId="detailsDocumentForm">
<items>
<editor:stringPropertyField propertyName="title"/>
<editor:richTextPropertyField propertyName="detailText"

initialHeight="200"/>
</items>

</editor:collapsibleFormPanel>

107CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Document Forms

Each declaration of an <editor:collapsibleFormPanel> element should
contain the attributes title and itemId. The title attribute applies a title to
the panel (and also provides a meaning to the group). It is also used as click area
for collapsing the panel. The itemId should be applied to persist the state of the
group. If no itemId is provided, the collapsible state is not stored in the user
preferences and therefore not applied when new documents of the same type are
opened.

7.3.4 Image Cropping and Image Transformation
The Image Editor provides various image transformations which are stored in a
separate struct property of the document. It also holds the original image data
which is never modified - the transformations are applied only when previewing
or delivering the image.

The Image Editor uses the same Image Transformation Framework to display the
image within the image form as the CAE uses for delivering images to web sites,
e.g. within the preview panel. See the Content Application Developer Manual for
further details on image transformations.

The ImageEditorPropertyField is defined in the CMPictureForm.exml of
the Blueprint and can be defined by using the config properties listed below.
Properties marked with * are mandatory.

Table 7.3. ImageEd
itorProperty
Field Configuration
Settings

DescriptionTypeConfig Property

A property path expression leading to the content
Bean whose properties are edited.

ValueEx
pression

bindTo*

The name of the BLOB property containing image
data.

StringpropertyName*

The name of the Struct property containing image
transformation data.

StringimageSettings
PropertyName*

If true, no validation issues on this property field are
shown. Defaults to false.

BooleanhideIssues

An optional ValueExpression which makes the com-
ponent read-only if it is evaluated to true.

StringforceReadOnly
ValueExpression

The ImageEditorPropertyField can be configured as follows:

Example 7.14. Config-
uring the Image Editor<ie:imageEditorPropertyField bindTo="{config.bindTo}"

propertyName="data"

imageSettingsPropertyName="localSettings"/>

108CoreMedia DXP 8

Customizing CoreMedia Studio | Image Cropping and Image Transformation

A crop is a subset of the image with a fixed aspect ratio and minimum size. Crops
in the Image Editor are represented by variants. There are two different ways to
configure variants: via Spring or as site specific variants directly in the content.

Spring Configuration for Variants

To configure global variants for all CMPicture documents, the mediatrans
form.xml has to be adjusted. Each variant is defined by one Transformation
which holds all the information for that variant.

Example 7.15. Config-
uring the variants<bean class="com.coremedia.cap.transform.Transformation">

<property name="name" value="large4x3"/>
<property name="widthRatio" value="4"/>
<property name="heightRatio" value="3"/>
<property name="minWidth" value="640"/>
<property name="minHeight" value="480"/>
<property name="previewWidth" value="400" />

</bean>

The configuration of variants via Spring is the default used by theTransformIm
ageService.

Site Specific Image Variants

If not all sites should have the same fixed set of image variants, site specific image
variants can be configured via content instead. Thereto a CMSettings document
named responsiveImageSettingswith the struct property linkedSettings
has to be defined for every site (see also section "Content Configuration" below).

The feature for site specific variants is disabled by default. To enable it, the property
dynamicVariants has to be set to true in the filetransform-image-ser
vice.properties.

If loading the image variants fails for some reason, e.g. the image is not located
within a site, the default variants configured in the mediatransform.xml will
be applied instead. It is therefore recommended to apply all site specific variant
configurations to the mediatransform.xml as well.

Rendering Site Specific Image Variants

When rendering images, the TransformImageService is used to access the
variants of an image. An example for this can be found in theCMPicture.asPre
view.jsp. In this template the previewWidth and previewHeight attributes
of the Transformation class are used to calculate the image size in the preview.
If these attributes are not set, minWidth and minHeight are used instead.

CAE Configuration

109CoreMedia DXP 8

Customizing CoreMedia Studio | Image Cropping and Image Transformation

For the CAE, the class TransformImageService is responsible for loading site
specific cropping information. The feature can be enabled by changing/adding the
attribute dynamicVariants to true in the file mediatransform.xml. The class
part of the Blueprint so it can be customized if necessary.

The TransformImageService will automatically look up the linked settings of
the root channel and search for the "Responsive Image Settings" struct which
contains the variant information.

Content Configuration

The "Responsive Image Settings" document not only contains image variants, but
also various resolutions which may be used on different devices. The breakpoint
values defined in the css for the corresponding theme are used to determine which
resolution should be used. With the introduction of site specific image crops, addi-
tional struct properties can be configured for variants.

Variant Properties, the following are mandatory:

➞ widthRatio: minimum integer which defines the width component of the
aspect ratio

➞ heightRatio: minimum integer which defines the height component of
the aspect ratio

➞ minWidth: the value is used by the Studio to validate the minimum variant
width (integer property)

➞ minHeight: the value is used by the Studio to validate the minimum variant
height (integer property)

Pre-defined image sizes (resolutions), at least one pair should be defined per
variant and must match the aspect ratio:

➞ width: defines the width of the image (integer property)

➞ height: defines the height of the image (integer property)

Properties for variant and pre-defined image sizes (properties listed within the
predefined image size properties will always override the more general variant
properties):

➞ gamma: the default gamma value of the picture (string property with numeric
value from 0 to 1)

➞ jpegQuality: the default jpeg quality of the picture (string value with nu-
meric value from 0 to 1)

➞ sharpen: boolean value to enabled/disable sharpening of the picture

110CoreMedia DXP 8

Customizing CoreMedia Studio | Image Cropping and Image Transformation

➞ removeMetadata: boolean value to enabled/disable metadata removal of
the transformed image

7.3.5 Enabling Image Map Editing
The image map editor comes as a panel component embedding an image view.
The editor allows users to create hot zones (image map areas) and to attach docu-
ments to hot zones via drag and drop. The image map editor uses a configurable
struct property name to store the image map configurations to a struct property
of an image map document. It also offers a configuration option for the image to
display. This allows you to store image map configurations in documents that do
not have an image blob property themselves.

To enable image map editing in your project, include an image map editor compon-
ent in your document's EXML form (Blueprint shows this in its CMImageMap
Form.exml definition).

Example 7.16. Config-
uring an Image Map
Editor

<im:imageMapEditor
imageBlobValueExpression=

"{config.bindTo.extendBy('properties.pictures.0.properties.data')}"

structPropertyName="localSettings"/>

In the example above, the source document has a link list property name pictures
of cardinality 1. So the image editor component is bound to the image stored at
the data property of the linked image document. The map configuration is stored
at the source document's localSettings property.

Enabling validation

Configure the ImageMapAreasValidator in the Spring application context to enable
validation of the image map document. The validator generates an error issue if
there is no image blob or if at least one of the defined image map areas does not
have a valid link target. See also Section 7.15.1, “Validators” [176] for validation in
general.

Example 7.17. Config-
uring a validator for
image maps

<bean id="cmImageMapAreasValidator"
class="com.coremedia.rest.cap.validators.ImageMapAreasValidator">
<property name="connection" ref="connection"/>
<property name="contentType" value="CMImageMap"/>
<property name="validatingSubtypes" value="true"/>
<property name="imagePropertyPath" value="pictures.data"/>
<property name="structProperty" value="localSettings"/>

</bean>

In the example above, the validator is configured for the document type CMIm
ageMap and its subtypes. The image is stored in the blob property data of the

111CoreMedia DXP 8

Customizing CoreMedia Studio | Enabling Image Map Editing

https://releases.coremedia.com/dxp8//distribution/apidocs//com/coremedia/rest/cap/validators/ImageMapAreasValidator.html

first document of link list property pictures of the image map document. The
image map configuration is stored in the struct property localSettings.

7.3.6 Disabling Preview for Specific Document Types
For some document types a suitable preview representation is not easily generated.
This applies to some built-in document types like Dictionary and EditorPref
erences, but also to very technical document types storing CSS or script code.

The method getDocumentTypesWithoutPreview() from the editor context
object grants access to an array of document type names for which no preview
should be shown. Like in the case of document types excluded from creation as
shown in the previous section, you can simply push additional document types
into the mutable array returned from the method.

You can also use the configureDocumentTypes plugin to specify document
types without preview, like in the following excerpt from BlueprintFormsStu
dioPlugin.

Example 7.18. Defining
document types
without preview

<editor:configureDocumentTypes
names="CMAction,CMCSS,..."
preview="false"/>

7.3.7 Configuring Translation Support
Source language docu-
ment resolver

If you work with content in multiple languages and want to derive translated doc-
uments from source documents in a primary language, you can support the editors
by providing a side-by-side view of both documents. To this end, a resolution
strategy for matching translated documents can be configured.

A source language document resolver is simply a function that takes a Content
object as its single argument and returns the Content from which the given content
was derived. If no source document is available, the resolver returns null. So that
the document forms for the translated document and the source document can
be properly aligned in the side-by-side view, the returned content must belong to
the same content type as the argument content. In the document model of Core-
Media Blueprint, the resolver function can simply follow the link list master to
determine a source document.

Example 7.19. Blue-
print source language
document resolver

public function resolveMasterDocument(content:Content):Content {
var contentProperties:ContentProperties = content.getProperties();

if (contentProperties) {
var readOnlyContents:Array =
contentProperties.get('master') as Array;

if (readOnlyContents) {
return readOnlyContents[0] as Content;

}
}

112CoreMedia DXP 8

Customizing CoreMedia Studio | Disabling Preview for Specific Document Types

return null;
}

To configure a source language document resolver, the configureDocumentTypes
Studio plugin can be used. A resolver is used for the given content type and all
subtypes. If multiple resolvers are available, the resolver for the more specific
content type takes precedence.

Example 7.20. Config-
uring a source lan-
guage document resolv-
er

<editor:configuration>
<editor:configureDocumentTypes
names="CMLocalized"
sourceLanguageDocumentResolver="{resolveMasterDocument}"/>

</editor:configuration>

7.3.8 Excluding Document Types from the Library
The CoreMedia document type model is a very powerful concept to tailor CoreMedia
CMS to your needs. However, in any typical project, there are at least a couple of
document types mainly designed to manage technical metadata, such as site set-
tings. In many cases you want to hide these document types from casual users of
CoreMedia Studio, thereby keeping the interface simple and avoiding clutter. To do
so, you can remove choices from the dropdown document type selector in the
Library's create content menu, and from the dropdown used to restrict search
results to certain document types.

You can add the document types that should not be shown to the list of excluded
document types using the IEditorContext. The methods getExcludedDocu
mentTypes() and getDocumentTypesExcludedFromSearch() return an array
holding the names of all document types excluded from the create document
dropdown and search filter dropdown, respectively. Using the array's pushmethod,
you can add additional document types you wish to hide: editorContext.ge
tExcludedDocumentTypes().push('<DocType1>', ...)

Example

Example 7.21. Defining
excluded document
types

editorContext.getExcludedDocumentTypes().push('Dictionary',
'Preferences', 'Query', 'Folder_',
'CMDynamicList', 'CMVisual',
'EditorPreferences');

This call gets the array of excluded document types and adds Strings containing
the names of the document types to exclude.

If you are using EXML for your plugin, you can also write the above exclusion in-
structions declaratively in your main Plugin EXML file:

113CoreMedia DXP 8

Customizing CoreMedia Studio | Excluding Document Types from the Library

Example 7.22. Defining
excluded document
types in EXML

<editor:configuration>
<editor:configureDocumentTypes

names="Dictionary,Preferences,Query,Folder_,CMDynamicList,CMVisual,EditorPreferences"

exclude="true" excludeFromSearch="true"/>
</editor:configuration>

7.3.9 Client-side initialization of new Documents
With a content initializer you can initialize the properties of a newly created docu-
ment. A content initializer will be called while a new content object is being created
by the NewContentAction. Only one initializer can be defined for each document
type. You must register custom initializers with the IEditorContext class. Simply
call the registerContentInitializer(contentTypeName, initializer)
method.

Example

The following code defines a simple initializer that sets the content's language
property to German by default:

Example 7.23. Defining
a content initializereditorContext.registerContentInitializer("CMTeaser", initLanguage);

...
private function initLanguage(content:Content):void {
var properties:ContentProperties = content.getProperties();
properties.set('lang', 'de');

}

Client-side initialization might be sufficient for simple initialization scenarios. If
you have complex requirements, consider using server-side initialization: Refer to
Section 7.15.2, “Intercepting Write Requests” [180] for details.

114CoreMedia DXP 8

Customizing CoreMedia Studio | Client-side initialization of new Documents

7.4 Customizing Property Fields
While CoreMedia Studio provides predefined property fields for strings, dates, link
lists (including those handling images), and many others, you might want to use
an own widget to display and edit a property according to your specific require-
ments.

Ext JS offers many components that can be used for this purpose. Often, some
configuration will get you a long way to an appropriate widget. The main task that
is always necessary is the binding of the new component to your data ("the model").
Studio's client-side models are explained in more detail in Section 5.3, “Client-side
Model” [37] and Section 5.4, “Remote CoreMedia Objects” [51]. While you could
theoretically implement property fields in any way, adhering to certain conventions
as described in the following section helps to make the property fields reusable.

Also, there are a number of standard plugins that simplify the task of writing a
property field. These are introduced by way of an example in Section 7.4.2,
“Standard Component StringPropertyField” [116]. Here you will find a simple recipe
for creating property fields that use a predefined plugin to handle the data binding.

The rich text property field allows several customizations as shown in Section 7.4.5,
“Customizing RichText Property Fields” [122].

7.4.1 Conventions for Property Fields
Property field are intended for use in document forms as described in Section
7.3.3, “Customizing Document Forms” [101]. To ensure the most convenient usage,
custom property fields should adhere to the standard name for config options.

The option propertyName should define the name of the property to show and
edit in the property field. While you can use a different name for this option, your
document form definition become more readable when you use the propertyName
option uniformly.

Further conventions arise, because a document form forwards a number of config-
uration option to all included components, that is, to all included property fields.
By using the standard option names, you avoid repetitions and accidental omissions.

The option bindTo is a value expression that evaluates to the object that defines
the property. If possible, the field should not assume that this object implements
the Content interface, but rather that it is a bean with a property properties
that stores another bean that contains the property given as propertyName. That
will eventually make it possible to reuse the field for workflow forms.

For the same reason, a property field should not access built-in properties like
creationDate and others. It should also refrain from performing other operations
like checkIn on the returned bean. This is no significant limitation, because

115CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Property Fields

property fields are typically reading and writing schema-defined properties, only.
When property fields are used in the left half of the version comparison view, they
are bound to an object that does implement the Content interface, but that is
actually wrapping a version. In this case, the built-in properties of Content are
present, but might not always return the value you expect. It always claims to be
checked in and it returns the properties of the historic version, even though it re-
ports the id of the versioned content. When accessing only the schema-defined
properties, property field will behave as expected.

If the value expression provided through the option forceReadOnlyValueEx
pression evaluates to true, the property field should switch to a read-only mode.
In this mode it should be possible to view property values and preferably to copy
them, but it should be impossible to make updates. The value expression is set to
true when a document form is used on the left side of a master side-by-side view
or a version comparison view. The property field itself must take other reasons
into account that might make the field read-only. To this end, the utility methods
isReadOnly and createReadOnlyValueExpression in the class PropertyEd
itorUtil support you in making a property field read-only.

The class PropertyEditorUtil also contains methods for localizing property
names, types, and so on.

7.4.2 Standard Component StringPropertyField
The task attempted in this section is to replicate the behavior of the standard
StringPropertyField.

Create the new property field as an EXML component, since it is a visual component
and needs no application logic. You inherit directly from the Ext JS component
TextField that is used for displaying the property. Before you can start, you must
set the stage for the XML file.

Example 7.24. Custom
property field<?xml version="1.0" encoding="ISO-8859-1"?>

<exml:component xmlns:exml="http://www.jangaroo.net/exml/0.8"
xmlns="exml:ext.config"
xmlns:editor=
"exml:com.coremedia.cms.editor.sdk.config"
xmlns:ui="exml:com.coremedia.ui.config">

You need the exml namespace for the basic structure of the EXML file, the default
name space for predefined Ext JS components, the editor namespace for CMS-
specific components and plugins (the "Editor SDK"), and the ui namespace for
generic plugins at the model layer (the "UI Toolkit").

The element <exml:component/> indicates that a component is defined. It does
not specify that the new component should inherit from Component directly. If
you need a base class, you can specify it using the baseClass attribute - this is
shown further down in this example.

116CoreMedia DXP 8

Customizing CoreMedia Studio | Standard Component StringPropertyField

Afterwards, the configuration options supported by the class are described, using
the <exml:cfg> elements. You can think of the set of these elements as the con-
figuration API description of your component. Any component inherits the config-
uration options from its superclass(es).

<exml:cfg name="propertyName" type="String">
<exml:description>
The property to bind.

</exml:description>
</exml:cfg>
<exml:cfg name="bindTo" type="com.coremedia.ui.data.ValueExpression">

<exml:description>
A value expression evaluating to the content whose
property is being edited.

</exml:description>
</exml:cfg>

The two properties propertyName and bindTo are mandatory for all property
fields. The former declares the name of the property to be edited, which is used
both for accessing the model and for localizing the property field. The latter declares
a value expression evaluating to the Content object.

<exml:cfg name="hideIssues" type="Boolean">
<exml:description>Don't show any validation issues on this property
field.</exml:description>
</exml:cfg>

As a third configuration option, you can disable the visual indication of content
errors or warnings via configuration. This option will later on passed to the appro-
priate plugin.

An optional description of the entire class follows.

<exml:description>...</exml:description>

You are now ready to define the base class and add some styling.

<textfield name="{'properties.' + config.propertyName}"
anchor="100%"
cls="string-property-field">

Several plugins are available to customize the behavior of the editor.

<plugins>

To register the property field properly with Studio for the purposes of preview-base
editing and navigating directly to property field, you need to declare the following
plugin:

<editor:propertyFieldPlugin propertyName="{config.propertyName}"/>

Using this plugin lets Studio know that your component is authoring a content
property. Among other things, this will set up your component to cooperate properly

117CoreMedia DXP 8

Customizing CoreMedia Studio | Standard Component StringPropertyField

with the content errors and warnings navigation window, and with content shortcuts
from the embedded preview.

Update backing modelBy default, a component will flush its state to the server when it loses its focus,
which typically happens when a users clicks into another property field. If you want
to update the backing model more frequently, you can use the immediate change
events plugin. The plugin sends a change event when the user has not typed any-
thing for longer than a configurable "buffer" time (in milliseconds). This plugin
works for Field components only, but when you look at the Ext JS class tree, you
will find that many components are fields in disguise, even number fields and
combo boxes.

<ui:immediateChangeEventsPlugin/>

In order to support content validation, a field should also be highlighted in red
(when content errors are present), or orange (when content warnings are present).
See Section 7.15.1, “Validators” [176] for information on how to set up server-side
content validators. On the client side, the showIssuesPlugin as shown below
handles all the work. It reads the issues generated on the server and attaches one
of the style classes issue-error and issue-warn if an issue is present. Pass all
relevant configuration options from the property field to the plugin, especially the
options bindTo and propertyName.

Additionally, this plugin highlights the property field in differencing mode when
the property value has changed. To this end, it attaches a style class issue-change
to its component if the property is reported as changed by the server.

For struct properties, a dot-separated property path can be used as the property
name to visualize issues and differences of a property nested in a struct value.

Because the string property field shown here is based on a plain textfield, all
formatting rules are already provided in the standard style sheets. For custom
components, it might be necessary to add CSS rules for the style classes issue-
error, issue-warn, and issue-change in order to visualize issues and changes
correctly.

The propertyFieldPlugin and the showIssuesPlugin are often, but not al-
ways attached to the same component. In some cases it may appropriate to desig-
nate an outer component as the component to scroll into view when navigating
to a property, but to select an inner component to be tagged with issue style classes.

<editor:showIssuesPlugin bindTo="{config.bindTo}"
propertyName="{config.propertyName}"
ifUndefined=""
hideIssues="{config.hideIssues}"/>

The property label is used when displaying the component in a form. Using the
following plugin, you can make sure that the label is localized according to the
standard localization pattern.

118CoreMedia DXP 8

Customizing CoreMedia Studio | Standard Component StringPropertyField

<editor:setPropertyLabelPlugin
bindTo="{config.bindTo}"
propertyName="{config.propertyName}"/>

Show default textWhen the string field is empty, you want to display a message instructing the user
to enter a text. This, too, can be localized uniformly, and the setPropertyLa
belPlugin sets your property field up to play along nicely.

<editor:setPropertyEmptyTextPlugin
bindTo="{config.bindTo}"
propertyName="{config.propertyName}"/>

Read-onlyAlso, the component should be made read only (meaning that the user cannot
enter any text but still can mark and copy the content) when the edited content is
checked out by another user or is forced to be read only by the document panel:

<editor:bindReadOnlyPlugin
forceReadOnlyValueExpression="{config.forceReadOnlyValueExpression}"
bindTo="{config.bindTo}"/>

Data bindingLastly, the edited value must be passed to the server, and the component should
display the server-side value. This ("data binding") is typically done using the ver-
satile bindPropertyPlugin, like shown below. Note that the immediate changes
plugin just triggers the change event often enough, whereas the bindProper
tyPlugin handles the wiring to the server side, and in turn triggers when a change
event is fired.

<ui:bindPropertyPlugin
bindTo="{config.bindTo.
extendBy('properties', config.propertyName)}"

bidirectional="true"/>

Finally, end the component definition.

</plugins></textfield></exml:component>

While the list of plugins may appear quite long at first, it is very helpful to be able
to separate the different aspects of a property field in different plugins. If you want
to provide a custom algorithm of reacting to an empty value, for example, you can
easily do so by just omitting the respective plugin declaration, and providing custom
handling code - either in the base class or possibly extracted into your own reusable
plugin.

7.4.3 Compound Field
The following code example shows a more complex scenario, where a field for a
URL is created that lets the user open a browser window or tab for the linked page
with a single click.

The EXML declaration:

119CoreMedia DXP 8

Customizing CoreMedia Studio | Compound Field

<?xml version="1.0" encoding="UTF-8"?>
<exml:component xmlns:exml="http://www.jangaroo.net/exml/0.8"

xmlns="exml:ext.config"

xmlns:editor="exml:com.coremedia.cms.editor.sdk.config"
xmlns:ui="exml:com.coremedia.ui.config"

baseClass="com.coremedia.ui.examples.propertyField.UrlPropertyFieldBase">

<exml:cfg name="bindTo"
type="com.coremedia.ui.data.ValueExpression">

<exml:description>
A property path expression leading to the Bean whose property

is edited.
</exml:description>

</exml:cfg>

<exml:cfg name="propertyName" type="String">
<exml:description>
The property of the Bean to bind in this field.

</exml:description>
</exml:cfg>

<exml:description>
A text field that binds to a string property being edited inside

of a document form. It allows to open the link target in a new
window.
</exml:description>

<container cls="url-property-wrapper" layout="form">
<items>
<!-- The URL is edited in a text field. -->
<textfield itemId="urlTextField"

name="{'properties.' + config.propertyName}"
labelSeparator=""
cls="string-property-field">

<plugins>
<!-- register the new property editor -->
<editor:propertyFieldPlugin

propertyName="{config.propertyName}"/>
<!-- Generate an appropriate label. -->
<editor:setPropertyLabelPlugin bindTo="{config.bindTo}"

propertyName="{config.propertyName}"/>
<!-- Write back changes even before the user leaves the

field. -->
<ui:immediateChangeEventsPlugin/>
<!-- When the field is empty, an informational message

should appear. -->
<editor:setPropertyEmptyTextPlugin bindTo="{config.bindTo}"

propertyName="{config.propertyName}"/>
<!-- Disable the field as appropriate for a content form.

-->
<editor:bindDisablePlugin bindTo="{config.bindTo}"/>

<!-- Bind the content of the field to the given content
property. -->

<ui:bindPropertyPlugin
bindTo="{config.bindTo.extendBy('properties', config.propertyName)}"

ifUndefined=""
bidirectional="true"/>

</plugins>

120CoreMedia DXP 8

Customizing CoreMedia Studio | Compound Field

</textfield>
<!-- Add a link to the URL displayed in the field. The actual

handling is done by the super class. -->
<ui:textLink itemId="textLink"

text="{PropertyFieldExample_properties.INSTANCE.UrlPropertyField_open_text}"

handler="{openFrame}"/>
</items>

</container>
</exml:component>

The base class:

package com.coremedia.ui.examples.propertyField {

import com.coremedia.ui.data.ValueExpression;
import
com.coremedia.ui.examples.propertyField.config.urlPropertyField;

import ext.Container;

public class UrlPropertyFieldBase extends Container {
public function UrlPropertyFieldBase(config:urlPropertyField) {
super(config);

}

/**
* A property path expression leading to the Bean whose property

is edited.
*/
public native function get bindTo():ValueExpression;

/**
* The property of the Bean to bind in this field.
*/
public native function get propertyName():String;

/**
* Try to open a new window with the string currently stored in

the property used as the URL.
*/
public function openFrame():void {
var url:String = bindTo.extendBy('properties',

propertyName).getValue() as String;
if (url) {
window.open(url, 'externalLinkTarget')

}
}

}
}

The above is an example of a compound field, where you need to wrap multiple
Ext JS components in a container. This is possible, but you must take care to declare
and pass around all configuration properties that need to be set on subcomponents.

There is also some application logic, which is what the base class is for. While you
could technically embed any code into the EXML file itself, it is good practice to
separate out application code in an ActionScript base class. Note how the EXML
component references the method openFrame from the base class using curly
brackets:

121CoreMedia DXP 8

Customizing CoreMedia Studio | Compound Field

Example 7.25. Using a
base class method<ui:textLink itemId="textLink"

text="{PropertyFieldExample_properties.
INSTANCE.UrlPropertyField_open_text}"
handler="{openFrame}"/>

7.4.4 Complex Setups
Keep in mind that somewhat counter-intuitively, the base class constructor has
not run while the component tree is built in the constructor of the EXML class. In
particular, this means that methods calls in the EXML file (not mere usages of
methods as event handlers) will find the fields of the base class uninitialized. For
example, calling <textfield name="{computeName()}" .../> would enter
the method computeName before the base class constructor has run, so that some
initialization would have to be done early on demand. On the other hand, in
<button handler="{handleButton}"/> the method handleButton is only
invoked after the component is initialized. If a method that is called early needs
access to the configuration, you must pass the config object as a parameter:
<textfield name="{computeName(config)}" .../>.

7.4.5 Customizing RichText Property Fields
A richtext property field consists of the richtext toolbar and a WYSIWYG editing
area, the richTextArea, which is a wrapper for an instance of the CKEditor. The
CKEditor provides richtext editing features via plugins. It is important to note that
Ext JS and CKEditor are independent and offer their own JavaScript API.

The richtext toolbar is a standard ExtJS toolbar and contains buttons and menu
items that perform richtext-related actions. There are a pre-defined set of buttons
which are activated on this toolbar, which may be configured. This is described in
Section “Customizing Richtext Toolbar” [127]. It is possible to add or remove buttons
or menus from the toolbar. This may be done for pre-defined and custom actions.

The richtext property field comes with a set of pre-defined actions which can be
activated, deactivated or configured. At the end of this section is a list of configur-
ation options for these actions.

Most of these actions are wired closely to the CKEditor in the sense that the actions
invoke CKEditor commands, which in turn are defined by CKEditor plugins. Some
of these plugins like pastefromword and pastetext use CKEditor dialogs (with
a custom CoreMedia skin to better integrate into the Studio UI).

Other actions are plain ExtJS actions (maybe using an ExtJS dialog) that interact
with the CKEditor directly via its API.

It is also possible to define custom actions by writing plugins for the richtext
property field or by using CKEditor plugins directly. This is described in Section
“Customizing CKEditor” [129].

122CoreMedia DXP 8

Customizing CoreMedia Studio | Complex Setups

As with the pre-defined actions, you may write custom actions which invoke
CKEditor commands or write custom ExtJS actions which use the CKEditor API. This
is described in Section “Interacting with the CKEditor via API” [131]

You can remove entire CKEditor plugins if required. When you do so, you should
also remove the corresponding buttons or menu items that are wired to commands
defined in that plugin.

The following is a list of configuration options for pre-defined richtext actions:

➞ Section “Inline Images in RichText” [123]: Configure the creation and display
of inline images, which are stored in image documents.

➞ Section “Adding table cell merge and split commands” [123]: Add merge and
split table cell functionality (per default deactivated).

➞ Section “Adding Custom RichText Style Classes” [124]: Add custom richtext
styles.

➞ Section “Customizing the Symbol Mapping” [126]: Configure the symbol
mapping.

Inline Images in RichText

By dragging image documents from the library into a richtext field you can create
inline images. The document types that are supported for this operation and the
image blob properties that are accessed to display the images can be configured
using the registerRichTextDragDropImageType method of the global edit
orContext object. You can also use the configureDocumentTypes plugin as
shown in the BlueprintFormsStudioPlugin of CoreMedia Blueprint:

Example 7.26. Inline
images in richtext<editor:configureDocumentTypes

names="CMPicture,CMImage"
richTextDropImageProperty="data"/>

<editor:configureDefaultRichTextImageDocumentType
defaultRichTextImageType="CMPicture"/>

The previous example also shows how the configureDefaultRichTextIm
ageDocumentType plugin can be used to configure the document type that limits
the search when the library is opened using the embedded image button of the
richtext toolbar.

Adding table cell merge and split commands

There are predefined commands for merging and splitting of table cells that can
easily be made available in the richtext toolbar. To do so use the addItemsPlugin
as described in the previous chapter.

The code would be like this:

123CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

<editor:richTextPropertyField>
<plugins>
<ui:addItemsPlugin recursive="true">
<ui:items>
<menuseparator/>
<menuitem

itemId="{CELL_MERGE_ITEM_ID}"><baseAction><ui:richTextAction
commandName="{richTextAction.COMMAND_CELL_MERGE}"/></baseAction></menuitem>

<menuitem
itemId="{CELL_MERGE_RIGHT_ITEM_ID}"><baseAction><ui:richTextAction

commandName="{richTextAction.COMMAND_CELL_MERGE_RIGHT}"/></baseAction></menuitem>

<menuitem
itemId="{CELL_MERGE_DOWN_ITEM_ID}"><baseAction><ui:richTextAction
commandName="{richTextAction.COMMAND_CELL_MERGE_DOWN}"/></baseAction></menuitem>

<menuitem
itemId="{CELL_VERTICAL_SPLIT_ITEM_ID}"><baseAction><ui:richTextAction

commandName="{richTextAction.COMMAND_CELL_VERTICAL_SPLIT}"/></baseAction></menuitem>

<menuitem
itemId="{CELL_HORIZONTAL_SPLIT_ITEM_ID}"><baseAction><ui:richTextAction

commandName="{richTextAction.COMMAND_CELL_HORIZONTAL_SPLIT}"/></baseAction></menuitem>

</ui:items>
<ui:after>
<component

itemId="{richTextPropertyField.TABLE_REMOVE_ITEM_ID}"/>
</ui:after>

</ui:addItemsPlugin>
</plugins>

</editor:richTextPropertyField>

Adding Custom RichText Style Classes

You can add custom richtext style classes to the CKEditor. Style classes can be ap-
plied to block elements (for example, p) or inline elements (for example, span).
Moreover, you can define groups of style classes allowing only one style class of
that group to be set at a time. To define own style class groups, you have to add
them via the customizeCKEditorPlugin, using its classGroups attribute of
the config object as shown in the following code listing.

The group name must not contain hyphens.

Note, that when you apply any configuration as described in the listing, this will
overwrite the default configuration in the product, rather than appending to it.
Thus, you will typically want to re-add the defaults in your custom configuration -
this is shown in the listing below, too.

<editor:studioPlugin>
<ui:rules>
<ui:richTextArea>

124CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

<plugins>
<ui:customizeCKEditorPlugin>
<ui:config>
<exml:object classGroups="{{
'box' : { /* name of the style class group */
blockElements:'p', /* block element(s) to which this

*/
styleClasses: [/* group should be applied */

'box--test-1',
'box--test-2'

]
},
/* re-add default style class group definitions */
'p' : {
blockElements:'p',
styleClasses: [

'p--heading-1',
'p--heading-2',
'p--heading-3'

]
},
'align' : {
blockElements:'p',
styleClasses: [

'align--left',
'align--right',
'align--center',
'align--justify'

]
}

}}"/>
</ui:config>

</ui:customizeCKEditorPlugin>
</plugins>

</ui:richTextArea>
</ui:rules>

</editor:studioPlugin>

How to determine to
which block element
the style will be applied

The blockElements attribute is used to define which block elements the style
should be applied to. Given the current cursor position when the respective com-
mand is invoked, the system will walk the DOM hierarchy upwards until it finds a
block element whose name matches the one given in the blockElements attribute.
The attribute may also contain an array of element names if the style class can be
applied to different elements - in this case, the style will be applied to the first
element found that matches any of the element names given. If you omit the at-
tribute, the style group definition is treated as an inline style.

The styleClasses attribute is used to set an array of style class names. The
naming format is up to you, but the "--" syntax given in the example is the best
practice.

Adding CSS rulesTo visualize a custom style in CKEditor, you need to add the respective CSS rules.
As the CKEditor in the Studio is using a div container instead of an iframe you
cannot use the contentCss configuration of the CKEditor, but have to load the
CSS rules directly into the Studio (see section “Load external resources” [93]). Use
coremedia-richtext-1.0.css as a reference on how to write the CSS rules
so that they only apply to the CKEditor.

125CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

The command names necessary to apply the style classes to selected text will be
style_<classGroupName>_<styleClassName>. The command name to remove
the style class will be style_<classGroupName>__remove. Those commands
can be added to the richTextPropertyField via the addItemsPlugin as
shown in the next code listing.

<editor:richTextPropertyField>
<plugins>
<ui:addItemsPlugin recursive="true">
<ui:items>
<button text="box">
<menu>
<menu>
<items>
<acme:boxButton text="test 1"

richtextcommand="style_box_box--test-1"/>
<acme:boxButton text="test 2"

richtextcommand="style_box_box--test-2"/>
<menuseparator/>
<acme:boxButton text="remove box style"

richtextcommand="style_box__remove"/>
</items>

</menu>
</menu>

</button>
</ui:items>
<ui:after>
<component itemId="{...}"/>

</ui:after>
</ui:addItemsPlugin>

</plugins>
</editor:richTextPropertyField>

In this example, the BoxButton is used as a wrapper around the richtext action
using the mentioned commands. It is defined in a BoxButton.exml file.

<?xml version="1.0" encoding="UTF-8"?>
<exml:component xmlns:exml="http://www.jangaroo.net/exml/0.8"

xmlns="exml:ext.config"
xmlns:ui="exml:com.coremedia.ui.config">

<exml:cfg name="richtextcommand" type="String"></exml:cfg>
<menucheckitem group="box">
<baseAction>
<ui:richTextAction commandName="{config.richtextcommand}"/>

</baseAction>
</menucheckitem>

</exml:component>

Customizing the Symbol Mapping

Mapping Word symbol
font items

When pasting rich text from Microsoft Word into CoreMedia Studio, some characters
of the pasted text might originate from the Word symbol font. CoreMedia Studio
translates such characters using a mapping table containing all commonly used
characters. However, if your editorial staff uses more obscure symbols, wrong
characters may appear after pasting.

To ensure that the characters shown in the rich text area correspond to the symbol
character from a Word document, you can define an extension to the symbol

126CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

mapping. You map each additional character to the HTML entity or the Unicode
character in a JavaScript object. Afterwards you can pass that object to the method
registerRichTextSymbolMapping of the editor context during the initialization
phase of a Studio plugin.

The following code shows how new symbol mappings are registered at startup
time.

Example 7.27. Config-
uring the rich text
symbol mapping

public function init(editorContext:IEditorContext):void {
...
editorContext.registerRichTextSymbolMapping({
'Ä': '⊗',
'Å': '⊕'

});
...

}

Customizing Richtext Toolbar

The buttons and menu items of the toolbar can be customized by applying the
addItemsPlugin and removeItemsPlugin to richTextPropertyField. The
item ids of the buttons and menu items provided are listed as constants in the
ASDoc of richTextPropertyField.

It is also possible to add a toolbar button for a custom plugin or a CKEditor plugin.

Add action to new but-
ton

When adding a new button to the toolbar and you want it to perform a CKEditor
command, you can use the richTextActionwith the configured command name.
Currently used commands are listed as constants in the ASDoc.

When adding or extending a menu in the toolbar and the menu items should per-
form richTextActions for context-sensitive CKEditor commands, you should
use the richTextMenuCheckItem for a correct representation of the enabled
and active states of the command. See the ASDoc for more information.

It is recommended to add the functionality into a Studio plugin that can be used
in the richTextPropertyField configuration (see Section 7.1, “Studio Plu-
gins” [84] for Studio plugins). The following code, included in a file Custom
izeRichTextPlugin.exml, moves the italic button between the internal link
and external link button and removes the heading 3 paragraph format menu from
the rich text toolbar.

Example 7.28. Custom-
izing the rich text edit-
or toolbar

<?xml version="1.0" encoding="UTF-8"?>
<exml:plugin xmlns:exml="http://www.jangaroo.net/exml/0.8"

xmlns="exml:ext.config"
xmlns:ui="exml:com.coremedia.ui.config">

<exml:import
class="com.coremedia.cms.editor.sdk.config.richTextPropertyField"/>

<ui:nestedRulesPlugin>

127CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

<ui:rules>
<toolbar>
<plugins>
<ui:removeItemsPlugin>
<ui:items>
<component

itemId="{richTextPropertyField.ITALIC_BUTTON_ITEM_ID}"/>
<component

itemId="{richTextPropertyField.PARAGRAPH_HEADING3_ITEM_ID}"/>
</ui:items>

</ui:removeItemsPlugin>
<ui:addItemsPlugin>
<ui:items>
<ui:iconButton

itemId="{richTextPropertyField.ITALIC_BUTTON_ITEM_ID}">
<baseAction>
<ui:richTextAction

commandName="{richTextAction.COMMAND_ITALIC}"/>
</baseAction>

</ui:iconButton>
</ui:items>
<ui:after>
<component

itemId="{richTextPropertyField.INTERNAL_LINK_BUTTON_ITEM_ID}"/>
</ui:after>

</ui:addItemsPlugin>
</plugins>

</toolbar>
</ui:rules>

</ui:nestedRulesPlugin>
</exml:plugin>

The baseAction, as in the above example, can also reference a custom action
defined in a custom or CKEditor plugin. In this case, the commandName of the
richtextAction is the name given in the plugin definition.

You can either apply the plugin to all rich text fields or only to a specific content
type. When you add it to your *StudioPlugin.exml file (the <bp:custom
izeRichTextPlugin/> line), then the plugin is applied to all rich text fields:

<editor:studioPlugin>
<ui:rules>
…

<editor:richTextPropertyField>
<plugins>
<bp:customizeRichTextPlugin/>

</plugins>
</editor:richTextPropertyField>

</ui:rules>
</editor:studioPlugin>

When the plugin should only be applied to a specific rich text field, you have to
add it to a specific *DocumentForm.exml file:

<editor:documentTabPanel>
<items>
…
<editor:richTextPropertyField propertyName="detailText">
<plugins mode="append">
<bp:customizeRichTextPlugin/>

128CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

</plugins>
</editor:richTextPropertyField>

</items>
</editor:documentTabPanel>

Here, it is important, that you use the mode="append" attribute. Otherwise, you
would remove all plugins that are already defined for this field.

Add custom iconYou may also add a custom icon to the toolbar or use one bundled with an existing
CKEditor plugin. To do this, apply the addItemsPlugin as above to the richTex
tPropertyField. The iconButton can take the arguments iconCls, text and
tooltip in order to apply and localize the custom icon. The iconCls property
defines the css class of the icon. The icon image location and style may then be
added to the css using the css class name defined by the iconCls.

Example 7.29. Adding
a custom icon to the
rich text editor toolbar

<ui:iconButton
iconCls="{MyPluginLabels_properties.INSTANCE.MyPlugin_icon}"

tooltip="{MyPluginLabels_properties.INSTANCE.MyPlugin_tooltip}"

text="{MyPluginLabels_properties.INSTANCE.MyPlugin_text}">

As in the example above, these three properties may be defined in a separate
properties bundle which can be localized.

Customizing CKEditor

CKEditor pluginsThe CKEditor provides richtext editing capabilities in a browser independent way.
It has a plugin-driven architecture. Plugins are JavaScript files that are loaded at
the end of the CKEditor loading process, before the initialization and activation of
CKEditor instances. Plugins are named and defined in a file named plugin.js
which resides under a path matching the plugin's name. Plugins may add UI fea-
tures, change the behavior of existing UI components or add data manipulation
features. The CKEditor provides automatic runtime plugin dependency management.

The custom plugin my-plugin can be added to a CoreMedia Studio project by
editing the following file

my-project/resources/META-INF/resources/ckeditor/_source/plugins/my-plugin/plugin.js

If not already done in the parent project, the path of the plugin.js has to be
configured as a additional resource in the project pom.xml:

Example 7.30. Adding
resource path to
pom.xml

<resources>
...
<resource>

<directory>${basedir}/src/main/resources/META-INF/resources/ckeditor/_source</directory>

<targetPath>META-INF/resources/ckeditor</targetPath>

129CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

</resource>
</resources>

Note that when explicitly configuring custom resources in a maven pom, you will
need to include the maven default resource rules, such as copying of
src/main/resources and src/main/generated-resources to the target (represented
as ... in the example above). Please consult the blueprint sources for example usages.

The content of the plugin.js may be similar to

Example 7.31. Custom-
izing the CKEditorCKEDITOR.plugins.add('my-plugin',

{
beforeInit(editor){
...

},
init : function(editor) {
...

},
lang : [...],
requires: [...]

});

The argument passed to the add method is a so-called plugin definition whose
beforeInit and init functions are called upon creation of every CKEditor in-
stance in that package. The definition may also provide the lang and requires
attributes which respectively define valid languages for the plugin and a list of re-
quired plugins.

The official CKEditor API documentation is available at http://docs.ckedit-
or.com/#!/api.

The custom plugin can now be registered by the CKEditor. This is done by using
the addCKEditorPluginsPlugin with your richTextArea:

<ui:richTextArea>
<plugins>
<ui:addCKEditorPluginsPlugin plugins="my-plugin"/>

</plugins>
</ui:richTextArea>

You can remove predefined plugins so that they are not loaded by CKEditor. This
is done by using the removeCKEditorPluginsPlugin in your richTextArea.
To remove the CKEditor plugin about, for example, add the following to your de-
claration:

<ui:richTextArea>
<plugins>
<ui:removeCKEditorPluginsPlugin plugins="about"/>

</plugins>
</ui:richTextArea>

130CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

http://docs.ckeditor.com/#!/api/CKEDITOR.pluginDefinition
http://docs.ckeditor.com/#!/api
http://docs.ckeditor.com/#!/api

The list of additional CKEditor plugins loaded by CoreMedia Studio by default is
documented in the ASDoc of richTextArea as the constant defaultCKEditor
ExtraPlugins. The list of standard CKEditor plugins, that are excluded by default
are listed in the ASDoc of richTextArea as the constant defaultCKEditorRe
movePlugins.

To change other configuration options of CKEditor, you can use the custom
izeCKEditorPlugin with your richTextArea. A list of CKEditor configuration
options can be found here: CKEditor.config For example, to instruct the CKEditor
to add 2 spaces to the text when hitting the TAB key, use the following code:

<ui:richTextArea>
<plugins>
<ui:customizeCKEditorPlugin>
<ui:config>
<exml:object tabSpaces="2"/>

</ui:config>
</ui:customizeCKEditorPlugin>

</plugins>
</ui:richTextArea>

Items or Buttons which execute custom CKEditor commands have to be added to
the richtext toolbar using the AddItemsPlugin as described in Section “Custom-
izing Richtext Toolbar” [127]. This cannot be done in the CKEditor directly.

Interacting with the CKEditor via API

Interacting with the
CKEditor via API

If you want to interact with the CKEditor without writing a CKEditor plugin, you
can add a standard ExtJS action to the toolbar of the richTextPropertyField.
To gain access to the CKEditor you have to create a baseClass for your action
and add the following method:

[InjectFromExtParent]
public function setCKEditor(editor:*):void {
...

}

The injected editor object is of type CKEDITOR.editor (see http://docs.ckedit-
or.com/#!/api/CKEDITOR.editor) and can be used according to your needs.

However, there are two things to consider when writing your own custom actions:

➞ Undo / Redo: In order to be able to undo / redo the changes your action has
made, you have to send one saveSnapshot event before and one after
making the changes, like so:

editor.fire('saveSnapshot');
// perform changes ...
editor.fire('saveSnapshot');

➞ Saving Changes: In order to update the bound content with the changes your
action has made, it may be necessary to send an additional save event. This

131CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

http://docs.ckeditor.com/#!/api/CKEDITOR.config

event is recognized by the property field which will then trigger the update.
The CKEditor already tracks changes and the property field will react to it,
but in some cases this is not possible. You should check if the content gets
checked-out when your action is performed, and if not add the following
code:

// perform changes ...
editor.fire('save');

132CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing RichText Property Fields

7.5 Upgrading the CKEditor
The upgrade from CKEditor 3 to 4.5.7 provides many advantages in stability, bug-
fixes and the opportunity to expand functionality with minimal migration costs.
As the bugfixes and new functionality have been integrated into the standard
CKEditor API and plugins, there is now the possibility to use CKEditor functionality
out of the box.

This section will outline the steps needed to take in order to upgrade standard and
custom plugins to CKEditor 4. At the end is a list of CoreMedia bug reports which
have been solved with this upgrade.

7.5.1 Upgrading RichTextArea Plugins from CKEditor 3
to 4

➞ Update the version of jangaroo-libs to the latest version. This contains
the source code for CKEditor 4.

➞ Choose the CKEditor and CoreMedia plugins that should be loaded by apply-
ing the addCKEditorPluginsPlugin or removeCKEditorPluginsPlu
gin to a Studio plugin. Choose the buttons which will appear in the richtext
toolbar by applying the additemsplugin or removeitemsplugin to the
richtextpropertyfield. See Section “Customizing Richtext Toolbar” [127].
Below are tables of CKEditor and CoreMedia Richtext plugins loaded by de-
fault.

➞ Event listening has changed in CKEditor 4, which may affect custom plugins.
As the events to select menu items from a custom dropdown menu (e.g.
custom styles) have changed, the richTextMenuCheckItem has been in-
troduced to replace the menucheckitem in dropdown menus. If the menu
has a base class, make sure to make this change there too.

➞ CKEDITOR.dom.selection.getRanges() returns undefined if the selec-
tion has length 0. Code which uses this range should check if it exists before
calling properties or methods on it.

➞ CSS styles can no longer be added on a editor instance basis (e.g. editor.ad
dCss()). As the CKEditor in the Studio is using a div container now instead
of an iframe you cannot use the contentCss configuration of the CKEditor
anymore, but have to load the CSS rules directly into the Studio (see section
“Load external resources” [93]).

➞ Global themes are no longer supported and thus the global coremedia theme
has been removed.

➞ Skins can be copied from the standard CKEditor collection and customized
for styling (dialogs). The coremedia skin is the default. It provides some ad-
justments for dialogs, so that they better integrate into the Studio UI.

For more CKEditor API changes, see the CKEditor upgrade guide:

133CoreMedia DXP 8

Customizing CoreMedia Studio | Upgrading the CKEditor

➞ CKEditor 3 Upgrade Guide

➞ API Changes in CKEditor 4

If you are also upgrading RichTextArea Plugins from older versions of CoreMedia,
please note that

➞ InjectFromExtParent annotation must be added to setCkEditor()methods

➞ The RichtextToolbar does not exist anymore

7.5.2 Migrating Richtext Editor Dialogs
The architecture for richtext editor dialogs has changed. It is now possible to use
standard CKEditor dialogs and style them with skins. The coremedia skin is available
as a template which may be customized.

If you have custom CKEditor plugins that use dialogs then your old solution will
not work with CKEditor 4 and you have to migrate it. The reason for this, is that
coremedia shipped custom coremedia plugin for CKEditor, called 'extdialog',
which patched the standard CKEditor dialogs and forwarded the calls that they
would normally receive over to Ext-Dialogs and other way around from Ext-Dialogs
to CKEditor. Such Ext-Dialogs could be defined in EXML and styled with CSS in the
same way as other studio components. Unfortunately this blocked the posibilty
for coremedia customers to use the CKEditor plugins containing dialogs out of the
box.

With the upgrade to CKEditor 4 Coremedia removed the 'extdialog'-Plugin gaining
the ability to use OTB CKEditor Plugins with CKEditor 4. The dialogs included in
such plugins would be displayed with standard CKEditor CSS Styles, unless they
are styled with coremedia skins as mentioned above.

Migration Steps

To migrate your CKEditor plugins, which include custom dialogs, you need to take
following steps:

1. Define an action (e.g.MyPluginAction.exml andMyPluginActionBase.as)
and a dialog (e.g. MyPluginDialog.exml and MyPluginDialog.as).

2. Inject CKEditor into your action by adding the following method to MyPlugin
ActionBase.as:

[InjectFromExtParent]
public function setCKEditor(editor:*):void {
...

}

134CoreMedia DXP 8

Customizing CoreMedia Studio | Migrating Richtext Editor Dialogs

http://docs.ckeditor.com/#!/guide/dev_upgrade_ckeditor_3
http://docs.ckeditor.com/#!/guide/dev_api_changes

For more on injection and inversion of control in studio see Section 7.8, “Cus-
tomizing Studio using Component IoC” [143].

3. Your dialog has to receive CKEditor as a config parameter

<exml:cfg name="editor" type="*"/>

in MyPluginAction.exml.

protected native function get editor():*;

in MyPluginActionBase.as

4. The handler method of your action must instantiate the dialog and pass the
ckEditor (that it got injected with the help of InjectFromExtParent annota-
tion) to the newly instantiated dialog.

5. In the EXML of the dialog you can define the components you need as well as
the OK- and CANCEL-Handler for your dialog. In the base class of the dialog you
can then get the reference to the CKEditor instance. The logic, that was earlier
programmed in JavaScript in the CKEditor-dialog of your plugin, now should be
transformed into Action Script of the base class of Ext-Dialog (MyPluginDia
log.as).

6. Now you can delete the folder with the CKEditor-dialog from your plugin as
well as the following code registering this dialog from its plugin.js:

editor.addCommand(commandName, new
CKEDITOR.dialogCommand(dialogName));
CKEDITOR.dialog.add(dialogName, this.path +
'dialogs/my-plugin-dialog.js');

In many cases you should consider deleting your plugin, completely, if the whole
logic can be ported to Action Script base classes of your Ext-Action (MyPlugin
ActionBase.as) and Ext-Dialog (MyPluginDialog.as) that would commu-
nicate with the injected CKEditor per API calls.

7.5.3 CKEditor plugins available
Table 7.4. CKEditor
plugins loaded by de-
fault

DialogRequires, required
by

FunctionalityCKEditor Plugin

Bold, italics, etc.basicstyles

Blockquoteblockquote

Context Menucontextmenu (dis-
abled by default in
RichTextArea)

135CoreMedia DXP 8

Customizing CoreMedia Studio | CKEditor plugins available

DialogRequires, required
by

FunctionalityCKEditor Plugin

Styled CKEditor dialogFind and replacefind (disabled by de-
fault in RichTextArea)

Requires indentlistNumbered and bullet
lists

list

Requires indent, listIndent and outdent of
list items

indentlist

Styled CKEditor dialogRequires clipboardMaps Word format-
ting to richtext

pastefromword

Styled CKEditor dialogRequires clipboardRemoves formatting
from text

pastetext

CM dialogRequires tabletools,
menu, floatpanel,
panel, showborders

Add and edit tablestable

Undo and redoundo

CM dialogRequires fakeobjectsAdd and remove ex-
ternal links

link

Required by Modera-
tion Panel Comment

entities

View richtext area
(for Elastic Social)

Required by CM rich-
text area. CKEditor is

CKEditor editing areadivarea, wysiwygarea

now enclosed in a div
tag rather than an
iframe.

Required by plugins
which use CKEditor
dialogs

Dialog elementsdialog, dialogui

Table 7.5. CM richtext
plugins loaded by de-
fault

DialogRequires, required
by

FunctionalityCM Richtext Plugin

Requires htmlwriterWriting and pro-
cessing of CM richtext

cmrichtextwriter, cm-
richtextdataprocessor

CM context menu,
uses richTextMe
nuCheckItem

Headings, alignment
(max. 1 style per
group)

classstyles

136CoreMedia DXP 8

Customizing CoreMedia Studio | CKEditor plugins available

DialogRequires, required
by

FunctionalityCM Richtext Plugin

CM context menu,
uses richTextMe
nuCheckItem

 Inline styles such as
underline and
strikethrough

cmstyles

137CoreMedia DXP 8

Customizing CoreMedia Studio | CKEditor plugins available

7.6 Coupling Studio and Embedded Preview
In the [CoreMedia Content Application Developer Manual/Adding Document
Metadata] it is described in detail how to use the Content Application Engine to in-
clude metadata in Web documents.

This section explains how to access metadata of documents that are shown in the
Studio's embedded preview.

7.6.1 Built-in Processing of Content and Property
Metadata
CoreMedia Studio automatically accesses and interprets content and property
metadata in order to connect preview and document form. When the user edits a
property that is mapped to a preview DOM element via metadata, all changes are
reflected in the embedded preview, either instantly (for simple properties like
strings) or through automatically reloading the preview.

Moving the mouse cursor over the preview will highlight elements with attached
content and/or property metadata. Right-clicking one of these elements in the
preview focuses the corresponding form field, if possible. If the clicked element
belongs to a content object different from the content object currently displayed
in the document form, a context menu is opened that shows a breadcrumb to
navigate through the metadata hierarchy down to the clicked content object, and
it offers the options to open the content in a new tab or in the library.

7.6.2 Using the Preview Metadata Service
As described in [CoreMedia Content Application Developer Manual/Adding Docu-
ment Metadata], it is possible to include arbitrary metadata in Web documents by
means of the FreeMarker macro <@cm.metadata> or the custom JSP tags
<cm:metadata>, <cm:property> and <cm:object>. In the rendered Web
document, the different metadata chunks are included as JSON-serialized values
of the custom HTML attribute data-cm-metadata of different DOM nodes. While
metadata can be added using FreeMarker or JSP, this section uses the JSP tags in
its examples.

The Metadata Service Interface

Communication
between Studio and
CAE web application

In Chapter 3, Deployment [18] it is described that the preview CAE web application
and Studio communicate via an internal messaging system. This messaging system
is also used to transfer metadata from the preview side to the Studio side. To hide
this low-level layer from the Studio developer, CoreMedia offers a metadata service
for each instance of a preview panel that runs in CoreMedia Studio. Given a preview
panel, its metadata service can be obtained as follows (please see the API docu-

138CoreMedia DXP 8

Customizing CoreMedia Studio | Coupling Studio and Embedded Preview

mentation of PreviewPanel for further information on how to obtain a preview
panel component).

var previewPanel:PreviewPanel = ... ;
var metadataService:IMetadataService =
previewPanel.getMetadataService();

The metadata service interface currently offers just one method, namely:

IMetadataService.getMetadataTree(selectionProperties:Array = null)

Via this method, the metadata of the associated preview panel's document can be
retrieved. Metadata embedded in the preview document is represented in terms
of a tree. This metadata tree originates from the DOM tree of the preview document:
Hierarchical relationships between the metadata tree nodes correspond to hier-
archical relationships between the DOM tree nodes that the respective metadata
chunks are attached to. Consequently, the metadata tree is basically a projection
of the DOM tree to its metadata information.

It is possible to further filter the metadata tree by means of the method's optional
parameter, namely an array of properties. If such properties are supplied, the
metadata tree contains only nodes that have at least one of these properties. In
addition, other properties than the given properties are filtered out. Such a filtered
metadata tree is a projection of the metadata tree that contains all metadata. The
above statement about the correspondence of hierarchical relationships in the
metadata tree and the DOM tree still holds.

Working with the Metadata Tree

When working with the metadata tree, you have two data structures to your con-
venience:

➞ com.coremedia.cms.editor.sdk.preview.metadata.MetadataTree:
This data structure represents the whole tree and, for example, offers
methods for accessing specific nodes (by their ID) or getting a list of all tree
nodes (in breadth-first order).

➞ c o m . c o r e m e d i a . c m s . e d i t o r . s d k . p r e
view.metadata.MetadataTreeNode: This data structure represents a
single metadata tree node. It offers a range of methods like retrieving the
parent or the children of a node, finding specific parent nodes upwards in
the hierarchy or specific child nodes downwards in the hierarchy or accessing
properties of a metadata tree node.

In the following you will find two examples of how to use the metadata tree. Sup-
pose that the JSP templates on the CAE side have been prepared to include metadata
about content. At different points throughout the JSP templates the code might
look as follows:

139CoreMedia DXP 8

Customizing CoreMedia Studio | Using the Preview Metadata Service

...
<cm:metadata var="contentMetadata">
<cm:property name="contentInfo">
<cm:property name="title"

value="${self.content.title}"/>
<cm:property name="keywords"

value="${self.content.keywords}"/>
</cm:property>

</cm:metadata>

<div ${contentMetadata}>
...

</div>
...

In a preview document there might be multiple of such content-related metadata
chunks attached to different DOM nodes. Suppose you want to gather the titles of
all the contents that are included in such metadata chunks. One way to gather
these titles in an array is the following:

var metadataService:IMetadataService = ... ;
var metadataTree:MetadataTree = metadataService.getMetadataTree();
var result:Array = [];
if (metadataTree.getRoot()) {
var nodesToProcess:Array = [metadataTree.getRoot()];

}
var arrayIndex:int = 0;
while (arrayIndex < nodesToProcess.length) {
var currentNode:MetadataTreeNode = nodesToProcess[arrayIndex];
if (currentNode.getProperty("contentInfo")) {
var title:String =
currentNode.getProperty("contentInfo").title;

result.push(title);
}
if (currentNode.getChildren()) {
nodesToProcess =
nodesToProcess.concat(currentNode.getChildren());

}
arrayIndex++;

}

In this example, the whole metadata tree is traversed in a breadth-first manner.
For each node it has to be checked whether it has the contentInfo property as
there might be metadata nodes with completely other information.

The code can be simplified considerably if a filtered metadata tree is retrieved:

var metadataService:IMetadataService = ... ;
var metadataTree:MetadataTree =
metadataService.getMetadataTree(["contentInfo"]);

var result:Array = [];
var metadataNodesList:Array = metadataTree.getAsList();
metadataNodesList.forEach(function (node:MetadataTreeNode) {
result.push(node.getProperty("contentInfo").title);

}

In this case, the metadata tree is filtered on retrieval, namely for metadata nodes
that contain the contentInfo property. Now it is sufficient to get all metadata
tree nodes as an array, walk through it and gather the content titles.

140CoreMedia DXP 8

Customizing CoreMedia Studio | Using the Preview Metadata Service

Listening to Metadata Availability/Changes

A metadata service is always associated with a specific preview panel. When a
document is opened in a preview panel, it takes some time until its metadata is
loaded. This happens asynchronously via the above mentioned message service.
Consequently, it is necessary to have a mechanism to listen to the availability of
a document's metadata. In addition, changes to the metadata may occur when the
displayed document of the preview panel changes. Thus, it is also necessary to
listen to metadata changes.

To this end, the method IMetadataService.getMetadataTree() is depend-
ency-tracked. This means that it is possible to listen to changes to the returned
metadata tree by using a function value expression (see com.core
media.ui.data.dependencies.DependencyTracker and com.core
media.ui.data.ValueExpressionFactory.createFromFunction). The
following example is provided to illustrate this process:

var previewPnl:PreviewPanel = ... ;
ValueExpressionFactory.createFromFunction(
function():MetadataTreeNode {
var metadataTree:MetadataTree =
previewPnl.getMetadataService().getMetadataTree();

return metadataTree.getRoot() ? metadataTree : undefined;
}

).loadValue(
function(metadataTree:MetadataTree):void {
// metadata tree loaded!
metadataTree.getAsList()...;

}
);

In this example MetadataTree.getRoot() is used as an indicator of whether
the metadata has already been loaded (if not, the method returns null). A function
value expression is created around a function that simply determines the existence
of a metadata root node, returning undefined as long as it does not exist. After-
wards the value expression is loaded, which automatically retries to invoke the
function until it returns a non undefined value. As soon as it does, the metadata
has been loaded and the callback function can now process the metadata tree.

141CoreMedia DXP 8

Customizing CoreMedia Studio | Using the Preview Metadata Service

7.7 Storing Preferences
A custom component may have to store user preferences persistently. To this end,
the editor context object implements the method getPreferences of the interface
IEditorContext. The method returns a Struct object that is stored in the Ed
itorPreferences document of the current user. You can modify this struct using
the standard struct API as described in Section 5.4.4, “Structs” [54].

The class PreferencesUtil provides two utility methods for reading and writing
complex objects in the preferences struct: getPreferencesJSONProperty and
updatePreferencesJSONProperty. These methods support strings, numbers,
Boolean, contents, and complex objects and arrays containing such values. The
Studio API uses these methods internally for persisting saved searches (including
custom filters), open tabs, dashboard widget states, and bookmarks.

142CoreMedia DXP 8

Customizing CoreMedia Studio | Storing Preferences

7.8 Customizing Studio using Component IoC
Section 5.5, “Studio Component IoC” [57] describes how a property of an Ext JS
parent component can be injected to a child component. Here you learn how a
button or a menu item can be added to toolbars or menus of Studio and its base
action can be configured using the Component IoC.

7.8.1 Content Actions
The newly public API class ContentAction is the most prominent context con-
sumer in Studio and uses the configurable annotation:

[InjectFromExtParent(variableNameConfig='contentVariableName')]
public function setContents(contents:Array):void {
...

}

While the class is an abstract class, all its child classes accept the injection of the
contents property as long as the annotated method is not overridden. For example
approveAction, publishAction and more. So such actions' content can be in-
jected using the contentVariableName configuration parameter.

7.8.2 Example: Add a disapprove button to the actions
toolbar
Assume that you want to add a new button to the actions toolbar. Clicking the
button should disapprove the current content of the work area. This is the plugin
rule which will do the job:

...
<editor:studioPlugin>
<ui:rules>
<editor:actionsToolbar>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<button>
<baseAction>
<editor:disapproveAction

contentVariableName="{actionsToolbar.CONTENT_VARIABLE_NAME}"/>
</baseAction>

</button>
</ui:items>

</ui:addItemsPlugin>
</plugins>

</editor:actionsToolbar>
</ui:rules>

</editor:studioPlugin>
...

The configuration class actionsToolbar is a public API context provider and
describes in its AS doc the constant CONTENT_VARIABLE_NAME: [The context

143CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Studio using Component IoC

property name for the content on which the actions will operate. It is the current
content in the work area.]

7.8.3 Studio Component Map
To add a new button or menu item to Studio using the IoC you need a kind of
geographical knowledge of Studio. The following maps present the context providers
(gray box) and their provided properties (blue box) in CoreMedia Studio. The gray
boxes without the provided properties are extension points where you can add a
new button or menu item. The green boxes represent the default actions of the
extension points.

Figure 7.4. Premular
and Actions Toolbar

Figure 7.5. Collection
View

144CoreMedia DXP 8

Customizing CoreMedia Studio | Studio Component Map

7.9 Customizing Central Toolbars
Toolbars contain buttons for making functionality quickly accessible. There are two
central toolbars that you might want to customize:

➞ The Favorites toolbar on the left, which contains shortcuts to often-used
functions

➞ The Actions toolbar on the right, which contains buttons for completing the
work on the current content

The following section describes how you can use the addItemsPlugin to add
your custom button to an existing toolbar.

It is good practice to wrap the custom UI component's actual functionality (that
is, what your button will do when clicked) in Action objects, so that these actions
can be reused even if the visual representation of the button is changed to another
component. The background of actions is described in Section 5.1.4, “Actions” [31].

7.9.1 Adding buttons to the Favorites Toolbar
The Favorites Toolbar on the left side is vertically divided into three subcontainers:

➞ The top section, which in Blueprint's default configuration has buttons to
open the Library, to open Bookmarks, and to create content

➞ The middle section (favoritesToolbarUserItemsArea), which contains
user-managed search folders. Users can add, delete, and modify their own,
often used search folders in this section. Therefore, your ability to preconfig-
ure this section is inherently different from the top and bottom section of
the Favorites Toolbar. For details, see Section 7.9.2, “Providing default Search
Folders” [146] below

➞ The bottom section, which in Blueprint's default configuration has a menu
button for developer-defined extensions. You can add buttons within the
extensions menu button (but you can also add top-level buttons above or
below

If you want to add fixed buttons to the Favorites Toolbar (that is, buttons that can
not be modified or removed by the user), you need to add them to either the top
or the bottom section of the Favorites Toolbar.

The main BlueprintStudioPlugin.exml file shows how you can easily use the
addItemsPlugin to add your own buttons to the top and bottom sections of the
toolbar, respectively:

<editor:favoritesToolbar>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<bp:newContentMenuButton/>

145CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing Central Toolbars

</ui:items>
<ui:after>
<component

itemId="{favoritesToolbar.LIBRARY_BUTTON_ITEM_ID}"/>
</ui:after>

</ui:addItemsPlugin>
</plugins>

</editor:favoritesToolbar>

Ensuring a proper order of the items of the favorites toolbar helps significantly in
making the application usable. Note how an after constraint is used to put the
new button to a specific place. It uses the framework-predefined itemId of the
Library button to describe the desired location of the added button, and references
the new button via an element with Blueprint namespace - the button itself is de-
clared in a separate EXML file in the Blueprint Studio plugin.

To add a simple test button with an action to the Blueprint definition, enter the
following code inside the <items> element (see Section 7.2, “Localizing La-
bels” [94] to learn how to localize the label of the button):

Example 7.32. Adding
a search for documents
to be published

<button itemId="exampleButton">
<baseAction>
<editor:showCollectionViewAction text="toBePublished"
published="false" editedByMe="true" contentType="CMArticle"/>

</baseAction>
</button>

This code snippet will add a "search folder" button to the favorites toolbar that
uses a showCollectionViewAction to open the Library window in a mode that
searches for a restricted set of content items (please see the API documentation
for showCollectionViewAction for more details).

7.9.2 Providing default Search Folders
The middle section of the CoreMedia Studio's favorites toolbar is made up of the
component favoritesToolbarUserItemsArea which contains user-defined
search folders. When you click a search folder, the collection view opens up in
search mode showing the results of a predefined query. The user can create custom
search folders via the Save Search button of the collection view's toolbar in
search mode. Users can also modify existing search folders, change their order,
rename them, or delete them altogether.

As a developer, you can provide a default set of search folders to your first-time
users, so that the middle section won't appear empty on a user's first login to Studio.

Note that the configuration option shown below explains solely the default set
of search folders that users will see on their first login. When Studio detects that
there are no custom search folders defined yet for the user logging in, this default

146CoreMedia DXP 8

Customizing CoreMedia Studio | Providing default Search Folders

set will be copied to this user's settings - from then on, management of the
search folder section is completely up to the user, and your configuration will
be ignored. If you want to permanently add buttons (including buttons repres-
enting search folders) to the Favorites Toolbar, please refer to Section 7.9.1,
“Adding buttons to the Favorites Toolbar” [145] above.

You can add default search folders by using the addArrayItemsPlugin on the
favoritesToolbarUserItemsArea. Each array item has to include the relevant
search parameters that you want to pass to the collection view on opening. These
parameters are modularized in terms of the different parts of the collection view
in search mode. Thus, each array item is a nested JavaScript object literal that itself
contains possibly multiple objects for the various parameter parts. These embedded
objects can be accessed via unique keys (see below). In addition, each array item
is given a unique name that will also be used as the display text for the resulting
search folder in the favorites toolbar.

By default, the different search parameters of the collection view are divided into
the following parts:

➞ The main part (key _main), featuring the search parameters searchText,
contentType, mode, view, folder, orderBy, and limit.

Note that for the folder property, it is possible to use both of the following
notations:

1. folder: {$Ref: "content/9"} (Rest URI path)

2. folder: {path: "/Sites/Media"} (content repository path)

➞ The status filter (key status), featuring the search parameters inProduc
tion,editedByMe,editedByOthers,notEdited,approved,published
and deleted.

➞ The last edited filter (key lastEdited), featuring the search parameter
lastEditedBy.

Further possible parameters may arise due to plugged in additional filters (c.f.
Section 7.11.5, “Adding Search Filters” [155]) where each of them makes up its
own part of search parameters. In the source code example below, a default search
folder is plugged in that shows all documents under the content repository path
folder /Sites/Media that were last edited by the user. You can see that the array
item is composed of two of the three parts listed above and has been given a name.

Example 7.33. Adding
a custom search folder<editor:studioPlugin>

<ui:rules>
<editor:favoritesToolbarUserItemsArea>
<plugins>
<ui:addArrayItemsPlugin arrayProperty=

"{favoritesToolbarUserItemsArea.DEFAULT_ITEMS}"
items='{[

147CoreMedia DXP 8

Customizing CoreMedia Studio | Providing default Search Folders

{_main:{contentType: "Document_",
folder: {path: "/Sites/Media"},
mode: "search",
view: "list",
limit: 50},

lastEdited: {lastEditedBy: "me"},
_name: "Last edited"}

]}'/>
</plugins>

</editor:favoritesToolbarUserItemsArea>
</ui:rules>

</editor:studioPlugin>

If in doubt about the actual format for a default search folder entry, you can always
customize a search manually in CoreMedia Studio, save it and have a look at the
user's preferences where they get saved.

7.9.3 Adding a Button with a Custom Action
The previous sections described how the predefined actions are wrapped in buttons
and added to a toolbar. However, sometimes it is necessary to develop a custom
action, for example to open a special window or to start a wizard. In Section 5.1.4,
“Actions” [31] you will find a more detailed explanation of actions, but the recipe
shown here should be enough in many cases.

All actions inherit from ext.Action. For example, an action mypackage.MyAc
tion might look like this:

Example 7.34. Creating
a custom actionpackage mypackage {

import ext.Action;
import mypackage.config.myAction;

public class MyAction extends Action {
private var foo:String;

/**
* @param config
*/
public function MyAction(config:myAction = null) {
super(Ext.apply({handler: doAction}, config));
foo = config.foo;
...

}

private function doAction():void {
...

}
...

}
}

It uses the complementing myAction configuration class:

148CoreMedia DXP 8

Customizing CoreMedia Studio | Adding a Button with a Custom Action

Example 7.35. Creating
a custom action config-
uration class

package mypackage.config {
import ext.config.action;

[ExtConfig(target="mypackage.MyAction")]
public class myAction extends action {
private var foo:String;

public function myAction(config:Object = null) {
super(config || {});

}

/**
* the foo
*/
public native function get foo():String;
/**
* @private
*/
public native function set foo(value:String):void;
...

}
}

You can access this class from ActionScript and (more commonly) from EXML. Like
always in EXML, the name of the configuration class determines the element name
and its package is used as the namespace URI suffix:

Example 7.36. Using a
custom action...

<button>
<baseAction>
<mp:myAction text="do something"

foo="bar"/>
</baseAction>

</button>
...

For example, such a button with a base action might by added to the Favorites
toolbar or the Actions toolbar as shown in the previous sections. The previous
fragment assumes that you have defined the mp namespace so that it references
the module containing mypackage (exml:mypackage.config).

Note that you can use all configuration parameters inherited from ext.action,
here text.

Contrary to pure Ext JS, EXML supports configuring a component with properties
and an action at the same time by merging the component configuration and the
action configuration. If both the component and the action declare a configuration
property, the component configuration property value is used.

7.9.4 Adding a Button to the Apps Menu
The Apps Menu as shown in the figure below is used to group buttons for custom
actions in one place. It is located in the bottom of the Favorite toolbar of Studio.

149CoreMedia DXP 8

Customizing CoreMedia Studio | Adding a Button to the Apps Menu

Figure 7.6. Apps Menu

You can add your custom button to the Apps Menu by using the addItemsPlugin
as shown below:

<editor:extensionsMenu>
<plugins>
<ui:addItemsPlugin>
<ui:items>
...

</ui:items>
</ui:addItemsPlugin>

</plugins>
</editor:extensionsMenu>

7.9.5 Adding Disapprove Buttons
You can revoke the status of the approved document using the disapprove action.
The disapprove action can be enabled in CoreMedia Studio so that the disapprove
action is part of the actions toolbar, the collection repository context menu and
the collection search context menu.

You enable the disapprove action by using the plugin enableDisapprovePlugin.
For example by inserting the following code snippet inside editor:configura
tion in your Studio plugin EXML.

Example 7.37. Adding
disapprove action us-
ing enableDisap-
provePlugin

<editor:configuration>
<editor:enableDisapprovePlugin/>

</editor:configuration>

150CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Disapprove Buttons

7.10 Inheritance of Property Values
The CAE sometimes renders fallbacks if a content property is not set, for example,
by using values of other properties instead. This is similar inheritance of a default
value for an empty property. To visualize this in Studio, you may use content of a
property editor from another property editor as the default empty text.

This is currently possible for a few of property fields. One is the StringProper
tyField and the other one is the TextAreaPropertyField. While the
StringPropertyField may inherit its content from another StringProperty
Field, the TextAreaPropertyField may inherit its content from a String
PropertyField or a RichTextPropertyField.

In order to use this visualization, you may use the StringPropertyFieldDeleg
ationPlugin or the TextAreaPropertyFieldDelegationPlugin attached
to the property field that should inherit the value.

Example 7.38. Config-
uring Property Inherit-
ance

<documentForm>
...
<!-- inherit its content from the title property-->
<editor:stringPropertyField propertyName="teaserTitle">
<plugins mode="append">
<editor:stringPropertyFieldDelegatePlugin

delegatePropertyName="title"/>
</plugins>

</editor:stringPropertyField>
<!-- inherit its content from the detailText property-->
<editor:textAreaPropertyField propertyName="teaserText">
<plugins mode="append">
<editor:textAreaPropertyFieldDelegatePlugin

delegatePropertyName="detailText"/>
</plugins>

</editor:textAreaPropertyField>
...

</documentForm

151CoreMedia DXP 8

Customizing CoreMedia Studio | Inheritance of Property Values

7.11 Customizing the Library Window
You can configure the library window in the following ways:

➞ by defining the columns that are displayed in the list view in the repository
mode;

➞ by defining additional fields for the columns that should be displayed in the
list views;

➞ by defining the columns that are displayed in the list view in the search
mode and configuring the columns so that the results in the search mode
can be sorted;

➞ by defining the blob properties that are displayed in the thumbnail view for
different document types;

➞ by adding custom filters for the search mode of the library window.

➞ by making columns sortable and provide a detailed configuration how to
sort.

If you are interested in opening the library from a toolbar button, see Section 7.9,
“Customizing Central Toolbars” [145].

7.11.1 Defining List View Columns in Repository Mode
The list view of the library window is implemented using an Ext JS grid panel. A
grid panel aggregates columns that refer to fields of an underlying store. For adding
a new column, you usually have to add both a column definition and a field defin-
ition.

Although the editor context in the form of the interface IEditorContext allows
a direct configuration in the form of the methods addListViewDataField and
setRepositoryListViewColumns, the recommended way of defining columns
uses the configureListViewPlugin in an EXML file containing Studio plugin.
CoreMedia Blueprint defines custom columns of the repository mode in the file
LibraryStudioPlugin.exml:

Example 7.39. Defining
list view columns in the
repository mode

<ui:rules>
...
<editor:startup>
<plugins>
<editor:configureListViewPlugin>
...
<editor:repositoryListViewColumns>
<editor:listViewTypeIconColumn width="75"

showTypeName="true"/>
<editor:listViewNameColumn sortable="true"/>
<editor:listViewStatusColumn width="46"/>
<editor:listViewCreationDateColumn width="120"

sortable="true"/>
<editor:freshnessColumn sortable="true" hidden="true"/>

</editor:repositoryListViewColumns>

152CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing the Library Window

...
</editor:configureListViewPlugin>

</plugins>
</editor:startup>

...
</ui:rules>

The property repositoryListViewColumns lists all columns that should be
displayed (not just the ones you want to add to the default) in the repository mode.
Some columns in this example use predefined components from the Editor SDK,
whereas some special columns use just a configured Ext JS standard grid column.

The listViewTypeColumn, listViewNameColumn, listViewCreationDate
Column, and freshnessColumn columns represent the standard columns that
would be present without additional configuration (id and width of the column
has to be defined if necessary), displaying a document's type, name, date of cre-
ation, and modification date, respectively. The listViewStatusColumn compon-
ent represents an additional column that displays a document's lifecycle status (in
production, approved, ...) and checked-out state. These columns can be made
sortable by setting the attribute sortable to true. To enable sorting for other
columns have a look at Section 7.11.6, “Make Columns Sortable in Search and
Repository View” [158].

7.11.2 Defining Additional Data Fields for List Views
If you need additional fields in the underlying store, you can add fields using the
listViewDataFields property of the configureListViewPlugin. The
standard columns do not need an explicit field configuration. But if, for example,
you may want to display the name of the user who created a content, the imple-
mentation would look like this:

Example 7.40. Defining
list view fields<editor:configureListViewPlugin>

<editor:listViewDataFields>
...
<datafield name="creator"
mapping="creator.name"/>

</editor:listViewDataFields>
<editor:repositoryListViewColumns>
...
<gridcolumn id="creator"
header="Creator"
sortable="false"
dataIndex="creator"/>

</editor:repositoryListViewColumns>
</editor:configureListViewPlugin>

In this case, an Ext JS gridcolumn is used for display, setting the column's attrib-
utes as needed. The definition of the field is slightly complex, because the property
name of the property creator of each content in the search result should be ac-
cessed. To this end, a non-trivial mapping property will be added, but the name

153CoreMedia DXP 8

Customizing CoreMedia Studio | Defining Additional Data Fields for List Views

attribute of the data field and the dataIndex attribute of the column will be kept
simple and in sync. If the mapping property were identical to the name property
of the field, it could have been omitted.

7.11.3 Defining List View Columns in Search Mode
The columns in the search mode are similarly configured but instead the property
searchListViewColumns is used to list all columns of the search list. CoreMedia
Blueprint defines custom columns of the search mode again in the file LibraryStu
dioPlugin.exml:

Example 7.41. Defining
list view columns in the
search mode

<ui:rules>
...
<editor:startup>
<plugins>
<editor:configureListViewPlugin>
<editor:listViewDataFields>
<datafield name="site" mapping="parent.path"

convert="{getImportantPathInfo}"/>
...

</editor:listViewDataFields>
...
<editor:searchListViewColumns>
<editor:listViewTypeIconColumn width="75"

showTypeName="true"/>
<editor:listViewNameColumn sortable="true"/>
<gridcolumn id="site"

header="{LibraryStudioPlugin_properties.INSTANCE.ListView_column_site_header}"

sortable="false"
menuDisabled="true"
dataIndex="site"/>

<editor:listViewStatusColumn width="46"/>
<editor:listViewCreationDateColumn sortable="true"

width="120"/>
<editor:freshnessColumn sortable="true" hidden="true"/>

</editor:searchListViewColumns>
</editor:configureListViewPlugin>

</plugins>
</editor:startup>

...
</ui:rules>

First you can see in the example above that an additional field site is defined and
used for the site column.

Second the name, creation date and freshness columns are configured to be sortable
so that the editor can now sort the search results by the name, creation date and
freshness.

If you define columns by your own, make sure that the freshnessColumn is
configured because this column will be used as the default sort column. Other-
wise the Studio user will get this error message on the console:

154CoreMedia DXP 8

Customizing CoreMedia Studio | Defining List View Columns in Search Mode

Invalid Saved Search Folder: Can not sort by sortfield
freshness. It will be sorted by 'Last Modified' instead.

Third the freshness column is sortable but hidden. It means that the column will
not be shown in the search list by default but the freshness as a sort criterion
(which is the default sort criterion) will be available and shown in a drop down
box for sort criteria in the search toolbar. The column can also be unhidden by the
user via the grid header menu.

The listViewNameColumn, listViewCreationDateColumn and fresh
nessColumn columns are standard columns that can be configured to be sortable
without additional configuration. To enable sorting for other columns have a look
at Section 7.11.6, “Make Columns Sortable in Search and Repository View” [158].

7.11.4 Configuring the Thumbnail View
The thumbnail view of the library window can show a preview image of documents
with a blob property holding the image data. If you want to do so, you need to re-
gister your document type and configure the name of the blob property you want
the thumbnail preview to be generated from. From ActionScript, use the regis
terImageDocumentTypemethod of the IEditorContext. You can also use the
standard plug configureDocumentTypes, setting the imageProperty for a
given set of document types.

This is how the mapping is registered in the editor plugin of CoreMedia Blueprint:

Example 7.42. Config-
uring the thumbnail
view

<editor:configureDocumentTypes names="CMPicture,CMImage"
imageProperty="data"/>

The configured property applies to exactly the given document types, only. It is
not inherited by subtypes.

7.11.5 Adding Search Filters
The search mode of the library offers a filter panel at the left side of the window
in which you can, by default, select the editing state of documents to be included
in the search result. Depending on your editorial needs, you can add custom search
filters that further restrict the search result. For example, you might want to search
only for recently edited documents or for documents in a particular language.

Inheriting from Filter-
Fieldset

For defining a custom filter, you can inherit from the class FilterFieldset. This
class implements the interface SearchFilter and provides the framework for
implementing a custom filter easily. Your implementation uses an ActionScript
base class and an EXML user interface definition inheriting from that class. Both

155CoreMedia DXP 8

Customizing CoreMedia Studio | Configuring the Thumbnail View

classes communicate by means of a model bean provided by the framework's base
class through the method getStateBean().

See section Section 7.7, “Storing Preferences” [142] for details of how the value
stored in the state bean is persisted and for the limits on the allowed property
values.

In your base class, you need to override two methods. The method buildQuery()
can use the current state stored in the model bean to assemble a Solr query string.
Query strings from individual filters will be combined using the AND operator. By
returning an empty string or null, you can indicate that the filter should not cur-
rently impose any restrictions on the search result. The following example shows
how a property foo is retrieved and how a query is built from it.

public class FooFilterFieldsetBase extends FilterFieldset {
override public function buildQuery():String {
var foo:Number = getStateBean().get('foo');
if (foo === 0) {
return null;

} else {
return "foo:" + foo + " OR foo:-1";

}
}
...

The method getDefaultState() returns an object mapping all properties of the
state bean to their defaults. It is used for initialization, for determining whether
the current state of your UI represents the filter's default state, and for manually
resetting the filter. In the above example, the respective filter's default state is
represented by the special value "0", and consequently, you must use "0" as the
filter's default value:

...
override public function getDefaultState():Object {
return { foo:0 };

}
}

Now you can create the EXML definition of the actual UI for the new filter. Because
the item ID of the filter component is used when identifying the filter later on, it
often makes sense to specify the item ID directly in the EXML file. The basic
structure is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<exml:component xmlns:exml="http://www.jangaroo.net/exml/0.8"

xmlns="exml:ext.config"
xmlns:editor=
"exml:com.coremedia.cms.editor.sdk.config"

baseClass="FooFilterFieldsetBase">
<editor:filterFieldset

itemId="fooFilter"
title="Foo">

<items>
...

</items>

156CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Search Filters

</editor:filterFieldset>
</exml:component>

Synchronizing UI with
model state

To synchronize your UI component(s) with the model state stored in the bean re-
turned by getStateBean(), you might want to use the various existing bind
plugins. The example below shows a typical configuration of the bindProper
tyPlugin that would work in a filter fieldset for a text field or a combo box.

...
<plugins>
<ui:immediateChangeEventsPlugin/>
<ui:bindPropertyPlugin bidirectional="true">
<ui:bindTo>
<ui:valueExpression expression="foo"

context="{getStateBean()}"/>
</ui:bindTo>

</ui:bindPropertyPlugin>
</plugins>
...

The use of the immediateChangeEventsPlugin will ensure that changes of the
UI component are propagated to the model quickly and not just after the field
looses focus. If you have more complex requirements, a bind plugin might be in-
sufficient, so that you have to synchronize the model and the view using custom
ActionScript code.

If you attach the style class collection-status-filters to the outermost
container in your field set, you might find it easier to achieve a visual style that
matches that of the predefined filters.

Use the addItemsPlugin to add your custom filter to the Studio Library filter
section. The component to configure is the SearchFilters class.

<editor:studioPlugin>
<ui:rules>
<editor:searchFilters>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<foo:FooFilterFieldset/>

</ui:items>
</ui:addItemsPlugin>

</plugins>
</editor:searchFilters>

</ui:rules>
</editor:studioPlugin>

Opening the Library in
certain filter state

You can also open the library in a certain filter state, for example from a button in
the favorites toolbar. To that end, the showCollectionViewAction provides a
property filters that can take SearchFilterState objects, which are con-
figured using the <searchFilterState> element in EXML. So that the action
can configure the correct filter, the filterId attribute must be given, matching
the item id of the configured filter fieldset. Additionally, any number of additional
attributes may be configured for the <searchFilterState> element using the

157CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Search Filters

exml:untyped XML namespace. The names and values of the attributes are exactly
the property names and values of the state bean used by the filter set.

<editor:studioPlugin>
<ui:rules>
<editor:favoritesToolbar>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<button ...>
<baseAction>
<editor:showCollectionViewAction

contentType="CMArticle">
<editor:filters>
<editor:searchFilterState

xmlns:untyped="exml:untyped"
filterId="fooFilter"
untyped:foo="{1}"/>

</editor:filters>
</editor:showCollectionViewAction>

</baseAction>
</button>

</ui:items>
</ui:addItemsPlugin>

</plugins>
</editor:favoritesToolbar>

</ui:rules>
</editor:studioPlugin>

If you prefer a type-safe configuration, you can also define an EXML subclass of
SearchFilterState that declares the parameters explicitly.

7.11.6 Make Columns Sortable in Search and Repository
View
Sorting can be enabled for custom columns by setting two mandatory attributes
in the gridcolumn definition. The attribute sortable has to be set to true to
enable sorting. The attribute sortField has to specify the Solr index column that
should be used for sorting.

Example 7.43. Two ad-
ditional attributes for
sorting.

<gridcolumn id="creator"
header="Creator"
sortable="true"
dataIndex="creator"
u:sortField="creator"/>

For extended configuration purposes there are two optional attributes. The attribute
extendOrderBy enables sorting by more than one column. The value of the at-
tribute is a function which returns an array with additional sort criteria. The function
will get two parameters. The first parameter is the primary sort field, the second
parameter is the primary sort direction. The following example does not only sort
by creator but also by name and creation date. The value for the function parameter
field is "creator", the value of the parameter direction depends on the user's
choice and can be "asc" or "desc".

158CoreMedia DXP 8

Customizing CoreMedia Studio | Make Columns Sortable in Search and Repository View

Example 7.44. Option-
al extendOrderBy
Attribute for sort by
more than one column.

<gridcolumn id="creator"
header="Creator"
sortable="true"
dataIndex="creator"
u:sortField="creator"
u:extendOrderBy="{
function(field:String, direction:String):Array {
var orderBys:Array = [];
orderBys.push('name ' + direction);
orderBys.push('creationdate ' + direction);
return orderBys;

}
}"/>

The optional attribute sortDirection enables you to restrict the sort direction
to only one direction. This is useful if sorting does only make sense in one direction.
For example a user is usually not interested in the less relevant search result. So
you want to disable sorting for relevance ascending. Possible attribute values are
"asc" or "desc" where the value is the enabled sort direction.

Example 7.45. Option-
al sortDirection
Attribute to enable
only one sort direction.

<gridcolumn header="Relevance"
id="score"
dataIndex="score"
sortable="true"
u:sortField="score"
u:sortDirection="desc"/>

You can make even hidden grid columns sortable. Hidden columns are not shown
in the grid but users can select them from the sort drop down field. This is useful
if columns do not have meaningful values (again relevance for example) or if you
just do not want to blow up the grid too much. Hidden columns that do not have
their hideable config option set to false can also be unhidden by the user using
the grid header menu.

At last you can define one default sort column for each list in the collection view.
The default sort column will be used when the user has not specified a sort criteria.
To configure add the attribute defaultSortColumn with value true. For more
fine grained configuration the attribute defaultSortDirection can be set to
asc or desc to sort ascending or descending by default.

Example 7.46. de-
faultSortColumn
Attribute to configure
one column as the de-
fault for sorting.

<gridcolumn id="creator"
header="Creator"
sortable="true"
dataIndex="creator"
u:defaultSortColumn="true"
u:defaultSortDirection="desc"
/>

159CoreMedia DXP 8

Customizing CoreMedia Studio | Make Columns Sortable in Search and Repository View

7.12 Work Area Tabs
CoreMedia Studio organizes working items in a so called work area. The work area
is a tab panel with the tabs containing currently opened working items. CoreMedia
Studio restores open tabs (and their content) after successful relogin or reload of
the website. The tabs usually contain CoreMedia-specific content but you can in-
tegrate your own customized tab into the work area. This section shows how it can
be done using an example code. The example introduces a browse tab which con-
sists of a URL trigger field and an iFrame in which the content of the URL is dis-
played.

7.12.1 Configuring a Work Area Tab
First you have to configure the tab which should be displayed in the work area.
This must be an ext.Panel or any extended one. CoreMedia recommends that
you configure your tab as a separate component in EXML. The rationale for this
will be described below. In the example there are two such components: Brow
seTab.exml and CoreMediaTab.exml (where the latter one uses the first one).
Both have a configuration parameter url which is the key to persisting tab state
across sessions and website reloads as explained below in Section 7.12.4, “Storing
the State of a Work Area Tab” [161].

7.12.2 Configure an Action to Open a Work Area Tab
In most cases you will use an action to open your own tab. In the example, a button
is plugged into the Favorites toolbar. Clicking the button triggers an openTabAc
tion to open the browse tab.

Example 7.47. Adding
a button to open a tab...

<editor:favoritesToolbar>
<plugins>
<ui:addItemsPlugin>
<ui:items>
...

<!-- Add a button that opens a browse tab -->
<button itemId="browseTab">
<baseAction>
<editor:openTabAction text="...">
<editor:tab>
<example:browseTab/>

</editor:tab>
</editor:openTabAction>

</baseAction>
</button>

</ui:items>
...

</ui:addItemsPlugin>
</plugins>

</editor:favoritesToolbar>
...

160CoreMedia DXP 8

Customizing CoreMedia Studio | Work Area Tabs

The browseTab from above is configured as the tab configuration parameter of
openTabAction. A new browse tab is then opened every time when clicking the
button. In addition, all open browse tabs will be reopened in the work area after
the reload of CoreMedia Studio. For that CoreMedia Studio stores the xtypes of the
open tabs as user preference when opening, closing or selecting tabs. When loading
the work area instances of the xtypes are generated and added to the work area.
This is basically why you should configure each tab in a separate EXML. Neverthe-
less, you will see below in Section 7.12.4, “Storing the State of a Work Area
Tab” [161] how you can save other state of the tab than the xtype in the user pref-
erence.

7.12.3 Configure a Singleton Work Area Tab
The previously shown openTabAction has an additional Boolean configuration
parameter singleton. In the example a button that opens a coreMediaTab is
added, which is a browse tab with the fix URL of the CoreMedia homepage:

Example 7.48. Adding
a button to open a
browser tab

...
<editor:favoritesToolbar>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<!-- Add a button that opens the CoreMedia homepage browse

tab as singleton -->
<button itemId="coremediaTab">
<baseAction>
<editor:openTabAction singleton="true" text="...">

<editor:tab>
<example:coreMediaTab/>

</editor:tab>
</editor:openTabAction>

</baseAction>
</button>

</ui:items>
...

</ui:addItemsPlugin>
</plugins>

</editor:favoritesToolbar>
...

In the work area there will be no more than one opened coreMediaTab: When
clicking the button the already opened coreMediaTab will be active instead of
opening a new one.

7.12.4 Storing the State of a Work Area Tab
You probably want to persist the state of your tabs across sessions and website
reloads. As described above, the xtype of all open tabs is stored automatically
which allows you to create the correct tab instances when reloading. However,
this does not help to persist the content of the tabs. You have to take care of per-
sisting tab state yourself. For example, when the user sets the URL of the browse
tab in the example the URL will be restored after reload. Such internal state of the

161CoreMedia DXP 8

Customizing CoreMedia Studio | Configure a Singleton Work Area Tab

tab can be stored implementing the interface StateHolder as BrowseTabBase
of the example does:

Example 7.49. Base
class for browser tab...

public class BrowseTabBase extends Panel implements StateHolder{
...
public function getStateValueExpression():ValueExpression {
if (!stateValueExpression) {
stateValueExpression =
ValueExpressionFactory.createFromValue({url: url});

}
return stateValueExpression;

}
...
}
}

To store the states of the open tabs CoreMedia Studio uses getStateValueExpres
sion of each tab which implements the interface. See section Section 7.7, “Storing
Preferences” [142] for details of how the state is persisted and for the limits on the
allowed state structures. You must make sure that proper state is delivered via the
state value expression. In BrowseTabBase this is achieved in the following way:

...
internal function reloadHandler():void {
var url:String = getTrigger().getValue();
getBrowseFrame().setUrl(url);
if (url) {
setTitle(url);

}
//store the url as state in the user preference
getStateValueExpression().setValue({url: url});

}
}
}

The reloadHandler is invoked when the user clicks on the trigger button. The
value of the trigger becomes the URL of the iFrame of the tab. Finally, the state
value is set to {url: url}: As described above, url is a configuration parameter
of browseTab and consequently, {url:url} is a configuration object with the
parameter url with the trigger value. This configuration object will be copied to
the configuration object of browseTabwhen restoring it. So browseTab's config-
uration parameter url is then set to the stored value.

7.12.5 Customizing the Start up Behavior
After successful login, Studio restores the tabs of the last session. This default be-
havior can be disabled by calling the setDefaultTabStateManagerEnabled(en
able) method of IEditorContext class.

When you set this value to false, Studio will start with a blank working area (that
is, no documents or other tabs are open). This might be handy if you want to cus-
tomize the startup behavior. When, for example, you want to open all documents

162CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing the Start up Behavior

that a given search query finds on startup, you can do that with code like the fol-
lowing:

package com.coremedia.ui.examples.openCheckedOutDocuments {
import com.coremedia.cap.common.session;
import com.coremedia.cap.content.search.SearchParameters;
import com.coremedia.cap.user.User;
import com.coremedia.cms.editor.EditorErrors_properties;
import com.coremedia.cms.editor.sdk.editorContext;
import com.coremedia.cms.editor.sdk.util.MessageBoxUtil;
import com.coremedia.ui.data.Bean;
import com.coremedia.ui.data.PropertyChangeEvent;
import
com.coremedia.ui.examples.openCheckedOutDocuments.config.openCheckedOutDocumentsPlugin;

import ext.Component;
import ext.Container;
import ext.Plugin;
import ext.util.StringUtil;

public class OpenCheckedOutDocumentsPlugin implements Plugin{

private const MAX_OPEN_TABS:int = 10;

public function
OpenCheckedOutDocumentsPlugin(config:openCheckedOutDocumentsPlugin
= null) {
}

public function init(component:Component):void {
//get the top level container
var mainView:Container =

component.findParentBy(function(container:Container){
return !container.ownerCt;

});

mainView.addListener('afterrender', openDocuments, null, {
single: true

});

}

private function openDocuments():void {
// Perform query to determine documents checked out by me.
var searchParameters:SearchParameters = createSearchParameters();

var searchResult:Bean =
session.getConnection().getContentRepository().getSearchService().search(searchParameters);

// When the query result is loaded ...
searchResult.addPropertyChangeListener(SearchParameters.HITS,

function openInTabs(event:PropertyChangeEvent):void {
// ... open all documents in tabs.
var searchResult:Array = event.newValue;
if (searchResult && searchResult.length > 0) {

editorContext.getContentTabManager().openDocuments(searchResult.slice(0,
MAX_OPEN_TABS));

if (searchResult.length > MAX_OPEN_TABS) {

MessageBoxUtil.showInfo(EditorErrors_properties.INSTANCE.editorStart_tooManyDocuments_title,

EditorErrors_properties.INSTANCE.editorStart_tooManyDocuments_message);

}
}

163CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing the Start up Behavior

});
searchResult.get(SearchParameters.HITS);

}

private function createSearchParameters():SearchParameters {
var searchParameters:SearchParameters = new SearchParameters();

searchParameters.filterQuery = [getQueryFilterString()];

//searchParameters.contentType = ['Document_'];
searchParameters.orderBy = ['freshness asc'];

return searchParameters;
}

private function getQueryFilterString():String {
var filterQueries:Array = [];

// retrieve user URI for parametrized filter expressions:
var user:User = session.getUser();
var userUri:String = "<" + user.getUriPath() + ">";

// filter documents checked out by me
filterQueries.push("ischeckedout:true");
filterQueries.push(StringUtil.format("editor:{0}", userUri));

return filterQueries.join(" AND ");
}

}
}

7.12.6 Customizing the Work Area Tab Context Menu
The context menu for work area tabs comes with several predefined actions like
close operations and options for checking in or reverting contents. In addition, the
WorkAreaTabContextMenu is an extension point for plugging in your own actions.

The WorkAreaTabContextMenu is a Studio IOC context provider (see Section
7.8, “Customizing Studio using Component IoC” [143]). However, instead of access-
ing the provided context variables directly via Studio IOC it is recommended to
implement your custom actions as subclasses of AbstractTabContextMenuAc
tion or AbstractTabContextMenuContentAction. In both cases, the context-
clicked tab and tab panel can be accessed via the methods getCon
textClickedTab():Panel and getContextClickedTabPanel():TabPanel
respectively. In addition, AbstractTabContextMenuContentAction provides
the methods getContextClickedContent():Content and getCon
textClickedContents():Array for obtaining the content of the context-clicked
tab and all contents of work area tabs respectively. Note that only Premular tabs
have content other than undefined.

Using these methods, subclasses should override the method checkDis
abled():Boolean to decide whether the action should be disabled. In addition,
these methods should suffice to provide enough information to implement the
action's behavior.

164CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing the Work Area Tab Context Menu

For example, the following two code samples show how to add an action for
checking in all contents of opened work area tabs.

<ui:rules>
...
<editor:workAreaTabContextMenu>
<plugins>
<ui:addItemsPlugin>
<ui:items>
<menuseparator/>
<menuitem>
<baseAction>
<custom:checkInAllContentTabsAction
text="Check in all contents"/>

</baseAction>
</menuitem>

</ui:items>
</ui:addItemsPlugin>

</plugins>
</editor:workAreaTabContextMenu>

...
</ui:rules>

public class CheckInAllContentTabsAction extends
AbstractTabContextMenuContentAction {
...

private function handler():void {
getContextClickedContents().
forEach(function (content:Content):void {
if (content.isCheckedOutByCurrentSession()) {
content.checkIn();

}
}

}
}

override protected function checkDisable():Boolean {
var atLeastOneContentTabInEditMode:Boolean = false;
getContextClickedContents().
forEach(function (content:Content):void {
if (content.isCheckedOutByCurrentSession()) {
atLeastOneContentTabInEditMode = true;

}
});
return !atLeastOneContentTabInEditMode;

}
}

165CoreMedia DXP 8

Customizing CoreMedia Studio | Customizing the Work Area Tab Context Menu

7.13 Dashboard
CoreMedia Studio provides a dashboard as a special tab type. On the dashboard,
users may freely arrange so-called widgets, which display data that the user should
be aware of. While your users may configure the dashboard according to their
particular needs, it is your task as a developer to determine which widget types
are available to them and to configure a suitable default dashboard for the first
login.

If no default dashboard is configured, the dashboard will not be available at all.
When you configure at least one type of widget, the dashboard button appears in
the upper right corner of the screen, and users may start working with their own
dashboard.

7.13.1 Concepts
Three rowsStudio dashboard widgets are organized in three columns of equal width that span

the entire work area. Each widget may fill one or more fixed-height rows, depending
on its rowspan attribute. Widgets cannot span multiple columns. Users can adjust
the height of each individual widget when they adjust their widget configuration.

There may be many fundamentally different widget types for various purposes.
Generally, widgets are used to display current information that a user is likely to
be interested in, without requiring immediate action. However, there may also be
widgets that allow the user to make simple updates or interact with other users.
Due to the limited size of a widget, complex interactions are likely moved to a tab
or a separate dialog.

Each widget type must provide a user interface that displays the actual information
for this widget. Additionally, each widget type may opt to provide a user interface
to configure a particular instance of the widget type on the user's dashboard. Users
can choose a "configuration mode" for each widget, and in this mode, the config-
uration UI is displayed, which can be used to modify the appearance and function-
ality of the widget. Multiple widgets of the same type may be shown on the dash-
board and each such widget can be in a different configuration state. Note the
"configurability" of a widget is optional. For non-configurable widget types, the
widget may just show an explanatory text describing its functionality.

State is stored persist-
ently

For each user, the set of widgets, their positions, sizes, and states are stored per-
sistently, allowing you to restore the widgets when the dashboard is closed and
reopened. Many widget types provide a corresponding state class that allows you
to define the state of the widget when configuring an initial dashboard. Widget
state object and widget types are matched with each other by means of a widget
type id.

Besides creating the user interfaces, the widget type in the form of an object im-
plementing the WidgetType interface is also responsible for providing a type

166CoreMedia DXP 8

Customizing CoreMedia Studio | Dashboard

name, description, icon, default rowspan, and for computing a title, possibly de-
pending on the current widget state. Optionally, the widget type may also provide
tools to be included in the header bar of the widget. Tools can allow the user to
start operations based on the current widget state.

7.13.2 Defining the Dashboard
You can configure the dashboard by selecting which widgets the user may add to
the dashboard and by describing the initial widget configuration of the dashboard.

To this end, the dashboard configuration is available through the method getDash
boardConfiguration() of the editorContext object. It provides a list of
WidgetType objects in the types property and a list of WidgetState objects in
the widgets property.

Usually, you will not access the configuration object directly, but rather through
the configureDashboardPlugin, which also offers a types and a widgets
property and takes care of merging these values into the global configuration at
the correct time.

The widget state objects in the property widgets determine the widgets to be
shown when the user first opens the dashboard. You should therefore select widgets
that a typical novice user would find interesting.

Each widget state object must be an instance of the class WidgetState, or a
subclass thereof. The class WidgetState itself defines only the properties wid
getTypeId, rowspan, and column, indicating the widget type, the relative height
of the widget and the placement of the widget, respectively.

Widget types for all initial widgets have to be provided, but you will typically add
more widget types for advanced users. Widget types and widget state objects are
matched by their id, which can be specified using the widgetTypeId property of
the state object. Predefined state objects will typically provide the correct ID
automatically.

The following example shows how theconfigureDashboardPlugin is used inside
an EXML Studio plugin specification.

Example 7.50. Dash-
board Configuration<?xml version="1.0" encoding="UTF-8"?>

<exml:class xmlns:exml="http://www.jangaroo.net/exml/0.8"
xmlns="exml:ext.config"
xmlns:editor="exml:com.coremedia.cms.editor.sdk.config">

<editor:studioPlugin>
<editor:configuration>
<editor:configureDashboardPlugin>
<editor:widgets>
<editor:simpleSearchWidgetState

contentType="CMArticle"/>
<editor:simpleSearchWidgetState

contentType="CMPicture"

167CoreMedia DXP 8

Customizing CoreMedia Studio | Defining the Dashboard

column="1"/>
</editor:widgets>

<editor:types>
<editor:simpleSearchWidgetType/>

</editor:types>
</editor:configureDashboardPlugin>

</editor:configuration>
</editor:studioPlugin>

</exml:class>

You can see a single widget type being configured, simpleSearchWidgetType.
In this example, the widget type provides no configuration option itself, but some
widget type classes can be customized by configuration.

In the example, there are two widgets using the defined type. By specifying a
simpleSearchWidgetState, the widget type id is set to match the simple
SearchWidgetType. The two widgets start off with a specific state. As a rule, any
configuration options that can be provided using a state object should also be
configurable when the widget is in edit mode.

For the second widget, a column is specified. Unless a column property is given,
each widget is placed in the same column as the previous widget and the first
widget is placed in the leftmost column. For the column property use either a nu-
meric column id from 0 to 2 or one of the constants SAME or NEXT from the class
widgetState, indicating to stay in the same column or to progress one column
to the right. The leftmost column is used as the next column of the rightmost
column.

Figure 7.7. Dashboard
UML overview

Dashboard
Configuration

WidgetType

WidgetState

Dashboard StateHolder

editor:Component

dashlet:Component

*
types

widgets

*

widgets

<<observe>>

* <<create>>

<<create>>

<<create>>

168CoreMedia DXP 8

Customizing CoreMedia Studio | Defining the Dashboard

7.13.3 Predefined Widget Types
There are a number of predefined widgets that are immediately usable through
simple configuration. All configuration classes of these widgets are located in the
package com.coremedia.cms.editor.sdk.config. The following table sum-
marizes the existing widgets.

Table 7.6. Predefined
widget typesDescriptionName

Displays the result of exactly one precon-
figured search.

fixedSearchWidgetType

Displays the result of a search for contents of
a configurable type containing a configurable
text.

simpleSearchWidgetType

The individual types and their configuration options are subsequently explained
in more detail.

Fixed Search Widget

Widget types based on the class fixedSearchWidgetType display the result of
exactly one preconfigured search. Because this widget type does not offer any
editable state, you should provide the search to execute when you define the
widget type. In this way, you can define fixed search widget types showing checked-
out documents or the most recently edited pages or arbitrary other searches.

For each type, you should at least specify the name under which the type can be
selected in the dropdown box when adding a new widget. At your option, you may
also set a title or a description to be shown for your type.

Because you can define multiple types, you must also provide different widget
type IDs. You can then use a plain widgetState element with the chosen type ID
and placement attributes to instantiate the widget.

An example configuration of this widget might look like this:

Example 7.51. Fixed
Search widget Configur-
ation

<editor:configureDashboardPlugin>
<editor:widgets>
<editor:widgetState widgetTypeId="editedByOthers"/>

</editor:widgets>

<editor:types>
<editor:fixedSearchWidgetType

id="editedByOthers"
name="Edited by others">

<editor:search>
<editor:searchState editedByOthers="true"

editedByMe="false"
notEdited="false"

169CoreMedia DXP 8

Customizing CoreMedia Studio | Predefined Widget Types

approved="false"
published="false"/>

</editor:search>
</editor:fixedSearchWidgetType>

</editor:types>
</editor:configureDashboardPlugin>

Simple Search Widget

A widget of type simpleSearchWidgetType displays the result of a search for
contents of a configurable type containing a configurable text. By default, the
search is limited to the preferred site, if such a site is set. Through the state class
simpleSearchWidgetState, the dashlet provides the associated configuration
options contentType, searchText, and preferredSite.

An example configuration of this widget might look like this:

Example 7.52. Simple
Search Widget Configur-
ation

<editor:configureDashboardPlugin>
<editor:widgets>
<editor:simpleSearchWidgetState contentType="CMPicture"/>

</editor:widgets>

<editor:types>
<editor:simpleSearchWidgetType/>

</editor:types>
</editor:configureDashboardPlugin>

7.13.4 Adding Custom Widget Types
You can define your own widget types and add widgets of this type to the dash-
board. This section will guide you through all the necessary steps, covering rather
simple widgets as well as more sophisticated ones.

Widget Type and Widget Component

When creating own widgets, you typically start off by creating a custom widget
type. As described in the previous sections, the dashboard is configured in terms
of columns and widget states. Each widget state carries a widget type id which as-
sociates it with its widget type. In order to get from widget states to the actual
widget instances shown on the dashboard, the different widget types are consulted.
A widget type is responsible for creating the widget components from their asso-
ciated widget states.

You could define your own widget type by creating a class from scratch that imple-
ments the interface WidgetType. However, a convenient default implementation
ComponentBasedwidgetType, is provided out of the box. For many cases it is
sufficient to let your own widget type extend it. In order to do so, you have to
define a widget component that defines the UI for widgets of your new widget type.

170CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Custom Widget Types

For instance, the predefined SimpleSearchWidgetType is simply defined in
EXML as follows:

Example 7.53. Simple
Search Widget Type<exml:class ... >

...
<editor:componentBasedWidgetType

name="..."
description="..."
iconCls="...">

<editor:widgetComponent>
<editor:simpleSearchWidget/>

</editor:widgetComponent>
</editor:componentBasedWidgetType>

</exml:class>

Besides setting the parameters name, description and iconCls, the widget
component SimpleSearchWidget is set. The following listing shows a fragment
of the SimpleSearchWidget:

Example 7.54. Simple
Search Widget Compon-
ent

<exml:component ...
baseClass="...SimpleSearchWidgetBase">

...
<exml:cfg name="searchText" type="String">
<exml:description>
...

</exml:description>
</exml:cfg>

<exml:cfg name="contentType" type="String">
<exml:description>
...

</exml:description>
</exml:cfg>

<exml:constant name="CONTENT_LIST_ITEM_ID" value="contentList"/>

<container height="100%">
<items>
<editor:widgetContentList itemId="{CONTENT_LIST_ITEM_ID}"

contentList="{getContentValueExpression()}"/>
...

</items>
</container>

</exml:component>

The component can be configured with the parameters searchText and content
Type in order to show a corresponding search result. Executing the search and
obtaining the search results is carried out in the base class SimpleSearchWidget
Base. When extending that class, a value expression that references the search
result can be obtained via getContentValueExpression() and is used by a
WidgetContentList to display the result.

There is one further important aspect concerning the base class SimpleSearch
WidgetBase. It implements the Reloadable interface. This indicates that a reload
button should be placed in the widget header, calling the widget's reload()

171CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Custom Widget Types

method for refreshing the widget's contents. In this case, the base class simply
triggers a new search.

Configurable and Stateful Widgets

The WidgetType interface also features the creation of an editor component for
a widget at runtime. Again, if you opt to implement the interface yourself, you
have to provide this functionality from scratch. If you choose your type to extend
ComponentBasedWidgetType, you simply have to add an editor component, just
as you did for the widget component. Consequently, the EXML definition for the
SimpleSearchWidgetType for simple search widgets that are configurable at
runtime looks as follows:

Example 7.55. Simple
Search widget Type
with Editor Component

<exml:class ... >
...
<editor:componentBasedWidgetType

name="..."
description="..."
iconCls="...">

<editor:widgetComponent>
<editor:simpleSearchWidget/>

</editor:widgetComponent>
<editor:editorComponent>
<editor:simpleSearchWidgetEditor/>

</editor:editorComponent>
</editor:componentBasedWidgetType>

</exml:class>

Now widgets of this type have their own editor component when a widget on the
dashboard is in edit mode.

However, without further wiring, the changes a user makes in edit mode do not
carry over to the widget component. For the simple search widget it is expected
that the user can choose a search text and content type in edit mode and that the
widget shows a corresponding search result in widget mode. To make this happen,
SimpleSearchWidgetEditor has to implement the StateHolder interface.
The method getStateValueExpression() has to be implemented in a way that
the value expression refers to a simple JavaScript object containing the configuration
properties to be applied to the widget component. Thus, for the simple search
widget, these properties are searchText and contentType.

See section Section 7.7, “Storing Preferences” [142] for details of how the state
values are persisted and for the limits on the allowed objects.

You could just implement the StateHolder interface yourself. For convenience,
CoreMedia recommends, that you let your editor component extend Stateful
Container. This component inherently implements StateHolder. It can be
configured with a list of property names along with default values and automatically
takes care of building a state model bean from them. This state model bean is the
basis for the evaluation of the value expression that is returned via getState

172CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Custom Widget Types

ValueExpression(). Additionally, the bean can be consulted via getModel()
from subclasses of StatefulContainer. This can be utilized for binding the
model state to the user interface state. The following listing exemplifies this for
the case of SimpleSearchWidgetEditor:

Example 7.56. Simple
Search widget Editor
Component

<exml:component ...>
...
<ui:statefulContainer layout="form"

properties="searchText,contentType">
<items>
<editor:contentTypeSelector fieldLabel="..."

width="auto"
fieldClass="">

<plugins mode="append">
<ui:fullWidthPlugin/>

</plugins>
<editor:contentTypeValueExpression>
<ui:valueExpression expression="contentType"

context="{getModel()}"/>
</editor:contentTypeValueExpression>

</editor:contentTypeSelector>
<textfield fieldLabel="..."

width="auto">
<plugins>
<ui:bindPropertyPlugin bidirectional="true">
<ui:bindTo>
<ui:valueExpression expression="searchText"

context="{getModel()}"/>
</ui:bindTo>

</ui:bindPropertyPlugin>
<ui:immediateChangeEventsPlugin/>
<ui:fullWidthPlugin/>

</plugins>
</textfield>

</items>
<ui:propertyDefaults>
<exml:object contentType="{ContentTypeNames.DOCUMENT}"/>

</ui:propertyDefaults>
</ui:statefulContainer>

</exml:component>

This editor component for the simple search widget extends StatefulContainer
and is configured to build a state model for the two properties searchText and
contentType. For the content type property, a default is set. The editor component
offers the user a combo box for selecting a content type and a text field for entering
a search text. The user's input is tied to the state model via value expressions that
use getModel() (inherited from StatefulContainer) as their context. This
results in keeping the state model updated. Implementing the StateHolder inter-
face yourself is not necessary. It is automatically taken care of by StatefulCon
tainer on the basis of the always up-to-date state model.

All in all, this results in the simple search widget editor being stateful. When the
user switches between widget mode and edit mode for this widget, the editor will
keep its state (search text and content type). The state is only lost if the user selects
a different widget type in edit mode.

173CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Custom Widget Types

In some cases, it might be useful to not only have the editor of a widget being
stateful, but also the widget itself. This can be realized in the same way shown
here for the editor: by implementing the StateHolder interface.

Custom Widget State Class

In many cases, it is not necessary to create you own widget state class for your
custom widget type. As shown earlier in this chapter, the predefined class Widget
State allows you to set the dashboard column, the widget type and the widget's
rowspan. This is sufficient unless you want to put widgets of your type into the
default dashboard and at the same time use a configuration other than the default.
However, if you want to do just that, CoreMedia recommends that you create your
own widget state class as an extension to WidgetState. For the simple search
widget, the custom state class SimpleSearchWidgetState looks as follows:

Example 7.57. widget
State Class for Simple
Search widget

<exml:class ...>
...

<exml:cfg name="searchText" type="String">
<exml:description>
...

</exml:description>
</exml:cfg>

<exml:cfg name="contentType" type="String">
<exml:description>
...

</exml:description>
</exml:cfg>

<exml:cfg name="preferredSite" type="Boolean">
<exml:description>
...

</exml:description>
</exml:cfg>

<editor:widgetState widgetTypeId="{simpleSearchDashlet.xtype}"/>
</exml:class>

This class allows you to launch simple search widgets initially with the configuration
properties searchText and contentType being set. They are set via the dash-
board configuration prior to the dashboard's launch instead of being set by the
user via the SimpleSearchWidgetEditor component at runtime (although this
is of course possible afterwards).

The widgetTypeId for the SimpleSearchWidgetState is set to the xtype of
SimpleSearchWidget. This is because widget types that extend Component
BasedWidgetType by default take the xtype of their widget component as their
id.

174CoreMedia DXP 8

Customizing CoreMedia Studio | Adding Custom Widget Types

7.14 Configuring MIME Types
When a blob is uploaded into a property field, CoreMedia Studio selects an appro-
priate MIME type based on the name of the uploaded file. For the most common
file name extensions, a MIME type is already preconfigured. You may add further
extensions as needed. If the extension is completely unknown, the MIME type
suggested by the uploading browser will be used.

To add custom file name extensions, add a mapping from the file extension to the
desired MIME type in the file WEB-INF/mime.properties of the Studio web
application.

Example 7.58. Config-
uring MIME typesmp2=audio/x-mpeg

The given example registers files with the extension mp2 as MPEG files.

175CoreMedia DXP 8

Customizing CoreMedia Studio | Configuring MIME Types

7.15 Server-Side Content Processing
Several operations on content can be implemented on the server side using the
Unified API from Java. Especially, you may want to place restrictions on the content
that is stored in your repository. This may be achieved by pointing the editors to
invalid content, by normalizing content during writes or by inhibiting writes that
violate your constraints.

➞ Section 7.15.1, “Validators” [176] describes how to add validation for values
stored in the content repository.

➞ Section 7.15.2, “Intercepting Write Requests” [180] describes how to modify
writes before they are executed.

➞ Section 7.15.3, “Immediate Validation” [183] describes how to inhibit undesir-
able writes.

➞ Section 7.15.4, “Post-processing Write Requests” [184] describes how to take
additional action after a write has been completed.

7.15.1 Validators
CoreMedia Studio supports server-side validation based on a project-specific config-
uration. To this end, validators are configured in the REST service web application.
Validators can analyze content and report issues which are available at the client
side as described in Section 5.3.3, “Issues” [41]. Validators are implemented in
Java and injected into the Spring application context of the web application. See
Section 5.6, “Web Application Structure” [60] for an introduction of the server-
side architecture.

Predefined validators

CoreMedia Studio offers several predefined validators and a convenient API to im-
plement your own, based on project-specific content validation requirements. The
table below gives an overview of the default validators, which reside in the package
com.coremedia.rest.validators (for details, please consult the API docu-
mentation available at the CoreMedia download area).

Table 7.7. Selected pre-
defined validators
available in CoreMedia
Studio

behaviorname

checks for a valid email address according to
RFC822

EmailValidator

checks for non-empty image and correctly
linked areas in an image map. See also Sec-
tion 7.3.5, “Enabling Image Map Editing” [111]

ImageMapAreasValidator

176CoreMedia DXP 8

Customizing CoreMedia Studio | Server-Side Content Processing

http://download.coremedia.com

behaviorname

checks for maximum/minimum number of
documents linked in a linklist

ListMaxLengthValidator and List
MinLengthValidator

checks for a maximum/minimum integer
value

MaxIntegerValidator and MinIn
tegerValidator

checks for a maximum/minimum length of a
String

MaxLengthValidator and Min
LengthValidator

checks whether a field is empty; works on
strings, linklists, and blobs

NotEmptyValidator

checks whether a given (configurable) regular
expression matches against the value given
in the property

RegExpValidator

checks against duplicate links in a linklist (that
is, the same document is linked at least twice
in the same linklist)

UniqueListEntriesValidator

checks for valid URIs or URLs, respectivelyUriValidator and UrlValidator

Implementing Validators

Single-property and
multi-property validat-
ors

You can implement a validator for a single property or a validator that takes multiple
properties into account when computing issues. Single-property validators are
generally more reusable across document types and across projects and should
cover the vast majority of use cases.

For a single-property validator, you can implement the interface PropertyValid
ator of the package com.coremedia.rest.validation. The easiest way of
doing this is by inheriting from the class ObjectPropertyValidatorBase and
implementing the method isValid(Object).

Example 7.59. Imple-
menting a property
validator

public class MyValidator extends ObjectPropertyValidatorBase {
@Override
protected boolean isValid(Object value) {
return ...;

}
}

If you know that all property values belong to a given Java class, you can inherit
from PropertyValidatorBase instead, specifying the value type as the generic
type argument of the base class and passing a class object of the value class to the
base class's constructor. You can then implement a more specific isValidmethod
that immediately receives an argument of the correct type.

177CoreMedia DXP 8

Customizing CoreMedia Studio | Validators

To enable a property validator, you register it in a content type validator that is
defined in the Spring application context. The following code snippet shows how
the validator is applied to the property myProperty of the document type
MyDocumentType. Here the validator is configured to apply to all subtypes of the
given document type, too. By default, the validator would only apply to exactly the
given document type.

Example 7.60. Config-
uring a property valid-
ator

<bean parent="contentTypeValidator">
<property name="contentType" value="MyDocumentType"/>
<property name="validatingSubtypes" value="true"/>
<property name="validators">
<list>
<bean class="MyValidator">
<property name="property" value="myProperty"/>

</bean>
</list>

</property>
</bean>

See the Javadoc of the REST Service API and especially the packages com.core
media.rest.validators and com.coremedia.rest.cap.validators for
the predefined validators.

For all validators that inherit from PropertyValidatorBase, which includes all
standard validators, you can set the field code in the Spring configuration to an
issue code of your choice. If you choose not to do so, the class name of the valid-
ator implementation will be used as the issue code. For example, the validator
com.coremedia.rest.validators.RegExpValidator creates issue with
code RegExpValidator by default.

To provide multiple validators for a single document type you can either provide
multiple beans inheriting from contentTypeValidator or, more commonly,
multiple validators in the validators property of a single content type validator.

If you want to handle multiple properties of a content at once, your validator should
inherit from the base class ContentTypeValidatorBase The single method to
implement is validate(Content, Issues), which receives the content to
analyze as its first argument and an Issues object as its second argument.
Whenever a problem is detected, you can call the method addIssue(severity,
property, code, ...) of the issues object to register a new issue.

Example 7.61. Imple-
menting a content val-
idator

public class MyContentValidator extends ContentTypeValidatorBase {
@Override
public void validate(Content content, Issues issues) {
if (...) {
issues.addIssue(Severity.ERROR, "myProperty", "myCode");

}
}

}

178CoreMedia DXP 8

Customizing CoreMedia Studio | Validators

By inheriting from ContentTypeValidatorBase you can easily specify the name
of the content type to which is validator is applied when configuring the validator
into the Spring application context.

Example 7.62. Config-
uring a content validat-
or

<bean class="MyContentValidator">
<property name="connection" ref="connection"/>
<property name="contentType" value="MyDocumentType"/>

</bean>

You can also implement the interface CapTypeValidator directly, if you do not
want to make use of the convenience methods of ContentTypeValidatorBase.
Finally, by implementing com.coremedia.rest.validation.Validator<Con
tent> you could create validators that are not even bound to a document type.
This should only be necessary in very rare cases.

Defining and Localizing Validator Messages

CoreMedia Studio ships with predefined validator messages for the built-in validators.
The messages are defined in property files, following the idiom described in Section
5.7, “Localization” [61]. However, you might still want to add your own localized
messages if you add custom validators or if you want to provide more specific
message for individual properties.

To this end, you should start by adding a new set of property files containing your
localized messages. Make sure to add the base property file and an additional
property file for each non-default language.

Augment the central validator property file with your own properties. The central
property file is com.coremedia.cms.editor.sdk.validation.Validators,
so that it can be updated as follows:

Example 7.63. Config-
uring validator mes-
sages

ResourceBundle.overrideProperties(Validators_properties,
MyValidators_properties);

Now you can add localized message to the base property file and optionally to
every language variant, using an appropriate translation.

There are three kinds of keys using the following schemes:

1. Validator_<IssueCode>_text is used as the generic message for the re-
spective issue code.

2. PropertyValidator_<PropertyName>_<IssueCode>_text is used when
the issue code appears for a property of a specific name.

3. ContentValidator_<ContentType>_<PropertyName>_<Issue
Code>_text is used when the issue code appears for a property of a specific

179CoreMedia DXP 8

Customizing CoreMedia Studio | Validators

name for a document with the given content type or any subtypes thereof. A
localized message for a more specific content type takes precedence.

Generally, more specific settings take precedence over more general settings. For
example ContentValidator_* keys take precedence over Validator_* keys,
if applicable.

Each localized message may contain the substitution tokens {0}, {1}, and so on.
Before being displayed, these tokens are replaced by the corresponding issue ar-
gument (counting from 0).

Tying Document Validation to Editor Actions

It is possible to tie the validation of a document to editor actions via the valid
ateBefore property defined in studio.properties. This property is to configure
Studio to prevent certain activity on content items when they still contain errors.
More specifically, you can specify that either checking in content or approving
(and thus publishing) content will be not allowed in the presence of content errors.
Setting the value of the validateBefore property to "CHECKIN" entails the check
of both Checkin and Approve actions. Currently, the only supported options are
"CHECKIN" or "APPROVE". Leaving the property value empty means that no such
checks are imposed, and editors are allowed to check in, approve and publish even
when content errors are detected.

7.15.2 Intercepting Write Requests
Write requests that have been issued by the client can be intercepted by custom
procedures in the server. To this end, write interceptor objects can be configured
in the Spring application context of the Studio REST service. Typical use cases in-
clude:

➞ Setting initial property values right during content creation, ensuring that
a completely empty content cannot be encountered even temporarily.

➞ Replacing the value to be written, for example, to automatically scale down
an image to predefined maximum dimensions.

➞ Computing derived values, for example, to extract the dimensions (or other
metadata) of an uploaded image and storing them in separate properties.

Replacing values is not normally useful for text properties, because text values
are saved continuously as the user enters data, and a write interceptor might
not be able to operate appropriately during the first saves. For blobs or link lists,
the impact on the user experience is typically less of a problem. In any case,
when using interceptors, you need to make sure that the user experience is not
impacted negatively.

180CoreMedia DXP 8

Customizing CoreMedia Studio | Intercepting Write Requests

Developing Write Interceptors

In order to process write requests as described above, create a class implementing
the interface ContentWriteInterceptor. Alternatively, your class can also in-
herit from ContentWriteInterceptorBase, which already defines methods to
configure the content type to which the write interceptor applies, and the priority
at which the interceptor runs compared to other applicable interceptors.

This leaves only the method intercept(ContentWriteRequest) to be imple-
mented in custom code. The argument of the intercept method provides access
to all information needed for processing the current request, which is either an
update request or a create request.

Get values from write
request

The method getProperties() of the WriteRequest object returns a mutable
map from property names to values that represents the intended write request.
Write interceptors can read this map to determine the desired changes. They may
also modify the map (which includes the ability to add additional name/value pairs
if required), thereby requesting modification of the original write request, and/or
additional write operations. If multiple write interceptors run in succession, they
see the effects of the previous interceptors' modifications in this map.

If a blob has been created in the write request by uploading a file via Studio, it is
available as UploadedBlob in the properties of the WriteRequest, providing
access to the original filename.

Get content for requestThe method getEntity() returns the content on which an update request is being
executed. A write interceptor may use this method to determine the context of a
write request, for example to determine the site in which the content is placed in
a multi-site setting or to determine the exact type of the content. Do not write to
the content object. To modify the content, update the properties map as explained
above.

The method getEntity() returns null for a create request, because a write in-
terceptor is called before a content is created. So that the interceptor is able to
respond to the context of a create request, the ContentWriteRequest object
provides the methods getParent(), getName(), and getType(), which provide
access to the folder, the name of the document to be created, and the content type
to be instantiated.

Reporting issuesFinally, an issues object can be retrieved by calling getIssues(). This object
functions as shown in Section 7.15.1, “Validators” [176]. In this context, it allows
an interceptor to report problems observed in the write request. If a write inter-
ceptor reports any issues with error severity using the method addIssue(...)
of the issues object, the write request will automatically be canceled and an error
description will be shown at the client side. If issues of severity warn are detected,
the write is executed, but a message box is still shown. In any case, the issues are
not persisted, so that the only issues shown for a content permanently are the issues
computed by the regular validators.

181CoreMedia DXP 8

Customizing CoreMedia Studio | Intercepting Write Requests

The following example shows the basic structure of a custom interceptor for images.
A field for the name of the affected blob property is provided. The intercept()
method checks whether the indicated property is updated, retrieves the new value
and provides a replacement value using the properties map.

Example 7.64. Defining
a Write Interceptorpublic class MyInterceptor extends ContentWriteInterceptorBase {

private String imageProperty;

public void setImageProperty(String imageProperty) {
this.imageProperty = imageProperty;

}

public void intercept(ContentWriteRequest request) {
Map<String,Object> properties = request.getProperties();
if (properties.containsKey(imageProperty)) {
Object value = properties.get(imageProperty);
if (value instanceof Blob) {
...
properties.put(imageProperty, updatedValue);

}
}

}
}

Configuring Write Interceptors

Enabling the intercept-
or

A write interceptor is enabled by simply defining a bean in the Spring application
context of the Studio web application. The interception framework automatically
collects all interceptor beans and applies them in order whenever an update is re-
quested. Interceptors with numerically lower priorities are executed first.

Priority of interceptorFor a write interceptor implemented using the class ContentWriteIntercept
orBase, the priority is configured through the priority property. Such intercept-
ors also provide the property type, indicating that an interceptor should only run
for instances of specific content types. While the setter setType() receives a
ContentType parameter, it is possible to simply provide the content type name
as a string in the Spring bean definition file. The type name will be automatically
converted to a ContentType object.

Furthermore, you need to configure whether the interceptor also applies to in-
stances of subtypes of the given type through the property isInterceptingSub
types. Like for validators, this property defaults to false, meaning that intercep-
tion applies only to documents of the exact type.

Each write interceptor may also introduce additional configuration options of its
own.

A typical definition might look like this:

Example 7.65. Config-
uring a Write Intercept-
or

<bean id="myInterceptor" class="MyInterceptor">
<property name="type" value="CMPicture"/>

182CoreMedia DXP 8

Customizing CoreMedia Studio | Intercepting Write Requests

<property name="imageProperty" value="data"/>
</bean>

7.15.3 Immediate Validation
Write requests that violate hard constraints of your document type model can be
aborted when a validator fails. Typical use cases include:

➞ Preventing a client from uploading an image that is too large.

➞ Making sure that a document does not link to itself directly.

Blocking writes is not normally useful for text properties, because text values
are saved continuously as the user enters data, and a write interceptor might
not be able to operate appropriately during the first saves. For blobs or link lists,
the impact on the user experience is typically less of a problem. In any case, you
need to make sure that the user experience is not impacted negatively.

For implementing immediate validation, you can create an instance of the class
ValidatingContentWriteInterceptor as a Spring bean and populate its
validators property with a list of PropertyValidator objects. When the val-
idators are configured to report an error issue, an offending write will not be ex-
ecuted (that is, the requested value will not be saved).

A configuration that limits the size of images in the data property of CMPicture
documents to 1 Mbyte might look like this (class names are wrapped for layout
reasons):

Example 7.66. Config-
uring Immediate Valid-
ation

<bean id="myValidatingInterceptor"
class="com.coremedia.rest.cap.intercept.
ValidatingContentWriteInterceptor">

<property name="type" value="CMPicture"/>
<property name="validators">
<list>
<bean class="com.coremedia.rest.cap.validators.

MaxBlobSizeValidator">
<property name="property" value="data"/>
<property name="maxSize" value="1000000"/>

</bean>
</list>

</property>
</bean>

Remember that the validators become active during creation, too, so that an im-
mediate validator might validate initial values set by an earlier write interceptor.

183CoreMedia DXP 8

Customizing CoreMedia Studio | Immediate Validation

7.15.4 Post-processing Write Requests
Write requests that have been executed by the server can be post processed by
custom procedures. To this end, write post-processor objects can be configured in
the Spring application context of the Studio REST service.

In most cases, a write interceptor is better suited for reacting to update requests,
because an interceptor can still block an update completely and because it is more
efficient to make sure that the right value are written immediately. But especially
during content creation it might be necessary to create links to the generated
content, which would be impossible before the content has actually been created.

Note that post-processors are not executed atomically with the actual write, so
that the write is persisted even if a post-processor exits with an exception.

Developing Write Post-processors

In order to post process write requests as described above, create a class imple-
menting the interface ContentWritePostprocessor. Alternatively, your class
can also inherit from ContentWritePostprocessorBase, which already defines
methods to configure the content type to which the write interceptor applies, and
the priority at which the interceptor runs compared to other applicable interceptors.

This leaves only the method postProcess(WriteReport<Content>) to be
implemented in custom code. The argument of the postProcessmethod provides
access to all information needed for post processing the current request, which is
either an update request or a create request.

The method getEntity() returns the content on which an update request has
been executed. A write interceptor may use this method to determine the context
of a write request.

The method getOverwrittenProperties() of the WriteReport object returns
a map from property names to the values that have been overwritten during the
write request. The new values can be retrieved as the current property value of
the content returned from the method getEntity().

Configuring Write Post-processors

A write post-processor is enabled by simply defining a bean in the Spring application
context of the Studio web application. The interceptor framework automatically
collects all post-processor beans and applies them in order whenever an update
is requested. Post-processors with numerically lower priorities are executed first.

Priority of post-pro-
cessor

For a write post-processor implemented using the class ContentWritePostpro
cessorBase, the priority is configured through the priority property. Such

184CoreMedia DXP 8

Customizing CoreMedia Studio | Post-processing Write Requests

post-processors also provide the property type, indicating that a post-processor
should only run for instances of specific content types.

Furthermore, you need to configure whether the post-processor also applies to
instances of subtypes of the given type through the property isPostprocessing
Subtypes. Like for validators, this property defaults to false, meaning that post-
processing applies only to documents of the exact type.

Each write post-processor may also introduce additional configuration options of
its own.

185CoreMedia DXP 8

Customizing CoreMedia Studio | Post-processing Write Requests

7.16 Available Locales
As the locale property of a content item is just a plain string property, CoreMedia
Studio provides assistance with setting the locales and keeping them consistent.

For this purpose a special content item is maintained that stores a list of language
tags. These tags are used to restrict the selectable locales when cloning a site or
setting a content item's locale property. To this end a new property field called
AvailableLocalesPropertyField is used in the Blueprint content forms,
which displays the available locales as a combo box.

The locales are rendered to the user in a readable representation that is localized
for the current Studio language. The property field can also be configured to show
an empty entry that sets the field value to the empty string.

When editing the list of available locales a validator will warn you if a language
tag does not match the BCP 47 standard (http://www.rfc-edit-
or.org/rfc/bcp/bcp47.txt) and it will show an error if a language tag is defined
multiple times.

The content item and property storing the locales can be configured with the fol-
lowing two Studio properties:

studio.availableLocalesContentPath=/Settings/Options/Settings/LocaleSettings
studio.availableLocalesPropertyPath=settings.availableLocales

186CoreMedia DXP 8

Customizing CoreMedia Studio | Available Locales

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.rfc-editor.org/rfc/bcp/bcp47.txt

7.17 Notifications

7.17.1 Configure Notifications
By default the amount of notifications requested by the Studio is limited to 20.
This value is customizable via the Spring property notifications.limit. The
property can be overwritten in the application.properties of the Studio
webapplication or any other Spring properties file that is loaded for the Studio
context.

7.17.2 Adding Custom Notifications
On several occasions, CoreMedia Studio shows notifications (see also Section 2.7
of the CoreMedia Studio User Manual). It is easily possible to add your own custom
notifications to CoreMedia Studio. In the following the necessary steps are described.

For your server-side module where you want to create a notification, make sure
you add a Maven dependency on notification-api. This module contains the
NotificationService API.

Also, make sure that your Web-App as a whole has a Maven dependency on noti
fication-elastic. This module contains an Elastic Core-based implementation
of the NotificationService. For the Blueprint Studio Web-App this is already
taken care of by the extension module bpbase-notification-studio-lib.
By default, the provided NotificationService uses mongoDb. If for some
reason you want to use a memory-based NotificationService, combine the
Maven dependency notification-elastic with core-memory.

Finally, take care of declaring a NotificationService Spring bean, either via
component-scan or explicit declaration.

For the Studio client side, you have to add the Maven dependency notification-
studio-client to the module where you want to develop new notification UIs.
In addition, you have to activate the notifications framework via plugin (for the
Blueprint Studio, this is already taken care of by the extension module bpbase-
notification-studio-plugin):

<editor:studioPlugin>
<editor:configuration>
<notifications:notificationsStudioPlugin/>

</editor:configuration>
</editor:studioPlugin>

187CoreMedia DXP 8

Customizing CoreMedia Studio | Notifications

7.17.3 Creating Notifications (Server Side)
To create notifications on the server side, simply inject the NotificationService
and use it at the appropriate position (event/request handler, REST method, task
etc.) to create a new notification with the method createNotification:

Notification createNotification(@Nonnull String type,
@Nonnull Object recipient,
@Nonnull String key,
@Nullable List<Object> parameters);

A notification always has a combination of type and key. The key is basically a
sub-type and will be used to determine the correct localization text key on the client
side. An example of a type / key combination is "publicationWorkflow" / "offered".

A notification has a recipient. This parameter is typed as Object. For Studio
notifications, it has to be a User object.

Additional parameters will be used on the client side to parametrize the notific-
ation's text. In advanced cases they are additionally used to configure actions and
customize the notification's UI. Details are explained below.

7.17.4 Displaying Notifications (Client Side)
For displaying notifications in CoreMedia Studio, three levels are distinguished:

1. Simply displaying the notification in terms of a text message and an icon. For
example, the notification might inform the user that a new publication workflow
has arrived in its inbox.

2. The same as in 1. but with an additional click action handler. For example,
clicking the publication workflow notification might open the publication
workflow inbox in the Studio Control Room.

3. Completely customizing the display and controls of the notification.

Levels 1 and 2 are considered as the typical cases for displaying notifications. For
these, CoreMedia offers default components. However, in certain cases it might
be necessary/desired to develop a more refined notification UI.

Level 1: Simple Notification Display

For just displaying a notification in terms of an icon and a text message, you simply
have to provide an icon class property and a text key property. These properties
must match the patterns Notification_{notificationType}_iconCls and
Notification_{notificationType}_{notificationKey}_msg respectively.
For the example of a publication workflow notification from above, the properties
look as follows:

188CoreMedia DXP 8

Customizing CoreMedia Studio | Creating Notifications (Server Side)

Notification_publicationWorkflow_iconCls =
publication-workflow-notification-icon

Notification_publicationWorkflow_offered_msg =
The workflow {0} is new in your inbox.

In this example, the message property has a placeholder. By default, the paramet
ers of the notification (see notification creation above) are inserted in the place-
holders one after the other. Consequently, the parameters have to be Strings.
However, it is also possible to compute the placeholder insertions from the notific-
ation's parameters (for example, if you have a complex bean as a parameter that
should be the basis for all placeholder insertions). In this case your notification's
Studio component (see below) has to implement the interface com.core
media.cms.editor.notification.components.TextParametersPrePro
cessor.

You define your properties in your own resource bundle (WorkflowNotifica
tions_properties, for instance) and have to make sure to copy it onto the re-
source bundle com.coremedia.cms.editor.notification.Notifica
tions_properties which is provided by us:

<editor:studioPlugin>
<editor:configuration>
<editor:copyResourceBundleProperties

destination="{Notifications_properties}"
source="{WorkflowNotifications_properties}"/>

</editor:configuration>
</editor:studioPlugin>

Level 2: Simple Notification Display with Click Action

In many cases it is not enough to just display a notification. Normally, a notification
is a request to the user to do something. So it should be possible to click the noti-
fication and be directed to the part of Studio where the user can do something
about it.

In order to add an action click handler to your notification, you have to register
your own notification component. You always register a notification component
for a specific notification type:

<editor:studioPlugin>
<editor:configuration>
<notifications:registerNotificationDetailsPlugin

notificationType="publicationWorkflow">
<notifications:notificationDetailsComponentConfig>
<wfnotifications:workflowNotificationDetailsComponent/>

</notifications:notificationDetailsComponentConfig>
</notifications:registerNotificationDetailsPlugin>

</editor:configuration>
</editor:studioPlugin>

You do not have to do any component developing for level 2. You can simply let
your notification component extend defaultNotificationDetails and add
your notification action as its baseAction. You need to let your action extend

189CoreMedia DXP 8

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

NotificationAction. This yields numerous benefits like accessing the notifica-
tion via the method NotificationAction.getNotification(). Consequently,
you have also access to all the notification's parameters.

<exml:component ... >

<notifications:defaultNotificationDetails>
<baseAction>
<wfnotifications:showInboxForWorkflowNotificationAction/>

</baseAction>
</notifications:defaultNotificationDetails>

</exml:component>

Level 3: Custom Notification Display

You are free to develop your own notification component that does not inherit
from defaultNotificationDetails. CoreMedia gives no further guidelines
here but point out that your component at least has to inherit from notifica
tionDetails. You register your custom component just as it was described above.

190CoreMedia DXP 8

Customizing CoreMedia Studio | Displaying Notifications (Client Side)

8. Security

In this chapter you will get to know about security mechanisms in CoreMedia Studio.
This chapter does not cover general deployment aspects but focuses on application
level security topics.

191CoreMedia DXP 8

Security |

8.1 Preview Integration
It is recommended to serve the preview application and CoreMedia Studio application
from different origins (the origin includes protocol, host, port), as described in
Section 3.3, “Basic Preview Configuration” [21]. By separating the application
origins, the browser ensures that both applications run independently in their own
environment without direct access to each other (see Same-origin policy). Potential
vulnerabilities in the preview application can not automatically propagate into the
Studio application and vice versa.

It is highly recommended serving both, CoreMedia Studio and the embedded preview
over HTTPS. The unencrypted HTTP protocol should only be used in a well separated
development environment. Due to several browser constraints regarding mixed
content it is highly discouraged to serve CoreMedia Studio and the embedded pre-
view over different protocols.

192CoreMedia DXP 8

Security | Preview Integration

8.2 Content Security Policy
Cross-site scripting (XSS) vulnerabilities are a severe threat for all high profile web
applications like CoreMedia Studio. While conscientious output escaping always has
to be the first choice in order to avoid cross-site scripting attacks, most modern
web browsers offer a new standard called Content Security Policy (CSP) as a second
line of defense (see http://www.w3.org/TR/CSP/).

Default Policy

The standard Blueprint CoreMedia Studio enables Content Security Policy by default.
It sends at least the following default CSP header to the browser.

default-src 'none';
style-src 'self' 'unsafe-inline';
script-src 'self' 'unsafe-eval';
img-src 'self';
connect-src 'self';
object-src 'self';
font-src 'self';
media-src 'self';
frame-src <YOUR_PREVIEW_ORIGIN>

The header value represents the minimum set of directives to comply with the
Studio's and its third-party library requirements. Both, the unsafe-inline value
of the style-src directive and the unsafe-eval value of the script-src dir-
ective are required by Ext JS.

Customize Policy

Each of the CSP directives that are included in the default header plus the report-
uri directive can be easily customized.

Note that weakening the policy settings can have severe effects on the applica-
tion's security. Especially re-enabling inline script execution is considered
harmful as it thwarts all efforts to prevent XSS.

Customization is done via a set of studio.security.csp.* properties in the
WEB-INF/application.properties property file of the Studio web application.
Each property is responsible for one Content Security Policy directive.

➞ studio.security.csp.scriptSrc: Takes a list of values for the script-
src policy directive. Default values are 'self','unsafe-eval'.

➞ studio.security.csp.styleSrc: Takes a list of values for the style-
src policy directive. Default values are 'self','unsafe-inline'.

➞ studio.security.csp.frameSrc: Takes a list of values for the frame-
src policy directive. The hierarchy of default values for this directive is as
follows.

193CoreMedia DXP 8

Security | Content Security Policy

http://www.w3.org/TR/CSP/

➞ studio.previewUrlWhitelist values if specified.

➞ Schema and authority of studio.previewUrlPrefix if specified.

➞ 'self'

➞ studio.security.csp.connectSrc: Takes a list of values for the con
nect-src policy directive. Default value is 'self'.

➞ studio.security.csp.fontSrc: Takes a list of values for the font-src
policy directive. Default value is 'self'.

➞ studio.security.csp.imgSrc: Takes a list of values for the img-src
policy directive. Default value is 'self'.

➞ studio.security.csp.mediaSrc: Takes a list of values for the media-
src policy directive. Default value is 'self'.

➞ studio.security.csp.objectSrc: Takes a list of values for the object-
src policy directive. Default value is 'self'.

➞ studio.security.csp.reportUri: Takes a list of values for the report-
uri policy directive. If no custom list is provided, the directive is not included
in the CSP header.

➞ studio.security.csp.frameAncestors: Takes a list of values for the
frame-ancestors policy directive. Default value is 'none'. This directive
is used to defend clickjacking attacks.

Please note that the frame-ancestors directive is part of the Content Se-
curity Policy Level 2 standard which is not yet supported by all the browsers
that support Content Security Policy Level 1. If required, similar functionality
can be achieved for 'legacy' browsers by setting an appropriate X-Frame-
Options header.

Here is an example how an adapted property would look like.

studio.security.csp.objectSrc='self',www.exampleDomain.com

Write CSP Compliant Code

According to the default policy, inline JavaScript will not be executed. This restriction
bans both inline script blocks and inline event handlers (for example on
click="..."). The first restriction wipes out a huge class of cross-site scripting
attacks by making it impossible to accidentally execute scripts provided by a mali-
cious third-party. It does, however, require a clean separation between content
and behavior (which is good practice anyway). The required code changes for inline
JavaScript code can be summarized as follows:

➞ Inline script blocks needs to move into external JavaScript files.

➞ Inline event handler definitions must be rewritten in terms of addEventL
istener and extracted into component code.

194CoreMedia DXP 8

Security | Content Security Policy

CSP violations can be easily discovered by monitoring the browser console. All vi-
olations are logged as errors including further details about the violation type and
culprit.

Customize CSP Mode

CoreMedia Studio can run in one of four supported CSP modes.

➞ ENFORCE: Full CSP protection is enabled. All directives are enforced and re-
ported.

➞ ENFORCE_ALLOW_DISABLE: Enable full CSP protection unless the disableC
sp query parameter is set to 'true'. This mode is not recommended for a
production environment.

➞ REPORT: CSP protection is enabled in report only mode. All violations are
reported using the report-uri directives configured in studio.secur
ity.csp.reportUri but the directives are not enforced. This mode is not
recommended for a production environment.

➞ DISABLE: CSP protection is disabled. This setting is not recommended.

The configuration is done via the studio.security.csp.mode key of the WEB-
INF/application.properties property file of the Studio web application.

195CoreMedia DXP 8

Security | Content Security Policy

8.3 Single Sign On Integration
The default CoreMedia Studio authentication process is implemented based on
Spring Security. Due to this open standard it is easy to replace the standard authen-
tication mechanism with a common redirect based SSO system like Atlassian Crowd
or CAS. While the authentication process can be replaced, the CoreMedia Content
Server still needs to have a matching user provider configured in order to perform
a fine grained authorization. Please refer to the [CoreMedia Content Server
Manual] for further details about user providers.

This documentation does not replace the SSO manufacturers manual about how
to integrate with Spring Security. This section only covers CoreMedia Studio specific
adjustments that need to be made to a generic integration.

Do not modify the authentication process and the Spring Security filter chain
unless you know what you are doing. An improperly configured security context
can cause severe security issues.

Custom Component

The first step to integrate with a single sign on system is to create a custom com-
ponent as replacement for the editing-rest-security-component. The
editing-rest-security-component contains the configuration for the default
built-in authentication process. It is not required anymore once there is a SSO in-
tegration in place. To replace the component simply replace the editing-rest-
security-component dependency in the pom.xml of the studio-webappwith
a dependency on the new component.

For further details about component artifacts and how to create them, please refer
to the section Application Architecture in the [CoreMedia Digital Experience Platform
8 Developer Manual].

Generic Spring Security Context

The new component has to provide a Spring Security context that holds all the re-
quired configuration to authenticate users against your SSO system. Simply create
a file /META-INF/coremedia/component-XYZ.xml in the new component and
include the following import statement.

Example 8.1. Import
base context

<import resource="classpath:
/com/coremedia/rest/cap/authentication/editing-rest-security-base.xml"/>

196CoreMedia DXP 8

Security | Single Sign On Integration

Next, create a generic Spring Security context based on the SSO manufacturer's
documentation.

Studio Spring Security Context

The core elements of a Spring Security context are the http and the authentic
ation-manager element. The http element is the parent of all functionality re-
lated to the web, the authentication-manager holds the configured authen
tication-provider elements.

Your generic Spring security context for a redirect based SSO solution could look
something like:

Example 8.2. Spring
Security context

<security:http entry-point-ref="YOUR_ENTRY_POINT" auto-config="false">
<security:custom-filter position="FORM_LOGIN_FILTER" ref='YOUR_LOGIN_FILTER'/>
<security:custom-filter position="LOGOUT_FILTER" ref='YOUR_LOGOUT_FILTER'/>

<security:intercept-url pattern="/api/**" access="YOUR_AUTHORITY"/>
<security:intercept-url pattern="/index.html" access="YOUR_AUTHORITY"/>
<security:custom-filter .../>

<security:session-management session-fixation-protection="newSession"/>
<security:csrf request-matcher-ref="YOUR_CSRF_REQUEST_MATCHER"/>

</security:http>

<security:authentication-manager alias="authenticationManager">
<security:authentication-provider ref='YOUR_AUTHENTICATION_PROVIDER'/>

</security:authentication-manager>

Login

CoreMedia Studio only imposes very minimal constraints to the login process.

Depending on the chosen SSO system the login itself is either performed by a
Spring Security filter (internal login page) or an external system (external login
page). The only requirement for this part of the login is that at least one recogniz-
able authority is granted to the authenticated user (typically ROLE_XYZ). This au-
thority needs to match the one in the intercept-url elements of the Spring
Security http configuration.

The second requirement for the login procedure involves the authentication entry
point referenced in the http configuration element. The entry point implementation
for a redirect based SSO system usually does some sort of redirect to a login page.
While this is sensible behavior for a 'normal' request, it is not expected for Studio
REST calls which are XmlHttpRequests to a dedicated /api path. The Studio REST
client can not handle redirects to pages reasonably. Unauthenticated REST calls
should trigger a 403 response instead which is then handled by Studio with a pop-
up message. A separate handling of REST calls and non REST calls can be achieved
with a delegating entry point like the following.

197CoreMedia DXP 8

Security | Single Sign On Integration

Example 8.3. Delegat-
ing entry point

<bean id="delegatingEntryPoint"

class="org.springframework.security.web.authentication.DelegatingAuthenticationEntryPoint">

<constructor-arg>
<map>
<entry key-ref="apiMatcher" value-ref="forbiddenAEP"/>

</map>
</constructor-arg>
<property name="defaultEntryPoint" ref="SSO_SPECIFIC_ENTRY_POINT"/>

</bean>

<bean id="forbiddenAEP"

class="org.springframework.security.web.authentication.Http403ForbiddenEntryPoint"/>

<bean id="apiMatcher"
class="org.springframework.security.web.util.matcher.AntPathRequestMatcher">

<constructor-arg value="/api/**"/>
</bean>

Authorization

In addition to the authorization happening in the Content Server Spring Security is
used to perform a pre-authorization at HTTP level. For a redirect based SSO system,
it is best practice to pre-authenticate all requests to the REST API (/api path) and
to the index.html. A set of intercept-url elements in the http configuration
checks for the granted authority that the SSO system assigns to authenticated
users.

Logout

CoreMedia Studio expects a logout listener to listen to POST requests the context
relative path /logout. It has to trigger at least the default Spring Security Secur
ityContextLogoutHandler and the predefined capLogoutHandler bean.
While the SecurityContextLogoutHandler resets the security context, the
capLogoutHandler ensures that all CapConnections for the current user are
closed and released.

The logout listener must not listen to GET requests as this might result in a CSRF
vulnerability. For simplicity reasons you can use the logoutRequestMatcher
bean from the base security context.

A simple logout filter might look similar to this:

Example 8.4. Logout
filter

<bean id="logoutFilter"
class="org.springframework.security.web.authentication.logout.LogoutFilter">
<constructor-arg value="LOGOUT_SUCCESS_TARGET"/>
<constructor-arg>
<list>
<ref bean="capLogoutHandler"/>
<ref bean="SSO_SPECIFIC_LOGOUT_HANDLER_IF_NEEDED"/>

198CoreMedia DXP 8

Security | Single Sign On Integration

<bean
class="org.springframework.security.web.authentication.logout.SecurityContextLogoutHandler"/>

</list>
</constructor-arg>
<property name="logoutRequestMatcher" ref="logoutRequestMatcher"/>

</bean>

Depending on the chosen SSO system it might be required to add another SSO
specific logout handler or define additional single sign out filters in the Spring Se-
curity filter chain.

Other Configuration

While not required for the core functionality it is still highly recommended including
a csrf and session-management configuration in your http settings.

The csrf configuration is used to enable the Spring Security CSRF protection. It
must be enabled for all vulnerable HTTP verbs like POST, PUT, DELETE, the
Studio client ensures that a valid token is included in the affected requests.

The session-management configuration together with the session-fixation-
protection attribute is used to explicitly enable the Spring Security session fixa-
tion protection. The attribute value can safely be set to newSession.

User Finder

After finishing the configuration of the Spring Security context, there is one last
Studio specific step to do.

So far you have set up a Spring Security context that is using the default Spring
Security authentication providers and user detail services for your SSO system to
authenticate users and load user details. These user details are usually represented
by a SSO specific details object linked to the Spring Security Authentication
object.

While keeping the default implementations in the authentication process hugely
simplifies the SSO configuration, CoreMedia Studio still needs to know the matching
com.coremedia.cap.user.User for the current SSO specific user details. Each
individual Unified API operation has to be performed in the name of the currently
authenticated User in order to be able to perform a fine grained authorization in
the CoreMedia Content Server. To do this mapping between SSO specific user details
and a User for the chosen SSO system, you have to implement a SpringSecur
ityUserFinder.

The SpringSecurityCapUserFinder interface consists of only one method that
finds a User for a given Authentication object. In order to write a finder for
the chosen SSO system you can simply extend the AbstractSpringSecurity
CapUserFinder that already has a CapConnection available.

199CoreMedia DXP 8

Security | Single Sign On Integration

Example 8.5. User
finder

public class XYZSpringSecurityCapUserFinder
extends AbstractSpringSecurityCapUserFinder
implements SpringSecurityCapUserFinder {

@Override
public User findCapUser(Authentication authentication) {
Object principal = authentication.getPrincipal();
if (principal instanceof XYZ) {
String username = GET_USER_NAME_FROM_USER_DETAILS;
return getCapConnection().getUserRepository()

.getUserByName(username, DOMAIN);
}
return null;

}
}

The custom user finder is enabled by replacing the Spring bean springSecurity
CapUserFinder in the Spring context.

Example 8.6. Enable
user finder

<customize:replace id="customSpringSecurityCapUserFinder"
bean="springSecurityCapUserFinder">

<bean class="XYZSpringSecurityCapUserFinder"
parent="abstractSpringSecurityCapUserFinder"/>

</customize:replace>

Session Tracking Mode

In order to prevent the JSESSIONID from appearing as an URL parameter it is
recommended to add the following configuration to your web.xml:

<session-config>
<tracking-mode>COOKIE</tracking-mode>

</session-config>

200CoreMedia DXP 8

Security | Single Sign On Integration

8.4 Auto Logout
CoreMedia Studio provides two complementing mechanisms for automatically log-
ging out inactive users: server-side session management and client-side activity
tracking.

Jointly, these two algorithms keep the number of active sessions to a minimum,
reducing the opportunity for an attacker to hijack a Studio session. The session
timeouts for these algorithms can be configured separately. You should strive for
a balance between security and user convenience.

Server-Side Session Management

A login to CoreMedia Studio is supported by a servlet session that is established
with the web application container. If the client application in the browser does
not contact the web application for a certain time, the servlet session will be closed
by the container.

When the servlet session dies and the Studio client contact the server again, the
condition will be detected and an appropriate error message is shown. The user
will need to log in again.

Note that this timeout appears typically when the browser is closed or when the
client machine is suspended or shut down. As long as Studio is open in a running
browser, it continually fetches events from the server using HTTP requests. These
requests keep the session alive.

You can configure the timeout in the web.xml file of the Studio web application.
Most containers set a default value of 30 minutes. Because the Studio client contacts
the server at least every 20 seconds, you may opt to reduce the timeout signific-
antly. You should not reduce it to less than a couple of minutes, though, so that
temporary network problems do not cause Studio to disconnect.

Client-Side Activity Tracking

In order to detect that the user is not interacting with a running CoreMedia Studio,
a client-side process continually detects mouse movements and write requests,
which provide a good indication of use activity.

When the user is inactive for too long, the CoreMedia Studio session is closed and
the login screen is shown again. This timeout can be configured using the applica-
tion property studio.security.autoLogout.delay. By default, the timeout
is set to 30 minutes.

201CoreMedia DXP 8

Security | Auto Logout

8.5 Logging
In order to support the detection of attacks and analysis of incidents, authentication
failures as well as successful authentication events are logged by CoreMedia Studio.
Example 8.7, “Example Output” [202] shows some typical log entries.

Example 8.7. Example
Output

2015-07-07 13:43:30 [WARN]
Http401AuthenticationFailureHandler [] -
Failed login - User: Rick,
IP: 127.0.0.1 (http-bio-8080-exec-8)

2015-07-07 13:51:11 [INFO]
Http200AuthenticationSuccessHandler [] -
Successful login - User: Rick (coremedia:///cap/user/8),
IP: 127.0.0.1 (http-bio-8080-exec-6)

Marker Hierarchy

To get a better overview of security events you might want to duplicate or even
redirect such events to extra access logs. To do so CoreMedia Studio uses a SLF4j
Marker hierarchy

Example 8.8. Marker
Hierarchy

➞ coremedia - root marker

➞ security - security related entries

➞ authentication - for example login or logout events

➞ authorization - events such as missing rights for certain actions

Filtering

Filtering log entries is described in Logback's Online Documentation, Chapter 7:
Filters. To redirect or duplicate security related log events you will define a filter
for an appender using the JaninoEventEvaluator. Mind that you will require a
runtime dependency on org.codehaus.janino:janino.

Example 8.9. Configure
Access Log

<appender name="access"
class="ch.qos.logback.core.FileAppender">

<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression><![CDATA[
marker != null && marker.contains("authentication");
]]></expression>

</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>

202CoreMedia DXP 8

Security | Logging

http://logback.qos.ch/manual/filters.html
http://logback.qos.ch/manual/filters.html
http://logback.qos.ch/manual/filters.html#JaninoEventEvaluator

<encoder><pattern>${log.pattern}</pattern></encoder>
<file>access.log</file>

</appender>

Example 8.9, “Configure Access Log” [202] shows an example how to log authentic-
ation events to a file named access.log. marker refers to a variable exported
by JaninoEventEvaluator before parsing. Only authentication events will be
logged here.

Example 8.10. Config-
ure Security Log

<appender name="security"
class="ch.qos.logback.core.FileAppender">

<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression><![CDATA[
marker != null && marker.contains("security");
]]></expression>

</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>

</filter>
<encoder><pattern>${log.pattern}</pattern></encoder>
<file>security.log</file>

</appender>

Example 8.10, “Configure Security Log” [203] shows an example how to log any
security related events to a file named security.log. As security contains
authentication also authentication log entries will go here.

Example 8.11. Config-
ure Default Log

<appender name="default"
class="ch.qos.logback.core.FileAppender">

<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator>
<expression><![CDATA[
marker != null && marker.contains("security");
]]></expression>

</evaluator>
<OnMismatch>NEUTRAL</OnMismatch>
<OnMatch>DENY</OnMatch>

</filter>
<encoder><pattern>${log.pattern}</pattern></encoder>
<file>default.log</file>

</appender>

203CoreMedia DXP 8

Security | Logging

Example 8.11, “Configure Default Log” [203] shows an example for an appender
which ignores any security related log entries. You might want to use this approach
to hide login/logout entries from unauthorized personal.

Example 8.12. Config-
ure Logger

<logger name="com.coremedia"
additivity="false"
level="info">

<appender-ref ref="security"/>
<appender-ref ref="access"/>
<appender-ref ref="default"/>

</logger>

Example 8.11, “Configure Default Log” [203] eventually binds all appenders to the
given logger.

Example 8.13. Sup-
press Security Logging

<turboFilter class="ch.qos.logback.classic.turbo.MarkerFilter">
<Marker>security</Marker>
<OnMatch>DENY</OnMatch>

</turboFilter>

Example 8.13, “Suppress Security Logging” [204] is just another example in case
you completely want to suppress security log entries using so called turbo filters.

204CoreMedia DXP 8

Security | Logging

Glossary

Blob Binary Large Object or short blob, a property type for binary objects, such as
graphics.

CAE Feeder Content applications often require search functionality not only for single
content items but for content beans. The CAE Feeder makes content beans
searchable by sending their data to the Search Engine, which adds it to the
index.

Content Application Engine (CAE) The Content Application Engine (CAE) is a framework for developing content
applications with CoreMedia CMS.

While it focuses on web applications, the core frameworks remain usable in
other environments such as standalone clients, portal containers or web
service implementations.

The CAE uses the Spring Framework for application setup and web request
processing.

Content Bean A content bean defines a business oriented access layer to the content, that
is managed in CoreMedia CMS and third-party systems. Technically, a content
bean is a Java object that encapsulates access to any content, either to Core-
Media CMS content items or to any other kind of third-party systems. Various
CoreMedia components like the CAE Feeder or the data view cache are built
on this layer. For these components the content beans act as a facade that
hides the underlying technology.

Content Delivery Environment The Content Delivery Environment is the environment in which the content is
delivered to the end-user.

It may contain any of the following modules:

➞ CoreMedia Master Live Server

➞ CoreMedia Replication Live Server

➞ CoreMedia Content Application Engine

➞ CoreMedia Search Engine

➞ Elastic Social

205CoreMedia DXP 8

Glossary |

➞ CoreMedia Adaptive Personalization

Content Feeder The Content Feeder is a separate web application that feeds content items of
the CoreMedia repository into the CoreMedia Search Engine. Editors can use
the Search Engine to make a full text search for these fed items.

Content item In CoreMedia CMS, content is stored as self-defined content items. Content
items are specified by their properties or fields. Typical content properties
are, for example, title, author, image and text content.

Content Management Environment The Content Management Environment is the environment for editors. The
content is not visible to the end user. It may consist of the following modules:

➞ CoreMedia Content Management Server

➞ CoreMedia Workflow Server

➞ CoreMedia Importer

➞ CoreMedia Site Manager

➞ CoreMedia Studio

➞ CoreMedia Search Engine

➞ CoreMedia Adaptive Personalization

➞ CoreMedia CMS for SAP Netweaver ® Portal

➞ CoreMedia Preview CAE

Content Management Server Server on which the content is edited. Edited content is published to the
Master Live Server.

Content Repository CoreMedia CMS manages content in the Content Repository. Using the Content
Server or the UAPI you can access this content. Physically, the content is
stored in a relational database.

Content Server Content Server is the umbrella term for all servers that directly access the
CoreMedia repository:

Content Servers are web applications running in a servlet container.

➞ Content Management Server

➞ Master Live Server

➞ Replication Live Server

206CoreMedia DXP 8

Glossary |

Content type A content type describes the properties of a certain type of content. Such
properties are for example title, text content, author, ...

Contributions Contributions are tools or extensions that can be used to improve the work
with CoreMedia CMS. They are written by CoreMedia developers - be it clients,
partners or CoreMedia employees. CoreMedia contributions are hosted on
Github at https://github.com/coremedia-contributions.

Controm Room Controm Room is a Studio plugin, which enables users to manage projects,
work with workflows, and collaborate by sharing content with other Studio
users.

CORBA (Common Object Request
Broker Architecture)

The term CORBA refers to a language- and platform-independent distributed
object standard which enables interoperation between heterogenous applic-
ations over a network. It was created and is currently controlled by the Object
Management Group (OMG), a standards consortium for distributed object-
oriented systems.

CORBA programs communicate using the standard IIOP protocol.

CoreMedia Studio CoreMedia Studio is the working environment for business specialists. Its
functionality covers all of the stages in a web-based editing process, from
content creation and management to preview, test and publication.

As a modern web application, CoreMedia Studio is based on the latest standards
like Ajax and is therefore as easy to use as a normal desktop application.

Dead Link A link, whose target does not exists.

DTD A Document Type Definition is a formal context-free grammar for describing
the structure of XML entities.

The particular DTD of a given Entity can be deduced by looking at the docu-
ment prolog:

<!DOCTYPE coremedia SYSTEM "http://www.core
media.com/dtd/coremedia.dtd"

There're two ways to indicate the DTD: Either by Public or by System Identifier.
The System Identifier is just that: a URL to the DTD. The Public Identifier is
an SGML Legacy Concept.

Elastic Social CoreMedia Elastic Social is a component of CoreMedia CMS that lets users engage
with your website. It supports features like comments, rating, likings on your
website. Elastic Social is integrated into CoreMedia Studio so editors can
moderate user generated content from their common workplace. Elastic Social
bases on NoSQL technology and offers nearly unlimited scalability.

207CoreMedia DXP 8

Glossary |

https://github.com/coremedia-contributions

EXML EXML is an XML dialect supporting the declarative development of complex
Ext JS components. EXML is Jangaroo's equivalent to Adobe Flex MXML and
compiles down to Actions Script.

Folder A folder is a resource in the CoreMedia system which can contain other re-
sources. Conceptually, a folder corresponds to a directory in a file system.

Home Page The main entry point for all visitors of a site. Technically it is often referred
to as root document and also serves as provider of the default layout for all
subpages.

IETF BCP 47 Document series of Best current practice (BCP) defined by the Internet Engin-
eering Task Force (IETF). It includes the definition of IETF language tags, which
are an abbreviated language code such as en for English, pt-BR for Brazilian
Portuguese, or nan-Hant-TW for Min Nan Chinese as spoken in Taiwan using
traditional Han characters.

Importer Component of the CoreMedia system for importing external content of
varying format.

IOR (Interoperable Object Refer-
ence)

A CORBA term, Interoperable Object Reference refers to the name with which
a CORBA object can be referenced.

Jangaroo Jangaroo is a JavaScript framework developed by CoreMedia that supports
ActionScript as an input language which is compiled down to JavaScript. You
will find detailed descriptions on the Jangaroo webpage ht-
tp://www.jangaroo.net.

Java Management Extensions (JMX) The Java Management Extensions is an API for managing and monitoring
applications and services in a Java environment. It is a standard, developed
through the Java Community Process as JSR-3. Parts of the specification are
already integrated with Java 5. JMX provides a tiered architecture with the
instrumentation level, the agent level and the manager level. On the instru-
mentation level, MBeans are used as managed resources.

JSP JSP (Java Server Pages) is a template technology based on Java for generating
dynamic HTML pages.

It consists of HTML code fragments in which Java code can be embedded.

Locale Locale is a combination of country and language. Thus, it refers to translation
as well as to localization. Locales used in translation processes are typically
represented as IETF BCP 47 language tags.

Master Live Server The Master Live Server is the heart of the Content Delivery Environment. It re-
ceives the published content from the Content Management Server and makes
it available to the CAE. If you are using the CoreMedia Multi-Site Management
Extension you may use multiple Master Live Server in a CoreMedia system.

208CoreMedia DXP 8

Glossary |

http://www.jangaroo.net
http://www.jangaroo.net

Master Site A master site is a site other localized sites are derived from. A localized site
might itself take the role of a master site for other derived sites.

MIME With Multipurpose Internet Mail Extensions (MIME), the format of multi-part,
multimedia emails and of web documents is standardised.

Personalisation On personalised websites, individual users have the possibility of making
settings and adjustments which are saved for later visits.

Projects A project is a collection of content items in CoreMedia CMS created by a
specific user. A project can be managed as a unit, published or put in a
workflow, for example.

Property In relation to CoreMedia, properties have two different meanings:

In CoreMedia, content items are described with properties (content fields).
There are various types of properties, e.g. strings (such as for the author),
Blobs (e.g. for images) and XML for the textual content. Which properties
exist for a content items depends on the content type.

In connection with the configuration of CoreMedia components, the system
behavior of a component is determined by properties.

Replication Live Server The aim of the Replication Live Server is to distribute load on different servers
and to improve the robustness of the Content Delivery Environment. The Rep-
lication Live Server is a complete Content Server installation. Its content is an
replicated image of the content of a Master Live Server. The Replication Live
Server updates its database due to change events from the Master Live Server.
You can connect an arbitrary number of Replication Live Servers to the Master
Live Server.

Resource A folder or a content item in the CoreMedia system.

ResourceURI A ResourceUri uniquely identifies a page which has been or will be created
by the Active Delivery Server. The ResourceUri consists of five components:
Resource ID, Template ID, Version number, Property names and a number of
key/value pairs as additional parameters.

Responsive Design Responsive design is an approach to design a website that provides an optimal
viewing experience on different devices, such as PC, tablet, mobile phone.

Site A site is a cohesive collection of web pages in a single locale, sometimes re-
ferred to as localized site. In CoreMedia CMS a site especially consists of a site
folder, a site indicator and a home page for a site.

A typical site also has a master site it is derived from.

209CoreMedia DXP 8

Glossary |

Site Folder All contents of a site are bundled in one dedicated folder. The most prominent
document in a site folder is the site indicator, which describes details of a
site.

Site Indicator A site indicator is the central configuration object for a site. It is an instance
of a special content type, most likely CMSite.

Site Manager Swing component of CoreMedia for editing content items, managing users
and workflows.

Site Manager Group Members of a site manager group are typically responsible for one localized
site. Responsible means that they take care of the contents of that site and
that they accept translation tasks for that site.

Template In CoreMedia, JSPs used for displaying content are known as Templates.

OR

In Blueprint a template is a predeveloped content structure for pages. Defined
by typically an administrative user a content editor can use this template to
quickly create a complete new page including, for example, navigation, pre-
defined layout and even predefined content.

Translation Manager Role Editors in the translation manager role are in charge of triggering translation
workflows for sites.

User Changes web application The User Changes web application is a Content Repository listener, which collects
all content, modified by Studio users. This content can then be managed in
the Control Room, as a part of projects and workflows.

Version history A newly created content item receives the version number 1. New versions
are created when the content item is checked in; these are numbered in
chronological order.

Weak Links In general CoreMedia CMS always guarantees link consistency. But links can
be declared with the weak attribute, so that they are not checked during
publication or withdrawal.

Caution! Weak links may cause dead links in the live environment.

WebDAV WebDAV stands for World Wide Web Distributed Authoring and Versioning
Protocol. It is an extension of the Hypertext Transfer Protocol (HTTP), which
offers a standardised method for the distributed work on different data via
the internet. This adds the possibility to the CoreMedia system to easily access
CoreMedia resources via external programs. A WebDAV enabled application
like Microsoft Word is thus able to open Word documents stored in the
CoreMedia system. For further information, see http://www.webdav.org.

210CoreMedia DXP 8

Glossary |

http://www.webdav.org

Workflow A workflow is the defined series of tasks within an organization to produce
a final outcome. Sophisticated applications allow you to define different
workflows for different types of jobs. So, for example, in a publishing setting,
a document might be automatically routed from writer to editor to
proofreader to production. At each stage in the workflow, one individual or
group is responsible for a specific task. Once the task is complete, the work-
flow software ensures that the individuals responsible for the next task are
notified and receive the data they need to execute their stage of the process.

Workflow Server The CoreMedia Workflow Server is part of the Content Management Environ-
ment. It comes with predefined workflows for publication and global-search-
and-replace but also executes freely definable workflows.

XLIFF XLIFF is an XML-based format, standardized by OASIS for the exchange of
localizable data. An XLIFF file contains not only the text to be translated but
also metadata about the text. For example, the source and target language.
CoreMedia Studio allows you to export content items in the XLIFF format and
to import the files again after translation.

211CoreMedia DXP 8

Glossary |

Index

Symbols
#joo.debug, 71
-Dcontentserver.host, 66

A
Access Control (content), 52
Access Control (workflow), 52
actions, 31
ActionScript

documentation, 34
annotation

configurable, 58
explicit, 58
implicit, 58

architecture, 14
ASDoc, 34

B
beans, 38

properties, 38
remote, 38, 40
singleton, 40
state, 39

browser developer tools, 70
drill-down, 71

button
add to Favorites Toolbar, 145
apps menu, 149
custom action, 148
disapprove, 150

C
callback function, 42

successful, 42
CKEditor, 17, 129

add plugin, 129
blockElements, 125
custom style classes, 124
default plugins, 130
mapping characters while copying, 126
plugin definition, 130
plugins, 129
visualize style, 125

ckeditor
richtext, 133

com.coremedia.cap.struct.Struct, 54
com.coremedia.ui.data.bean, 38
compiling, 67
component

extending, 30
plugin mechanism, 30

component map, 144
components

configuration, 35
concurrency, 56
connection

command line parameter, 66
create, 51
reassigning server URL, 67
using profiles, 67
with Content Server, 66
with Preview CAE, 66

Content, 52
content

accessing properties, 53
content type icons, 98
ContentProperties, 53
ContentRepository, 51
ContentTypes_properties, 97
ContentWritePostprocessor, 184
context

annotate, 58
Control Room

configuration, 20

D
dashboard, 166

configuration, 167
configureDashboardPlugin, 167
UML overview, 168

212CoreMedia DXP 8

Index |

widgets, 166
debugging, 70
debugging applications, 25
derived contents list, 104
document form

article example, 102
hide property, 103
link list properties, 105

document forms, 101
adding tabs, 105
customize, 101
disabling preview, 112

document types
exclude from library, 113

documents
client-side initializers, 114

E
example

add disapprove button, 143
EXML, 16

typed language, 32
Ext AS, 32

file types, 32
Ext JS, 16, 27

activate console, 72
components, 29
debugging, 72
plugins, 37
xtype, 27

ext.Component, 29
ext.ComponentMgr, 29
Ext.getCmP, 29
ext.Viewport, 29

F
Firebug

debugging, 25
forms (see document forms)
function value expressions, 48

changed value, 49
passing arguments, 48

I
icons

content types, 98
four types, 100
predefined content type icons, 98
sprites, 101

IDE
setup, 24

IDEA plugin, 69
IEditorContext

usages, 86
Illuminations, 73
image cropping, 108

defining crops, 108
enabling, 108

image map, 111
enabling, 111
validation, 111

Inheritance
property, 151

interceptor
enabling, 182
example, 182
get content, 181
get file name, 181
get request values, 181
issues, 181
primary, 182

interceptors, 180
issues, 41

codes, 42
marking invalid, 41

J
Jangaroo, 16, 32

compiler, 33
debugging, 71
documentation, 33
IDEA plugin, 69
user group, 34

L
labels, 94

Blueprint properties, 94

213CoreMedia DXP 8

Index |

example, 95
new resource bundle, 94
overriding standard labels, 96
predefined property classes, 94

library
customizing, 152
list view columns, 152
search filter, 155
thumbnail view, 155

list views
additional data fields, 153
search mode, 154

localization, 61
Blueprint properties, 98
default language, 61
document types and fields, 97
overriding default properties, 97
overwrite existing, 61

M
memory leaks, 75

retainers, 75
metadata

example, 139
listen to changes, 141

Metadata Service, 138
metadata tree

filter, 140
traverse breadth-first, 140

MetadataTree, 139
MetadataTreeNode, 139
MIME types, 175

adding, 175
model beans, 43
MongoDB

Collaboration, 20
multisite

sitesservice, 63
MVC pattern, 37

N
non-public API usage, 68

O
OperationResult, 42

P
pbe.studioUrlWhitelist, 22
plugin rule, 85
plugins, 84
Preferences, 142
preview

communicate with Studio, 138
configuration, 21
whitelist of URLs, 22

Process, 53
ProcessDefinition, 53
ProcessState, 54
properties, 38, 115

events, 39
example String property, 116
inherit from base class, 116
updating, 38

property
injecting, 143

property field
compound field, 119
data binding, 119
default text, 119
mandatory properties, 117
read-only, 119
register, 117
richtext, 122
update model, 118
validating, 118

property path expressions
access methods, 47

Property Value Inheritance, 151
PublicationService, 51

R
remote beans, 38, 40

get URL, 40
load content, 40
properties ready to use, 41
subclasses, 40

replaceItemsPlugin, 92

214CoreMedia DXP 8

Index |

repository connection, 19
repository.url, 19
richtext property

inline images, 123
table cell merge and split, 123
toolbar, 127

running Studio web application, 67

S
search filter

add, 155
default state, 156
open library in filter state, 157
Solr query string, 156

search folder
addArrayItemsPlugin, 146
search parameters, 147

search folders
providing defaults, 146

search mode
freshness, 155
searchable lists, 154

server-side validation, 41
structs, 54

adding new properties, 55
Studio

compiling, 67
plugins, 84
running, 67

Studio plugin
adding button, 88
loading external resources, 93
main class, 86
register, 92
relative position of new component, 89
removing components, 92
replacing components, 92
structure, 84

Studio plugins
execution order, 88
rules, 87

studio.previewControllerPattern, 66

T
Task, 53

TaskDefinition, 53
TaskDefinitionType, 53
TaskState, 54
toolbar

order items, 146
toolbars, 145
translation

define source language document, 112

U
Uniform access layer, 37
UploadedBlob, 181
User Changes web application

configuration, 20

V
validators, 176

editor actions, 180
enabling, 177
immediate validation, 183
implementing, 177
localize messages, 179
messages, 179
multiple properties, 178
predefined, 176
server-side, 176
single-property, 177

value expression
events, 45
listener, 45
no undefined result, 45
property path expression, 46

value expressions, 37, 44
getValue, 45
implementations, 44

W
widget

configuration mode, 166
getting search results, 169
reload button, 171

widgets
adding custom types, 170
predefined, 169

215CoreMedia DXP 8

Index |

work area
action to open, 160
customize context menu, 164
restore, 162
start with blank area, 162
storing state of tab, 161
tabs, 160

WorkflowObject, 53
WorkflowObjectProperties, 54
WorkflowRepository, 52
WorklistService, 52
workspace

setup, 24
write post-processor

priority, 184
write post-processors, 184

configuring, 184
write requests

interceptors, 180
post process, 184

216CoreMedia DXP 8

Index |

	CoreMedia Studio Manual
	Table of Contents
	1. Introduction
	1.1 Audience
	1.2 Typographic Conventions
	1.3 CoreMedia Services
	1.3.1 Registration
	1.3.2 CoreMedia Releases
	1.3.3 Documentation
	1.3.4 CoreMedia Training
	1.3.5 CoreMedia Support

	1.4 Change Chapter

	2. Overview
	2.1 Architecture
	2.2 Technologies

	3. Deployment
	3.1 Connecting to the Repository
	3.2 Control Room Configuration
	3.3 Basic Preview Configuration
	3.4 Advanced Preview Configuration
	3.5 Development Setup

	4. Quick Start
	5. Concepts and Technology
	5.1 Ext JS Primer
	5.1.1 Components
	5.1.2 Declarative UI (Ext JSON)
	5.1.3 Component Plugins
	5.1.4 Actions

	5.2 Ext JS with ActionScript and EXML
	5.3 Client-side Model
	5.3.1 Beans
	5.3.2 Remote Beans
	5.3.3 Issues
	5.3.4 Operation Results
	5.3.5 Model Beans for Custom Components
	5.3.6 Value Expressions

	5.4 Remote CoreMedia Objects
	5.4.1 Connection and Services
	5.4.2 Content
	5.4.3 Workflow
	5.4.4 Structs
	5.4.5 Types and Property Descriptors
	5.4.6 Concurrency

	5.5 Studio Component IoC
	5.5.1 Motivation
	5.5.2 Inversion of Control
	5.5.3 Annotations of Context Consumer and Context Provider

	5.6 Web Application Structure
	5.7 Localization
	5.8 Multi-Site and Localization Management
	5.9 Further Reading

	6. Using the Development Environment
	6.1 Configuring Connections
	6.2 Build Process
	6.3 IDE Support
	6.4 Debugging
	6.4.1 Browser Developer Tools
	6.4.2 Ext JS debug.js
	6.4.3 Illuminations
	6.4.4 Tracing Memory Leaks
	Component Leaks
	Memory Leaks Caused by Non-Detached Listeners
	Memory Leaks Caused by Other References
	Detecting Memory Leaks

	7. Customizing CoreMedia Studio
	7.1 Studio Plugins
	7.2 Localizing Labels
	7.3 Document Type Model
	7.3.1 Localizing Types and Fields
	7.3.2 Defining Content Type Icons
	7.3.3 Customizing Document Forms
	7.3.4 Image Cropping and Image Transformation
	7.3.5 Enabling Image Map Editing
	7.3.6 Disabling Preview for Specific Document Types
	7.3.7 Configuring Translation Support
	7.3.8 Excluding Document Types from the Library
	7.3.9 Client-side initialization of new Documents

	7.4 Customizing Property Fields
	7.4.1 Conventions for Property Fields
	7.4.2 Standard Component StringPropertyField
	7.4.3 Compound Field
	7.4.4 Complex Setups
	7.4.5 Customizing RichText Property Fields
	Inline Images in RichText
	Adding table cell merge and split commands
	Adding Custom RichText Style Classes
	Customizing the Symbol Mapping
	Customizing Richtext Toolbar
	Customizing CKEditor
	Interacting with the CKEditor via API

	7.5 Upgrading the CKEditor
	7.5.1 Upgrading RichTextArea Plugins from CKEditor 3 to 4
	7.5.2 Migrating Richtext Editor Dialogs
	7.5.3 CKEditor plugins available

	7.6 Coupling Studio and Embedded Preview
	7.6.1 Built-in Processing of Content and Property Metadata
	7.6.2 Using the Preview Metadata Service
	The Metadata Service Interface
	Working with the Metadata Tree
	Listening to Metadata Availability/Changes

	7.7 Storing Preferences
	7.8 Customizing Studio using Component IoC
	7.8.1 Content Actions
	7.8.2 Example: Add a disapprove button to the actions toolbar
	7.8.3 Studio Component Map

	7.9 Customizing Central Toolbars
	7.9.1 Adding buttons to the Favorites Toolbar
	7.9.2 Providing default Search Folders
	7.9.3 Adding a Button with a Custom Action
	7.9.4 Adding a Button to the Apps Menu
	7.9.5 Adding Disapprove Buttons

	7.10 Inheritance of Property Values
	7.11 Customizing the Library Window
	7.11.1 Defining List View Columns in Repository Mode
	7.11.2 Defining Additional Data Fields for List Views
	7.11.3 Defining List View Columns in Search Mode
	7.11.4 Configuring the Thumbnail View
	7.11.5 Adding Search Filters
	7.11.6 Make Columns Sortable in Search and Repository View

	7.12 Work Area Tabs
	7.12.1 Configuring a Work Area Tab
	7.12.2 Configure an Action to Open a Work Area Tab
	7.12.3 Configure a Singleton Work Area Tab
	7.12.4 Storing the State of a Work Area Tab
	7.12.5 Customizing the Start up Behavior
	7.12.6 Customizing the Work Area Tab Context Menu

	7.13 Dashboard
	7.13.1 Concepts
	7.13.2 Defining the Dashboard
	7.13.3 Predefined Widget Types
	Fixed Search Widget
	Simple Search Widget

	7.13.4 Adding Custom Widget Types
	Widget Type and Widget Component
	Configurable and Stateful Widgets
	Custom Widget State Class

	7.14 Configuring MIME Types
	7.15 Server-Side Content Processing
	7.15.1 Validators
	Predefined validators
	Implementing Validators
	Defining and Localizing Validator Messages
	Tying Document Validation to Editor Actions

	7.15.2 Intercepting Write Requests
	Developing Write Interceptors
	Configuring Write Interceptors

	7.15.3 Immediate Validation
	7.15.4 Post-processing Write Requests
	Developing Write Post-processors
	Configuring Write Post-processors

	7.16 Available Locales
	7.17 Notifications
	7.17.1 Configure Notifications
	7.17.2 Adding Custom Notifications
	7.17.3 Creating Notifications (Server Side)
	7.17.4 Displaying Notifications (Client Side)

	8. Security
	8.1 Preview Integration
	8.2 Content Security Policy
	8.3 Single Sign On Integration
	8.4 Auto Logout
	8.5 Logging

	Glossary
	Index

